Numerical Methods I Monte Carlo Methods

Aleksandar Donev

Courant Institute, NYU¹ donev@courant.nyu.edu

¹MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014

Dec 11th, 2014

Outline

- Background
- Pseudo-Random Numbers
 - Inversion Method
 - Rejection
- Monte Carlo Integration
- Wariance Reduction
- 6 Histogramming
- 6 Conclusions

What is Monte Carlo?

- Monte Carlo is any numerical algorithm that uses random numbers to compute a deterministic (non-random) answer: stochastic or randomized algorithm.
- An important example is numerical integration in higher dimensions:

$$J = \int_{\Omega \subseteq \mathbb{R}^n} f(\mathbf{x}) \, d\mathbf{x}$$

- Recall that using a deterministic method is very accurate and fast for low dimensions.
- But for large dimensions we have to deal with the curse of dimensionality:
 - The number of quadrature nodes scales like at least 2^n (exponentially). E.g., $2^{20} = 10^6$, but $2^{40} = 10^{12}$!

Probability Theory

- First define a set Ω of possible **outcomes** $\omega \in \Omega$ of an "experiment":
 - A coin toss can end in heads or tails, so two outcomes.
 - \bullet A sequence of four coin tosses can end in one of $4^2=16$ outcomes, e.g., HHTT or THTH.
- The set Ω can be finite (heads or tails), countably infinite (the number of atoms inside a box), or uncountable (the weight of a person).
- An **event** $A \subseteq \Omega$ is a **set of possible outcomes**: e.g., more tails then heads occur in a sequence of four coin tosses,

$$A = \{HHHH, THHH, HTHH, HHTH, HHHT\}.$$

Each event has an associated probability

$$0 \leq P(A) \leq 1$$
,

with $P(\Omega) = 1$ and $P(\emptyset) = 0$.

Conditional Probability

A basic axiom is that probability is additive for disjoint events:

$$P(A \cup B) = P(A \text{ or } B) = P(A) + P(B) \text{ if } A \cap B = \emptyset$$

 Bayes formula gives the conditional probability that an outcome belongs to set B if it belongs to set C:

$$P(B|C) = \frac{P(B \cap C)}{P(C)} = \frac{P(B \text{ and } C)}{P(C)}$$

 Two events are said to be independent if their probabilities are multiplicative:

$$P(A \cap B) = P(A \text{ and } B) = P(A)P(B)$$

Probability Distribution

• If Ω is uncountable, think of outcomes as **random variables**, that is, variables whose value is determined by a random outcome:

$$X = X(\omega) \in \mathbb{R}$$
.

• The **probability density function** $f(x) \ge 0$ determines the probability for the outcome to be close to x, in one dimension

$$P(x \le X \le x + dx) = f(x)dx$$
,

$$P(A) = P(X \in A) = \int_{x \in A} f(x) dx$$

• The concept of a **measure** and the **Lebesque integral** generalizes the traditional Riemann integral in probability theory.

Mean and Variance

 We call the probability density or the probability measure the law or the distribution of a random variable X, and write:

$$X \sim f$$
.

The cummulative distribution function is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x')dx',$$

and we will assume that this function is continuous.

• The **mean** or **expectation value** of a random variable X is

$$\mu = \bar{X} = E[X] = \int_{-\infty}^{\infty} x f(x) dx.$$

• The variance σ^2 and the standard deviation σ measure the uncertainty in a random variable

$$\sigma^2 = \text{var}(X) = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx.$$

