Numerical Methods I Numerical Integration

Aleksandar Donev
Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu

${ }^{1}$ MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014
Dec 4th, 2014

Outline

(1) Numerical Integration in 1D

- Low-Order
- Spectral
(2) Adaptive / Refinement Methods
(3) Higher Dimensions
(4) Conclusions

Numerical Quadrature

- We want to numerically approximate a definite integral

$$
J=\int_{a}^{b} f(x) d x
$$

- The function $f(x)$ may not have a closed-form integral, or it may itself not be in closed form.
- Recall that the integral gives the area under the curve $f(x)$, and also the Riemann sum:

$$
\lim _{n \rightarrow \infty} \sum_{i=0}^{n} f\left(t_{i}\right)\left(x_{i+1}-x_{i}\right)=J, \text { where } x_{i} \leq t_{i} \leq x_{i+1}
$$

- A quadrature formula approximates the Riemann integral as a discrete sum over a set of n nodes:

$$
J \approx J_{n}=\sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right)
$$

Midpoint Quadrature

Split the interval into n intervals of width $h=(b-a) / n$ (stepsize), and then take as the nodes the midpoint of each interval:

$$
x_{k}=a+(2 k-1) h / 2, \quad k=1, \ldots, n
$$

$$
J_{n}=h \sum_{k=1}^{n} f\left(x_{k}\right), \text { and clearly } \lim _{n \rightarrow \infty} J_{n}=J
$$

Quadrature Error

- Focus on one of the sub intervals, and estimate the quadrature error using the midpoint rule assuming $f(x) \in C^{(2)}$:

$$
\varepsilon^{(i)}=\left[\int_{x_{i}-h / 2}^{x_{i}+h / 2} f(x) d x\right]-h f\left(x_{i}\right)
$$

- Expanding $f(x)$ into a Taylor series around x_{i} to first order,

$$
\begin{gathered}
f(x)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x-x_{i}\right)+\frac{1}{2} f^{\prime \prime}[\eta(x)]\left(x-x_{i}\right)^{2} \\
\int_{x_{i}-h / 2}^{x_{i}+h / 2} f(x) d x=h f\left(x_{i}\right)+\frac{1}{2} \int_{x_{i}-h / 2}^{x_{i}+h / 2} f^{\prime \prime}[\eta(x)]\left(x-x_{i}\right)^{2} d x
\end{gathered}
$$

- The generalized mean value theorem for integrals says: If $f(x) \in C^{(0)}$ and $g(x) \geq 0$,

$$
\int_{a}^{b} g(x) f(x) d x=f(\eta) \int_{a}^{b} g(x) d x \text { where } a<\eta<b
$$

Composite Quadrature Error

- Taking now $g(x)=\left(x-x_{i}\right)^{2} \geq 0$, we get the local error estimate

$$
\varepsilon^{(i)}=\frac{1}{2} \int_{x_{i}-h / 2}^{x_{i}+h / 2} f^{\prime \prime}[\eta(x)]\left(x-x_{i}\right)^{2} d x=f^{\prime \prime}[\xi] \frac{1}{2} \int_{h}\left(x-x_{i}\right)^{2} d x=\frac{h^{3}}{24} f^{\prime \prime}[\xi]
$$

- Now, combining the errors from all of the intervals together gives the global error

$$
\varepsilon=\int_{a}^{b} f(x) d x-h \sum_{k=1}^{n} f\left(x_{k}\right)=J-J_{n}=\frac{h^{3}}{24} \sum_{k=1}^{n} f^{\prime \prime}\left[\xi_{k}\right]
$$

- Use a discrete generalization of the mean value theorem to get:

$$
\varepsilon=\frac{h^{3}}{24} n\left(f^{\prime \prime}[\xi]\right)=\frac{b-a}{24} \cdot h^{2} \cdot f^{\prime \prime}[\xi]
$$

where $a<\xi<b$.

Interpolatory Quadrature

Instead of integrating $f(x)$, integrate a polynomial interpolant $\phi(x) \approx f(x):$

Midpoint rule

Simpson's rule

Trapezoid rule

Composite Simpson's rule

Figure 6.2. Four quadrature rules.

