
Continuous Time Finance, Spring 2018
NYU Courant Institute

Plan of lecture 1

Preliminaries

I will assume familiarity with the following concepts:
σ−Algebras, probability measures, probability spaces, random variables, Martingales, convergence of random
variables (in Lp, almost surely, in probability, and in law/distribution), Law of Large Numbers, Centrale
Limit Theorem, charactersitic functions, Brownian motion and its properties, stochastic integrals w.r.t.
Brownian motion (and a martingale more generaly), diffusions, Ito’s lemma, SDEs.

1 Week 1: Review of stochastic calculus

1.1 Brownian Motion

• Definition

• Brownian paths (sketch)

• Filtrations w.r.t Brownian motion (or random drivers)

• Martingale property

• Quadratic variation

• Markov property

• Stopping times, running maximum

• Reflection principle

1.2 SDEs

• Mention Stochastic Integrals

• SDEs, paths (sketch), link with ODEs

• Ito’s lemma

1.3 Link Between PDEs and SDEs

Let Xt be an Ito diffusion satisfying the SDE;

dXt = a(t,Xt)dt+ b(t,Xt)dWt

• Feynman Kac
For some deterministic functions f (running payoff, e.g. dividends) and g (final time payoff), define
the average total payoff from the starting date t to maturity T given that the stock started at x;

u(t, x) = E

[∫ T

t

f(s,Xs)ds+ g(XT )|Xt = x

]
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Feynman-Kac’s theorem states that u is the solution of the following PDE:

ut + aux +
b2

2
uxx + f = 0, x ∈ R, t < T

u(T, x) = g(x)

just for your information, we have more generally for a multidimension diffusion (we won’t use this):

ut + a · ∇u+
1

2
Trace(bbT∇2u) + f = 0, x ∈ R, t < T

u(T, x) = g(x)

Proof: Assume u solves the above PDE, compute du(s,Xs) by Ito, integrate from t to T and take
E[·|Xt = x] to get that u is necessarily the function defined above. Existence and uniqueness of a
solution for such parabolic PDEs (with some mild assumptions on a, b) allows to concludes rigorously
(out of the class’ scope).

More generally, we can also include a discount factor r (that can be constant, or a deterministic
function of the diffusion), the following function

u(t, x) = E

[∫ T

t

e−
∫ s
t
r(u,Xu)duf(s,Xs)ds+ e−

∫ T
t
r(u,Xu)dug(XT )

∣∣∣∣Xt = x

]

is the solution of the PDE:

ut + aux +
b2

2
uxx + f − ru = 0, x ∈ R, t < T

u(T, x) = g(x)

Proof: Similar to the one above, except apply Ito for d(e−
∫ s
t
r(u,Xu)duu(s,Xs)).

• Boundary value problems
Let D ⊂ R be a bounded domain of R. For some x ∈ D, and given that we start at Xt = x at time t,
define the stopping time

τD = inf{s > t|Xs /∈ D}

to be the first time we exit from the domain D.
Define the stopping time

τ = min(τD, T )

One can be interested in a quantity similar to the previous one, that is as long as we are in D we get
some running payoff f for every unit of time. If we are still in D at time T , then we get some final
payoff g(T, y) depending on our final position y ∈ D. If we exited the domain D at τ before the final
time, we stop getting the running payoff f and we get a reward g(τ, y) (potentially 0) depending on
where we exited the domain y ∈ ∂D (boundary of D).

Please note that g refers to different functions here; g(T, y) is the final payoff, and g(τ, y) for y ∈ ∂D
is some boundary payoff.
As an example, let’s assume that D is the interval [a, b]. So τ is either the first time we exit the interval
if we exit before T , or T .
Let’s assume that if we are still in the interval at time T , we for example get a reward

g(T, x) = (x−K)+

if we happen to hit a before time T , we get a reward

g(τ, a) = 0
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and if we exited at b at time τ before T , we receive:

g(τ, b) = T − τ

The above example illustrates that the notation ‘g’ refers to different functions, depending on its ar-
guments.

