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Numerical Integration in 1D Low-Order

Numerical Quadrature

@ We want to numerically approximate a definite integral

J= /ab f(x)dx.

@ The function f(x) may not have a closed-form integral, or it may
itself not be in closed form.

@ Recall that the integral gives the area under the curve f(x), and also
the Riemann sum:

n
lim Z f(t)(xit1 — xi) = J, where x; < t; < xj11
i=0

n—o00 4

@ A quadrature formula approximates the Riemann integral as a
discrete sum over a set of n nodes:

n
J~Jy= Za;f(x,-)
i=1
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Numerical Integration in 1D Low-Order

Midpoint Quadrature

Split the interval into n intervals of width h = (b — a)/n (stepsize), and
then take as the nodes the midpoint of each interval:

xk=a+ (2k—-1)h/2, k=1,...,n

Jp= hz f(xx), and clearly Ii_}m Jn=1J
k=1
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Numerical Integration in 1D Low-Order

Quadrature Error

@ Focus on one of the sub intervals, and estimate the quadrature error
using the midpoint rule assuming f(x) € C(®);

) X,'—‘rh/2
el = / f(x)dx| — hf(x;)
X,'—h/2

@ Expanding f(x) into a Taylor series around x; to first order,

) = Fx) + F00)0x = ) + 5 1] Ox = 5P

X,'+h/2 1 X,'+h/2
/ F(x)dx = hf(x;) + = / £ ()] (x — xi)2dx
xi—h/2 2 Jxi—ny2

@ The generalized mean value theorem for integrals says: If
f(x) € € and g(x) >0,

b b
/ g(x)f(x)dx = f(n)/ g(x)dx where a<n < b
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Numerical Integration in 1D Low-Order

Composite Quadrature Error

e Taking now g(x) = (x — x;)?> > 0, we get the local error estimate

3
h//

) xi+h/2
) _ % / £ [n(x)] (x—xi)2dx = £ [€] % /h (x=xi)?dx = 2 " [¢]

x;i—h/2

@ Now, combining the errors from all of the intervals together gives the
global error

b n 3
5:/ f(X)dX—hZf(Xk):J_Jn 242 F" [€k]
a k=1

k=1

@ Use a discrete generalization of the mean value theorem to get:

(f” €]) = g,

where a < £ < b.
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Numerical gration in 1D Low-Order

Interpolatory Quadrature

Instead of integrating f(x), integrate a polynomial interpolant
p(x) =~ f(x):

Midpoint rule Trapezoid rule

v
VA

Simpson’s rule Composite Simpson’s rule

Figure 6.2. Four quadrature rules.
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Numerical Integration in 1D Low-Order

Trapezoidal Rule

o Consider integrating an interpolating function ¢(x) which passes
through n+ 1 nodes x;:

o(xi) = yi = f(x;) for i =0,2,...,m.

o First take the piecewise linear interpolant and integrate it over the
sub-interval /; = [xj_1, x;]:

Yi— )/ifl(

X — Xi)
Xj — Xj—1

dM(x) =yi1 +

to get the trapezoidal formula (the area of a trapezoid):

(1) _ f(xic1) + ()
[, sy = st )
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Numerical Integration in 1D Low-Order

Composite Trapezoidal Rule

-
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@ Now add the integrals over all of the sub-intervals we get the
composite trapezoidal quadrature rule:

b h <
/ f(x)dx ~ 5 E [f(xi—1) + f(xi)]
a i=1

- g [f(x0) + 2F(x1) + -+ + 2f (xa—1) + F(xn)]

with similar error to the midpoint rule.
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Numerical Integration in 1D Low-Order

Simpson’s Quadrature Formula

@ As for the midpoint rule, split the interval into n intervals of width
h = (b— a)/n, and then take as the nodes the endpoints and
midpoint of each interval:

Xk =a+kh, k=0,...,n
Xk =a+(2k—-1)h/2, k=1,...,n
@ Then, take the piecewise quadratic interpolant ¢;(x) in the
sub-interval /; = [xj_1, ;] to be the parabola passing through the
nodes (xi_1,yi-1), (xi,yi), and (X, ¥i).
@ Integrating this interpolant in each interval and summing gives the
Simpson quadrature rule:

Js = g [f(x0) + 4f(x1) + 2f (x1) + - - + 2f (Xn—1) + 4F(Xn) + f(xn)]

(b—a)
2880
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Numerical Integration in 1D Low-Order

Higher-Order Newton Cotes formula

@ One can in principle use a higher-order polynomial interpolant on the
nodes to get formally higher accuracy, e.g., using the Lagrange
interpolant we talked about previously:

$(x) =Y yidi(x)
i=0

0 ifij
Hj;éi (x = xj) _ Wm+1(x)
Hj;éi (xi —x;)  (x = X)Wy, 1 (i)

@ Note that these only achieve higher-order accuracy for smooth
functions.

