
ARBITRAGE PRICING 
WITH STOCHASTIC VOLATILITY 

 

Bruno Dupire 

 

Banque Paribas 
Swaps and Options Research Team 

33 Wigmore Street 
London W1H 0BN 
United Kingdom 

 

First version: March 1992 

This version: May 1993 

 

 

Abstract: 

 We address the problem of pricing contingent claims in the 
presence of stochastic volatility. Former works claim that, as 
volatility itself is not a traded asset, no riskless hedge can be 
established, so equilibrium arguments have to be invoked and risk 
premia specified. 

We show that if instead of trying to find the prices of standard 
options we take these prices as exogenous, we can derive arbitrage 
prices of more complicated claims indexed on the Spot (and 
possibly on the volatility itself). 

 

 

 

 

This paper is an expansion of a former version presented at the AFFI conference in Paris, June 1992. I am 
grateful to Nicole El Karoui, Darrell Duffie, John Hull, and my colleagues from SORT (Swaps and Options 
Research Team) at Paribas for enriching conversations. All errors are indeed mine. 
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1. Introduction 

The celebrated Black-Scholes formula is the universal benchmark for option pricing. It 
relies on a major assumption that the volatility of the Spot is constant (Black & Scholes 
[1]), or at most a known function of time (Merton [15]). Paradoxically, this assumption is 
permanently violated, which calls for a theory of option pricing where the volatility itself 
is non-deterministic. 

Work on stochastic volatility has flourished in the last few years. A series of papers in 
1987 (Hull & White [12], Scott [17], Johnson & Shanno [13], Wiggins [18]) brought into 
light the mitigated result that option prices could be computed1, but at the expense of a 
stringent assumption: defining a risk premium for the volatility. It tells us what prices 
would be in an economy where agents have some types of preferences, but offers no way 
to lock these prices, i.e. to make sure profits if a price deviated from the theory. 

Our goal is to expose in a simple fashion the ingredients allowing for arbitrage pricing 
with stochastic volatility, with no need for any volatility risk premium to be specified. 

The current situation is in many ways similar to that of the interest rate theory before its 
recent developments (Ho & Lee [11], Heath, Jarrow & Morton [10], El Karoui, Myneni & 
Viswanathan [7]), which mainly consisted of a shift from equilibrium considerations to 
arbitrage arguments. The aim is not to explain the yield curve, but, taking it for granted 
and along with evolution assumptions, to obtain indisputable arbitrage prices for 
derivative securities. 

Our approach straightforwardly mimics this path in that we do not try to explain standard 
option prices observed in the market: we merely use the fact that they are traded assets, 
offering (once again along with stochastic assumptions) the basis for shaping higher order 
assets, such as forward start options or any path-dependent claim. 

More precisely, the problem we address here is: finding the fair price for claims 
contingent on both the Spot price and its volatility (or only one of them), hedging them, 
i.e. exhibiting a trading strategy that ensures a perfect replication. 

The outline of this paper is as follows: In Section 2, we obtain the prices of logarithmic 
profiles from the standard Call prices. In Section 3, we introduce the forward variance 
markets and compute their arbitrage free values from the prices of Section 2. Section 4 
introduces stochastic assumptions on the forward variance process, and establishes the 
risk neutral volatility and Spot processes. Section 5 presents option pricing and hedging, 

                                                 
1 Moreover, they can be expressed as weighted average of deterministic volatility option prices if the 
volatility and the Spot are independent. 
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which involves numerical techniques addressed in Section 6. Section 7 explores some 
extensions, including stochastic correlation and Section 8 concludes. 

 

2. Prices of logarithmic profiles from Call prices ̀    

For the sake of simplicity, the interest rate is assumed to be zero at all times. This 
hypothesis greatly eases the presentation, and can be relaxed with no serious damage to 
the theory (see Section 7). We thus consider a frictionless market with a riskless asset B 
(bond) bearing no interest, and a risky security S, the price of which at time t is denoted St 
(Spot process). 