Multiple Random Variables

- Consider a set of two random variables Z = (X, Y) and the **joint** probability distribution $Z \sim f(x, y)$.
- The marginal density for X is the distribution of just X, without regard to Y:

$$g(x) = \int_{y} f(x, y) dy$$
, similarly $h(y) = \int_{x} f(x, y) dx$

 The conditional probability distribution is the distribution of X for a known Y:

$$f(x|y) = \frac{f(x,y)}{h(y)}$$

• Two random variables X and Y are **independent** if

$$f(x,y) = g(x)h(y) \Rightarrow f(x|y) = g(x).$$

Covariance

- The term i.i.d. \equiv independent identically-distributed random variables is used to describe independent samples $X_k \sim f$, $k = 1, \ldots$
- The generalization of variance for two variables is the **covariance**:

$$C_{XY} = \operatorname{cov}(X, Y) = E\left[\left(X - \bar{X}\right)\left(Y - \bar{Y}\right)\right] = E\left(XY\right) - E(X)E(Y).$$

For independent variables

$$E(XY) = \int xy f(x,y) dxdy = \int xg(x) dx \int yh(y) dy = E(X)E(Y)$$

and so $C_{XY} = 0$.

• Define the **correlation coefficient** between *X* and *Y* as a measure of how correlated two variables are:

$$r_{XY} = \frac{\text{cov}(X, Y)}{\sqrt{\text{var}(X)\text{var}(Y)}} = \frac{C_{XY}}{\sigma_X \sigma_Y}.$$

Law of Large Numbers

• The average of N i.i.d. samples of a random variable $X \sim f$ is itself a random variable:

$$A = \frac{1}{N} \sum_{k=1}^{N} X_k.$$

- A is an **unbiased estimator** of the mean of X, $E(A) = \bar{X}$.
- Numerically we often use a biased estimate of the variance:

$$\sigma_X^2 = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^N (X_k - \bar{X})^2 \approx \frac{1}{N} \sum_{k=1}^N (X_k - A)^2 = \left(\frac{1}{N} \sum_{k=1}^N X_k^2\right) - A^2$$

 The weak law of large numbers states that the estimator is also consistent:

$$\lim_{N\to\infty}A=\bar{X}=E(X) \text{ (almost surely)}.$$

Central Limit Theorem

• The central value theorem says that if σ_X is finite, in the limit $N \to \infty$ the random variable A is **normally-distributed**:

$$A \sim f(a) = \left(2\pi\sigma_A^2
ight)^{-1/2} \, \exp\left[-rac{(a-ar{X})^2}{2\sigma_A^2}
ight]$$

• The error of the estimator A decreases as N^{-1} , more specifically,

$$E\left[\left(A - \bar{X}\right)^{2}\right] = E\left\{\left[\frac{1}{N}\sum_{k=1}^{N}\left(X_{k} - \bar{X}\right)\right]^{2}\right\} = \frac{1}{N^{2}}E\left[\sum_{k=1}^{N}\left(X_{k} - \bar{X}\right)^{2}\right]$$

$$\operatorname{var}(A) = \sigma_A^2 = \frac{\sigma_X^2}{N}.$$

• The slow convergence of the error, $\sigma \sim N^{-1/2}$, is a fundamental characteristic of Monte Carlo.

Monte Carlo on a Computer

- In order to compute integrals using Monte Carlo on a computer, we need to be able to generate samples from a distribution, e.g., uniformly distributed inside an interval I = [a, b].
- Almost all randomized software is based on having a **pseudo-random number generator** (PRNG), which is a routine that returns a pseudo-random number $0 \le u \le 1$ from the **standard uniform distribution**:

$$f(u) = \begin{cases} 1 & \text{if } 0 \le u \le 1 \\ 0 & \text{otherwise} \end{cases}$$

- Since computers (Turing machines) are deterministic, it is not possible to generate truly random samples (outcomes):
 Pseudo-random means as close to random as we can get it.
- There are well-known good PRNGs that are also efficient: One should use other-people's PRNGs, e.g., the Marsenne Twister.

PRNGs

• The PRNG is a procedure (function) that takes a collection of m integers called the **state of the generator** $\mathbf{s} = \{i_1, \dots, i_m\}$, and updates it:

$$s \leftarrow \Phi(s)$$
,

and produces (returns) a number $u = \Psi(\mathbf{s})$ that is a pseudo-random sample from the standard uniform distribution.