Trapezoidal Rule

- Consider integrating an interpolating function $\phi(x)$ which passes through $n+1$ nodes x_{i} :

$$
\phi\left(x_{i}\right)=y_{i}=f\left(x_{i}\right) \text { for } i=0,2, \ldots, m
$$

- First take the piecewise linear interpolant and integrate it over the sub-interval $I_{i}=\left[x_{i-1}, x_{i}\right]$:

$$
\phi_{i}^{(1)}(x)=y_{i-1}+\frac{y_{i}-y_{i-1}}{x_{i}-x_{i-1}}\left(x-x_{i}\right)
$$

to get the trapezoidal formula (the area of a trapezoid):

$$
\int_{x \in I_{i}} \phi_{i}^{(1)}(x) d x=h \frac{f\left(x_{i-1}\right)+f\left(x_{i}\right)}{2}
$$

Composite Trapezoidal Rule

- Now add the integrals over all of the sub-intervals we get the composite trapezoidal quadrature rule:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx \frac{h}{2} \sum_{i=1}^{n}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right] \\
& =\frac{h}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
\end{aligned}
$$

with similar error to the midpoint rule.

Simpson's Quadrature Formula

- As for the midpoint rule, split the interval into n intervals of width $h=(b-a) / n$, and then take as the nodes the endpoints and midpoint of each interval:

$$
\begin{aligned}
& x_{k}=a+k h, \quad k=0, \ldots, n \\
& \bar{x}_{k}=a+(2 k-1) h / 2, \quad k=1, \ldots, n
\end{aligned}
$$

- Then, take the piecewise quadratic interpolant $\phi_{i}(x)$ in the sub-interval $I_{i}=\left[x_{i-1}, x_{i}\right]$ to be the parabola passing through the nodes $\left(x_{i-1}, y_{i-1}\right),\left(x_{i}, y_{i}\right)$, and $\left(\bar{x}_{i}, \bar{y}_{i}\right)$.
- Integrating this interpolant in each interval and summing gives the Simpson quadrature rule:

$$
\begin{gathered}
J_{S}=\frac{h}{6}\left[f\left(x_{0}\right)+4 f\left(\bar{x}_{1}\right)+2 f\left(x_{1}\right)+\cdots+2 f\left(x_{n-1}\right)+4 f\left(\bar{x}_{n}\right)+f\left(x_{n}\right)\right] \\
\varepsilon=J-J_{s}=-\frac{(b-a)}{2880} \cdot h^{4} \cdot f^{(4)}(\xi)
\end{gathered}
$$

Higher-Order Newton Cotes formula

- One can in principle use a higher-order polynomial interpolant on the nodes to get formally higher accuracy, e.g., using the Lagrange interpolant we talked about previously:

$$
\begin{gathered}
\phi(x)=\sum_{i=0}^{m} y_{i} \phi_{i}(x) \\
\phi_{i}\left(x_{j}\right)=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases} \\
\phi_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\frac{w_{m+1}(x)}{\left(x-x_{i}\right) w_{m+1}^{\prime}\left(x_{i}\right)}
\end{gathered}
$$

- Note that these only achieve higher-order accuracy for smooth functions.

Lagrange integration

- Integrating the interpolant gives the Newton-Cotes quadrature:

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} \phi(x) d x=\int_{a}^{b} \sum_{i=0}^{m} y_{i} \phi_{i}(x) d x=h \sum_{i=0}^{m} w_{i} f\left(x_{i}\right)
$$

where it is easy to see that the weights w_{i} do not depend on $[a, b]$ and can be pre-tabulated:

$$
w_{i}=\int_{-1}^{1} \phi_{i}(x) d x
$$

- We can of course split the whole interval into sub-intervals and do the Lagrange interpolant piecewise, giving a composite Newton-Cotes quadrature.
- Just as for interpolation, increasing the number of equally-spaced nodes does not help much and is not generally a good idea.

Non-Equi Spaced Grids

- To reach higher accuracy, instead of using higher-degree polynomial interpolants (recall Runge's phenomenon), let's try using n non-equispaced nodes:

$$
J \approx J_{n}=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

- Question: For some choice of the weights and nodes, is it possible to compute

$$
\int_{a}^{b} p_{m}(x) d x
$$

exactly for any polynomial $p_{m}(x)$ of degree at most m ?

