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Numerical Integration in 1D Low-Order

Numerical Quadrature

We want to numerically approximate a definite integral

J =

∫ b

a
f (x)dx .

The function f (x) may not have a closed-form integral, or it may
itself not be in closed form.

Recall that the integral gives the area under the curve f (x), and also
the Riemann sum:

lim
n→∞

n∑
i=0

f (ti )(xi+1 − xi ) = J, where xi ≤ ti ≤ xi+1

A quadrature formula approximates the Riemann integral as a
discrete sum over a set of n nodes:

J ≈ Jn =
n∑

i=1

αi f (xi )
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Numerical Integration in 1D Low-Order

Midpoint Quadrature

Split the interval into n intervals of width h = (b − a)/n (stepsize), and
then take as the nodes the midpoint of each interval:

xk = a + (2k − 1)h/2, k = 1, . . . , n

Jn = h
n∑

k=1

f (xk), and clearly lim
n→∞

Jn = J

A. Donev (Courant Institute) Lecture XI 12/2014 4 / 36



Numerical Integration in 1D Low-Order

Quadrature Error

Focus on one of the sub intervals, and estimate the quadrature error
using the midpoint rule assuming f (x) ∈ C (2):

ε(i) =

[∫ xi+h/2

xi−h/2
f (x)dx

]
− hf (xi )

Expanding f (x) into a Taylor series around xi to first order,

f (x) = f (xi ) + f ′(xi )(x − xi ) +
1

2
f ′′ [η(x)] (x − xi )

2,

∫ xi+h/2

xi−h/2
f (x)dx = hf (xi ) +

1

2

∫ xi+h/2

xi−h/2
f ′′ [η(x)] (x − xi )

2dx

The generalized mean value theorem for integrals says: If
f (x) ∈ C (0) and g(x) ≥ 0,∫ b

a
g(x)f (x)dx = f (η)

∫ b

a
g(x)dx where a < η < b
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Numerical Integration in 1D Low-Order

Composite Quadrature Error

Taking now g(x) = (x − xi )
2 ≥ 0, we get the local error estimate

ε(i) =
1

2

∫ xi+h/2

xi−h/2
f ′′ [η(x)] (x−xi )2dx = f ′′ [ξ]

1

2

∫
h
(x−xi )2dx =

h3

24
f ′′ [ξ] .

Now, combining the errors from all of the intervals together gives the
global error

ε =

∫ b

a
f (x)dx − h

n∑
k=1

f (xk) = J − Jn =
h3

24

n∑
k=1

f ′′ [ξk ]

Use a discrete generalization of the mean value theorem to get:

ε =
h3

24
n
(
f ′′ [ξ]

)
=

b − a

24
· h2 · f ′′ [ξ] ,

where a < ξ < b.
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Numerical Integration in 1D Low-Order

Interpolatory Quadrature

Instead of integrating f (x), integrate a polynomial interpolant
φ(x) ≈ f (x):
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Numerical Integration in 1D Low-Order

Trapezoidal Rule

Consider integrating an interpolating function φ(x) which passes
through n + 1 nodes xi :

φ(xi ) = yi = f (xi ) for i = 0, 2, . . . ,m.

First take the piecewise linear interpolant and integrate it over the
sub-interval Ii = [xi−1, xi ]:

φ
(1)
i (x) = yi−1 +

yi − yi−1

xi − xi−1
(x − xi )

to get the trapezoidal formula (the area of a trapezoid):∫
x∈Ii

φ
(1)
i (x)dx = h

f (xi−1) + f (xi )

2
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Numerical Integration in 1D Low-Order

Composite Trapezoidal Rule

Now add the integrals over all of the sub-intervals we get the
composite trapezoidal quadrature rule:∫ b

a
f (x)dx ≈ h

2

n∑
i=1

[f (xi−1) + f (xi )]

=
h

2
[f (x0) + 2f (x1) + · · ·+ 2f (xn−1) + f (xn)]

with similar error to the midpoint rule.