9i(x) =
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Numerical Integration in 1D Low-Order

Lagrange integration

@ Integrating the interpolant gives the Newton-Cotes quadrature:

/ab f(x)dx ~ /ab d(x)dx = ngyi¢i(X)dX = h,i__n; wif (x)

where it is easy to see that the weights w; do not depend on [a, b]
and can be pre-tabulated:

W = /_ 11 i(x)dx

@ We can of course split the whole interval into sub-intervals and do the
Lagrange interpolant piecewise, giving a composite Newton-Cotes
quadrature.

@ Just as for interpolation, increasing the number of equally-spaced
nodes does not help much and is not generally a good idea.
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Numerical Integration in 1D Spectral

Non-Equi Spaced Grids

@ To reach higher accuracy, instead of using higher-degree polynomial
interpolants (recall Runge's phenomenon), let's try using n
non-equispaced nodes:

J=~J,= z”: w;f(x;)
i=1

@ Question: For some choice of the weights and nodes, is it possible to

compute
b
/ Pm(x)dx
a

exactly for any polynomial pp,(x) of degree at most m?
@ This degree of exactness m would guarantee that the accuracy will
be e ~ F(M+1) (¢) since all the lower-order derivatives are done exactly.
@ This so-called spectral accuracy (limited by smoothness only)
cannot be achived by piecewise, i.e., local, approximations (limited by
order of local approximation).
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Numerical Integration in 1D Spectral

Review: Legendre Polynomials

@ Recall the triangular family of orthogonal Legendre polynomials:

Po(x) =1
P1(x) =x
$2(x) :%(3x2 —1)
63(x) :%(5x3 ~3x)
Brin(3) = n) — k1) = e [ = 1)']

@ These are orthogonal on | = [—1,1]:

/ ) = 8y 5

A. Donev (Courant Institute) Lecture XI 12/2014 14 / 36



Numerical Integration in 1D Spectral

Orthogonal Polynomial Integration

@ Recall the question we studied in Orthogonal Polynomials lecture:

How to easily compute
b
/ Pam(x)dx
a

exactly for a polynomial pym,(x) of degree at most 2m?

@ Let's first consider polynomials of degree at most m

/a () =2

@ Any polynomial p,(x) of degree at most m can be expressed in the

Lagrange basis:
m

pm(x) =D pm(xi)pi(x)

i=0
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Numerical Integration in 1D Spectral

Gauss Weights

@ Repeating what we did for Newton-Cotes quadrature:

where the Gauss weights w are given by

b
W,':/ wi(x)dx.

@ Recall: If we choose the nodes to be zeros of ¢,11(x), then

b m
/a pom(x)dx = wipam(xi)

i=0
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Numerical Integration in 1D Spectral

Gauss Integration

@ This gives the Gauss quadrature based on the Gauss nodes and
weights, usually pre-tabulated for the standard interval [—1,1]:

m

b —a
/ F(x)dx ~ 2. 25 wif ().

i=0

@ Gauss quadrature has the highest possible degree of exactness, i.e.,
it is exact for polynomials of degree up to 2n + 1.

@ The low-order Gauss formulae are:

n:l:/llf(X)dX“f<_\%>+f<\%>

ot 5 V15) 8 5 (V15
n:2./1 f(x)dx ~ §f <—5> —|—§f(0)—|-§f (5>
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Adaptive / Refinement Methods
Asymptotic Error Expansions

@ The idea in Richardson extrapolation (recall homework 4) is to use an
error estimate formula to extrapolate a more accurate answer
from less-accurate answers.

@ Assume that we have a quadrature formula for which we have a
theoretical error estimate:

n
Jp = Za,-f(x,-) =J+ah? + O (hPt1)
i=1

@ Recall the big O notation: g(x) = O (hP) if:
J(ho, C) > 0s.t. |g(x)| < C|h|P whenever |h| < hg

@ For trapezoidal formula

b—a
24

W[ =0 (h).

E =
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Adaptive / Refinement Methods

Richardson Extrapolation

@ Now repeat the calculation but with step size 2h (for equi-spaced
nodes just skip the odd nodes):

J(h) = J+ah® + O (h°11)
J(2h) = J + a2PhP + O (hPH1)

@ Solve for v and obtain

~ 2PJ(h) — J(2h)

p+1
J=== 1 +to("),

which now has order of accuracy p + 1 instead of p.

