Numerical Methods I Mathematical Programming (Optimization)

Aleksandar Donev

Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu
${ }^{1}$ MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014
October 23rd, 2014

Outline

(1) Mathematical Background
(2) Smooth Unconstrained Optimization
(3) Constrained Optimization
(4) Conclusions

Formulation

- Optimization problems are among the most important in engineering and finance, e.g., minimizing production cost, maximizing profits, etc.

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})
$$

where \mathbf{x} are some variable parameters and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar objective function.

- Observe that one only need to consider minimization as

$$
\max _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})=-\min _{\mathbf{x} \in \mathbb{R}^{n}}[-f(\mathbf{x})]
$$

- A local minimum \mathbf{x}^{\star} is optimal in some neighborhood,

$$
f\left(\mathbf{x}^{\star}\right) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \quad \text { s.t. } \quad\left\|\mathbf{x}-\mathbf{x}^{\star}\right\| \leq R>0
$$

(think of finding the bottom of a valley)

- Finding the global minimum is generally not possible for arbitrary functions (think of finding Mt. Everest without a satelite).

Connection to nonlinear systems

- Assume that the objective function is differentiable (i.e., first-order Taylor series converges or gradient exists).
- Then a necessary condition for a local minimizer is that \mathbf{x}^{\star} be a critical point

$$
\mathbf{g}\left(\mathbf{x}^{\star}\right)=\nabla_{\mathbf{x}} f\left(\mathbf{x}^{\star}\right)=\left\{\frac{\partial f}{\partial x_{i}}\left(\mathbf{x}^{\star}\right)\right\}_{i}=\mathbf{0}
$$

which is a system of non-linear equations!

- In fact similar methods, such as Newton or quasi-Newton, apply to both problems.
- Vice versa, observe that solving $\mathbf{f}(\mathbf{x})=\mathbf{0}$ is equivalent to an optimization problem

$$
\min _{x}\left[f(\mathbf{x})^{T} \mathbf{f}(\mathbf{x})\right]
$$

although this is only recommended under special circumstances.

Sufficient Conditions

- Assume now that the objective function is twice-differentiable (i.e., Hessian exists).
- A critical point \mathbf{x}^{\star} is a local minimum if the Hessian is positive definite

$$
\mathbf{H}\left(\mathbf{x}^{\star}\right)=\nabla_{\mathbf{x}}^{2} f\left(\mathbf{x}^{\star}\right) \succ \mathbf{0}
$$

which means that the minimum really looks like a valley or a convex bowl.

- At any local minimum the Hessian is positive semi-definite, $\nabla_{\mathbf{x}}^{2} f\left(\mathbf{x}^{\star}\right) \succeq \mathbf{0}$.
- Methods that require Hessian information converge fast but are expensive (next class).

Mathematical Programming

- The general term used is mathematical programming.
- Simplest case is unconstrained optimization

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})
$$

where \mathbf{x} are some variable parameters and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar objective function.

- Find a local minimum \mathbf{x}^{\star} :

$$
f\left(\mathbf{x}^{\star}\right) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \quad \text { s.t. } \quad\left\|\mathbf{x}-\mathbf{x}^{\star}\right\| \leq R>0 .
$$

(think of finding the bottom of a valley).

- Find the best local minimum, i.e., the global minimumx ${ }^{\star}$: This is virtually impossible in general and there are many specialized techniques such as genetic programming, simmulated annealing, branch-and-bound (e.g., using interval arithmetic), etc.
- Special case: A strictly convex objective function has a unique local minimum which is thus also the global minimum.

Constrained Programming

- The most general form of constrained optimization

$$
\min _{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})
$$

where $\mathcal{X} \subset \mathbb{R}^{n}$ is a set of feasible solutions.