A. Donev (Courant Institute) Lecture XI 12/2014 9 / 36



Numerical Integration in 1D Low-Order

Simpson’s Quadrature Formula

As for the midpoint rule, split the interval into n intervals of width
h = (b − a)/n, and then take as the nodes the endpoints and
midpoint of each interval:

xk = a + kh, k = 0, . . . , n

x̄k = a + (2k − 1)h/2, k = 1, . . . , n

Then, take the piecewise quadratic interpolant φi (x) in the
sub-interval Ii = [xi−1, xi ] to be the parabola passing through the
nodes (xi−1, yi−1), (xi , yi ), and (x̄i , ȳi ).

Integrating this interpolant in each interval and summing gives the
Simpson quadrature rule:

JS =
h

6
[f (x0) + 4f (x̄1) + 2f (x1) + · · ·+ 2f (xn−1) + 4f (x̄n) + f (xn)]

ε = J − Js = −(b − a)

2880
· h4 · f (4) (ξ) .
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Numerical Integration in 1D Low-Order

Higher-Order Newton Cotes formula

One can in principle use a higher-order polynomial interpolant on the
nodes to get formally higher accuracy, e.g., using the Lagrange
interpolant we talked about previously:

φ(x) =
m∑
i=0

yiφi (x)

φi (xj) = δij =

{
1 if i = j

0 if i 6= j
.

φi (x) =

∏
j 6=i (x − xj)∏
j 6=i (xi − xj)

=
wm+1(x)

(x − xi )w ′m+1(xi )

Note that these only achieve higher-order accuracy for smooth
functions.
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Numerical Integration in 1D Low-Order

Lagrange integration

Integrating the interpolant gives the Newton-Cotes quadrature:∫ b

a
f (x)dx ≈

∫ b

a
φ(x)dx =

∫ b

a

m∑
i=0

yiφi (x)dx = h
m∑
i=0

wi f (xi )

where it is easy to see that the weights wi do not depend on [a, b]
and can be pre-tabulated:

wi =

∫ 1

−1
φi (x)dx

We can of course split the whole interval into sub-intervals and do the
Lagrange interpolant piecewise, giving a composite Newton-Cotes
quadrature.

Just as for interpolation, increasing the number of equally-spaced
nodes does not help much and is not generally a good idea.
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Numerical Integration in 1D Spectral

Non-Equi Spaced Grids

To reach higher accuracy, instead of using higher-degree polynomial
interpolants (recall Runge’s phenomenon), let’s try using n
non-equispaced nodes:

J ≈ Jn =
n∑

i=1

wi f (xi )

Question: For some choice of the weights and nodes, is it possible to
compute ∫ b

a
pm(x)dx

exactly for any polynomial pm(x) of degree at most m?
This degree of exactness m would guarantee that the accuracy will
be ε ∼ f (m+1) (ξ) since all the lower-order derivatives are done exactly.
This so-called spectral accuracy (limited by smoothness only)
cannot be achived by piecewise, i.e., local, approximations (limited by
order of local approximation).
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Numerical Integration in 1D Spectral

Review: Legendre Polynomials

Recall the triangular family of orthogonal Legendre polynomials:

φ0(x) =1

φ1(x) =x

φ2(x) =
1

2
(3x2 − 1)

φ3(x) =
1

2
(5x3 − 3x)

φk+1(x) =
2k + 1

k + 1
xφk(x)− k

k + 1
φk−1(x) =

1

2nn!

dn

dxn

[(
x2 − 1

)n]
These are orthogonal on I = [−1, 1]:∫ −1

−1
φi (x)φj(x)dx = δij ·

2

2i + 1
.
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Numerical Integration in 1D Spectral

Orthogonal Polynomial Integration

Recall the question we studied in Orthogonal Polynomials lecture:
How to easily compute ∫ b

a
p2m(x)dx

exactly for a polynomial p2m(x) of degree at most 2m?