- So in pseudo-MATLAB notation, [u, s] = rng(s), often called a random stream.
- Simple built-in generator such as the MATLAB/C function rand or the Fortran function RANDOM_NUMBER hide the state from the user (but the state is stored somewhere in some global variable).
- All PRNGs provide a routine to seed the generator, that is, to set the seed s to some particular value.
 - This way one can generate the same sequence of "random" numbers over and over again (e.g., when debugging a program).

Generating Non-Uniform Variates

• Using a uniform (pseudo-)random number generator (**URNG**), it is easy to generate an outcome drawn uniformly in I = [a, b]:

$$X = a + (b - a)U,$$

where U = rng() is a standard uniform variate.

- We often need to generate (pseudo)random samples or variates drawn from a distribution f(x) other than a uniform distribution, where $f(x) \ge 0$ and f(x) is normalized, $\int f(x) dx = 1$.
- Almost all non-uniform samplers are based on a URNG.
- Sometimes it may be more efficient to replace the URNG with a random bitstream, that is, a sequence of random bits, if only a few random bits are needed (e.g., for discrete variables).
- We need a method to convert a uniform variate into a non-uniform variate.

Generating Non-Uniform Variates

• Task: We want to sample a random number with **probability** distribution f(x). For now assume f(x) is a **probability density**:

$$P(x \le X \le x + dx) = f(x)dx,$$

- Tool: We can generate samples from some special distributions, e.g., a sample ${\cal U}$ from the standard uniform distribution.
- Consider applying a non-linear differentiable one-to-one function g(x) to U:

$$X \equiv X(U) = g(U) \Rightarrow dx = g'(U)du$$

 We can find the probability density of X by using the informal differential notation

$$P(u \le U \le u + du) = du = \frac{dx}{g'(u)} = P(x \le X \le x + dx) = f(x)dx$$

$$f[x(u)] = [g'(u)]^{-1}$$

Inverting the CDF

$$f[x(u)] = [g'(u)]^{-1}$$

• Can we find g(u) given the target f(x)? It is simpler to see this if we invert x(u):

$$u = g^{-1}(x) = F(x).$$

Repeating the same calculation

$$P(u \le U \le u + dx) = du = F'(x)dx = f(x)dx$$

$$F'(x) = f(x)$$

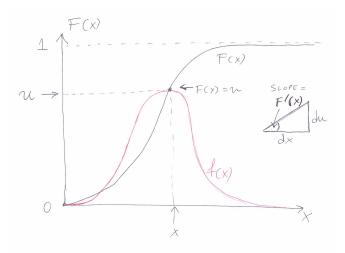
• This shows that $F(x) = g^{-1}(x)$ is the **cummulative probability distribution**:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x')dx'.$$

• Note that F(x) is monotonically non-decreasing because $f(x) \ge 0$.

Sampling by Inversion

Inversion algorithm: Generate a standard uniform variate u and then solve the **non-linear equation** F(x) = u to get x.



Exponentially-Distributed Number

 As an example, consider generating a sample from the exponential distribution with rate λ :

$$f_{\lambda}(t) = egin{cases} \lambda e^{-\lambda t} & ext{if } t \geq 0 \ 0 & ext{otherwise} \end{cases}$$

 Related to the Poisson process of events whose rate of occurrence is λ and whose occurrence does not depend on the past (history):

$$P(t \le T \le t + dt \mid T \ge t) = P(T < dt) = \lambda dt.$$

Using the inversion technique we get

$$F(t) = P(T \le t) = \int_{t'=0}^{t} \lambda e^{-\lambda t} dt = 1 - e^{-\lambda t} = u' \equiv 1 - u$$

$$T = -\lambda^{-1} \ln(U),$$

where numerical care must be taken to ensure the log does not overflow or underflow.

