
Continuous Time Finance

Homework 1: Review

In all exercises, (Ω,F ,P) represents a probability space, (Wt)t≥0 a standard Brownian motion on that
probability space, and (Ft)t≥0 the filtration it generates.

Exercise 1: Brownian motion definitions

Consider the following two definitions of Brownian Motion:

Definition 1:

(i) W0 = 0 P-almost surely

(ii) ∀0 ≤ r < s ≤ t < u, Wu −Wt is independent of Ws −Wr

(iii) ∀s 6= t, Wt −Ws ∼ N (0, |t− s|)

(iv) t 7→Wt is continuous P-almost surely

Definition 2:

(i) W0 = 0 P-almost surely

(ii) ∀n ∈ N∗, and 0 ≤ t1 < · · · < tn, (Wt1 , · · · ,Wtn) is a Gaussian vector of mean 0 ∈ Rn and covariance
matrix Σ = [min(ti, tj)]i,j=1,··· ,n ∈ Rn×n

(iii) t 7→Wt is continuous P-almost surely

Show that both definitions are equivalent.

Exercise 2: Reflection principle for Brownian motion

Define the stochastic process for t ∈ R+:
Mt = max

0≤s≤t
Ws

which is the running maximum of a Brownian motion. Also define the random variable for b ∈ R:

τb = inf{t ≥ 0 : Wt = b}

which gives the first time W reaches the level b.
The goal is to derive their distribution. To do so, we will first compute:

F (a, b) = P(Wt ≤ a,Mt ≥ b)

by the so called ’Reflection principle’.
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(a) Let 0 ≤ a ≤ b, t ∈ R+ and define the stochastic process for s ∈ [0, t]:

W̃s =

{
Ws, if s ≤ τb
2b−Ws, if s ≥ τb

Plot a Brownian path W on [0, t], satisfying: τb < t and Wt ≤ a. Plot the corresponding path (i.e. the
same ‘ω’) for W̃ on [0, t]. In what interval does W̃t end up?

(b) Let’s admit that W̃ is still a Brownian motion1, and hence

F (a, b) = P
(
W̃t ≤ a, max

0≤s≤t
W̃s ≥ b

)
By using the definition of W̃ , and by noting that:{

ω ∈ Ω : max
0≤s≤t

W̃s ≥ b
}

= {ω ∈ Ω : τb ≤ t},

show that:
F (a, b) = P(Wt ≥ 2b− a)

(c) Deduce P(Mt ≥ b) (Hint2), P(τb ≤ t), the densities of Mt, τb as well as the joint distribution of (Wt,Mt).

Exercise 3: Time independent boundary value problems

Let D = [a, b] and consider the stochastic process:

dXt = α(Xt)dt+ β(Xt)dWt

Note that α, β are deterministic functions that do not depend on time. Define

u(x) = E
[∫ τx

0

f(Xs)ds+ g(Xτx)

∣∣∣∣X0 = x

]
(1)

for x ∈ D, where
τx = {inf t ≥ 0 : Xt /∈ D}

Note that τx depends on x due to the starting point X0 = x. f, g are deterministic functions, that represent
respectively a running payoff and a final time payoff.

In other words, we are playing a game where we receive (or pay) f(Xt)dt for each unit of time dt as long
as Xt remains in D. As soon as Xt exits D, we get (or pay) g(Xt). u(x) represents our expected payoff from
this game.

The goal is to show that u solves the ODE (becomes a PDE if x ∈ Rn):α(x)
d

dx
u(x) +

β2(x)

2

d2

dx2
u(x) + f(x) = 0, x ∈ D

u(a) = g(a), u(b) = g(b)

(a) Apply Ito’s lemma to u(Xt) and integrate both sides of the equation between 0 and τx.

(b) Assume that u does indeed solves the ODE above. Deduce that

u(x) = E
[∫ τx

0

f(Xs)ds+ g(Xτx)

∣∣∣∣X0 = x

]
1a consequence of the independence of Wτb and Ws −Wτb for s ≥ τb, and of u 7→Wτb+u −Wτb being a Brownian Motion
2Hint: P(Mt ≥ b) = P(Mt ≥ b,Wt ≤ b) + P(Mt ≥ b,Wt ≥ b)
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Hint: you can assume that E[
∫ τx
0
h(Xt)dWt|X0 = x] = 0 for any function h. This only holds if

E[τx|X0 = x] < +∞, which is not hard to prove here (you are not asked to do this but will get bonus
points of you do).

We just showed that if there exists a solution u ∈ C2(D) to the ODE, then it is necessarily given by (1).
Existence is given by the theory of ODEs or PDEs (under some technical assumptions on α, β, f, g)
and is out of the scope of the class.

(c) Application 1: Let dXt = dWt and define

px = P(Xτx = b)

Show that

px =
x− a
b− a

Hint: px = E[1Xτ=b|X0 = x]

(d) Application 2: Let dXt = dWt and define

t̄[a,b](x) = E[τx|X0 = x]

Show that
t̄[a,b](x) = (b− x)(x− a)
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