Let’s first consider polynomials of degree at most m∫ b

a
pm(x)dx =?

Any polynomial pm(x) of degree at most m can be expressed in the
Lagrange basis:

pm(x) =
m∑
i=0

pm(xi )ϕi (x)
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Numerical Integration in 1D Spectral

Gauss Weights

Repeating what we did for Newton-Cotes quadrature:∫ b

a
pm(x)dx =

m∑
i=0

pm(xi )

[∫ b

a
ϕi (x)dx

]
=

m∑
i=0

wipm(xi ),

where the Gauss weights w are given by

wi =

∫ b

a
ϕi (x)dx .

Recall: If we choose the nodes to be zeros of φm+1(x), then∫ b

a
p2m(x)dx =

m∑
i=0

wip2m(xi )
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Numerical Integration in 1D Spectral

Gauss Integration

This gives the Gauss quadrature based on the Gauss nodes and
weights, usually pre-tabulated for the standard interval [−1, 1]:∫ b

a
f (x)dx ≈ b − a

2

m∑
i=0

wi f (xi ).

Gauss quadrature has the highest possible degree of exactness, i.e.,
it is exact for polynomials of degree up to 2n + 1.

The low-order Gauss formulae are:

n = 1 :

∫ 1

−1
f (x)dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)
n = 2 :

∫ 1

−1
f (x)dx ≈ 5

9
f

(
−
√

15

5

)
+

8

9
f (0) +

5

9
f

(√
15

5

)
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Adaptive / Refinement Methods

Asymptotic Error Expansions

The idea in Richardson extrapolation (recall homework 4) is to use an
error estimate formula to extrapolate a more accurate answer
from less-accurate answers.

Assume that we have a quadrature formula for which we have a
theoretical error estimate:

Jh =
n∑

i=1

αi f (xi ) = J + αhp + O
(
hp+1

)
Recall the big O notation: g(x) = O (hp) if:

∃ (h0,C ) > 0 s.t. |g(x)| < C |h|p whenever |h| < h0

For trapezoidal formula

ε =
b − a

24
· h2 · f ′′ [ξ] = O

(
h2
)
.
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Adaptive / Refinement Methods

Richardson Extrapolation

Now repeat the calculation but with step size 2h (for equi-spaced
nodes just skip the odd nodes):

J̃(h) = J + αhp + O
(
hp+1

)
J̃(2h) = J + α2php + O

(
hp+1

)
Solve for α and obtain

J =
2p J̃(h)− J̃(2h)

2p − 1
+ O

(
hp+1

)
,

which now has order of accuracy p + 1 instead of p.

The composite trapezoidal quadrature gives J̃(h) with order of
accuracy p = 2, J̃(h) = J + O

(
h2
)
.
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Adaptive / Refinement Methods

Romberg Quadrature

Assume that we have evaluated f (x) at n = 2m + 1 equi-spaced
nodes, h = 2−m(b − a), giving approximation J̃(h).

We can also easily compute J̃(2h) by simply skipping the odd nodes.
And also J̃(4h) , and in general, J̃(2qh), q = 0, . . . ,m.

We can keep applying Richardson extrapolation recursively to get
Romberg’s quadrature:
Combine J̃(2qh) and J̃(2q−1h) to get a better estimate. Then
combine the estimates to get an even better estimates, etc.

Jr ,0 = J̃

(
b − a

2r

)
, r = 0, . . . ,m

Jr ,q+1 =
4q+1Jr ,q − Jr−1,q

4q+1 − 1
, q = 0, . . . ,m − 1, r = q + 1, . . . ,m

The final answer, Jm,m = J + O
(
h2(m+1)

)
is much more accurate

than the starting Jm,0 = J + O
(
h2
)
, for smooth functions.