Rejection Sampling

- An alternative method is to use rejection sampling: Generate a sample X from some other distribution g(x) and accept them with acceptance probability p(X), otherwise reject and try again.
- The rejection requires sampling a standard uniform variate U: Accept if $U \leq p(X)$ and return X, otherwise reject and try a new X.
- What should p(X) be in order for the distribution of X to be f(x)?
- Since X and U are **independent** the marginal distribution of x is

$$f(x) \sim g(x)p(x) \quad \Rightarrow p(x) = Z\frac{f(x)}{g(x)},$$

where Z is determined from the **normalization condition**:

$$\int f(x)dx = 1 \quad \Rightarrow \quad \int p(x)g(x)dx = Z$$

Envelope Function

$$p(x) = \frac{f(x)}{Z^{-1}g(x)} = \frac{f(x)}{\tilde{g}(x)}$$

• Since $0 \le p(x) \le 1$, we see that $\tilde{g}(x) = Z^{-1}g(x)$ must be a **bounding** or **envelope** function:

$$\tilde{g}(x) = Z^{-1}g(x) \ge f(x)$$
, which implies $Z \le \frac{g(x)}{f(x)}$.

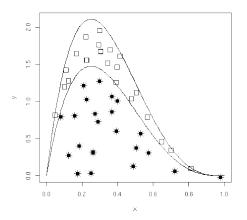
 For efficiency, we want to have the highest possible acceptance probability, that is, maximize

$$P_{acc} = \frac{\int f(x)dx}{\int \tilde{g}(x)dx} = Z \frac{\int f(x)dx}{\int g(x)dx} = Z \le 1.$$

• We know f(x) and so once we choose g(x) we can determine $Z = \min \frac{g(x)}{f(x)}$ and thus $\tilde{g}(x) = Z^{-1}g(x)$.

Rejection Sampling Illustrated

Rejection algorithm: Generate a sample X from g(x) and an independent standard uniform variate U. If $U \leq \frac{f(x)}{\tilde{g}(x)}$ accept and return X, otherwise reject and try again.



Normally-Distributed Numbers

• The standard normal distribution is a Gaussian "bell-curve":

$$f(x) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right),$$

where μ is the **mean** and σ is the **standard deviation**.

- The standard normal distribution has $\sigma = 1$ and $\mu = 0$.
- If we have a sample X_s from the standard distribution we can generate a sample X from f(x) using:

$$X = \mu + \sigma X_s$$

 Consider sampling the positive half of the standard normal, that is, sampling:

$$f(x) = \sqrt{\frac{2}{\pi}}e^{-x^2/2} \text{ for } x \ge 0.$$

If we can do that then we can choose a random \pm sign and sample from the Gaussian distribution.

Optimizing Rejection Sampling

- We want the **tighest possible** (especially where f(x) is large) easy-to-sample $g(x) \approx f(x)$.
- Since we want $f(x) < Z^{-1}g(x)$ we must have that g(x) does **not decay faster** than f(x) for large x.
- We already know how to sample an exponential:

$$g(x) = e^{-x}$$

• We want the tightest possible $\tilde{g}(x)$:

$$\min \left[\tilde{g}(x) - f(x) \right] = \min \left[Z^{-1} e^{-x} - \sqrt{\frac{2}{\pi}} e^{-x^{2/2}} \right] = 0$$

$$\tilde{g}'(x^*) = f'(x^*)$$
 and $\tilde{g}(x^*) = f(x^*)$

• Solving this system of two equations gives $x^* = 1$ and

$$Z = P_{acc} = \sqrt{\frac{\pi}{2}}e^{-1/2} \approx 76\%$$

Integration via Monte Carlo

Define the random variable Y = f(X), and generate a sequence of N independent uniform samples X_k ∈ Ω, i.e., N random variables distributed uniformly inside Ω:

$$\mathbf{X} \sim g(\mathbf{x}) = egin{cases} \left|\Omega
ight|^{-1} & ext{ for } \mathbf{x} \in \Omega \\ 0 & ext{ otherwise} \end{cases}$$

and calculate the mean

$$\hat{Y} = \frac{1}{N} \sum_{k=1}^{N} Y_k = \frac{1}{N} \sum_{k=1}^{N} f(\mathbf{X}_k)$$

