The Unfinished Problem in the Reciation on Feb. 19, 2016

Jiajun Tong

February 19, 2016

Problem 1 (Problem 4.9 on page 54 of EPDE, with modification). Show that

$$
\begin{equation*}
2 u_{x x}+5 u_{x t}+3 u_{t t}=0 \tag{1}
\end{equation*}
$$

is hypobolic, and solve this equation on \mathbb{R} with initial conditions

$$
\begin{equation*}
u(x, 0)=0, \quad u_{t}(x, 0)=x \mathrm{e}^{-x^{2}} \tag{2}
\end{equation*}
$$

Proof. Recall the canonical form of general second order PDE is that

$$
A u_{x x}+2 B u_{x y}+C u_{y y}=\text { lower order terms like } u_{x}, u_{y} \text { etc.. }
$$

The equation is hyperbolic if discriminant $B^{2}-A C>0$. For (1), we have

$$
A=2, \quad B=\frac{5}{2}, \quad C=3, \quad \text { and } B^{2}-A C=\frac{25}{4}-6=\frac{1}{4}>0
$$

Hence, (1) is hypobolic.
An alternative and equivalent way is to consider the symbol of the second order differential operator in (1) (for a quick reference, see symbol of a differential operator page on Wikipedia)

$$
2 \partial_{x x}+5 \partial_{x t}+3 \partial_{t t} \rightsquigarrow 2 \xi^{2}+5 \xi \eta+3 \eta^{2}
$$

The equation (1) is hypobolic if and only if we can factorize the symbol with coefficients in \mathbb{R}. Indeed,

$$
2 \xi^{2}+5 \xi \eta+3 \eta^{2}=(2 \xi+3 \eta)(\xi+\eta)
$$

As a consequence, (1) is hyperbolic and it becomes

$$
\begin{equation*}
\left(2 \partial_{x x}+5 \partial_{x t}+3 \partial_{t t}\right) u=\left(2 \partial_{x}+3 \partial_{t}\right)\left(\partial_{x}+\partial_{t}\right) u \tag{3}
\end{equation*}
$$

To solve the equation, we first look for change of variable

$$
\begin{aligned}
& \eta=a x+b t \\
& \xi=c x+d t
\end{aligned}
$$

together with its inverse

$$
\begin{aligned}
& x=\tilde{a} \eta+\tilde{b} \xi \\
& t=\tilde{c} \eta+\tilde{d} \xi
\end{aligned}
$$

where

$$
\left(\begin{array}{ll}
\tilde{a} & \tilde{b} \\
\tilde{c} & \tilde{d}
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}
$$

We expect that under the new (η, ξ)-coordinate, (1) becomes

$$
\begin{equation*}
\partial_{\eta \xi} u=0 \tag{4}
\end{equation*}
$$

To achieve this, we compute by chain rule,

$$
\begin{aligned}
\frac{\partial}{\partial \eta} & =\frac{\partial x}{\partial \eta} \frac{\partial}{\partial x}+\frac{\partial t}{\partial \eta} \frac{\partial}{\partial t}=\tilde{a} \frac{\partial}{\partial x}+\tilde{c} \frac{\partial}{\partial t} \\
\frac{\partial}{\partial \xi} & =\frac{\partial x}{\partial \xi} \frac{\partial}{\partial x}+\frac{\partial t}{\partial \xi} \frac{\partial}{\partial t}=\tilde{b} \frac{\partial}{\partial x}+\tilde{d} \frac{\partial}{\partial t}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\partial_{\eta \xi} u=\left(\tilde{a} \partial_{x}+\tilde{c} \partial_{t}\right)\left(\tilde{b} \partial_{x}+\tilde{d} \partial_{t}\right) u \tag{5}
\end{equation*}
$$

Comparing (5) with (3), it is natural to choose

$$
\tilde{a}=2, \quad \tilde{c}=3, \quad \tilde{b}=1, \quad \tilde{d}=1
$$

Therefore,

$$
\begin{aligned}
& x=2 \eta+\xi \\
& t=3 \eta+\xi
\end{aligned}
$$

and thus

$$
\begin{align*}
& \eta=-x+t \\
& \xi=3 x-2 t \tag{6}
\end{align*}
$$

Now under this change of variable the equation becomes (4). We simply integrate (4) in η and then ξ to find

$$
\begin{aligned}
\partial_{\eta \xi} u=0 & \Rightarrow \partial_{\xi} u=f(\xi) \\
& \Rightarrow u=F(\xi)+G(\eta)
\end{aligned}
$$

with F and G to be determined. By (6), in (x, t)-coordinate, we have

$$
\begin{equation*}
u(x, t)=F(3 x-2 t)+G(-x+t) \tag{7}
\end{equation*}
$$

Take t-derivative and we find

$$
u_{t}(x, t)=-2 F^{\prime}(3 x-2 t)+G^{\prime}(-x+t)
$$

Let $t=0$ in the above two equations and use (2),

$$
\begin{align*}
& 0=u(x, 0)=F(3 x)+G(-x) \\
& x \mathrm{e}^{-x^{2}}=u_{t}(x, 0)=-2 F^{\prime}(3 x)+G^{\prime}(-x) \tag{8}
\end{align*}
$$