We associate to a real valued function f and to a time T the financial instrument fT 
delivering f(ST) at time T. Its value at time t < T is denoted fT(t). A Call option of maturity 
T and exercise price (Strike) K is a claim that promises CK(ST) = Max(ST – K,0) at time T. 
It will hereafter be denoted CK,T. 

We assume that the continuum of all (CK,T)K,T are traded2 and that their prices at time 0 
(i.e. today) (CK,T(0))K,T are consistent with no arbitrage3. 

For all T, the knowledge of (CK,T(0))K allows us to obtain φT, the risk neutral distribution 
of ST, which in turn determines the price of any European contingent claim (defined 
through the end of period payoff). The first step is accomplished by considering a simple 
portfolio of Calls (known as “butterfly” in financial markets): 

  
C C CK T K T K T− +− +ε ε

ε
, ,2

2
,

                                                

 

 
2 This is not so far from reality, on O.T.C. Foreign Exchange markets, for example. Market makers are 
supposed to give two-way prices for all strikes and maturities. 

3 This hypothesis can be proved to be equivalent to the following conditions: 

 - For all T,  CK T, ( )0  is convex decreasing  towards 0 in K, 

    At K C SK T= =0  and 0 0, ( ),

∂
∂
C

K
K T, ( )0 1≥ −  

 - For all K,   C S KK , ( ) ( , )0 00 0= −Max  

 - For all T T1 2< , C CK T K T, ,( ) ( )
1 2

0 0≤  

More generally, this latter condition must hold for any convex function of S. 
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As ε tends towards zero, its profile converges to a Dirac function at point K (Arrow-
Debreu security associated with state K), and its price converges to φT(K) if finite (if not, 
there is a lump distribution on K). We thus get a simple description of φT from (CK,T)K: 

  φ
∂
∂T

K TK
C
K

( ) ,=
2

2  

The equality is to be taken in a distributional sense (C is a convex function of K, hence 
admits left and right first derivatives). We refer to Breeden & Litzenberger [3] for more 
details. 

Denoting PT the associated probability (which density function is φT), we can compute the 
price at time 0 of any profile f in L1(PT) through: 

   f f S S dS ET T T T T
PT( ) ( ) ( ) [ ]0

0
= ≡

∞

∫ φ f

S

In particular, if LT, a claim delivering the logarithm of ST at time T, belongs to L1(PT), 

  L ET
P

T
T( ) [ln ]0 =  

We thus obtain, under appropriate integrability conditions, the existence of (LT(0))T, 
which is actually the only piece of information we need for the sequel. The family 
(CK,T(0))K,T was introduced because of its daily use by the practitioners, but only served 
our purpose as a device in view of obtaining (LT(0))T, which will account of the term 
structure of volatility. 

A word of caution is in order: the knowledge of (CK,T)K,T is equivalent to the knowledge 
of (φT)T. However, we can go no further, i.e. deducing the risk neutral diffusion process4, 
as two different processes may generate the same distributions at all times. Therefore, 
given only (CK,T)T, we cannot price path-dependent or American options, nor can we 
compute the dynamic hedging parameters. Without any additional assumption, we can 
merely price by arbitrage (possibly infinite) combinations of Calls. 

 

3. Arbitrage free value of forward variance 

We now add structure to the picture by classically introducing a filtered probability space 
(Ω, , t  , P), where ( )t t  is a right continuous filtration containing all P-null sets, 0 being 

                                                 
4 However, recent work shows that if we restrict to one dimensional Ito diffusions with a specified risk-
neutral drift, a unique diffusion process is obtained (Dupire [6]). 
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trivial, and a Spot price process St governed by the following stochastic differential 
equation: 

(3.1)  dS
S

dt dWt t= +µ σ 1,t , 

where W1 is a P-Brownian motion adapted to ( )t t , and µt and σt may in turn be stochastic 
processes measurable and adapted to t

5. 