According to the weak law of large numbers,

$$\lim_{N\to\infty} \hat{Y} = E(Y) = \bar{Y} = \int f(\mathbf{x})g(\mathbf{x})d\mathbf{x} = |\Omega|^{-1} \int_{\Omega} f(\mathbf{x}) d\mathbf{x}$$

Accuracy of Monte Carlo Integration

This gives a Monte Carlo approximation to the integral:

$$J = \int_{\Omega \in \mathbb{R}^n} f(\mathbf{x}) \, d\mathbf{x} = |\Omega| \, \bar{Y} \approx |\Omega| \, \hat{Y} = |\Omega| \, \frac{1}{N} \sum_{k=1}^N f(\mathbf{X}_k) \, .$$

• Recalling the central limit theorem, for large N we get an **error** estimate by evaluating the standard deviation of the estimate \hat{Y} :

$$\sigma^{2}\left(\hat{Y}\right) \approx \frac{\sigma_{Y}^{2}}{N} = N^{-1} \int_{\Omega} \left[f(\mathbf{x}) - |\Omega|^{-1} J \right]^{2} d\mathbf{x}$$

$$\sigma\left(\hat{Y}\right) pprox rac{1}{\sqrt{N}} \left[\int_{\Omega} \left[f(\mathbf{x}) - \overline{f(\mathbf{x})}
ight]^2 d\mathbf{x}
ight]^{1/2}$$

- Note that this error goes like $N^{-1/2}$, which is order of convergence 1/2: Worse than any deterministic quadrature.
- But, the same number of points are needed to get a certain accuracy independent of the dimension.

Monte Carlo Error Bars

- Monte Carlo (MC) answers should always be reported with error bars, or equivalently, with confidence intervals!
- Since the answer is approximately normally-distributed, we have the well-known **confidence intervals**:

$$P\left(\frac{J}{|\Omega|} \in \left[\hat{Y} - \sigma, \hat{Y} + \sigma\right]\right) \approx 66\%$$

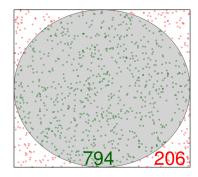
$$P\left(\frac{J}{|\Omega|} \in \left[\hat{Y} - 2\sigma, \hat{Y} + 2\sigma\right]\right) \approx 95\%$$

In practice we estimate the uncertainty empirically as

$$\sigma^{2}\left(\hat{Y}\right) \approx \frac{1}{N^{2}} \sum_{i} \left(Y_{i} - \overline{Y}\right)^{2} = \frac{1}{N} \left[\left(\frac{1}{N} \sum_{i} Y_{i}^{2}\right) - \left(\frac{1}{N} \sum_{i} Y_{i}\right)^{2} \right].$$

• This is done in a **single MC loop**: Average the Y's to get the answer but also average the squares Y^2 to get the uncertainty in the answer.

Employing Rejection



Note how this becomes **less efficient as dimension grows** (most points are outside the sphere).

• Integration requires $|\Omega|$, which is hard to compute for complicated domains,

$$\int_{\Omega \in \mathbb{R}^n} f(\mathbf{x}) \, d\mathbf{x} \approx |\Omega| \, \frac{1}{N} \sum_{k=1}^N f(\mathbf{X}_k)$$

- Consider Ω being the unit circle of radius 1.
- Rejection: Integrate by sampling points inside an **enclosing region**, e.g, a square of area $|\Omega_{encl}| = 4$, and rejecting any points outside of Ω :

$$\int_{\Omega \in \mathbb{R}^n} f(\mathbf{x}) \, d\mathbf{x} \approx |\Omega_{encl}| \, \frac{1}{N} \sum_{\mathbf{X}_k \in \Omega} f(\mathbf{X}_k)$$

