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Review

Lagrange basis on 10 nodes
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Review

Runge’s phenomenon f (x) = (1 + x2)−1
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Review

Function Space Basis

Think of a function as a vector of coefficients in terms of a set of n
basis functions:

{φ0(x), φ1(x), . . . , φn(x)} ,

for example, the monomial basis φk(x) = xk for polynomials.

A finite-dimensional approximation to a given function f (x):

f̃ (x) =
n∑

i=1

ciφi (x)

Least-squares approximation for m > n (usually m� n):

c? = arg min
c

∥∥∥f (x)− f̃ (x)
∥∥∥
2
,

which gives the orthogonal projection of f (x) onto the
finite-dimensional basis.
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Review

Least-Squares Fitting

Discrete case: Think of fitting a straight line or quadratic through
experimental data points.

The function becomes the vector y = fX , and the approximation is

yi =
n∑

j=1

cjφj(xi ) ⇒ y = Φc,

Φij = φj(xi ).

This means that finding the approximation consists of solving an
overdetermined linear system

Φc = y

Note that for m = n this is equivalent to interpolation. MATLAB’s
polyfit works for m ≥ n.
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Review

Normal Equations

Recall that one way to solve this is via the normal equations:

(Φ?Φ) c? = Φ?y

A basis set is an orthonormal basis if

(φi , φj) =
m∑

k=0

φi (xk)φj(xk) = δij =

{
1 if i = j

0 if i 6= j

Φ?Φ = I (unitary or orthogonal matrix) ⇒

c? = Φ?y ⇒ ci = φXi · fX =
m∑

k=0

f (xk)φi (xk)
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Orthogonal Polynomials on [−1, 1]

Orthogonal Polynomials

Consider a function on the interval I = [a, b].
Any finite interval can be transformed to I = [−1, 1] by a simple
transformation.

Using a weight function w(x), define a function dot product as:

(f , g) =

∫ b

a
w(x) [f (x)g(x)] dx

For different choices of the weight w(x), one can explicitly construct
basis of orthogonal polynomials where φk(x) is a polynomial of
degree k (triangular basis):

(φi , φj) =

∫ b

a
w(x) [φi (x)φj(x)] dx = δij ‖φi‖2 .
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Orthogonal Polynomials on [−1, 1]

Legendre Polynomials

For equal weighting w(x) = 1, the resulting triangular family of of
polynomials are called Legendre polynomials:

φ0(x) =1

φ1(x) =x

φ2(x) =
1

2
(3x2 − 1)

φ3(x) =
1

2
(5x3 − 3x)

φk+1(x) =
2k + 1

k + 1
xφk(x)− k

k + 1
φk−1(x) =

1

2nn!

dn

dxn

[(
x2 − 1

)n]
These are orthogonal on I = [−1, 1]:∫ −1

−1
φi (x)φj(x)dx = δij ·

2

2i + 1
.
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Orthogonal Polynomials on [−1, 1]

Interpolation using Orthogonal Polynomials

Let’s look at the interpolating polynomial φ(x) of a function f (x)
on a set of m + 1 nodes {x0, . . . , xm} ∈ I , expressed in an orthogonal
basis:

φ(x) =
m∑
i=0

aiφi (x)

Due to orthogonality, taking a dot product with φj (weak
formulation):

(φ, φj) =
m∑
i=0

ai (φi , φj) =
m∑
i=0

aiδij ‖φi‖2 = aj ‖φj‖2

This is equivalent to normal equations if we use the right dot
product:

(Φ?Φ)ij = (φi , φj) = δij ‖φi‖2 and Φ?y = (φ, φj)
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Orthogonal Polynomials on [−1, 1]

Gauss Integration

aj ‖φj‖2 = (φ, φj) ⇒ aj =
(
‖φj‖2

)−1
(φ, φj)

Question: Can we easily compute

(φ, φj) =

∫ b

a
w(x) [φ(x)φj(x)] dx =

∫ b

a
w(x)p2m(x)dx

for a polynomial p2m(x) = φ(x)φj(x) of degree at most 2m?

Let’s first consider polynomials of degree at most m∫ b

a
w(x)pm(x)dx =?
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Orthogonal Polynomials on [−1, 1]

Gauss Weights

Now consider the Lagrange basis {ϕ0(x), ϕ1(x), . . . , ϕm(x)}, where
you recall that

ϕi (xj) = δij .