- This degree of exactness m would guarantee that the accuracy will be $\varepsilon \sim f^{(m+1)}(\xi)$ since all the lower-order derivatives are done exactly.
- This so-called spectral accuracy (limited by smoothness only) cannot be achived by piecewise, i.e., local, approximations (limited by order of local approximation).

Review: Legendre Polynomials

- Recall the triangular family of orthogonal Legendre polynomials:

$$
\begin{aligned}
\phi_{0}(x) & =1 \\
\phi_{1}(x) & =x \\
\phi_{2}(x) & =\frac{1}{2}\left(3 x^{2}-1\right) \\
\phi_{3}(x) & =\frac{1}{2}\left(5 x^{3}-3 x\right) \\
\phi_{k+1}(x) & =\frac{2 k+1}{k+1} x \phi_{k}(x)-\frac{k}{k+1} \phi_{k-1}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right]
\end{aligned}
$$

- These are orthogonal on $I=[-1,1]$:

$$
\int_{-1}^{-1} \phi_{i}(x) \phi_{j}(x) d x=\delta_{i j} \cdot \frac{2}{2 i+1} .
$$

Orthogonal Polynomial Integration

- Recall the question we studied in Orthogonal Polynomials lecture: How to easily compute

$$
\int_{a}^{b} p_{2 m}(x) d x
$$

exactly for a polynomial $p_{2 m}(x)$ of degree at most $2 m$?

- Let's first consider polynomials of degree at most m

$$
\int_{a}^{b} p_{m}(x) d x=?
$$

- Any polynomial $p_{m}(x)$ of degree at most m can be expressed in the Lagrange basis:

$$
p_{m}(x)=\sum_{i=0}^{m} p_{m}\left(x_{i}\right) \varphi_{i}(x)
$$

Gauss Weights

- Repeating what we did for Newton-Cotes quadrature:

$$
\int_{a}^{b} p_{m}(x) d x=\sum_{i=0}^{m} p_{m}\left(x_{i}\right)\left[\int_{a}^{b} \varphi_{i}(x) d x\right]=\sum_{i=0}^{m} w_{i} p_{m}\left(x_{i}\right)
$$

where the Gauss weights w are given by

$$
w_{i}=\int_{a}^{b} \varphi_{i}(x) d x
$$

- Recall: If we choose the nodes to be zeros of $\phi_{m+1}(x)$, then

$$
\int_{a}^{b} p_{2 m}(x) d x=\sum_{i=0}^{m} w_{i} p_{2 m}\left(x_{i}\right)
$$

Gauss Integration

- This gives the Gauss quadrature based on the Gauss nodes and weights, usually pre-tabulated for the standard interval $[-1,1]$:

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{2} \sum_{i=0}^{m} w_{i} f\left(x_{i}\right)
$$

- Gauss quadrature has the highest possible degree of exactness, i.e., it is exact for polynomials of degree up to $2 n+1$.
- The low-order Gauss formulae are:

$$
\begin{aligned}
& n=1: \int_{-1}^{1} f(x) d x \approx f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right) \\
& n=2: \int_{-1}^{1} f(x) d x \approx \frac{5}{9} f\left(-\frac{\sqrt{15}}{5}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\frac{\sqrt{15}}{5}\right)
\end{aligned}
$$

Asymptotic Error Expansions

- The idea in Richardson extrapolation (recall homework 4) is to use an error estimate formula to extrapolate a more accurate answer from less-accurate answers.
- Assume that we have a quadrature formula for which we have a theoretical error estimate:

$$
J_{h}=\sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right)=J+\alpha h^{p}+O\left(h^{p+1}\right)
$$

- Recall the big \mathbf{O} notation: $g(x)=O\left(h^{p}\right)$ if:

$$
\exists\left(h_{0}, C\right)>0 \text { s.t. }|g(x)|<C|h|^{p} \text { whenever }|h|<h_{0}
$$

- For trapezoidal formula

$$
\varepsilon=\frac{b-a}{24} \cdot h^{2} \cdot f^{\prime \prime}[\xi]=O\left(h^{2}\right)
$$

