Numerical Methods I Orthogonal Polynomials

Aleksandar Donev
Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu

${ }^{1}$ MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014
Nov 6th, 2014

Outline

(1) Review
(2) Orthogonal Polynomials on $[-1,1]$
(3) Spectral Approximation
(4) Conclusions

Lagrange basis on 10 nodes

Runges phenomenon for 10 nodes

Function Space Basis

- Think of a function as a vector of coefficients in terms of a set of n basis functions:

$$
\left\{\phi_{0}(x), \phi_{1}(x), \ldots, \phi_{n}(x)\right\}
$$

for example, the monomial basis $\phi_{k}(x)=x^{k}$ for polynomials.

- A finite-dimensional approximation to a given function $f(x)$:

$$
\tilde{f}(x)=\sum_{i=1}^{n} c_{i} \phi_{i}(x)
$$

- Least-squares approximation for $m>n$ (usually $m \gg n$):

$$
\mathbf{c}^{\star}=\arg \min _{\mathbf{c}}\|f(x)-\tilde{f}(x)\|_{2},
$$

which gives the orthogonal projection of $f(x)$ onto the finite-dimensional basis.

Least-Squares Fitting

- Discrete case: Think of fitting a straight line or quadratic through experimental data points.
- The function becomes the vector $\mathbf{y}=\mathbf{f}_{\mathcal{X}}$, and the approximation is

$$
y_{i}=\sum_{j=1}^{n} c_{j} \phi_{j}\left(x_{i}\right) \Rightarrow \mathbf{y}=\mathbf{\Phi} \mathbf{c}
$$

$$
\boldsymbol{\Phi}_{i j}=\phi_{j}\left(x_{i}\right) .
$$

- This means that finding the approximation consists of solving an overdetermined linear system

$$
\Phi \mathbf{C}=\mathbf{y}
$$

- Note that for $m=n$ this is equivalent to interpolation. MATLAB's polyfit works for $m \geq n$.

Normal Equations

- Recall that one way to solve this is via the normal equations:

$$
\left(\boldsymbol{\Phi}^{\star} \boldsymbol{\Phi}\right) \mathbf{c}^{\star}=\boldsymbol{\Phi}^{\star} \mathbf{y}
$$

- A basis set is an orthonormal basis if

$$
\begin{gathered}
\left(\phi_{i}, \phi_{j}\right)=\sum_{k=0}^{m} \phi_{i}\left(x_{k}\right) \phi_{j}\left(x_{k}\right)=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases} \\
\boldsymbol{\Phi}^{\star} \boldsymbol{\Phi}=\mathbf{I} \text { (unitary or orthogonal matrix) } \Rightarrow \\
\mathbf{c}^{\star}=\boldsymbol{\Phi}^{\star} \mathbf{y} \quad \Rightarrow \quad c_{i}=\phi_{i}^{\mathcal{X}} \cdot \mathbf{f}_{\mathcal{X}}=\sum_{k=0}^{m} f\left(x_{k}\right) \phi_{i}\left(x_{k}\right)
\end{gathered}
$$

Orthogonal Polynomials

- Consider a function on the interval $I=[a, b]$.

Any finite interval can be transformed to $I=[-1,1]$ by a simple transformation.

- Using a weight function $w(x)$, define a function dot product as:

$$
(f, g)=\int_{a}^{b} w(x)[f(x) g(x)] d x
$$

- For different choices of the weight $w(x)$, one can explicitly construct basis of orthogonal polynomials where $\phi_{k}(x)$ is a polynomial of degree k (triangular basis):

$$
\left(\phi_{i}, \phi_{j}\right)=\int_{a}^{b} w(x)\left[\phi_{i}(x) \phi_{j}(x)\right] d x=\delta_{i j}\left\|\phi_{i}\right\|^{2}
$$

Legendre Polynomials

- For equal weighting $w(x)=1$, the resulting triangular family of of polynomials are called Legendre polynomials:

$$
\begin{aligned}
\phi_{0}(x) & =1 \\
\phi_{1}(x) & =x \\
\phi_{2}(x) & =\frac{1}{2}\left(3 x^{2}-1\right) \\
\phi_{3}(x) & =\frac{1}{2}\left(5 x^{3}-3 x\right) \\
\phi_{k+1}(x) & =\frac{2 k+1}{k+1} x \phi_{k}(x)-\frac{k}{k+1} \phi_{k-1}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[\left(x^{2}-1\right)^{n}\right]
\end{aligned}
$$

- These are orthogonal on $I=[-1,1]$:

$$
\int_{-1}^{-1} \phi_{i}(x) \phi_{j}(x) d x=\delta_{i j} \cdot \frac{2}{2 i+1}
$$