Any polynomial pm(x) of degree at most m can be expressed in the
Lagrange basis:

pm(x) =
m∑
i=0

pm(xi )ϕi (x),

∫ b

a
w(x)pm(x)dx =

m∑
i=0

pm(xi )

[∫ b

a
w(x)ϕi (x)dx

]
=

m∑
i=0

wipm(xi ),

where the Gauss weights w are given by

wi =

∫ b

a
w(x)ϕi (x)dx .
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Orthogonal Polynomials on [−1, 1]

Back to Interpolation

For any polynomial p2m(x) there exists a polynomial quotient qm−1
and a remainder rm such that:

p2m(x) = φm+1(x)qm−1(x) + rm(x)

∫ b

a
w(x)p2m(x)dx =

∫ b

a
[w(x)φm+1(x)qm−1(x) + w(x)rm(x)] dx

= (φm+1, qm−1) +

∫ b

a
w(x)rm(x)dx

But, since φm+1(x) is orthogonal to any polynomial of degree at most
m, (φm+1, qm−1) = 0 and we thus get:∫ b

a
w(x)p2m(x)dx =

m∑
i=0

wi rm(xi )
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Orthogonal Polynomials on [−1, 1]

Gauss nodes

Finally, if we choose the nodes to be zeros of φm+1(x), then

rm(xi ) = p2m(xi )− φm+1(xi )qm−1(xi ) = p2m(xi )

∫ b

a
w(x)p2m(x)dx =

m∑
i=0

wip2m(xi )

and thus we have found a way to quickly project any polynomial of
degree up to m onto the basis of orthogonal polynomials:

(pm, φj) =
m∑
i=0

wipm(xi )φj(xi )
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Orthogonal Polynomials on [−1, 1]

Interpolation using Gauss weights

Recall we want to compute

aj =
(
‖φj‖2

)−1
(φ, φj) ,

where for Legendre polynomials

‖φj‖2 =
2

2j + 1
.

Now we know how to compute fast:

(φ, φj) =
m∑
i=0

wiφ(xi )φj(xi ) =
m∑
i=0

wi f (xi )φj(xi ) ⇒

aj =

(
2j + 1

2

) m∑
i=0

wi f (xi )φj(xi ),

where wi and φj(xi ) are coefficients that can be precomputed and
tabulated.
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Orthogonal Polynomials on [−1, 1]

Gauss-Legendre polynomials

For any weighting function the polynomial φk(x) has k simple zeros
all of which are in (−1, 1), called the (order k) Gauss-Legendre
nodes, φm+1(xi ) = 0.

The interpolating polynomial φ(xi ) = f (xi ) on the Gauss nodes is the
Gauss-Legendre interpolant φGL(x).

The orthogonality relation can be expressed as a sum instead of
integral:

(φi , φj) =
m∑
i=0

wiφi (xi )φj(xi ) = δij ‖φi‖2

We can thus define a new weighted discrete dot product

f · g =
m∑
i=0

wi figi
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Orthogonal Polynomials on [−1, 1]

Discrete Orthogonality of Polynomials

The orthogonal polynomial basis is discretely-orthogonal in the new
dot product,

φi · φj = (φi , φj) = δij (φi · φi )

This means that the matrix in the normal equations is diagonal:

Φ?Φ = Diag
{
‖φ0‖2 , . . . , ‖φm‖2

}
⇒ ai =

f · φi

φi · φi

.

The Gauss-Legendre interpolant is thus easy to compute:

φGL(x) =
m∑
i=0

f · φi

φi · φi

φi (x).
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Orthogonal Polynomials on [−1, 1]

Chebyshev Interpolation

There are other families of orthogonal polynomials that are also
very useful in practice (Gauss-Lobato, Gauss-Hermite, etc.).

A notable example are the Chebyshev polynomials on [−1, 1], with
weight function

w(x) =
1√

1− x2

defined recursively via:

φ0 = 1

φ1 = x

φk+1 = 2xφk − φk−1.

Orthogonality relation, for i , j not both zero,

(φi , φj) = δij
π

2
and (φ0, φ0) = π.
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Orthogonal Polynomials on [−1, 1]

Chebyshev Nodes

They can also be defined as the unique polynomials satisfying the trig
relation:

φk (cos θ) = cos (kθ) .

