Analytical Solutions of PDEs using PDEtools in Maple

Aleksandar Donev, Courant Institute

[ This is largely based on examples in the excellent Maple documentation
> restart:

The PDEtools package is a collection of commands and routines for finding analytical solutions for
partial differential equations (PDES) based on the paper "A Computational Approach for the Analytical
Solving of Partial Differential Equations” by E.S. Cheb-Terrab and K. von Bulow (see References), and
the continuation of this work by the same authors (Symmetry routines) during 2004.

> with(PDEtools):

| First-Order PDEs

Maple knows about the method of characteristics:

> U = diff_table(u(x,t)): # To enable compact notation U_xXx etc.

> PDE := U[t]+c*U[x]=-lambda*U[]; # Advection-reaction linear
equation

PDE ==c(% u(x,t)) +%u(x,t)=—7uu(x,t) )
[> IC := eval(U[], t=0) = phi(x); # Initial conditions
IC = u(x,0) =0(x) 2
> pdsolve([PDE,IC]); # Try to solve the PDE automatically - works!
u(x,t) =0(-ct+x) e M 3)

;Try to get a general solution:
> pdsolve(PDE); # No initial condition
Ax

u(x,t)Z_Fl( ”c_x ) e © @

> PDE := U[t]+c*U[x]=-lambda*U[]*2; # Advection-reaction nonlinear
equation

ax ot

> pdsolve([PDE,IC]); # Works here also since simple first-order
equation

PDE :zc(&u(x,t)) —i—iu(x,t)Z—ku()c,t)2 (5)

O(-ct+x)

u(x, t) = (6)
i d(-ct+x)At+1
[> PDE := U[t]+c*U[]*U[x]=0; # Burger's equation
0 d
PDE == cu(x, t) (a u(x,t)) +Eu(x,t)20 )

> pdsolve([PDE,IC]); # Does not return anything (cannot find
solution)

Heat Equation
> restart: with(PDEtools):

| Maple knows about the method of separation of variables:
> BVP:=[diff(u(x, t), t) = k*diff(u(x, t), x, x), u(0, t) =0, u




(Pi, t) = 0, u(x,0) = f(x)]; # Heat equation in 1D with
homogeneous Dirichlet BCs

BVP :=
ot

> sol:=pdsolve(BVP);

ax2

—kilet

. 2 {‘ f(x) sin(_ZIx) dx | sin(_ZIx) e

sol == u(x,t)= Z 9

ZI=1 T
> g(x):=piecewise(x<1/2,0,x>Pi/2,Pi,x=Pil2,Pi/2);

9 u(x,t) =k [i u(x,t) ) u(0,1) =0, u(m 1) =0, u(x,0) =f(x)

0 x < —
1
g(x) = 0 En<x
Ln xZLTE
2 2
(> plot(g(x),x=0..Pi)
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> pdsolve(eval (BVP, f(x)=g(x)));

(®)

©)

(10)



Error, (in casesplit/K) this version of casesplit is not vet

_handlinq the function: piecewise

oo

temp ‘= u(x, t) = z

sol series = u(x,

;Plotting the Solution

— % sin(6 x) e 0!

summand :

summand =

0

2 i

Ln
2

> temp:=eval(sol, f(x)=g(x));

S T <Xx |sin( Zlx)dx|sin( Zlx)e

—klezt

ZI=1
[> sol_series:=value(temp);

5 772
© 2 (cos(% n_Z]) — (—1)—21) sin(_Zlx) e k 2zt

T

t) =
ZI=1

| Numerical Evaluation

Z1

| To plot this we need to truncate the sum to a few terms
> summand:=op(1, rhs(sol_series));

5 772
2 (cos(% n_Z]) — (—1)—21) sin(_Zlx) e k 2zt

Z1

> summand:=eval(summand, {_Z1=n, k:_l});

1
2 —_—
(cos( )

2

nn) — (—1)”) sin(nx)e”

:Here we only take 10 terms:
> sol_approx:=unapply(simplify(add(summand, n=1..10)),t);

+ % sin(7x) e

-491¢

n

sol_approx = t—2 sin(x) e ' —2sin(2x) et 4 % sin(3 x) e 4 % sin(5x) e

817 2

+%sin(9x)e ?sin(IOx)e

> plot( {seq(sol_approx(i*0.05), i=0..5)}, x=0..Pi);

25¢
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;We can turn this into an animation to make it more informative:
> plots[animate]( plot, [sol_approx(t), x=0..Pi], t=0..2 );
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;Gibbs Phenomenon

| At t=0 we are getting the Gibbs phenomenon, lets explore this some more:
> summO:=eval(summand, t=0);

2 (Cos(% nn) — (—1)") sin(n x)

(16)

summ( =
n

> plot( {seq(add(summoO, n=1..4*N), N=1..5)}, x=0..Pi);




:Numerical Accuracy

To see how good our solution is, we should really compare with the solution obtained by including

more terms

> sol_better_approx:=unapply(simplify(add(summand, n=1..20)),t):

> plots[animate]( plot, [{sol_approx(t), sol_better_approx(t)}, x=
0..Pi], t=0..0.1, frames=50);




t=10.0081633
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| Wave Equation (from recitation)

Here we try to solve Problem 9 in section 4.7 of APDE, as was done in recitation on 4/15/2016 by

recitation leader JT. Look at his solution notes first.