@ The composite trapezoidal quadrature gives J(h) with order of
accuracy p =2, J(h) = J+ O (h?).
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Adaptive / Refinement Methods
Romberg Quadrature

@ Assume that we have evaluated f(x) at n = 2™ + 1 equi-spaced
nodes, h = 2~™(b — a), giving approximation J(h).

o We can also easily compute J(2h) by simply skipping the odd nodes.
And also J(4h) , and in general, J(29h), g =0,..., m.

@ We can keep applying Richardson extrapolation recursively to get
Romberg’s quadrature:
Combine J(29h) and J(2971h) to get a better estimate. Then
combine the estimates to get an even better estimates, etc.

~(b—a
Jn():J( o ), r:O,...,m

4q+1Jr7q — Jr_17q
a9+l _1

Jrg+1 = =0,....m—1 r=q+1,....m

e The final answer, Jym.m =J + O (hz(’"H)) is much more accurate
than the starting Jy,0 =J+ O (hz), for smooth functions.
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Adaptive / Refinement Methods

Adaptive (Automatic) Integration

@ We would like a way to control the error of the integration, that is,
specify a target error ¢, and let the algorithm figure out the
correct step size h to satisfy

‘5’ ,S Emax;

where ¢ is an error estimate.

@ Importantly, h may vary adaptively in different parts of the
integration interval:
Smaller step size when the function has larger derivatives.

@ The crucial step is obtaining an error estimate: Use the same idea as
in Richardson extrapolation.
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Adaptive / Refinement Methods

Error Estimate for Simpson’s Quadrature

@ Assume we are using Simpson’s quadrature and compute the integral
J(h) with step size h.

@ Then also compute integrals for the left half and for the right half
with step size h/2, J(h/2) = Ji(h/2) + Jr(h/2).

J:J(h)_ﬁ-hif@*)(g)
h4
= J(h/2) - 2880 3 [P+ R)|.

@ Now assume that the fourth derivative varies little over the interval,
4 (&) = B (&) = F*) (€), to estimate:

1 16
S50 BS . £ (¢) ~ & H(h) = J(h/2)]

J(hj2)— J e = % LJ(h) — J(h/2)].
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Adaptive / Refinement Methods
Adaptive Integration

@ Now assume that we have split the integration interval [a, b] into
sub-intervals, and we are considering computing the integral over the
sub-interval [«, 5], with stepsize

h=p8-—a.

@ We need to compute this sub-integral with accuracy

o, B)] = 35 I1U(R) — J(/2)]] < <

@ An adaptive integration algorithm is J ~ J(a, b, €) where the
recursive function is:

S B€) = {J (h/2) if 1J(h) — J(h/2)| < 162

o, ®E2 )+ J(248,B,5)  otherwise

h
_a.

@ In practice one also stops the refinement if h < h,;;, and is more
conservative e.g., use 10 instead of 16.
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Adaptive / Refinement Methods

Piecewise constant / linear basis functions
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Fig. 9.4. Distribution of quadrature nodes (left); density of the integration stepsize
in the approximation of the integral of Example 9.9 (right)

14 24 /36

Donev (Courant Institute) Lecture XI




Higher Dimensions
Regular Grids in Two Dimensions

@ A separable integral can be done by doing integration along one
axes first, then another:

J= /Xl_o /yl_o f(x,y)dxdy = /Xl_o dx [/yl_o f(x,y)dy]

o Consider evaluating the function at nodes on a regular grid

xij={xyt. fij = f(xij)
@ We can use separable basis functions:

#ij(x) = ¢i(x)9;(y)-
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Higher Dimensions

Bilinear basis functions

Bilinear basis function dzg0na 5x5 grid
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Higher Dimensions
Piecewise-Polynomial Integration

e Use a different interpolation function ¢(; ;) : €;; — R in each
rectange of the grid

Qij = [xi, xis1] X [y, yjal,

and it is sufficient to look at a unit reference rectangle
Q =10,1] x [0,1].

@ Recall: The equivalent of piecewise linear interpolation in 1D is the
piecewise bilinear interpolation

By (% ¥) = 800 (x) - 6 (),

where gzﬁgj.()) and gbg./)) are linear function.
@ The global interpolant can be written in the tent-function basis

¢(X7y) = Z ﬁJ¢iJ(X7y)’
ij
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Higher Dimensions
Bilinear Integration

@ The composite two-dimensional trapezoidal quadrature is then:

1 1
J=~ / , ) é(x,y)dxdy = Z fij //qﬁ,-,j(x,y)dxdy = Z wi

e Consider one of the corners (0,0) of the reference rectangle and the
corresponding basis qﬁo o restricted to :

doo(%.9) = (1 =%)(1~-9)

o Now integrate (%070 over {:

@ Since each interior node contributes to 4 rectangles, its weight is 1.
Edge nodes contribute to 2 rectangles, so their weight is 1/2.
Corners contribute to only one rectangle, so their weight is 1/4.