Sampling Function

- In the basic MC algorithm described above, the samples X have a uniform distribution over the integration domain. This does not work if the domain of integration is infinite.
- Instead, we can sample our points from some probablity distribution function $g(\mathbf{X}) \geq 0$, $\int g(\mathbf{x}) d\mathbf{x} = 1$, and rewrite:

$$\int f(\mathbf{x})\,d\mathbf{x} = \int \frac{f(\mathbf{x})}{g(\mathbf{x})}\,g(\mathbf{x})d\mathbf{x} = E\left[\frac{f(\mathbf{X})}{g(\mathbf{X})}\right] \ \text{where } \mathbf{X} \sim g.$$

 This now corresponds to taking samples from the sampling function g(x):

$$\int f(\mathbf{x}) d\mathbf{x} \approx \frac{1}{N} \sum_{k=1}^{N} \frac{f(\mathbf{X}_k)}{g(\mathbf{X}_k)} \text{ where } \mathbf{X} \sim g$$

• Note that $|\Omega|$ does not appear since it is implicitly included in the normalization of $g(\mathbf{x})$. The previous uniform sampling algorithm corresponds to $g(\mathbf{x}) = |\Omega|^{-1}$ for $\mathbf{x} \in \Omega$.

Example: Option Pricing

 The fair price of a simple financial option is the expectation of the discounted future value,

$$V = E\left[e^{-rt} \cdot h(S(t))\right],\,$$

where S(t) is the stochastic (fluctuating) price of the underlying asset, and r is the risk-free interest rate, and h(S) is the payoff function, for example, $h = \max(S_{\text{strike}} - S, 0)$.

- The price of S(t) is a random process (a random variable that is a function of time), and can be generated either based on a theoretical model.
- \bullet For example, a simple theoretical model with volatility ν and average return μ would give

$$S(t) = S(0)e^{\mu t + \nu\sqrt{t}X},$$

where X is a normally-distributed random variable.

• So here the natural choice for g(X) is the unit normal distribution, $g(x) = (2\pi)^{-\frac{1}{2}} e^{-x^2/2}$.

Option pricing example

• In the end, combining the pieces together we define

$$ilde{f}(x) = rac{f(x)}{g(x)} = e^{-rt} \max \left[S_{
m strike} - S(0) e^{\mu t +
u \sqrt{t}x}, 0
ight]$$

• The option value is simply the expectation value of $\tilde{f}(X)$ when $X \sim g$, i.e., an integral that can be computed using Monte Carlo:

$$V = \int f(x)dx \approx \frac{1}{N} \sum_{k=1}^{N} \frac{f(\mathbf{X}_k)}{g(\mathbf{X}_k)} = \frac{1}{N} \sum_{k=1}^{N} \tilde{f}(X_k).$$

- Of course, for a one-dimensional example like this we can probably do this better with a deterministic algorithm.
- But if there are many assets or the payoff function is complicated or if the dynamics of the assets is complex, Monte Carlo may be unavoidable.

Variance Reduction

- The order of convergence (accuracy) of Monte Carlo is always 1/2 and cannot be improved. Instead, all of the focus is on improving the error constant, i.e., the **variance** for a constant number of samples *N*.
- The most important thing in Monte Carlo is **variance reduction**, i.e., finding methods that give the same answers in the limit $N \to \infty$ but have a much smaller σ .
- There are several methods for variance reduction, the most general and powerful of which is **importance sampling**.
- Importance sampling simply means choosing the sampling function g(x) to give more importance to those points that dominate the value of the integral. We call g(x) an **importance sampling function**.