By Ito’s lemma, 

  d S dS
S

dtt
t

t

tln = −
σ2

2
, 

which, integrated between T1 and T2, yields 

  ln , lnS S
dS
S

dtT T
t

t
T

T

tT

T

2 1
1

2

1

21
2

2− = −∫ ∫ σ

which we rewrite as 

(3.2)  σ tT

T t

t
T

T

T Tdt
dS
S

S S2

1

2

1

2

2 1
2 2∫ ∫= − −(ln ln ) . 

The stochastic integral 
dS
S

t

t
T

T

1

2

∫  can be interpreted as the wealth at time T2 of a strategy 

consisting of permanently keeping one unit of the riskless bond B invested in the risky 

asset S between time T1 and time T2 (through the possession of 1
St

 units of S). This 

strategy is self financing, for the interest rate is zero. 

The left hand side of (3.2) is the cumulative instantaneous variance of the Spot return 
between T1 and T2. It can be reproduced by the portfolio 2(L LT T2 1

− ) , associated with a 
dynamic self-financing strategy consisting in keeping 2 units of the riskless asset B 
permanently invested in the risky asset S between T1 and T2. 

If a contract delivering  at T2 is traded at time t, it therefore has a unique 

possible value, equal to 2

σ tT

T
dt2

1

2  ∫
1

( ( )L tT 2
( )L tT )− , which is determined by arbitrage. In other 

words, if its market value were different, definite profits could then be generated. This 
means that even if there is no such forward market, we can nevertheless synthesize it; we 
will therefore assume it exists. 

                                                 
5 For the sake of simplicity, integrability requirements will not be stressed and we assume a terminal time 
for the economy. We refer to Karatzas & Shreve [14] for a clear presentation of stochastic calculus. 
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Let VT be a forward contract on the instantaneous variance to be observed at time T. From 
the above relation, we get by differentiation the value of the contract VT at any time t < T: 

  V t L t
TT

T( ) ( )
= −2 ∂

∂
 

As –LT is a convex function of S, VT(t) is indeed positive (see footnote 3). From the 
values (LT(0))T of Section 2, we are now able to deduce the initial instantaneous forward 
variance curve: 

  V L
TT

T( ) ( )0 2 0
= −

∂
∂

 

 

4. Stochastic assumptions on the forward variance 
and risk neutral processes 

At this point, more stochastic assumptions are needed. While it may seem natural to apply 
them on the instantaneous volatility, this unfortunately leads to the undesirable necessity 
of specifying risk premia. 

It is simpler, along the lines of Heath, Jarrow & Morton [10], to directly model the 
forward variance, which automatically ensures compatibility with (LT(0))T. We make, 
among many other possible choices, the assumption that VT(t) is Lognormal. Thus: 

(4.1)  dV t
V t

a dt b dWT

T
t

( )
( ) ,= + 2  

where a and b are constant6 and W2 is another Brownian motion adapted to (Ft)t, possibly 
correlated with W1. We now look for the risk-neutral process of several quantities. By 
risk-neutral process, we understand expressing the dynamics with a Brownian Motion that 
can be "traded" in a self financing way. 

 

4.1. Risk neutral process for the forward variance 

Defining dW , the equation (4.1) can be rewritten as dW a
b

dtt t2 2,
'

,≡ +

(4.2)  dV t
V t

b dWT

T
t

( )
( ) ,= 2  

                                                 
6 In fact, b can be a deterministic function of time, which would allow for mean reversion on the 
instantaneous volatility (see Section 7.4). 
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where  is a Brownian motion under Q2, the P-equivalent probability classically 
obtained by Girsanov’s Theorem. 