- The feasible set is usually expressed in terms of equality and inequality constraints:

$$
\begin{aligned}
& \mathbf{h}(\mathbf{x})=\mathbf{0} \\
& \mathbf{g}(\mathbf{x}) \leq \mathbf{0}
\end{aligned}
$$

- The only generally solvable case: convex programming Minimizing a convex function $f(\mathbf{x})$ over a convex set \mathcal{X} : every local minimum is global.
If $f(\mathbf{x})$ is strictly convex then there is a unique local and global minimum.

Special Cases

- Special case is linear programming:

$$
\begin{array}{lc}
& \min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{\mathbf{c}^{T} \mathbf{x}\right\} \\
\text { s.t. } & \mathbf{A x} \leq \mathbf{b}
\end{array}
$$

- Equality-constrained quadratic programming

$$
\begin{array}{cc}
& \min _{\mathbf{x} \in \mathbb{R}^{2}}\left\{x_{1}^{2}+x_{2}^{2}\right\} \\
\text { s.t. } & x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}=1 .
\end{array}
$$

generalized to arbitary ellipsoids as:

$$
\begin{array}{ll}
& \min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{f(\mathbf{x})=\|\mathbf{x}\|_{2}^{2}=\mathbf{x} \cdot \mathbf{x}=\sum_{i=1}^{n} x_{i}^{2}\right\} \\
\text { s.t. } & \left(\mathbf{x}-\mathbf{x}_{0}\right)^{T} \mathbf{A}\left(\mathbf{x}-\mathbf{x}_{0}\right)=1
\end{array}
$$

Necessary and Sufficient Conditions

- A necessary condition for a local minimizer:

The optimum \mathbf{x}^{\star} must be a critical point (maximum, minimum or saddle point):

$$
\mathbf{g}\left(\mathbf{x}^{\star}\right)=\nabla_{\mathbf{x}} f\left(\mathbf{x}^{\star}\right)=\left\{\frac{\partial f}{\partial x_{i}}\left(\mathbf{x}^{\star}\right)\right\}_{i}=\mathbf{0},
$$

and an additional sufficient condition for a critical point \mathbf{x}^{\star} to be a local minimum:
The Hessian at the optimal point must be positive definite,

$$
\mathbf{H}\left(\mathbf{x}^{\star}\right)=\nabla_{\mathbf{x}}^{2} f\left(\mathbf{x}^{\star}\right)=\left\{\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(\mathbf{x}^{\star}\right)\right\}_{i j} \succ \mathbf{0} .
$$

which means that the minimum really looks like a valley or a convex bowl.

Direct-Search Methods

- A direct search method only requires $f(\mathbf{x})$ to be continuous but not necessarily differentiable, and requires only function evaluations.
- Methods that do a search similar to that in bisection can be devised in higher dimensions also, but they may fail to converge and are usually slow.
- The MATLAB function fminsearch uses the Nelder-Mead or simplex-search method, which can be thought of as rolling a simplex downhill to find the bottom of a valley. But there are many others and this is an active research area.
- Curse of dimensionality: As the number of variables (dimensionality) n becomes larger, direct search becomes hopeless since the number of samples needed grows as 2^{n} !

Minimum of $100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(a-x_{1}\right)^{2}$ in MATLAB

\% Rosenbrock or 'banana' function:
$a=1$;
banana $=@(x) 100 *\left(x(2)-x(1)^{\wedge} 2\right)^{\wedge} 2+(a-x(1))^{\wedge} 2$;
\% This function must accept array arguments!
banana_xy $=@(x 1, x 2) 100 *(x 2-x 1 . \wedge 2) . \wedge 2+(a-x 1) .{ }^{\wedge} 2$;
figure (1); ezsurf(banana_xy, $[0,2,0,2])$
$[x, y]=$ meshgrid (linspace $(0,2,100))$;
figure (2) ; contourf (x,y,banana_xy (x,y),100)
\% Correct answers are $x=[1,1]$ and $f(x)=0$
$[x, f v a l]=$ fminsearch (banana, $[-1.2,1]$, optimset ('TolX', 1e-8))
$x=0.999999999187814 \quad 0.999999998441919$
fval $=1.099088951919573 \mathrm{e}-18$

