Markov Chain Analysis (math-ga 2932.001): Homework assignment 1

Eyal Lubetzky http://cims.nyu.edu/~eyal

Due by: Feb 26

- 1. Let P be the transition kernel of a Markov chain on a finite state space Ω . We say that y is accessible from x — denoted $x \to y$ — if there exists some t such that $P^t(x, y) > 0$, and that x, y communicate if $x \to y$ and $y \to x$.
 - (i) Show that if x, y communicate then they have the same period, and that the chain is irreducible iff every pair of states $x \neq y$ communicate.
 - (ii) A state x is essential if $y \to x$ for all y with $x \to y$, and it is inessential otherwise. Prove that if x, y communicate then they are either both essential or both inessential.
 - (iii) Show that there exists at least one essential state.
- 2. Recall that simple random walk (SRW) on $\{0, \ldots, n\}$ has $\mathbb{E}_k[\tau_0 \wedge \tau_n] = k(n-k)$, so SRW on \mathbb{Z}_n has $\mathbb{E}_1\tau_0 = n-1$. Reobtain the latter using the stationary distribution of the SRW.
- 3. Let P be a transition kernel of an aperiodic irreducible Markov chain on a finite state space Ω with stationary distribution π . Recall that $d(t) = \max_x \|P^t(x, \cdot) \pi\|_{tv}$.
 - (i) Show that $\|\mu P \nu P\|_{tv} \leq \|\mu \nu\|_{tv}$ for any μ, ν , and conclude that d(t) is non-increasing in t, and moreover, that $\|P^t(x, \cdot) \pi\|_{tv}$ is non-increasing in t for any starting state x.
 - (ii) Show that for $p \ge 1$ and $f: \Omega \to \mathbb{R}$ the function $p \mapsto (\int |f(x)|^p d\pi)^{1/p}$ is non-decreasing. Conclude that if

$$d^{(p)}(t) := \max_{x} \left(\sum_{y} \left| \frac{P^{t}(x,y)}{\pi(y)} - 1 \right|^{p} \pi(y) \right)^{1}$$

(notice $d(t) = \frac{1}{2}d^{(1)}(t)$ in this notation) then $d^{(p)}(t) \le d^{(q)}(t)$ for any $1 \le p \le q$.

(iii)* For
$$p \in \{1, 2, \infty\}$$
, prove that $d^{(p)}(t+s) \le d^{(p)}(t)d^{(p)}(s)$ holds for any $s, t \ge 0$.

4^{*}. Recall that the Metropolis chain for legal colorings of a graph with maximal degree Δ using $q \geq \Delta + 2$ colors (the chain which repeatedly selects a uniform vertex *i* and a uniform color *c* as its proposed new color, and accepts the move if *c* is not currently occupied by a neighbor of vertex *i*) converges to the uniform distribution over such colorings.

Prove or disprove: if $q \ge \Delta + 2$ then the following process generates a uniform legal q-coloring of a graph with maximum degree Δ : take a uniform permutation π of the vertices, then proceed sequentially: at step *i*, assign vertex $\pi(i)$ a uniformly (and independently) chosen color out of those that had not already been assigned to any of its neighbors.