W2
'

Applying Ito’s lemma to (4.2): 

  dln VT(t) = – 
b2

2  dt + b dW  t2,
'

Integrating between 0 and t leads to 

(4.3)  ln VT(t) = ln VT(0) – 
b2

2  t + b W  t2,
'

Indeed, under Q2, VT is a martingale: 

  E V  t V VQ
T T T

2 0 0[ ( )| ( )] (= )

t

 

4.2. Risk neutral processes for the instantaneous variance and volatility 

Let us define v V tt t≡ =( ) σ2 , the instantaneous variance at time t. From (4.3), we obtain 

  ln t  ln ( ) ,
'v V b t bWt t= − +0

2

2

2

which can be differentiated into 

(4.4)  d v
V
t

b
dt b dWt

t
tln

ln ( )
,
'= −







 +

∂
∂

0
2

2

2  

and finally gives, by Ito’s lemma 

(4.5)  dv
v

V
t

dt b dWt

t

t
t= +

∂
∂

ln ( )
,

'0
2  

This last expression is the risk neutral process of the instantaneous variance (the real 
process is not needed), and provides a way to estimate the parameter b from the single 

Spot process. The drift term  ∂
∂

ln ( )V
t
t 0   ensures compatibility with the initial volatility 

term structure given by (LT)T. 

We can also derive the risk neutral process for the instantaneous volatility, which is 
Lognormal as the instantaneous and forward variances. From relation (4.4), 

  d  
V
t

b
dt

b
dWt

t
tln

ln ( )
,
'σ

∂
∂

= −






 +

1
2

0
2 2

2

2
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and thanks to Ito’s lemma once again, 

(4.6)  
d V

t
b

dt
b

dWt

t

t
t

σ
σ

∂
∂

= −






 +

1
2

0
8 2

2

2

ln ( )
,
'  

At this point, we can price any claim contingent on the volatility. The hedge will be 
accomplished through a dynamic trading of (LT)T. This allows us to “trade” W . 2

'

 

4.3. Risk neutral process for the Spot 

The Spot process follows the following stochastic equation (3.1): 

  dS
S

dt dWt

t
t t= +µ σ 1,t  

The interest rate being zero, the risk neutral process for the Spot, which actually governs 
prices, is (as it will be made clear in Section 5): 

(4.7)  dS
S

dWt

t
t t= σ 1,

'  

with σt satisfying (4.6) and 

  dW dW dtt t
t

t
1 1,
'

,≡ +
µ
σ

 

At this stage, a most important point has to be stressed: to obtain the risk neutral process 
for the Spot. Cancelling its drift is not enough, as the instantaneous volatility also has to 
be replaced by the risk neutral one established earlier in this section. 

 

5. Option pricing and hedging under stochastic volatility 

5.1.Pricing 

We now make the additional assumption that ( t)t is the natural augmented filtration 
associated with W1 and W2. The filtration associated with W  and W  conveys the same 
information and therefore is the same. We define Q as the P-equivalent measure, defined 

1
'

2
'
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through Girsanov’s Theorem7, under which W  and W  are Q-Brownian motions. The 
processes St and VT are Q-martingales: we recall from Section 4 that 

1
'

2
'

dW
2

dW u,
'

2

u
u

T

u( )
β

  dS
S

dWt

t
t t= σ 1,

'  

with 

  
d V

t
b

dt
bt

t

t
t

σ
σ

∂
∂

= −






 +

1
2

0
8

2

2

ln ( )
,
'  

and 

  dV t
V t

b dWT

T
t

( )
( ) ,

'= 2  

We can then express dW  and dW  in terms of dS and dVT: 1
'

2
'

(5.1)  dW dS
St
t

t t
1,
' =

σ
 

(5.2)  dW dV t
bV tt

T

T
2,
' ( )

( )
=  

Let A be a contingent claim that delivers in T a payoff dependent on the paths followed by 
the Spot and variance, i.e. a square integrable FT-measurable random variable on Ω. We 
then define h by: 

  h t E A FQ
t( ) [ | ]≡  

Clearly, h is a Q-martingale adapted to (Ft)t. It can therefore be represented (Karatzas & 
Shreve [14]) by: 

  h t  h dWu

t

u u

t
( ) ( ) ,

'= + +∫ ∫0
0 1 0
α β

The stochastic integrals can be expressed in terms of dS and dVT thanks to (5.1) and (5.2): 

  h t h
S

dS
bV

dVu

u u

t

u

t

T( ) ( )
( )

= + +∫ ∫0
0 0

α
σ

 

They can therefore be interpreted as a self financing trading strategy on the Spot and VT. 
The initial wealth h(0), associated with this dynamic trading strategy, gives exactly the 
contingent claim A at time T. 