Mathematically, our expected reward in the general case is:

u(t, x) = E
[∫ τ

t

e−
∫ s
t
r(u,Xu)duf(s,Xs)ds+ e−

∫ τ
t
r(u,Xu)dug(τ,Xτ )

∣∣∣∣Xt = x

]
Then Feynman-Kac’s theorem still apply with the same proof to show that u is the solution of the
PDE with boundary conditions:

ut + aux +
b2

2
uxx + f − ru = 0, x ∈ D, t < T

u(T, x) = g(x), x ∈ D
u(τ, x) = g(τ, x), x ∈ ∂D, t ≤ τ < T

• Time independent Boundary value problem
Assume that we are in the specific case where a, b, f, g, r do not explicitely depend on time;

dXt = a(Xt)dt+ b(Xt)dWt

and given that we start at x ∈ D at time 0 (the starting time doesn’t matter now since the dynamics
of Xt are independentent of it), define the first time we exit the domain

τD = inf{t > 0|Xt /∈ D}

Note that here we are not concerned about some final time payoff (previous situation with T → +∞).
Assume that E[τD] < +∞.

Define

u(x) = E
[∫ τD

0

e−
∫ s
0
r(Xu)duf(Xs)ds+ e−

∫ τD
0 r(Xu)dug(Xτ )

∣∣∣∣X0 = x

]
Then u is the solution of the following PDE (ODE in one dimension):

aux +
b2

2
uxx + f − ru = 0, x ∈ D

u(x) = g(x), x ∈ ∂D

Example:
Assume Xt = Wt is a Brownian motion, and choose m < M ∈ R. Assume that the brownian motion
starts at some x ∈ [m,M ]. How long does it takes on average to exit the interval?

We want the quantity:
u(x) = E[τD|X0 = x]

which is an application of the above problem for a = 0, b = 1, f = 1, g(m) = 0, g(M) = 0, r = 0.
According to our theorem, u solves the ODE:

1

2
u′′ + 1 = 0

u(m) = 0

u(M) = 0

This is easy to solve and gives u(x) = −x2 + c1x+ c2, and we can easily find c1, c2 with the conditions
u(m) = u(M) = 0 to get that u(x) = (M − x)(x−m).
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1.4 Monte-Carlo Simulations of SDEs

1.4.1 Euler Scheme

To simulate
dXt = a(t,Xt)dt+ b(t,Xt)dWt

with a starting point Xt = x, set some timestep ∆t and denote ti = t+ i∆t.
Given Xi = Xti for some i, obtain Xi+1 by the following first order Euler Scheme:

Xi+1 = Xi + a(ti, Xi)∆t+ b(ti, Xi)
√

∆tZ

where Z is a standard normal random variable.

In one dimension, Z ∼ N (0, 1). In multiple dimensions, Z ∈ Rn is a vector of normal random variables
of mean 0, each of them has variance 1, but since the Brownian motions might have some instantaneous
correlation ρij , so does Zi and Zj .

1.4.2 Correlated Gaussians

How do we simulate correlated normal random variables?
Given their covariance matrix Σ, one idea would be to simulate indepndent random variables Y ∈ Rn and
do a linear combination of its components to get the right correlations for Z; we are seeking for an n × n
matrix α such that

Z = αY

E[ZZT ] = Σ

Solving this simple system gives the necessary condition

ααT = Σ

Hence any matrix α satisfying the above property would work. One way of generating a suitable candidate
efficiently numerically speaking is to use the Cholesky decomposition of Σ; there exists a triangular matrix
L such that

Σ = LLT

Summary: To simulated correlated normal random variables Z with covariance matrix Σ, first simulate
independent random variables Y , and multiply them by the matrix in the Cholesky decomposition of Σ (you
can easily get it using some standard numerical linear algebra packages).
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