Interpolation using Orthogonal Polynomials

- Let's look at the interpolating polynomial $\phi(x)$ of a function $f(x)$ on a set of $m+1$ nodes $\left\{x_{0}, \ldots, x_{m}\right\} \in I$, expressed in an orthogonal basis:

$$
\phi(x)=\sum_{i=0}^{m} a_{i} \phi_{i}(x)
$$

- Due to orthogonality, taking a dot product with ϕ_{j} (weak formulation):

$$
\left(\phi, \phi_{j}\right)=\sum_{i=0}^{m} a_{i}\left(\phi_{i}, \phi_{j}\right)=\sum_{i=0}^{m} a_{i} \delta_{i j}\left\|\phi_{i}\right\|^{2}=a_{j}\left\|\phi_{j}\right\|^{2}
$$

- This is equivalent to normal equations if we use the right dot product:

$$
\left(\boldsymbol{\Phi}^{\star} \boldsymbol{\Phi}\right)_{i j}=\left(\phi_{i}, \phi_{j}\right)=\delta_{i j}\left\|\phi_{i}\right\|^{2} \text { and } \boldsymbol{\Phi}^{\star} \mathbf{y}=\left(\phi, \phi_{j}\right)
$$

Gauss Integration

$$
a_{j}\left\|\phi_{j}\right\|^{2}=\left(\phi, \phi_{j}\right) \quad \Rightarrow \quad a_{j}=\left(\left\|\phi_{j}\right\|^{2}\right)^{-1}\left(\phi, \phi_{j}\right)
$$

- Question: Can we easily compute

$$
\left(\phi, \phi_{j}\right)=\int_{a}^{b} w(x)\left[\phi(x) \phi_{j}(x)\right] d x=\int_{a}^{b} w(x) p_{2 m}(x) d x
$$

for a polynomial $p_{2 m}(x)=\phi(x) \phi_{j}(x)$ of degree at most $2 m$?

- Let's first consider polynomials of degree at most m

$$
\int_{a}^{b} w(x) p_{m}(x) d x=?
$$

Gauss Weights

- Now consider the Lagrange basis $\left\{\varphi_{0}(x), \varphi_{1}(x), \ldots, \varphi_{m}(x)\right\}$, where you recall that

$$
\varphi_{i}\left(x_{j}\right)=\delta_{i j}
$$

- Any polynomial $p_{m}(x)$ of degree at most m can be expressed in the Lagrange basis:

$$
p_{m}(x)=\sum_{i=0}^{m} p_{m}\left(x_{i}\right) \varphi_{i}(x)
$$

$$
\int_{a}^{b} w(x) p_{m}(x) d x=\sum_{i=0}^{m} p_{m}\left(x_{i}\right)\left[\int_{a}^{b} w(x) \varphi_{i}(x) d x\right]=\sum_{i=0}^{m} w_{i} p_{m}\left(x_{i}\right)
$$

where the Gauss weights w are given by

$$
w_{i}=\int_{a}^{b} w(x) \varphi_{i}(x) d x
$$

Back to Interpolation

- For any polynomial $p_{2 m}(x)$ there exists a polynomial quotient q_{m-1} and a remainder r_{m} such that:

$$
\left.\begin{array}{c}
p_{2 m}(x)=\phi_{m+1}(x) q_{m-1}(x)+r_{m}(x) \\
\int_{a}^{b} w(x) p_{2 m}(x) d x
\end{array}\right)=\int_{a}^{b}\left[w(x) \phi_{m+1}(x) q_{m-1}(x)+w(x) r_{m}(x)\right] d x \text {. } \quad=\left(\phi_{m+1}, q_{m-1}\right)+\int_{a}^{b} w(x) r_{m}(x) d x \text {. }
$$

- But, since $\phi_{m+1}(x)$ is orthogonal to any polynomial of degree at most $m,\left(\phi_{m+1}, q_{m-1}\right)=0$ and we thus get:

$$
\int_{a}^{b} w(x) p_{2 m}(x) d x=\sum_{i=0}^{m} w_{i} r_{m}\left(x_{i}\right)
$$

Gauss nodes

- Finally, if we choose the nodes to be zeros of $\phi_{m+1}(x)$, then

$$
\begin{gathered}
r_{m}\left(x_{i}\right)=p_{2 m}\left(x_{i}\right)-\phi_{m+1}\left(x_{i}\right) q_{m-1}\left(x_{i}\right)=p_{2 m}\left(x_{i}\right) \\
\int_{a}^{b} w(x) p_{2 m}(x) d x=\sum_{i=0}^{m} w_{i} p_{2 m}\left(x_{i}\right)
\end{gathered}
$$

and thus we have found a way to quickly project any polynomial of degree up to m onto the basis of orthogonal polynomials:

$$
\left(p_{m}, \phi_{j}\right)=\sum_{i=0}^{m} w_{i} p_{m}\left(x_{i}\right) \phi_{j}\left(x_{i}\right)
$$