> restart: with(PDEtools):

> BVP:=[diff(u(x, t), t,t) = diff(u(x, t), x, x), u(0, t) = 0, u(1l,
t) = sin(t), u(x,0) = x*(1-x), D[2](u)(x,0)=0];

BVP := [gz—tz u(x,t) = % u(x,t),u(0,1) =0,u(l,¢) =sin(¢), u(x,0) =x (I —x), D,(u) (x, a7
0)=0}

> #infolevel[pdsolve]:=5; # If you want to see what Maple is trying

| out

> sol:=pdsolve(BVP); # No solution returned

sol = (18)

_Let's try to see what the problem is, inhomogeneous BCs, or initial condition, or what:

>BVP_hom:=[diff(u(x, t), t,t) = diff(u(x, t), x, x), u(0, t) =0,
u(l, t) = 0, u(x,0) = x*(1-x), D[2](u)(x, 0) = 0]; # Make the BC
at x=1 be homogeneous




—ulx,t)=— u(x,0),u(0,¢) =0,u(l,1) =0,u(x,0) =x (1 —x),D,(u) (x, (19)

> sol:=pdsolve(BVP_hom); # Now it worked fine
0 2 .
sol = u(x, 1) = Z [_ 4 ((-1) 1) sin(_ZImx) cos(_ZInt) J 20)

ZI=1 Tc3 7P

[ So let's break up the problem into two problems just like done in class:

First a simple Laplace equation to take care of the BC. Note that here we tell Maple the solution is only
a function of x, since for each t we are solving only an equation for x. If we wrote v(x,t) below it
| wouldn't work even though the same solution would work:

>BVP_BC:=[0 = diff(v(x), x, x), v(0) =0, v(1) = sin(t)];

2
BVP BC = [o=d—2 v(x), v(0) =0, v(1) =sin(¢) (21)
dx
[> sol_BC:=pdsolve(BVP_BC);
i sol BC = v(x) =sin(t) x (22)
> v(x,t):=rhs(sol_BC);
v(x, t) = sin(t) x (23)

[ Now solve with homogeneous BCs but make sure to subtract the time derivative of the v(x,t) from the
| right hand side as a source term:

> BVP_IC: —[dlff(u(x t), t,t) = diff(u(x, ), , X) - diff(v(x, t)
t), u(0, t) = 0, u(1, t) =0, u(x,0) = x*(1-x) - eval(v(x, t)
0) , D[2](u)(x, 0) = 0];
BVP _IC := aaz_;z u(x,t) :iz u(x,t) —cos(t) x,u(0,7) =0,u(l,¢) =0, u(x,0) =x (1 —x), (24)

D,(u)(x,0) =0

f> pdsolve(BVP_IC); # Sadly, it again does not return an answer!

Seems Maple hasn't learned how to solve this sort of problem with forcing yet, at least not

| automatically. We can still use Maple to help us with some of the integrals, however:

> a_k:=simplify(2*int(x*sin(k*Pi*x),x=0..1)) assuming k,integer; #
g. (9) in JT's solution

IR
a k=200 (25)
i km
[> b _k:=s |mpI|fy(2*|nt(x*(1 x)*sin(k*Pi*x),x=0..1)) assuming Kk,
integer; # Eq. (10) in JT's solution
1tk
b k:= 4 ( 1)3 3 +4 (26)
k'n

> sol_ODE:=dsolve({diff(T(t),t,t)+(k*Pi)*"2*T(t)=a_k*sin(t),T(0)=
b_k D(T)(O)—-a k}, T(t)); # Eqs. (14,15,23) in JT's solution, the
most tedious step

(27)



2sin(kme) (-1)' | Acos(km) (- F+1)

n2 P —1 k3 n3

sol ODE := T(t) = (27)

2 (-1) THsin(e)
kn(n2k2—1>

+

| Giving Hints

For complicated nonlinear PDEs usually Maple won't know what to do (perhaps no one does!)

>V = diff _table(v(x,y)):

> PDE := V[]*V[x,y ] + V[x]*V[y] = 1;

— & 9 9 _

PDE = v(x, ) (ayax v |+ g v (5 v ) =1 (28)

B pdsolve(PDE); # Maple tried separation of variables and it
worked!