Smooth Unconstrained Optimization Figure of Rosenbrock $f(\mathbf{x})$

Descent Methods

- Finding a local minimum is generally easier than the general problem of solving the non-linear equations

$$
\mathbf{g}\left(\mathbf{x}^{\star}\right)=\nabla_{\mathbf{x}} f\left(\mathbf{x}^{\star}\right)=\mathbf{0}
$$

- We can evaluate f in addition to $\nabla_{\mathrm{x}} f$.
- The Hessian is positive-(semi)definite near the solution (enabling simpler linear algebra such as Cholesky).
- If we have a current guess for the solution \mathbf{x}^{k}, and a descent direction (i.e., downhill direction) \mathbf{d}^{k} :

$$
f\left(\mathbf{x}^{k}+\alpha \mathbf{d}^{k}\right)<f\left(\mathbf{x}^{k}\right) \text { for all } 0<\alpha \leq \alpha_{\max },
$$

then we can move downhill and get closer to the minimum (valley):

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha_{k} \mathbf{d}^{k}
$$

where $\alpha_{k}>0$ is a step length.

Gradient Descent Methods

- For a differentiable function we can use Taylor's series:

$$
f\left(\mathbf{x}^{k}+\alpha \mathbf{d}^{k}\right) \approx f\left(\mathbf{x}^{k}\right)+\alpha_{k}\left[(\nabla f)^{T} \mathbf{d}^{k}\right]
$$

- This means that fastest local decrease in the objective is achieved when we move opposite of the gradient: steepest or gradient descent:

$$
\mathbf{d}^{k}=-\nabla f\left(\mathbf{x}^{k}\right)=-\mathbf{g}_{k} .
$$

- One option is to choose the step length using a line search one-dimensional minimization:

$$
\alpha_{k}=\arg \min _{\alpha} f\left(\mathbf{x}^{k}+\alpha \mathbf{d}^{k}\right),
$$

which needs to be solved only approximately.

Steepest Descent

- Assume an exact line search was used, i.e., $\alpha_{k}=\arg \min _{\alpha} \phi(\alpha)$ where

$$
\begin{gathered}
\phi(\alpha)=f\left(\mathbf{x}^{k}+\alpha \mathbf{d}^{k}\right) . \\
\phi^{\prime}(\alpha)=0=\left[\nabla f\left(\mathbf{x}^{k}+\alpha \mathbf{d}^{k}\right)\right]^{T} \mathbf{d}^{k} .
\end{gathered}
$$

- This means that steepest descent takes a zig-zag path down to the minimum.
- Second-order analysis shows that steepest descent has linear convergence with convergence coefficient

$$
C \sim \frac{1-r}{1+r}, \quad \text { where } \quad r=\frac{\lambda_{\min }(\mathbf{H})}{\lambda_{\max }(\mathbf{H})}=\frac{1}{\kappa_{2}(\mathbf{H})},
$$

inversely proportional to the condition number of the Hessian.

- Steepest descent can be very slow for ill-conditioned Hessians: One improvement is to use conjugate-gradient method instead (see book).

Newton's Method

- Making a second-order or quadratic model of the function:

$$
f\left(\mathbf{x}^{k}+\Delta \mathbf{x}\right)=f\left(\mathbf{x}^{k}\right)+\left[\mathbf{g}\left(\mathbf{x}^{k}\right)\right]^{T}(\Delta \mathbf{x})+\frac{1}{2}(\Delta \mathbf{x})^{T}\left[\mathbf{H}\left(\mathbf{x}^{k}\right)\right](\Delta \mathbf{x})
$$

we obtain Newton's method:

$$
\begin{gathered}
\mathbf{g}(\mathbf{x}+\Delta \mathbf{x})=\nabla f(\mathbf{x}+\Delta \mathbf{x})=\mathbf{0}=\mathbf{g}+\mathbf{H}(\Delta \mathbf{x}) \quad \Rightarrow \\
\Delta \mathbf{x}=-\mathbf{H}^{-1} \mathbf{g} \quad \Rightarrow \quad \mathbf{x}^{k+1}=\mathbf{x}^{k}-\left[\mathbf{H}\left(\mathbf{x}^{k}\right)\right]^{-1}\left[\mathbf{g}\left(\mathbf{x}^{k}\right)\right] .
\end{gathered}
$$