Richardson Extrapolation

- Now repeat the calculation but with step size $2 h$ (for equi-spaced nodes just skip the odd nodes):

$$
\begin{aligned}
\tilde{J}(h) & =J+\alpha h^{p}+O\left(h^{p+1}\right) \\
\tilde{J}(2 h) & =J+\alpha 2^{p} h^{p}+O\left(h^{p+1}\right)
\end{aligned}
$$

- Solve for α and obtain

$$
J=\frac{2^{p \tilde{J}}(h)-\tilde{J}(2 h)}{2^{p}-1}+O\left(h^{p+1}\right)
$$

which now has order of accuracy $p+1$ instead of p.

- The composite trapezoidal quadrature gives $\tilde{J}(h)$ with order of accuracy $p=2, \tilde{J}(h)=J+O\left(h^{2}\right)$.

Romberg Quadrature

- Assume that we have evaluated $f(x)$ at $n=2_{\sim}^{m}+1$ equi-spaced nodes, $h=2^{-m}(b-a)$, giving approximation $\tilde{J}(h)$.
- We can also easily compute $\tilde{J}(2 h)$ by simply skipping the odd nodes. And also $\tilde{J}(4 h)$, and in general, $\tilde{J}\left(2^{q} h\right), q=0, \ldots, m$.
- We can keep applying Richardson extrapolation recursively to get Romberg's quadrature:
Combine $\tilde{J}\left(2^{q} h\right)$ and $\tilde{J}\left(2^{q-1} h\right)$ to get a better estimate. Then combine the estimates to get an even better estimates, etc.

$$
\begin{gathered}
J_{r, 0}=\tilde{J}\left(\frac{b-a}{2^{r}}\right), \quad r=0, \ldots, m \\
J_{r, q+1}=\frac{4^{q+1} J_{r, q}-J_{r-1, q}}{4^{q+1}-1}, \quad q=0, \ldots, m-1, \quad r=q+1, \ldots, m
\end{gathered}
$$

- The final answer, $J_{m, m}=J+O\left(h^{2(m+1)}\right)$ is much more accurate than the starting $J_{m, 0}=J+O\left(h^{2}\right)$, for smooth functions.

Adaptive (Automatic) Integration

- We would like a way to control the error of the integration, that is, specify a target error $\varepsilon_{\max }$ and let the algorithm figure out the correct step size h to satisfy

$$
|\varepsilon| \lesssim \varepsilon_{\max },
$$

where ε is an error estimate.

- Importantly, h may vary adaptively in different parts of the integration interval:
Smaller step size when the function has larger derivatives.
- The crucial step is obtaining an error estimate: Use the same idea as in Richardson extrapolation.

Error Estimate for Simpson's Quadrature

- Assume we are using Simpson's quadrature and compute the integral $J(h)$ with step size h.
- Then also compute integrals for the left half and for the right half with step size $h / 2, J(h / 2)=J_{L}(h / 2)+J_{R}(h / 2)$.

$$
\begin{aligned}
& J=J(h)-\frac{1}{2880} \cdot h^{5} \cdot f^{(4)}(\xi) \\
& J=J(h / 2)-\frac{1}{2880} \cdot \frac{h^{4}}{32} \cdot\left[f^{(4)}\left(\xi_{L}\right)+f^{(4)}\left(\xi_{R}\right)\right]
\end{aligned}
$$

- Now assume that the fourth derivative varies little over the interval, $f^{(4)}\left(\xi_{L}\right) \approx f^{(4)}\left(\xi_{L}\right) \approx f^{(4)}(\xi)$, to estimate:

$$
\begin{aligned}
& \frac{1}{2880} \cdot h^{5} \cdot f^{(4)}(\xi) \approx \frac{16}{15}[J(h)-J(h / 2)] \\
& J(h / 2)-J \approx \varepsilon=\frac{1}{16}[J(h)-J(h / 2)]
\end{aligned}
$$

Adaptive Integration

- Now assume that we have split the integration interval $[a, b]$ into sub-intervals, and we are considering computing the integral over the sub-interval $[\alpha, \beta]$, with stepsize

$$
h=\beta-\alpha
$$

- We need to compute this sub-integral with accuracy

$$
|\varepsilon(\alpha, \beta)|=\frac{1}{16}|[J(h)-J(h / 2)]| \leq \varepsilon \frac{h}{b-a}
$$