Interpolation using Gauss weights

- Recall we want to compute

$$
a_{j}=\left(\left\|\phi_{j}\right\|^{2}\right)^{-1}\left(\phi, \phi_{j}\right)
$$

where for Legendre polynomials

$$
\left\|\phi_{j}\right\|^{2}=\frac{2}{2 j+1} .
$$

- Now we know how to compute fast:

$$
\begin{gathered}
\left(\phi, \phi_{j}\right)=\sum_{i=0}^{m} w_{i} \phi\left(x_{i}\right) \phi_{j}\left(x_{i}\right)=\sum_{i=0}^{m} w_{i} f\left(x_{i}\right) \phi_{j}\left(x_{i}\right) \Rightarrow \\
a_{j}=\left(\frac{2 j+1}{2}\right) \sum_{i=0}^{m} w_{i} f\left(x_{i}\right) \phi_{j}\left(x_{i}\right)
\end{gathered}
$$

where w_{i} and $\phi_{j}\left(x_{i}\right)$ are coefficients that can be precomputed and tabulated.

Gauss-Legendre polynomials

- For any weighting function the polynomial $\phi_{k}(x)$ has k simple zeros all of which are in $(-1,1)$, called the (order k) Gauss-Legendre nodes, $\phi_{m+1}\left(x_{i}\right)=0$.
- The interpolating polynomial $\phi\left(x_{i}\right)=f\left(x_{i}\right)$ on the Gauss nodes is the Gauss-Legendre interpolant $\phi_{G L}(x)$.
- The orthogonality relation can be expressed as a sum instead of integral:

$$
\left(\phi_{i}, \phi_{j}\right)=\sum_{i=0}^{m} w_{i} \phi_{i}\left(x_{i}\right) \phi_{j}\left(x_{i}\right)=\delta_{i j}\left\|\phi_{i}\right\|^{2}
$$

- We can thus define a new weighted discrete dot product

$$
\mathbf{f} \cdot \mathbf{g}=\sum_{i=0}^{m} w_{i} f_{i} g_{i}
$$

Discrete Orthogonality of Polynomials

- The orthogonal polynomial basis is discretely-orthogonal in the new dot product,

$$
\phi_{i} \cdot \phi_{j}=\left(\phi_{i}, \phi_{j}\right)=\delta_{i j}\left(\phi_{i} \cdot \phi_{i}\right)
$$

- This means that the matrix in the normal equations is diagonal:

$$
\boldsymbol{\Phi}^{\star} \boldsymbol{\Phi}=\operatorname{Diag}\left\{\left\|\phi_{0}\right\|^{2}, \ldots,\left\|\phi_{m}\right\|^{2}\right\} \quad \Rightarrow \quad a_{i}=\frac{\mathbf{f} \cdot \boldsymbol{\phi}_{i}}{\phi_{i} \cdot \phi_{i}}
$$

- The Gauss-Legendre interpolant is thus easy to compute:

$$
\phi_{G L}(x)=\sum_{i=0}^{m} \frac{\mathbf{f} \cdot \phi_{i}}{\phi_{i} \cdot \phi_{i}} \phi_{i}(x) .
$$

Chebyshev Interpolation

- There are other families of orthogonal polynomials that are also very useful in practice (Gauss-Lobato, Gauss-Hermite, etc.).
- A notable example are the Chebyshev polynomials on $[-1,1]$, with weight function

$$
w(x)=\frac{1}{\sqrt{1-x^{2}}}
$$

defined recursively via:

$$
\begin{aligned}
\phi_{0} & =1 \\
\phi_{1} & =x \\
\phi_{k+1} & =2 x \phi_{k}-\phi_{k-1} .
\end{aligned}
$$

- Orthogonality relation, for i, j not both zero,

$$
\left(\phi_{i}, \phi_{j}\right)=\delta_{i j} \frac{\pi}{2} \text { and }\left(\phi_{0}, \phi_{0}\right)=\pi
$$

Chebyshev Nodes

- They can also be defined as the unique polynomials satisfying the trig relation:

$$
\phi_{k}(\cos \theta)=\cos (k \theta) .
$$

- This means that their roots $\phi_{k}\left(x_{i}\right)=0$, the Chebyshev nodes, are easy to find,

$$
x_{i}=\cos \left(\frac{2 i-1}{2 k} \pi\right), \quad i=1, \ldots, k
$$

which have a simple geometric interpretation as the projection of uniformly spaced points on the unit circle.

- The Chebyshev-Gauss weights are also easy to compute,

$$
w_{i}=\int_{a}^{b} w(x) \varphi_{i}(x) d x=\frac{\pi}{k} .
$$

- Polynomial interpolation using the Chebyshev nodes eliminates Runge's phenomenon.