- Note that this is exact for quadratic objective functions, where $\mathbf{H} \equiv \mathbf{H}\left(\mathbf{x}^{k}\right)=$ const.
- Also note that this is identical to using the Newton-Raphson method for solving the nonlinear system $\nabla_{\mathbf{x}} f\left(\mathbf{x}^{\star}\right)=\mathbf{0}$.

Problems with Newton's Method

- Newton's method is exact for a quadratic function and converges in one step!
- For non-linear objective functions, however, Newton's method requires solving a linear system every step: expensive.
- It may not converge at all if the initial guess is not very good, or may converge to a saddle-point or maximum: unreliable.
- All of these are addressed by using variants of quasi-Newton methods:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \mathbf{H}_{k}^{-1}\left[\mathbf{g}\left(\mathbf{x}^{k}\right)\right],
$$

where $0<\alpha_{k}<1$ and \mathbf{H}_{k} is an approximation to the true Hessian.

General Formulation

- Consider the constrained optimization problem:

$$
\begin{array}{lcl}
& \min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) & \\
\text { s.t. } & \mathbf{h}(\mathbf{x})=\mathbf{0} & \text { (equality constraints) } \\
& \mathbf{g}(\mathbf{x}) \leq \mathbf{0} & \text { (inequality constraints) }
\end{array}
$$

- Note that in principle only inequality constraints need to be considered since

$$
h(x)=0 \equiv\left\{\begin{array}{l}
h(x) \leq 0 \\
h(x) \geq 0
\end{array}\right.
$$

but this is not usually a good idea.

- We focus here on non-degenerate cases without considering various complications that may arrise in practice.

Illustration of Lagrange Multipliers

Linear Programming

- Consider linear programming (see illustration)

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{\mathbf{c}^{T} \mathbf{x}\right\}
$$

s.t. $\quad \mathbf{A x} \leq \mathbf{b}$

- The feasible set here is a polytope (polygon, polyhedron) in \mathbb{R}^{n}, consider for now the case when it is bounded, meaning there are at least $n+1$ constraints.
- The optimal point is a vertex of the polyhedron, meaning a point where (generically) n constraints are active,

$$
\mathbf{A}_{a c t} \mathbf{x}^{\star}=\mathbf{b}_{a c t} .
$$

- Solving the problem therefore means finding the subset of active constraints:
Combinatorial search problem, solved using the simplex algorithm (search along the edges of the polytope).
- Lately interior-point methods have become increasingly popular (move inside the polytope).

Lagrange Multipliers: Single equality

- An equality constraint $h(\mathbf{x})=0$ corresponds to an ($n-1$)-dimensional constraint surface whose normal vector is ∇h.
- The illustration on previous slide shows that for a single smooth equality constraint, the gradient of the objective function must be parallel to the normal vector of the constraint surface:

$$
\nabla f \| \nabla h \quad \Rightarrow \quad \exists \lambda \text { s.t. } \nabla f+\lambda \nabla h=\mathbf{0}
$$

where λ is the Lagrange multiplier corresponding to the constraint $h(\mathbf{x})=0$.

- Note that the equation $\boldsymbol{\nabla} f+\lambda \boldsymbol{\nabla} h=\mathbf{0}$ is in addition to the constraint $h(\mathbf{x})=0$ itself.