- An adaptive integration algorithm is $J \approx J(a, b, \epsilon)$ where the recursive function is:

$$
J(\alpha, \beta, \epsilon)= \begin{cases}J(h / 2) & \text { if }|J(h)-J(h / 2)| \leq 16 \varepsilon \\ J\left(\alpha, \frac{\alpha+\beta}{2}, \frac{\epsilon}{2}\right)+J\left(\frac{\alpha+\beta}{2}, \beta, \frac{\epsilon}{2}\right) & \text { otherwise }\end{cases}
$$

- In practice one also stops the refinement if $h<h_{\text {min }}$ and is more conservative e.g., use 10 instead of 16 .

Adaptive / Refinement Methods

Piecewise constant / linear basis functions

Fig. 9.4. Distribution of quadrature nodes (left); density of the integration stepsize in the approximation of the integral of Example 9.9 (right)

Regular Grids in Two Dimensions

- A separable integral can be done by doing integration along one axes first, then another:

$$
J=\int_{x=0}^{1} \int_{y=0}^{1} f(x, y) d x d y=\int_{x=0}^{1} d x\left[\int_{y=0}^{1} f(x, y) d y\right]
$$

- Consider evaluating the function at nodes on a regular grid

$$
\mathbf{x}_{i, j}=\left\{x_{i}, y_{j}\right\}, \quad f_{i, j}=f\left(\mathbf{x}_{i, j}\right)
$$

- We can use separable basis functions:

$$
\phi_{i, j}(\mathbf{x})=\phi_{i}(x) \phi_{j}(y)
$$

Bilinear basis functions

Bilinear basis function $\phi_{3,3}$ on a 5×5 grid

Piecewise-Polynomial Integration

- Use a different interpolation function $\phi_{(i, j)}: \Omega_{i, j} \rightarrow \mathbb{R}$ in each rectange of the grid

$$
\Omega_{i, j}=\left[x_{i}, x_{i+1}\right] \times\left[y_{j}, y_{j+1}\right],
$$

and it is sufficient to look at a unit reference rectangle $\widehat{\Omega}=[0,1] \times[0,1]$.

- Recall: The equivalent of piecewise linear interpolation in 1D is the piecewise bilinear interpolation

$$
\phi_{(i, j)}(x, y)=\phi_{(i)}^{(x)}(x) \cdot \phi_{(j)}^{(y)}(y),
$$

where $\phi_{(i)}^{(x)}$ and $\phi_{(j)}^{(y)}$ are linear function.

- The global interpolant can be written in the tent-function basis

$$
\phi(x, y)=\sum_{i, j} f_{i, j} \phi_{i, j}(x, y) .
$$

Bilinear Integration

- The composite two-dimensional trapezoidal quadrature is then:

$$
J \approx \int_{x=0}^{1} \int_{y=0}^{1} \phi(x, y) d x d y=\sum_{i, j} f_{i, j} \iint \phi_{i, j}(x, y) d x d y=\sum_{i, j} w_{i, j} f_{i, j}
$$

- Consider one of the corners $(0,0)$ of the reference rectangle and the corresponding basis $\hat{\phi}_{0,0}$ restricted to $\hat{\Omega}$:

$$
\hat{\phi}_{0,0}(\hat{x}, \hat{y})=(1-\hat{x})(1-\hat{y})
$$

- Now integrate $\hat{\phi}_{0,0}$ over $\hat{\Omega}$:

$$
\int_{\hat{\Omega}} \hat{\phi}_{0,0}(\hat{x}, \hat{y}) d \hat{x} d \hat{y}=\frac{1}{4}
$$

- Since each interior node contributes to 4 rectangles, its weight is 1 . Edge nodes contribute to 2 rectangles, so their weight is $1 / 2$. Corners contribute to only one rectangle, so their weight is $1 / 4$.

Adaptive Meshes: Quadtrees and Block-Structured

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles. Similarly tetrahedral meshes in 3D.