Importance Sampling

Repeating the variance calculation for

$$Y(\mathbf{X}) = \frac{f(\mathbf{X})}{g(\mathbf{X})}$$
, with mean $\overline{Y} = \int f(\mathbf{x}) d\mathbf{x}$

• The variance of the empricial mean $\hat{Y} = N^{-1} \sum Y_i$ is

$$\sigma^{2}\left(\hat{Y}\right) \approx \frac{\sigma_{Y}^{2}}{N} = N^{-1} \int \left[Y(\mathbf{x}) - \overline{Y}\right]^{2} g(\mathbf{x}) d\mathbf{x}$$

$$\sigma\left(\hat{Y}\right) \approx \frac{1}{\sqrt{N}} \left[\int \left[\frac{f(\mathbf{x})}{g(\mathbf{x})} - \overline{Y} \right]^2 g(\mathbf{x}) d\mathbf{x} \right]^{1/2}.$$

The Importance Function

• We therefore want $f(\mathbf{x})/g(\mathbf{x}) = \overline{Y}$ to be as close as possible to a constant, **ideally**

$$g_{ideal}(\mathbf{x}) = \frac{f(\mathbf{x})}{\int f(\mathbf{x}) dx}$$

but this requires being able to create independent samples from $f(\mathbf{x})$.

- Instead, what we try to do is to find an importance function that is focused on regions where *f* is large (the peaks).
- The importance sampling function $g(\mathbf{x})$ must be a probability distribution function that we know how to sample from, such that

$$h(\mathbf{x}) = \frac{f(\mathbf{x})}{g(\mathbf{x})}$$

is **as close to constant as possible**, and in particular, it must be **bounded** from above (i.e., finite for all **x** in the relevant domain).

Antithetic Variables

- Consider sampling a random variable $X \sim f$, and assume that f has a symmetry, $S(X) \sim f$.
- Examples: For uniform variates, X and 1-X, and for normal variates, X and -X both sample the same distribution.
- Variance reduction is achieved if one combines the **antithetic** variables X and S(X) when averaging:

$$\frac{1}{N} \sum_{k=1}^{N} h(\mathbf{X}_k) \leftarrow \frac{1}{2N} \sum_{k=1}^{N} \left[h(\mathbf{X}_k) + h(S(\mathbf{X}_k)) \right].$$

- If there is a **negative correlation** between h(X) and h(S(X)), then the variance of the right hand side can be much smaller than the left hand side. This is similar to the use of **control variables** to reduce variance (not covered).
- One example is integrating stochastic differential equations in option pricing: change the sign of the noise term and average the two results.

Quasi-Random Numbers

- If you generate a lot of random samples inside a domain Ω it is easy to observe that there are some regions where there are many points, and others where there are very few points.
- If instead, one uses quasi-random or sub-random or low-discrepancy samples, then one can more uniformly fill the space and get a lower variance.

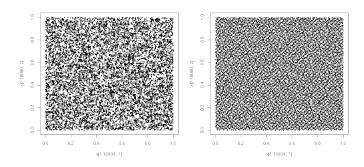
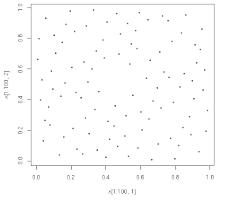
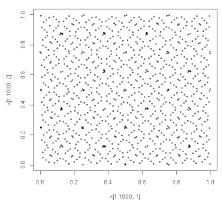


Illustration of the Sobol Sequence





Histogram Validation

- We need some way to test that a sampler is correct, that is, that the generated sequence of random numbers really comes from the specified distribution f(x). One easy way to do that is by computing the **histogram** of the samples.
- Count how many N_x samples of the N samples are inside a bin of width h centered at x:

$$f(x) \approx P_x = \frac{1}{h} P(x - h/2 \le X \le x + h/2) \approx \frac{N_x}{hN}.$$

• If we make the bins smaller, the truncation error will be reduced:

$$P_{x} - f(x) = \frac{1}{h} \int_{x-h/2}^{x+h/2} f(x') dx' - f(x) = \alpha h^{2} + O(h^{4})$$

 But, this means there will be fewer points per bin, i.e., statistical errors will grow. As usual, we want to find the optimal tradeoff between the two types of error.