Lagrange Multipliers: m equalities

- When m equalities are present,

$$
h_{1}(\mathbf{x})=h_{2}(\mathbf{x})=\cdots=h_{m}(\mathbf{x})
$$

the generalization is that the descent direction $-\nabla f$ must be in the span of the normal vectors of the constraints:

$$
\nabla f+\sum_{i=1}^{m} \lambda_{i} \nabla h_{i}=\nabla f+(\nabla \mathbf{h})^{T} \boldsymbol{\lambda}=\mathbf{0}
$$

where the Jacobian has the normal vectors as rows:

$$
\nabla \mathbf{h}=\left\{\frac{\partial h_{i}}{\partial x_{j}}\right\}_{i j}
$$

- This is a first-order necessary optimality condition.

Lagrange Multipliers: Single inequalities

- At the solution, a given inequality constraint $g_{i}(\mathbf{x}) \leq 0$ can be

$$
\begin{aligned}
\text { active if } g_{i}\left(\mathbf{x}^{\star}\right) & =0 \\
\text { inactive if } g_{i}\left(\mathbf{x}^{\star}\right) & <0
\end{aligned}
$$

- For inequalities, there is a definite sign (direction) for the constraint normal vectors:
For an active constraint, you can move freely along $-\nabla g$ but not along $+\nabla g$.
- This means that for a single active constraint

$$
\nabla f=-\mu \nabla g \quad \text { where } \quad \mu>0
$$

Lagrange Multipliers: r inequalities

- The generalization is the same as for equalities

$$
\boldsymbol{\nabla} f+\sum_{i=1}^{r} \mu_{i} \boldsymbol{\nabla} g_{i}=\nabla f+(\nabla \mathbf{g})^{T} \boldsymbol{\mu}=\mathbf{0}
$$

- But now there is an inequality condition on the Lagrange multipliers,

$$
\begin{cases}\mu_{i}>0 & \text { if } g_{i}=0 \text { (active) } \\ \mu_{i}=0 & \text { if } g_{i}<0 \text { (inactive) }\end{cases}
$$

which can also be written as

$$
\boldsymbol{\mu} \geq \mathbf{0} \text { and } \boldsymbol{\mu}^{T} \mathbf{g}(\mathbf{x})=0
$$

KKT conditions

- Putting equalities and inequalities together we get the first-order Karush-Kuhn-Tucker (KKT) necessary condition:
There exist Lagrange multipliers $\boldsymbol{\lambda} \in \mathbb{R}^{m}$ and $\boldsymbol{\mu} \in \mathbb{R}^{r}$ such that:

$$
\nabla f+(\nabla \mathbf{h})^{T} \boldsymbol{\lambda}+(\nabla \mathbf{g})^{T} \boldsymbol{\mu}=\mathbf{0}, \quad \boldsymbol{\mu} \geq \mathbf{0} \text { and } \boldsymbol{\mu}^{T} \mathbf{g}(\mathbf{x})=0
$$

- This is now a system of equations, similarly to what we had for unconstrained optimization but now involving also (constrained) Lagrange multipliers.
- Note there are also second order necessary and sufficient conditions similar to unconstrained optimization.
- Many numerical methods are based on Lagrange multipliers (see books on Optimization).

Lagrangian Function

$$
\nabla f+(\nabla \mathbf{h})^{T} \boldsymbol{\lambda}+(\nabla \mathbf{g})^{T} \boldsymbol{\mu}=\mathbf{0}
$$

- We can rewrite this in the form of stationarity conditions

$$
\nabla_{\mathrm{x}} \mathcal{L}=\mathbf{0}
$$

where \mathcal{L} is the Lagrangian function:

$$
\begin{aligned}
\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) & =f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} h_{i}(\mathbf{x})+\sum_{i=1}^{r} \mu_{i} g_{i}(\mathbf{x}) \\
\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) & =f(\mathbf{x})+\boldsymbol{\lambda}^{T}[\mathbf{h}(\mathbf{x})]+\boldsymbol{\mu}^{T}[\mathbf{g}(\mathbf{x})]
\end{aligned}
$$