This means that their roots φk (xi ) = 0, the Chebyshev nodes, are
easy to find,

xi = cos

(
2i − 1

2k
π

)
, i = 1, . . . , k,

which have a simple geometric interpretation as the projection of
uniformly spaced points on the unit circle.

The Chebyshev-Gauss weights are also easy to compute,

wi =

∫ b

a
w(x)ϕi (x)dx =

π

k
.

Polynomial interpolation using the Chebyshev nodes eliminates
Runge’s phenomenon.
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Spectral Approximation

Hilbert Space L2
w

Consider the Hilbert space L2
w of square-integrable functions on

[−1, 1]:

∀f ∈ L2
w : (f , f ) = ‖f ‖2 =

∫ 1

−1
w(x) [f (x)]2 dx <∞.

Legendre polynomials form a complete orthogonal basis for L2
w :

∀f ∈ L2
w : f (x) =

∞∑
i=0

fiφi (x)

fi =
(f , φi )

(φi , φi )
.

The least-squares approximation of f is a spectral approximation
and is obtained by simply truncating the infinite series:

φsp(x) =
m∑
i=0

fiφi (x).
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Spectral Approximation

Spectral approximation

Continuous (spectral approximation): φsp(x) =
m∑
i=0

(f , φi )

(φi , φi )
φi (x).

Discrete (interpolating polynomial): φGL(x) =
m∑
i=0

f · φi

φi · φi

φi (x).

If we approximate the function dot-products with the discrete
weighted products

(f , φi ) ≈
m∑
j=0

wj f (xj)φi (xj) = f · φi ,

we see that the Gauss-Legendre interpolant is a discrete spectral
approximation:

φGL(x) ≈ φsp(x).
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Spectral Approximation

Discrete spectral approximation

Using a spectral representation has many advantages for function
approximation: stability, rapid convergence, easy to add more
basis functions.

The convergence, for sufficiently smooth (nice) functions, is more
rapid than any power law

‖f (x)− φGL(x)‖ ≤ C

Nd

(
d∑

k=0

∥∥∥f (k)
∥∥∥2)1/2

,

where the multiplier is related to the Sobolev norm of f (x).

For f (x) ∈ C1, the convergence is also pointwise with similar
accuracy (Nd−1/2 in the denominator).

This so-called spectral accuracy (limited by smoothness only)
cannot be achived by piecewise, i.e., local, approximations (limited by
order of local approximation).
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Spectral Approximation

Regular grids

a=2;
f = @( x ) cos (2∗ exp ( a∗x ) ) ;

x f i n e=l i n s p a c e (−1 ,1 ,100) ;
y f i n e=f ( x f i n e ) ;

% Equi−spaced nodes :
n=10;
x=l i n s p a c e (−1 ,1 ,n ) ;
y=f ( x ) ;
c=p o l y f i t ( x , y , n ) ;
y i n t e r p=p o l y v a l ( c , x f i n e ) ;

% Gauss nodes :
[ x ,w]=GLNodeWt(n ) ; % See webpage f o r code
y=f ( x ) ;
c=p o l y f i t ( x , y , n ) ;
y i n t e r p=p o l y v a l ( c , x f i n e ) ;
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Spectral Approximation

Gauss-Legendre Interpolation
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Spectral Approximation

Global polynomial interpolation error
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Spectral Approximation

Local polynomial interpolation error
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Conclusions

Conclusions/Summary

Once a function dot product is defined, one can construct orthogonal
basis for the space of functions of finite 2−norm.

For functions on the interval [−1, 1], triangular families of
orthogonal polynomials φi (x) provide such a basis, e.g., Legendre
or Chebyshev polynomials.

If one discretizes at the Gauss nodes, i.e., the roots of the
polynomial φm+1(x), and defines a suitable discrete Gauss-weighted
dot product, one obtains discretely-orthogonal basis suitable for
numerical computations.

The interpolating polynomial on the Gauss nodes is closely related to
the spectral approximation of a function.

Spectral convergence is faster than any power law of the number of
nodes and is only limited by the global smoothness of the function,
unlike piecewise polynomial approximations limited by the choice of
local basis functions.

One can also consider piecewise-spectral approximations.
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