Statistical Error in Histogramming

• For every sample point X, define the **indicator** random variable Y:

$$Y = \mathbb{I}_x(X) = egin{cases} 1 & ext{if } x - h/2 \leq X \leq x + h/2 \\ 0 & ext{otherwise} \end{cases}$$

• The mean and variance of this **Bernoulli random variable** are:

$$E(Y) = \bar{Y} = hP_x \approx hf(x)$$

$$\sigma_Y^2 = \int (y - \bar{Y})^2 f(y) dy = \bar{Y} \cdot (1 - \bar{Y}) \approx \bar{Y} \approx hf(x)$$

• The number N_x out of N trials inside the bin is a sum of N random Bernoulli variables Y_i :

$$f(x) \approx \frac{1}{h} \frac{N_x}{N} = h^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} Y_i \right) = \hat{P}_x$$

Optimal Bin Width

• The central limit theorem gives us the uncertainty in our estimate of f(x)

$$\sigma\left(\hat{P}_{x}\right) \approx h^{-1} \frac{\sigma_{Y}}{\sqrt{N}} = \sqrt{\frac{f(x)}{hN}} = \frac{\sqrt{N_{x}}}{hN}.$$

• This means that the **empirical distribution** f(x) should be reported with a 95% **confidence interval**,

$$P\left\{f(x)\in\left[\frac{N_{x}-2\sqrt{N_{x}}}{hN},\frac{N_{x}+2\sqrt{N_{x}}}{hN}\right]\right\}\approx 95\%.$$

 The optimal bin width is when the truncation and statistical errors are equal:

$$\alpha h^2 \approx \sqrt{\frac{f(x)}{hN}} \quad \Rightarrow \quad h \sim N^{-1/5},$$

with total error $\varepsilon \sim (hN)^{-1/2} \sim N^{-2/5}$.

• Typically we choose h based on how well we want to resolve f(x), and accept the fact that **statistical errors dominate**.

Markov Chain Monte Carlo

- Getting **independent samples** from complicated multi-dimensional distributions f(x) is often difficult to do. This is called **static sampling**.
- Instead, it is often easier to construct **dynamic samplers**, which generate a sequence of samples, X_1, X_2, \ldots, X_m , which, if scrambled randomly, are essentially independent samples [formally, the marginal distribution of each X_i is f(x)].
- But successive samples, for example, X_1 and X_2 , are not independent, and are usually (strongly) correlated. The number of samples N_{corr} over which correlations persist is called the **correlation length**.
- To generate N independent samples, and thus get variance reduction of $N^{-1/2}$, will require generating $N \times N_{corr}$ dynamic samples.

Conclusions/Summary

- Monte Carlo is an umbrella term for stochastic computation of deterministic answers.
- Monte Carlo answers are random, and their accuracy is measured by the **variance** or uncertaintly of the estimate, which typically scales like $\sigma \sim N^{-1/2}$, where N is the number of **samples**.
- Implementing Monte Carlo algorithms on a computer requires a PRNG, almost always a uniform pseudo-random number generator (URNG).
- One often needs to convert a sample from a URNG to a sample from an arbitrary distribution f(x), including inverting the cumulative distribution and rejection sampling.

contd.

- Sampling complex distributions in high-dimensional spaces is often done using Markov Chain MC, also called Dynamic or Kinetic MC, which may be based on a model of the actual dynamics of a real system (e.g., the market), or simply a computational tool (e.g., Gibbs sampler for Gaussians).
- Monte Carlo can be used to perform integration in high dimensions by simply evaluating the function at random points.
- Variance reduction is the search for algorithms that give the same answer but with less statistical error. General-purpose variance-reduction techniques include quasi-random numbers, antithetic variables, control variates, and importance sampling. They are usually based on some specific knowledge about the model.