A. Donev (Courant Institute) Lecture XI 12/2014 20 / 36



Adaptive / Refinement Methods

Adaptive (Automatic) Integration

We would like a way to control the error of the integration, that is,
specify a target error εmax and let the algorithm figure out the
correct step size h to satisfy

|ε| . εmax ,

where ε is an error estimate.

Importantly, h may vary adaptively in different parts of the
integration interval:
Smaller step size when the function has larger derivatives.

The crucial step is obtaining an error estimate: Use the same idea as
in Richardson extrapolation.
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Adaptive / Refinement Methods

Error Estimate for Simpson’s Quadrature

Assume we are using Simpson’s quadrature and compute the integral
J(h) with step size h.

Then also compute integrals for the left half and for the right half
with step size h/2, J(h/2) = JL(h/2) + JR(h/2).

J = J(h)− 1

2880
· h5 · f (4) (ξ)

J = J(h/2)− 1

2880
· h

4

32
·
[
f (4) (ξL) + f (4) (ξR)

]
.

Now assume that the fourth derivative varies little over the interval,
f (4) (ξL) ≈ f (4) (ξL) ≈ f (4) (ξ), to estimate:

1

2880
· h5 · f (4) (ξ) ≈ 16

15
[J(h)− J(h/2)]

J(h/2)− J ≈ ε =
1

16
[J(h)− J(h/2)] .
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Adaptive / Refinement Methods

Adaptive Integration

Now assume that we have split the integration interval [a, b] into
sub-intervals, and we are considering computing the integral over the
sub-interval [α, β], with stepsize

h = β − α.

We need to compute this sub-integral with accuracy

|ε(α, β)| =
1

16
|[J(h)− J(h/2)]| ≤ ε h

b − a
.

An adaptive integration algorithm is J ≈ J(a, b, ε) where the
recursive function is:

J(α, β, ε) =

{
J(h/2) if |J(h)− J(h/2)| ≤ 16ε

J(α, α+β
2 , ε2 ) + J(α+β

2 , β, ε2 ) otherwise

In practice one also stops the refinement if h < hmin and is more
conservative e.g., use 10 instead of 16.
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Adaptive / Refinement Methods

Piecewise constant / linear basis functions
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Higher Dimensions

Regular Grids in Two Dimensions

A separable integral can be done by doing integration along one
axes first, then another:

J =

∫ 1

x=0

∫ 1

y=0
f (x , y)dxdy =

∫ 1

x=0
dx

[∫ 1

y=0
f (x , y)dy

]
Consider evaluating the function at nodes on a regular grid

xi ,j = {xi , yj} , fi ,j = f (xi ,j).

We can use separable basis functions:

φi ,j(x) = φi (x)φj(y).
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Higher Dimensions

Bilinear basis functions
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Higher Dimensions

Piecewise-Polynomial Integration

Use a different interpolation function φ(i ,j) : Ωi ,j → R in each
rectange of the grid

Ωi ,j = [xi , xi+1]× [yj , yj+1],

and it is sufficient to look at a unit reference rectangle
Ω̂ = [0, 1]× [0, 1].

Recall: The equivalent of piecewise linear interpolation in 1D is the
piecewise bilinear interpolation

φ(i ,j)(x , y) = φ
(x)
(i) (x) · φ(y)

(j) (y),

where φ
(x)
(i) and φ

(y)
(j) are linear function.

The global interpolant can be written in the tent-function basis

φ(x , y) =
∑
i ,j

fi ,jφi ,j(x , y).
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Higher Dimensions

Bilinear Integration

The composite two-dimensional trapezoidal quadrature is then:

J ≈
∫ 1

x=0

∫ 1

y=0
φ(x , y)dxdy =

∑
i ,j

fi ,j

∫ ∫
φi ,j(x , y)dxdy =

∑
i ,j

wi ,j fi ,j

Consider one of the corners (0, 0) of the reference rectangle and the
corresponding basis φ̂0,0 restricted to Ω̂:

φ̂0,0(x̂ , ŷ) = (1− x̂)(1− ŷ)

Now integrate φ̂0,0 over Ω̂:∫
Ω̂
φ̂0,0(x̂ , ŷ)dx̂dŷ =

1

4
.