Therefore: 

                                                 
7 If W1 and W2 are correlated, some care is needed, for instance performing the transformation on 
orthogonalized Brownian motions. However, W  and W  will exhibit the same correlation as W1 and W2. 1

'
2
'
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 1. The price of A at time 0 is h(0) = E A . FQ [ | 0 ]

 2. There exists a dynamic hedging strategy. 

In the terminology of Harrison & Kreps [8], there exists a self-financing portfolio which 
transforms h(0) into A at time T. The value of the claim at time t is given by 

(5.3)  h(t) = E A . FQ
t[ | ]

where the expectation is taken over all paths for S and σ, generated by the risk neutral 
processes of Section 4. 

From the knowledge of (LT(0))T, we derived the values of (VT(0))T. Given some 
stochastic assumptions on VT, we were able to compute the value of any path-dependent 
option, and, in particular, values for standard European Calls. 

However, if (LT(0))T were obtained from the market Call prices, one should not expect to 
recover the latter exactly through this computation8, as the 2-dimensional information 
(CK,T(0))K,T was compacted into a 1-dimensional temporal one, (LT(0))T, in the process9. 
The transversal information (CK,T(0))K, i.e. the deviation from the Black-Scholes prices, 
may provide a way complementary to (4.5) to estimate b, the volatility of the variance. 

 

5.2.Hedging 

As we deal with a one factor model, all forward variances are perfectly correlated and 
theoretically any one of them could be used to hedge volatility risk. Moreover, any option 
would do  though it entails an undesired associated Spot position that must be filtered out. 
This one factor assumption is blatantly unrealistic for practitioners daily observe a wide 
variety of twists in the volatility curve, as given by the L . It is therefore important to 
elaborate a maturity by maturity hedge. 

T

This can be performed by locally altering the volatility curve and computing the 
associated option price change. We thus obtain a theoretical equivalent position in L  
which, when expressed in term of (

T

),CK T K , would lead to a portfolio comprising an 
infinite number of calls. Indeed in practice, only a few of them may be used, even though 
leading to a high hedging cost due to imperfect liquidity. However from a global portfolio 
risk-management viewpoint, this maturity analysis of partially offsetting positions allows 

                                                 
8 We actually get “Hull & White” prices for European Calls. 

9 This should not be a point of worry, for it parallels the fact that the yield curve is computed from Bond 
prices that cannot be exactly recovered from that curve. However, it is possible to retrieve the exact price 
even with a deterministic volatility model! (see Dupire [6]) 
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to precisely decompose the volatility risk through the timescale and to decide whether 
action should be taken or not.  

 

6. Numerical methods 

6.1.Monte Carlo 

In the general case, (5.3) has to be evaluated numerically, by Monte-Carlo simulations 
(Boyle [2]), which, in its simplest form, runs as follows: 

(a) generation of a path for σ (through a path of W ), 2
'

(b) generation of a path for S (through a path of W ), depending on (a) and the 
correlation between the two Brownian Motions. 

1
'

(c) computation of the terminal payoff for these sample paths, 

(d) iterating thousands of times the first three steps and averaging the values 
obtained from (c). 

Indeed, if A merely depends on σ, step (b) can be omitted. Hedging parameters can be 
computed at the same time through a small shift of the same paths. 

   

6.2.Discretisation 

The risk-neutral process for S and σ can be used to write the two dimensional (in S and σ) 
partial differential equation and discretised it implicitly, which is somewhat cumbersome, 
even with ADI or Hopscotch methods. 

We prefer to expose an explicit discretisation of the diffusion process followed by S and 
σ. Two main features are required: 

(1) the discrete scheme must exhibit the same mean and covariance matrix as the 
continuous model. 