A. Donev (Courant Institute) Lecture XI 12/2014 28 / 36



Higher Dimensions

Adaptive Meshes: Quadtrees and Block-Structured

| T SBnBnE
[ EHFFFRFRRE T
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: R o=l o= Tl
+ w‘"ll“‘:‘??# LAERE ] IAE RERE BE BE | LEE BE BE |
LTI
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Higher Dimensi ions

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles.
Similarly tetrahedral meshes in 3D.
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Higher Dimensions
Basis functions on triangles

@ For irregular grids the x and y directions are no longer separable.

@ But the idea of using piecewise polynomial basis functions on a
reference triangle T still applies.

@ For a linear function we need 3 coefficients (x, y, const), for quadratic
6 (x,y,x?,y2, xy,const).

@ For example, for piecewise linear we have the basis functions

$1(%,9) = 1= (x +y) for node (0,0)
$2(%,9) = x for node (1,0).

L
L
.

x e e ) ko= cenler), &
3. Locnl mterpolation nades o F for k=1 LR

LN
.
. T | ® L ™~
a; 4 —e —®
'-": - lefr & 2
- Fig. B.8. {tuft)-
il
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Higher Dimensions

Piecewise constant / linear basis functions

b Sl
1| B i,
' - £ %
ity e ! i

— — » e

Fig., B.7. Charecteristic piecowise Lagrange polvoomial, in twa and one spac
dimensions, Left, & = 0: right. k= |
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Higher Dimensions
Composite Quadrature on a Triangular Grid

@ The integral over the whole grid is simply the sum over all of the
triangles.

@ So we focus on a triangle T, with d nodes, d = 1 for piecewise
constant, d = 3 for piecewise linear, d = 6 for piecewise quadratic
interpolants.

d
/ f(x,y)dxdy =y f; </ o7 (x,y) dxdy> Zw, ;
T i=1

@ By transforming from the right angle reference triangle:

Wi — /<z> (xydxdy—Nl/qﬁ %,9)dsdy

where | T| is the area of the triangle.
o For piecewise linear interpolant, we get wy = wyr = w3 = |T| /3, i.e,,
weight is 1/3 for each vertex node.
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Higher Dimensions
Composite Quadrature on a Triangular Grid

@ In fact, for symmetry, it may be better to think of an equilateral
reference triangle.

@ For piecewise quadratic interpolants, one obtains a quadrature that is
exact for all polynomials of degree p < 3, since the integrals of cubic
(odd) terms vanish by symmetry

@ The weights are: WV = for the 1 centroid, w, = 20 for the 3
vertices, w, = 15 for the 3 edge midpoints.

@ One can use Gauss integration over the reference triangles to get
higher accuracy.

ay
=
a3 L s —»

fel. & = | (ex

F,, 8.8, Local mterpelation noedes
1rr’|’
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In MATLAB

e The MATLAB function quad(f,a, b, ¢) uses adaptive Simpson
quadrature to compute the integral.

@ The MATLAB function quad/(f, a, b,c) uses adaptive Gauss-Lobatto
quadrature.

@ MATLAB says: “The function quad may be more efficient with low
accuracies or nonsmooth integrands.”

@ In two dimensions, for separable integrals over rectangles, use

J = dblquad(f, Xmin, Xmaxs Ymins Ymax; €)

J = dblquad(f, Xmin, Xmax Ymin, Ymax, €, @quadl)

@ There is also triplequad.

A. Donev (Courant Institute) Lecture XI 12/2014 35/ 36



Conclusions
Conclusions/Summary

@ Numerical integration or quadrature approximates an integral via a
discrete weighted sum of function values over a set of nodes.

@ Integration is based on interpolation: Integrate the interpolant to get
a good approximation.

@ Piecewise polynomial interpolation over equi-spaced nodes gives the
trapezoidal and Simpson quadratures for lower order, and higher
order are generally not recommended.

@ Instead, it is better to use Gauss integration based on a special set
of nodes and weights (orthogonal polynomials).

@ In higher dimensions we split the domain into rectangles for regular
grids (separable integration), or triangles/tetrahedra for simplicial
meshes.

@ Integration in high dimensions d becomes harder and harder because
the number of nodes grows as N: Curse of dimensionality. Monte
Carlo is one possible cure...
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