Basis functions on triangles

- For irregular grids the x and y directions are no longer separable.
- But the idea of using piecewise polynomial basis functions on a reference triangle \hat{T} still applies.
- For a linear function we need 3 coefficients (x, y, const), for quadratic $6\left(x, y, x^{2}, y^{2}, x y\right.$, const).
- For example, for piecewise linear we have the basis functions

$$
\begin{aligned}
& \hat{\phi}_{1}(\hat{x}, \hat{y})=1-(x+y) \text { for node }(0,0) \\
& \hat{\phi}_{2}(\hat{x}, \hat{y})=x \text { for node }(1,0)
\end{aligned}
$$

Fig. 8.8. Locnl interpulation nodes on \hat{r} for $k=1)(i e f t) \cdot k-1$ (axnter). $k=2$ (righ h)

Piecewise constant / linear basis functions

Fig. 8.7. Charecteristic piecewise Lagrange polynomial, in two and one space dimensions. Left, $k=0$: right, $k=1$

Composite Quadrature on a Triangular Grid

- The integral over the whole grid is simply the sum over all of the triangles.
- So we focus on a triangle T, with d nodes, $d=1$ for piecewise constant, $d=3$ for piecewise linear, $d=6$ for piecewise quadratic interpolants.

$$
\int_{T} f(x, y) d x d y \approx \sum_{i=1}^{d} f_{i}\left(\int_{T} \phi_{i}^{(T)}(x, y) d x d y\right)=\sum_{i} w_{i} f_{i}
$$

- By transforming from the right angle reference triangle:

$$
w_{i}=\int_{T} \phi_{i}^{(T)}(x, y) d x d y=2|T| \int_{\hat{T}} \hat{\phi}_{i}(\hat{x}, \hat{y}) d \hat{x} d \hat{y}
$$

where $|T|$ is the area of the triangle.

- For piecewise linear interpolant, we get $w_{1}=w_{2}=w_{3}=|T| / 3$, i.e., weight is $1 / 3$ for each vertex node.

Composite Quadrature on a Triangular Grid

- In fact, for symmetry, it may be better to think of an equilateral reference triangle.
- For piecewise quadratic interpolants, one obtains a quadrature that is exact for all polynomials of degree $p \leq 3$, since the integrals of cubic (odd) terms vanish by symmetry.
- The weights are: $w_{v}=\frac{27}{60}$ for the 1 centroid, $w_{v}=\frac{1}{20}$ for the 3 vertices, $w_{v}=\frac{2}{15}$ for the 3 edge midpoints.
- One can use Gauss integration over the reference triangles to get higher accuracy.

Fig. 8.8. Locnl interpolation nodes on \hat{f} for $k=1$ (ieft). $k-1$ (oxnter). $k=2$ (raghl)

In MATLAB

- The MATLAB function quad (f, a, b, ε) uses adaptive Simpson quadrature to compute the integral.
- The MATLAB function quadl (f, a, b, ε) uses adaptive Gauss-Lobatto quadrature.
- MATLAB says: "The function quad may be more efficient with low accuracies or nonsmooth integrands."
- In two dimensions, for separable integrals over rectangles, use

$$
\begin{gathered}
J=d b l q u a d\left(f, x_{\min }, x_{\max }, y_{\min }, y_{\max }, \varepsilon\right) \\
J=\operatorname{dblquad}\left(f, x_{\min }, x_{\max }, y_{\min }, y_{\max }, \varepsilon, @_{q u a d l}\right)
\end{gathered}
$$

- There is also triplequad.

Conclusions/Summary

- Numerical integration or quadrature approximates an integral via a discrete weighted sum of function values over a set of nodes.
- Integration is based on interpolation: Integrate the interpolant to get a good approximation.
- Piecewise polynomial interpolation over equi-spaced nodes gives the trapezoidal and Simpson quadratures for lower order, and higher order are generally not recommended.
- Instead, it is better to use Gauss integration based on a special set of nodes and weights (orthogonal polynomials).
- In higher dimensions we split the domain into rectangles for regular grids (separable integration), or triangles/tetrahedra for simplicial meshes.
- Integration in high dimensions d becomes harder and harder because the number of nodes grows as N^{d} : Curse of dimensionality. Monte Carlo is one possible cure...