(2) The scheme must be recombining, preventing an intractable exponential 
explosion. 

To discretise a process, the most straightforward approach is to generate from one node 
(mother node) other nodes (daughter nodes) as to verify condition (1). For instance, both 
the logarithm of the Spot and the volatility can be discretised binomially (mean plus or 
minus one standard deviation), leading to a rectangular scheme with a pattern of 
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probability reflecting the correlation (1
4
+ ρ  on the first diagonal, 1

4
− ρ  on the second 

one). 

Unfortunately, if on two following steps the volatility increases then decreases, the path 
corresponding to an up move of the Spot followed by a down move will not recombine 
with the path obtained by the reverse order. On the second step, the volatility is higher 
and the two paths will therefore cross, violating condition (2). 

There are several ways to overcome this difficulty. Probably the simplest is the following: 

We discretise the instantaneous volatility binomially but the Spot trinomially. A trinomial 
scheme has the great advantage of being able to cater for a wide range of variance. This 
means that we can define a rectangular grid at each time step, with the Spot discretisation 
step calibrated on the average volatility level. For extreme values of volatility, the one 
time step variance of the continuous time process cannot fit into the discrete scheme but 
this can be safely ignored by crystallising the volatility above the threshold, for 
probabilities in these portions of the grid are very low. 

Once the grid is built and the connections from a mother to its six daughters are defined, 
we proceed as usual to value European or American claims. We first compute its value at 
the last time step, then proceed backwards in time to obtain at each node the (discounted) 
expected value (bounded by the intrinsic value, in the case of American options), until we 
reach the root node where the desired premium is obtained. 

 

6.3.Analytical approximation 

In the case of no correlation, we can consider that the volatility trajectory is drawn first 
and get the value of the claim conditioned on that trajectory now seen as deterministic. 
For European Calls, the conditioned price merely depends on the cumulative variance 
(sum of the instantaneous variance throughout the life of the option), so we can express 
the full price as an expectation of deterministic prices with different variance parameters. 
We then get the price as a one dimensional integral: 

  C C  V V dBS0 0
=

∞

∫ ( ) ( )ψ V

where ψis the density of V, the cumulative variance and CBS  is the Black-Scholes price 
with the associated constant volatility. This has been clearly exposed by Hull&White [12] 
who proposed an analytic approximation based on the Taylor expansion up to the second 
order of the Call price as a function of the cumulative variance. Actually, the same 
accuracy can be achieved by instead approximating the density by a sum of two Dirac 
masses of .5 located one standard deviation away on each part of the mean. This means 
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that we obtain a quite accurate approximation by taking the average of two Black-Scholes 
prices, which practitioners easily adopt. 

This representation of the stochastic volatility price as a weighted average of deterministic 
volatility prices applies indeed to any European claim (i.e. pay-off contingent on the final 
value of the spot) but also extends to slightly more complicated instruments, for instance 
forward start options which appear in the popular "cliquet" or ratchet structure. A forward 
start option grants at time T2  the amount Max( , )S ST T2 1

0− . Its stochastic volatility price 
is the average over values of the cumulative variance between T1 and T2  of the 
deterministic prices and can be as well approximated by an average of two deterministic 
prices. 

However some care should be taken in the path dependent case in general. For instance, it 
is tempting but wrong to write the stochastic price of a barrier option  as an average of the 
deterministic prices in the case of non-zero interest rates. In effect, two volatility 
trajectories that exhibit the same cumulative variance will not necessarily yield the same 
option value, for the associated time change may destroy certain spot trajectories.  

 

 

7.Extensions 

 

7.1.Non-zero interest rates 

Section 3 showed that the forward variance could be synthesized through 

 - the initial purchase of a portfolio 

 - a dynamic strategy of holding the asset 

In the case of stochastic interest rates, this strategy will consist in investing at time t 
B t T( , )2 , value at time t of a zero-coupon bond of maturity T2 , in the risky asset. The 
strategy is not self financing any more but its cost can be exactly assessed independently 
of the model. 