Equality Constraints

- The first-order necessary conditions for equality-constrained problems are thus given by the stationarity conditions:

$$
\begin{aligned}
\nabla_{\mathrm{x}} \mathcal{L}\left(\mathbf{x}^{\star}, \boldsymbol{\lambda}^{\star}\right) & =\nabla f\left(\mathbf{x}^{\star}\right)+\left[\nabla \mathbf{h}\left(\mathbf{x}^{\star}\right)\right]^{T} \lambda^{\star}=\mathbf{0} \\
\nabla_{\lambda} \mathcal{L}\left(\mathbf{x}^{\star}, \boldsymbol{\lambda}^{\star}\right) & =\mathbf{h}\left(\mathbf{x}^{\star}\right)=\mathbf{0}
\end{aligned}
$$

- Note there are also second order necessary and sufficient conditions similar to unconstrained optimization.
- It is important to note that the solution $\left(\mathbf{x}^{\star}, \boldsymbol{\lambda}^{\star}\right)$ is not a minimum or maximum of the Lagrangian (in fact, for convex problems it is a saddle-point, \min in \mathbf{x}, max in $\boldsymbol{\lambda}$).
- Many numerical methods are based on Lagrange multipliers but we do not discuss it here.

Penalty Approach

- The idea is the convert the constrained optimization problem:

$$
\begin{array}{lc}
& \min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \\
\text { s.t. } & \mathbf{h}(\mathbf{x})=\mathbf{0}
\end{array}
$$

into an unconstrained optimization problem.

- Consider minimizing the penalized function

$$
\mathcal{L}_{\alpha}(\mathbf{x})=f(\mathbf{x})+\alpha\|\mathbf{h}(\mathbf{x})\|_{2}^{2}=f(\mathbf{x})+\alpha[\mathbf{h}(\mathbf{x})]^{T}[\mathbf{h}(\mathbf{x})]
$$

where $\alpha>0$ is a penalty parameter.

- Note that one can use penalty functions other than sum of squares.
- If the constraint is exactly satisfied, then $\mathcal{L}_{\alpha}(\mathbf{x})=f(\mathbf{x})$.

As $\alpha \rightarrow \infty$ violations of the constraint are penalized more and more, so that the equality will be satisfied with higher accuracy.

Penalty Method

- The above suggest the penalty method (see homework): For a monotonically diverging sequence $\alpha_{1}<\alpha_{2}<\cdots$, solve a sequence of unconstrained problems

$$
\mathbf{x}^{k}=\mathbf{x}\left(\alpha_{k}\right)=\arg \min _{\mathbf{x}}\left\{\mathcal{L}_{k}(\mathbf{x})=f(\mathbf{x})+\alpha_{k}[\mathbf{h}(\mathbf{x})]^{T}[\mathbf{h}(\mathbf{x})]\right\}
$$

and the solution should converge to the optimum \mathbf{x}^{\star},

$$
\mathbf{x}^{k} \rightarrow \mathbf{x}^{\star}=\mathbf{x}\left(\alpha_{k} \rightarrow \infty\right)
$$

- Note that one can use \mathbf{x}^{k-1} as an initial guess for, for example, Newton's method.
- Also note that the problem becomes more and more ill-conditioned as α grows.
A better approach uses Lagrange multipliers in addition to penalty (augmented Lagrangian).

Conclusions/Summary

- Optimization, or mathematical programming, is one of the most important numerical problems in practice.
- Optimization problems can be constrained or unconstrained, and the nature (linear, convex, quadratic, algebraic, etc.) of the functions involved matters.
- Finding a global minimum of a general function is virtually impossible in high dimensions, but very important in practice.
- An unconstrained local minimum can be found using direct search, gradient descent, or Newton-like methods.
- Equality-constrained optimization is tractable, but the best method depends on the specifics.
We looked at penalty methods only as an illustration, not because they are good in practice!
- Constrained optimization is tractable for the convex case, otherwise often hard, and even NP-complete for integer programming.