Hilbert Space L_{w}^{2}

- Consider the Hilbert space L_{w}^{2} of square-integrable functions on $[-1,1]$:

$$
\forall f \in L_{w}^{2}: \quad(f, f)=\|f\|^{2}=\int_{-1}^{1} w(x)[f(x)]^{2} d x<\infty
$$

- Legendre polynomials form a complete orthogonal basis for L_{w}^{2} :

$$
\begin{gathered}
\forall f \in L_{w}^{2}: \quad f(x)=\sum_{i=0}^{\infty} f_{i} \phi_{i}(x) \\
f_{i}=\frac{\left(f, \phi_{i}\right)}{\left(\phi_{i}, \phi_{i}\right)}
\end{gathered}
$$

- The least-squares approximation of f is a spectral approximation and is obtained by simply truncating the infinite series:

$$
\phi_{s p}(x)=\sum_{i=0}^{m} f_{i} \phi_{i}(x) .
$$

Spectral approximation

Continuous (spectral approximation): $\phi_{s p}(x)=\sum_{i=0}^{m} \frac{\left(f, \phi_{i}\right)}{\left(\phi_{i}, \phi_{i}\right)} \phi_{i}(x)$.
Discrete (interpolating polynomial): $\phi_{G L}(x)=\sum_{i=0}^{m} \frac{\mathbf{f} \cdot \phi_{i}}{\phi_{i} \cdot \phi_{i}} \phi_{i}(x)$.

- If we approximate the function dot-products with the discrete weighted products

$$
\left(f, \phi_{i}\right) \approx \sum_{j=0}^{m} w_{j} f\left(x_{j}\right) \phi_{i}\left(x_{j}\right)=\mathbf{f} \cdot \phi_{i},
$$

we see that the Gauss-Legendre interpolant is a discrete spectral approximation:

$$
\phi_{G L}(x) \approx \phi_{S p}(x) .
$$

Discrete spectral approximation

- Using a spectral representation has many advantages for function approximation: stability, rapid convergence, easy to add more basis functions.
- The convergence, for sufficiently smooth (nice) functions, is more rapid than any power law

$$
\left\|f(x)-\phi_{G L}(x)\right\| \leq \frac{C}{N^{d}}\left(\sum_{k=0}^{d}\left\|f^{(k)}\right\|^{2}\right)^{1 / 2}
$$

where the multiplier is related to the Sobolev norm of $f(x)$.

- For $f(x) \in \mathcal{C}^{1}$, the convergence is also pointwise with similar accuracy ($N^{d-1 / 2}$ in the denominator).
- This so-called spectral accuracy (limited by smoothness only) cannot be achived by piecewise, i.e., local, approximations (limited by order of local approximation).

Regular grids

```
\(a=2\);
\(f=@(x) \cos (2 * \exp (a * x))\);
\(x_{-}\)fine \(=\)linspace ( \(\left.-1,1,100\right)\);
\(y_{\text {_ }}\) fine \(=f\left(x_{\text {_ }}\right.\) fine \()\);
\% Equi-spaced nodes:
\(\mathrm{n}=10\);
\(\mathrm{x}=\) linspace \((-1,1, \mathrm{n})\);
\(y=f(x)\);
\(\mathrm{c}=\) polyfit \((\mathrm{x}, \mathrm{y}, \mathrm{n})\);
y_interp=polyval(c, x_fine) ;
\% Gauss nodes:
\([x, w]=G L N o d e W t(n) ; \%\) See webpage for code \(y=f(x)\);
\(\mathrm{c}=\) polyfit( \(\mathrm{x}, \mathrm{y}, \mathrm{n})\);
y_interp=polyval(c, \(x_{\text {_ }}\) fine \()\);
```


Gauss-Legendre Interpolation

Global polynomial interpolation error

Local polynomial interpolation error

Conclusions/Summary

- Once a function dot product is defined, one can construct orthogonal basis for the space of functions of finite $2-$ norm.
- For functions on the interval $[-1,1]$, triangular families of orthogonal polynomials $\phi_{i}(x)$ provide such a basis, e.g., Legendre or Chebyshev polynomials.
- If one discretizes at the Gauss nodes, i.e., the roots of the polynomial $\phi_{m+1}(x)$, and defines a suitable discrete Gauss-weighted dot product, one obtains discretely-orthogonal basis suitable for numerical computations.
- The interpolating polynomial on the Gauss nodes is closely related to the spectral approximation of a function.
- Spectral convergence is faster than any power law of the number of nodes and is only limited by the global smoothness of the function, unlike piecewise polynomial approximations limited by the choice of local basis functions.
- One can also consider piecewise-spectral approximations.