Since each interior node contributes to 4 rectangles, its weight is 1.
Edge nodes contribute to 2 rectangles, so their weight is 1/2.
Corners contribute to only one rectangle, so their weight is 1/4.

A. Donev (Courant Institute) Lecture XI 12/2014 28 / 36



Higher Dimensions

Adaptive Meshes: Quadtrees and Block-Structured
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Higher Dimensions

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles.
Similarly tetrahedral meshes in 3D.
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Higher Dimensions

Basis functions on triangles

For irregular grids the x and y directions are no longer separable.
But the idea of using piecewise polynomial basis functions on a
reference triangle T̂ still applies.
For a linear function we need 3 coefficients (x , y , const), for quadratic
6 (x , y , x2, y2, xy , const).
For example, for piecewise linear we have the basis functions

φ̂1(x̂ , ŷ) = 1− (x + y) for node (0, 0)

φ̂2(x̂ , ŷ) = x for node (1, 0).
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Higher Dimensions

Piecewise constant / linear basis functions
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Higher Dimensions

Composite Quadrature on a Triangular Grid

The integral over the whole grid is simply the sum over all of the
triangles.

So we focus on a triangle T , with d nodes, d = 1 for piecewise
constant, d = 3 for piecewise linear, d = 6 for piecewise quadratic
interpolants.∫

T
f (x , y)dxdy ≈

d∑
i=1

fi

(∫
T
φ

(T )
i (x , y)dxdy

)
=
∑
i

wi fi

By transforming from the right angle reference triangle:

wi =

∫
T
φ

(T )
i (x , y)dxdy = 2 |T |

∫
T̂
φ̂i (x̂ , ŷ)dx̂dŷ ,

where |T | is the area of the triangle.

For piecewise linear interpolant, we get w1 = w2 = w3 = |T | /3, i.e.,
weight is 1/3 for each vertex node.
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Higher Dimensions

Composite Quadrature on a Triangular Grid

In fact, for symmetry, it may be better to think of an equilateral
reference triangle.
For piecewise quadratic interpolants, one obtains a quadrature that is
exact for all polynomials of degree p ≤ 3, since the integrals of cubic
(odd) terms vanish by symmetry.
The weights are: wv = 27

60 for the 1 centroid, wv = 1
20 for the 3

vertices, wv = 2
15 for the 3 edge midpoints.

One can use Gauss integration over the reference triangles to get
higher accuracy.
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Conclusions

In MATLAB

The MATLAB function quad(f , a, b, ε) uses adaptive Simpson
quadrature to compute the integral.

The MATLAB function quadl(f , a, b, ε) uses adaptive Gauss-Lobatto
quadrature.

MATLAB says: “The function quad may be more efficient with low
accuracies or nonsmooth integrands.”

In two dimensions, for separable integrals over rectangles, use

J = dblquad(f , xmin, xmax , ymin, ymax , ε)

J = dblquad(f , xmin, xmax , ymin, ymax , ε,@quadl)

There is also triplequad .
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Conclusions

Conclusions/Summary

Numerical integration or quadrature approximates an integral via a
discrete weighted sum of function values over a set of nodes.

Integration is based on interpolation: Integrate the interpolant to get
a good approximation.

Piecewise polynomial interpolation over equi-spaced nodes gives the
trapezoidal and Simpson quadratures for lower order, and higher
order are generally not recommended.

Instead, it is better to use Gauss integration based on a special set
of nodes and weights (orthogonal polynomials).

In higher dimensions we split the domain into rectangles for regular
grids (separable integration), or triangles/tetrahedra for simplicial
meshes.

Integration in high dimensions d becomes harder and harder because
the number of nodes grows as Nd : Curse of dimensionality. Monte
Carlo is one possible cure...
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