Unfortunately, the interests at time T2  of the proceeds of the portfolio at time T1, depend 
both on the value at time T1 of the spot and of the interest rates. We then need a model of 
interest rate, together with the correlation between spot and rates. Once the risk neutral 
processes for the spot, the interest rates and the volatility are obtained, we make use of the 
martingale representation of Section 5, now with three Brownian motions, to deduce 
contingent claim prices together with the replicating hedge. 

In the case of deterministic interest rates, computations run smoothly with no major 
changes with respect to the zero rate case. 
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7.2.Stochastic correlation 

Multifactor models now proliferate due to two reasons. Firstly, more and more abstruse 
cross-market instruments are proposed and dealt by investment banks, notedly "quanto" 
structures which pay in one currency an intrinsic value expressed in another, "best of" and 
spread options. Secondly, to finely tune the pricing and hedging of standard options, it is 
important to infuse some stochasticity on parameters otherwise assumed to be constant or 
deterministic functions of time. 

When a modelling entails several Brownian Motions, correlations indeed come into play 
and may themselves be stochastic. We consider the case of two underlying assets X and Y, 
traded on the market as well as European Call options written on them. The analysis of 
the preceding sections tells us we can price and hedge path dependent or American 
options on each of the underlying assets in an arbitrage free fashion. We now pay 
attention to contingent claims written on both assets, in which case prices are affected by 
the correlation as well. We address the problem of pricing and hedging under stochastic 
correlation. It should be emphasised that this correlation is the one between the two 
Brownian Motions associated with X and Y and not the one between the Brownian 
Motions of the Spot and of the variance. 

Practitioners daily manipulate volatility and increasingly correlation. However, from a 
mathematical stand-point, the more natural notions are variance and covariance: whenever 
a correlation enters a formula, it is with the product of the associated volatilities. It is 
unfortunately somewhat constraining to make on the covariance a stochastic assumption 
which is compatible with the two volatilities (inferior to their product). We therefore 
prefer to make an assumption on the stochastic evolution of correlation, or more precisely 
of the forward correlation. To keep the correlation between -1 and 1, we express it as the 
cosine of a stochastic angle. We assume that European Calls are traded on both X and Y, 
which gives us the forward variances V  and V  as in Section 3. Moreover, we assume 
that cross-markets instruments as spread options or quantos are traded, which gives us the 
forward covariance V . We 

T
X

T
Y

T
XY define , the forward correlation as the forward 

covariance divided by the squared root of the product of the two forward variances: 
ROT

XY

  RO  V
V V

T
XY T

XY

T
X

T
Y

≡

It can be interpreted as the instantaneous forward correlation but, though computed from 
arbitrage values, it is not in itself an arbitrage value! We make, along with stochastic 
assumptions on VT

X  andV  homologous to (4.1), stochastic assumptions on , or more 
precisely on the angle of which it is the cosine. We hence deduce the stochastic 
differential equation for V  by applying Ito's lemma to the relationship: 

T
Y

T
XY

RT
XY
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  V R  O V VT
XY

T
XY

T
X

T
Y=

As V V VT
X

T
Y

T
XY, and are martingales under the risk neutral probability, we obtain their risk 

neutral dynamics by simply cancelling the drifts. The next step consists in deriving the 
risk neutral dynamics of the instantaneous (not forward) quantities. We saw how to do it 
for the variance in Section 4. For the covariance, an analogous computation leads from: 

  dV
V

c dWT
XY

T
XY = ' '  

to 

  dv  
v

V
t

dt c dWT
XY

T
XY

T
XY

= +
∂

∂
ln ( ) ' '0

and we are now in a position to derive the risk neutral process of the instantaneous 
correlation by another application of Ito's lemma to the relation: 

  ρXY
XY

X Y

v
v v

=  

The dynamics of the joint process (X,Y) is then fully defined and we can make use of the 
martingale representation of Section 5 with now five Brownian Motions, associated to X, 
Y, σ σ ρX Y

XY, and . 