To solve the above equations, we take x-derivative to the first equation and find

$$
\begin{aligned}
& 3 F^{\prime}(3 x)-G^{\prime}(-x)=0 \\
& -2 F^{\prime}(3 x)+G^{\prime}(-x)=x \mathrm{e}^{-x^{2}}
\end{aligned}
$$

By solving this linear system in $F^{\prime}(3 x)$ and $G^{\prime}(-x)$, we find

$$
\begin{aligned}
& F^{\prime}(3 x)=x \mathrm{e}^{-x^{2}} \\
& G^{\prime}(-x)=3 x \mathrm{e}^{-x^{2}}
\end{aligned}
$$

By a change of variable

$$
G^{\prime}(y)=-3 y \mathrm{e}^{-y^{2}}
$$

To find out $G(y)$, we simply integrate in y

$$
\begin{aligned}
G(y) & =C+\int_{0}^{y}-3 s \mathrm{e}^{-s^{2}} d s=C-\frac{3}{2} \int_{0}^{y} \mathrm{e}^{-s^{2}} d s^{2} \\
& =C-\frac{3}{2} \int_{0}^{y^{2}} \mathrm{e}^{-z} d z=C_{0}+\frac{3}{2} \int_{0}^{y^{2}} d \mathrm{e}^{-z} \\
& =C+\frac{3}{2}\left(\mathrm{e}^{-y^{2}}-1\right)=\frac{3}{2} \mathrm{e}^{-y^{2}}+C_{0},
\end{aligned}
$$

where in the last equation, the constant in absorbed into the definition of C_{0}. By the first equation in (8), we know that

$$
F(3 x)=-G(-x)=-\frac{3}{2} \mathrm{e}^{-x^{2}}-C_{0} .
$$

Thus

$$
F(y)=-\frac{3}{2} \mathrm{e}^{-\left(\frac{y}{3}\right)^{2}}-C_{0}=-\frac{3}{2} \mathrm{e}^{-\frac{y^{2}}{9}}-C_{0}
$$

Therefore, by (7),

$$
\begin{equation*}
u(x, t)=-\frac{3}{2} \mathrm{e}^{-\frac{(3 x-2 t)^{2}}{9}}+\frac{3}{2} \mathrm{e}^{-(-x+t)^{2}} \tag{9}
\end{equation*}
$$

Note that the constants C_{0} in F and G cancel. One can check that this is indeed the solution.

Another approach of solving (1) is that, with the factorization (3) in hand, we define

$$
v(x, t)=\left(\partial_{x}+\partial_{t}\right) u(x, t)
$$

Then we can rewrite (1) as

$$
\begin{aligned}
& \left(2 \partial_{x}+3 \partial_{t}\right) v(x, t)=0 \\
& \left(\partial_{x}+\partial_{t}\right) u(x, t)=v(x, t) \\
& u(x, 0)=0, \quad u_{t}(x, 0)=x \mathrm{e}^{-x^{2}}
\end{aligned}
$$

Now (1) becomes two first order equations. We may solve for v first and then for u. However, we need initial condition for v. To find out that, by definition,

$$
v(x, 0)=\left(\partial_{x}+\partial_{t}\right) u(x, 0)=\partial_{x} u(x, 0)+\partial_{t} u(x, 0)=0+x \mathrm{e}^{-x^{2}}
$$

The last equation comes from taking x-derivative to the initial condition for u and using the initial condition for u_{t}, see (2). Hence, (1) becomes

$$
\begin{align*}
& \left(2 \partial_{x}+3 \partial_{t}\right) v(x, t)=0, \quad v(x, 0)=x \mathrm{e}^{-x^{2}} \tag{10}\\
& \left(\partial_{x}+\partial_{t}\right) u(x, t)=v(x, t), \quad u(x, 0)=0 \tag{11}
\end{align*}
$$

Using the method of characteristics, for 10, we take

$$
\frac{d t}{d s}=3, \quad \frac{d x}{d s}=2, \quad \frac{d v}{d s}=0
$$

This implies v is constant on the lines with $3 x-2 t=$ constant or $x-\frac{2}{3} t=$ constant. Note that this agrees with ξ in (6) in the previous approach. Therefore, we find the solution for v

$$
v(x, t)=\left(x-\frac{2}{3} t\right) \mathrm{e}^{-\left(x-\frac{2}{3} t\right)^{2}}
$$

To this end, 11 becomes

$$
\begin{align*}
& \left(\partial_{x}+\partial_{t}\right) u(x, t)=\left(x-\frac{2}{3} t\right) \mathrm{e}^{-\left(x-\frac{2}{3} t\right)^{2}} \tag{12}\\
& u(x, 0)=0 \tag{13}
\end{align*}
$$

We leave it as an exercise. Eventually one should be able to reach 9 .