_ d __ =9 d __
(vix,y)=_FIl(x) F2(y)) &where H & _Fl(x) Flx) dy _F2(y) 2 F20) e ” (29

B pdsolve(PDE, HINT=X(x)*Y(y)); # Give hint to use separation of
variables

B d _ 4 d __
(v(x,y) =X(x) Y(y)) &where H o X X e T T 200 . }

(30)

:Maple did not by default try to solve the ODEs above, but we can ask it to continue solving:
> pdsolve(PDE, HINT=X(x)*Y(y), build);

\/2x_c1 + CI \/_CZ_C? +y_¢
vix,y) =

(31)
_G

B pdsolve(PDE, HINT=sqrt(P(x,y))); # Find an even more general
solution

vix,y)=v F2(x) + FI(y) +2xy (32)

Solitons in the Korteweg—de Vries Equation

Now we try an equation we have not seen in class, one that exhibits solutions called solitons, which are
stable traveling waves that find uses in fiber optic communication, and can be observed in certain water
channels.
> restart: with(PDEtools):
> U = diff _table(u(x,t)): # To enable compact notation U_xXx etc.

The KdV equation is a nonlinear third-order PDE that adds a third derivative term to the Burgers
| equation

> PDE := U[t]+6*U[]*U[x]+U[x,x,x]=0; # The KdV equation with
coefficient 6 chosen for convenience

PDE := 6 u(x,t) (% u(x, t)) + % u(x,t) + % u(x,t) =0 (33)

> infolevel[pdsolve]:=3:

> sol:=pdsolve(PDE); # Looks like Maple knew to look for traveling
wave solutions




First set of solution methods (general or quasi general
solution)

Second set of solution methods (complete solutions)

Third set of solution methods (simple HINTs for separating
variables)

PDE linear in highest derivatives - trying a separation of
variables by *

HINT = *

Fourth set of solution methods

Preparing a solution HINT ...

Trying HINT = _F1(x)*_F2(t)

Fourth set of solution methods

Preparing a solution HINT ...

Trying HINT = _F1(x)+_F2(t)

Trying travelling wave solutions as power series in tanh ...

* Using tau = tanh(t*C[2]+x*C[1]+C[0])

* Equivalent ODE system: {-C[1]"3*(tau”2-1)*(tau™4-2*taun2+1)*
diff(diff(diff(u(tau),tau),tau),tau)-C[1]*"3*(tau”2-1)*(6*tau”3
-6*tau)*diff(diff(u(tau),tau),tau)+(-6*u(tau)*C[1]*(tau”2-1)-C
[2]*(taunr2-1)-C[1]"3*(taur2-1)*(6*taunr2-2))*diff(u(tau),tau)}
* Ordering for functions: [u(tau)]

* Cases for the upper bounds: [[n[1] = 2]]

* Power series solution [1]: {u(tau) = tau”2*A[l1l,2]+tau*A[1,1]+A
[1,0]}

* Solution [1] for {ATi, j], C[k]}: [[A[1,1] = O, A[1,2] = O],
[A[1,0] = 1/6*(8*C[1]*3-C[2])/C[1], A[1,1] = 0, A[1,2] = -2*C[1]
A2

travelling wave solutions successful.
1 8 C2— ¢3
6 C2

> soliton::u(x,t):1/2*c*(sech(sqrt(c)/2*(x-c*t)))"2?
2

sol = u(x,t)=-2 _C2Xtanh(_ C2x+ C3t+ CI)*+

soliton == u(x, t) :% csech(% \/? (—ct—i—x))

> convert(soliton, expln);

2¢
u(x, t) = 3
(l\/?(—ct-f—x) —l\/?(—ct—i—x))
2 2
e +e
> pdetest(soliton,PDE); # Check if it a solution of the PDE
0

> sol_example:=eval(rhs(soliton),c=1);
L en( L, LY
sol_example == > sech( > t > x)
> plots[animate]( plot, [{sol _example}, x=-10..50], t=0..50,
frames=50);
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t=8.1633

0.57 ﬂ
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X
> ODE:=eval(eval(PDE, u(x,t)=f(x-c*t)), x-c*t=xi);
i ODE = 6 /(&) D(f) (€) —=D(/) (&) ¢ +D (1) (&) =0 (39)
[> ODE:=convert(ODE,diff);
d d &
ODE = 6 = — = + =0 40
f(&)[d&f(é)) (dé,;f(&))c it (40)
> simpler_ODE:=int(lhs(ODE),xi)-A=0;
2
simpler ODE =3 f(£)> —cf(E) + c(ll_iz (&) —a=0 (41)

> sols:=dsolve(simpler_ODE,f(xi)); # There are many solutions and
they are not simple

J(E) J(E)
1

sols == da—&— C2=0, { ( 42)
V-2 i+ d*c+24 a+ CI
B 1
i J-2 &+ d*c+24 a+ CI
[ Let's give up on analytical solutions and just use numerics to explore our special soliton solutions...next

da—E— C2=0




| class