 

7.3.Diffusion-jumps models 

In a precursor work, Merton [16] considered jumps of random amplitude occurring at 
random Poisson points in time, in addition to a diffusion Black-Scholes model. The model 
is not complete and demands the assessment of risk premia. Once done, stochastic prices 
are computed as the expectation of deterministic prices. 

Our assumptions do not allow us to make Merton model complete. However, in the 
simplified case where the amplitude of the jump is deterministic, completeness is 
achieved. 

 

 

 

7.4.Mean reverting volatility 

We now allow volatility of V to be time dependent instead of constant as in Section 4. The 
risk neutral dynamics of V  are now: 

t

t
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  dV t
V t

b t T dWT

T
t

( )
( )

( , ) ,
'= 2  

Along the lines of Section  4, we get 

  l  n ( ) ( ) ( , ) ,
'v t t b s t dW s

t
= + ∫α 20

where  α ( ) ln ( ) ( , )t V b s tt

t
≡ − ∫0

1
2

2

0
ds  

and  d v t t
b
t

s t dW dt b t t dW
t

s sln ( ) ( ' ( ) ( , ) ) ( , ),
'

,
'= + +∫α

∂
∂0 2 2  

The presence of a stochastic integral in the drift of d  is troublesome, introducing in 
general path dependency, except in the case where it can be expressed as a function of 

. As both the integral and ln  are Gaussian, the relationship has then to be 
affine and there is necessarily a function of time 

vln

ln ( )v t ( )v t
λ  such that: 

  
∂
∂

λ
b
t

s t dW t b s t dW
t

s s

t

0 2 20∫ ∫= −( , ) ( ) ( , ),
'

,
'  

and by equating the terms in dW s  and integrating, we get: 2,
'

  b t  T b t t e
s ds

t

T

( , ) ( , )
( )

=
−∫ λ

and the stochastic differential equation for ln v can be restated as 

  d v t t t v t t dt b t t dW tln ( ) ' ( ) ( )(ln ( ) ( )) ( , ) ,
'= − − +α λ α 2  

In other words, the logarithm of the instantaneous variance follows an Ornstein-
Uhlenbeck process with a pull-back force of λ . 

 

8. Conclusion 

In this paper, we started by assuming that European Calls of all Strikes and maturities 
were traded, and that their market prices were consistent with no arbitrage. From these 
prices, we deduced the arbitrage price LT of contingent claims that promised ln ST at date 
T. These prices LT were then shown to be related to the instantaneous variance of the Spot 
return process and furthermore permitted to uniquely set the value of a forward market on 
these instantaneous variances, at any maturity. In other words, it was shown that such 
forward markets could be synthesized from the mere knowledge of the (LT)T. 
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The use of these synthesized markets was the key that could open the door of volatility 
hedging and pricing. At this point, we needed to set assumptions on the variance process 
to go further. We focussed on a one factor model (in which all forward markets and 
current variance are perfectly correlated) and derived the risk neutral process for both the 
instantaneous variance and the Spot itself. 

We obtained arbitrage free prices that do not depend on any risk premia nor on a volatility 
drift. They do depend on the term structure of volatility, on the correlation between Spot 
and volatility, and on the volatility of the latter. This was achieved by martingale 
methods, thanks to the ability to 

         - perform the integral representation, through the choice of the appropriate  
 filtration, 

         - interpret it as a self financing strategy, due to the possibility of “trading”  
 the two Brownian motions involved. 

Any claim measurable with respect to the associated σ-field can be dynamically spanned 
and therefore fairly priced. 

In a more general way, to achieve pricing and hedging, we need the risk neutral dynamics 
of all the stochastic variables. To ensure compatibility with current known parameters, it 
is easiest to make an assumption on the forward value of the variable and then proceed on 
with two steps: firstly obtain the risk neutral dynamics of the forward value and then get 
the risk neutral dynamics of the instantaneous value. 
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