Numerical Methods I Polynomial Interpolation

Aleksandar Donev
Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu
${ }^{1}$ MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014

October 30th, 2014

Outline

(1) Function spaces
(2) Polynomial Interpolation in 1D
(3) Piecewise Polynomial Interpolation
(4) Higher Dimensions

Function Spaces

- Function spaces are the equivalent of finite vector spaces for functions (space of polynomial functions \mathcal{P}, space of smoothly twice-differentiable functions \mathcal{C}^{2}, etc.).
- Consider a one-dimensional interval $I=[a, b]$. Standard norms for functions similar to the usual vector norms:
- Maximum norm: $\|f(x)\|_{\infty}=\max _{x \in I}|f(x)|$
- L_{1} norm: $\|f(x)\|_{1}=\int_{a}^{b}|f(x)| d x$
- Euclidian L_{2} norm: $\|f(x)\|_{2}=\left[\int_{a}^{b}|f(x)|^{2} d x\right]^{1 / 2}$
- Weighted norm: $\|f(x)\|_{w}=\left[\int_{a}^{b}|f(x)|^{2} w(x) d x\right]^{1 / 2}$
- An inner or scalar product (equivalent of dot product for vectors):

$$
(f, g)=\int_{a}^{b} f(x) g^{\star}(x) d x
$$

Finite-Dimensional Function Spaces

- Formally, function spaces are infinite-dimensional linear spaces. Numerically we always truncate and use a finite basis.
- Consider a set of $m+1$ nodes $x_{i} \in \mathcal{X} \subset I, i=0, \ldots, m$, and define:

$$
\|f(x)\|_{2}^{\mathcal{X}}=\left[\sum_{i=0}^{m}\left|f\left(x_{i}\right)\right|^{2}\right]^{1 / 2},
$$

which is equivalent to thinking of the function as being the vector $\mathbf{f}_{\mathcal{X}}=\mathbf{y}=\left\{f\left(x_{0}\right), f\left(x_{1}\right), \cdots, f\left(x_{m}\right)\right\}$.

- Finite representations lead to semi-norms, but this is not that important.
- A discrete dot product can be just the vector product:

$$
(f, g)^{\mathcal{X}}=\mathbf{f}_{\mathcal{X}} \cdot \mathbf{g}_{\mathcal{X}}=\sum_{i=0}^{m} f\left(x_{i}\right) g^{\star}\left(x_{i}\right)
$$

Function Space Basis

- Think of a function as a vector of coefficients in terms of a set of n basis functions:

$$
\left\{\phi_{0}(x), \phi_{1}(x), \ldots, \phi_{n}(x)\right\}
$$

for example, the monomial basis $\phi_{k}(x)=x^{k}$ for polynomials.

- A finite-dimensional approximation to a given function $f(x)$:

$$
\tilde{f}(x)=\sum_{i=1}^{n} c_{i} \phi_{i}(x)
$$

- Least-squares approximation for $m>n$ (usually $m \gg n$):

$$
\mathbf{c}^{\star}=\arg \min _{\mathbf{c}}\|f(x)-\tilde{f}(x)\|_{2},
$$

which gives the orthogonal projection of $f(x)$ onto the finite-dimensional basis.

Least-Squares Approximation

- Discrete case: Think of fitting a straight line or quadratic through experimental data points.
- The function becomes the vector $\mathbf{y}=\mathbf{f}_{\mathcal{X}}$, and the approximation is

$$
y_{i}=\sum_{j=1}^{n} c_{j} \phi_{j}\left(x_{i}\right) \Rightarrow \mathbf{y}=\boldsymbol{\Phi} \mathbf{c}
$$

$$
\boldsymbol{\Phi}_{i j}=\phi_{j}\left(x_{i}\right) .
$$

- This means that finding the approximation consists of solving an overdetermined linear system

$$
\Phi \mathbf{c}=\mathbf{y}
$$

- Note that for $m=n$ this is equivalent to interpolation. MATLAB's polyfit works for $m \geq n$.

Normal Equations

- Recall that one way to solve this is via the normal equations:

$$
\left(\boldsymbol{\Phi}^{\star} \boldsymbol{\Phi}\right) \mathbf{c}^{\star}=\boldsymbol{\Phi}^{\star} \mathbf{y}
$$

- A basis set is an orthonormal basis if

$$
\begin{gathered}
\left(\phi_{i}, \phi_{j}\right)=\sum_{k=0}^{m} \phi_{i}\left(x_{k}\right) \phi_{j}\left(x_{k}\right)=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases} \\
\boldsymbol{\Phi}^{\star} \boldsymbol{\Phi}=\mathbf{I} \text { (unitary or orthogonal matrix) } \Rightarrow \\
\mathbf{c}^{\star}=\boldsymbol{\Phi}^{\star} \mathbf{y} \quad \Rightarrow \quad c_{i}=\boldsymbol{\phi}_{i}^{\mathcal{X}} \cdot \mathbf{f}_{\mathcal{X}}=\sum_{k=0}^{m} f\left(x_{k}\right) \phi_{i}\left(x_{k}\right)
\end{gathered}
$$

Interpolation in 1D (Cleve Moler)

Piecewise linear interpolation

Shape-preserving Hermite interpolation

Full degree polynomial interpolation

Spline interpolation

Figure 3.8. Four interpolants.

Interpolation

- The task of interpolation is to find an interpolating function $\phi(\mathbf{x})$ which passes through $m+1$ data points $\left(\mathbf{x}_{i}, y_{i}\right)$:

$$
\phi\left(\mathbf{x}_{i}\right)=y_{i}=f\left(\mathbf{x}_{i}\right) \text { for } i=0,2, \ldots, m
$$

where \mathbf{x}_{i} are given nodes.

- The type of interpolation is classified based on the form of $\phi(\mathbf{x})$:
- Full-degree polynomial interpolation if $\phi(\mathbf{x})$ is globally polynomial.
- Piecewise polynomial if $\phi(\mathbf{x})$ is a collection of local polynomials:
- Piecewise linear or quadratic
- Hermite interpolation
- Spline interpolation
- Trigonometric if $\phi(\mathbf{x})$ is a trigonometric polynomial (polynomial of sines and cosines).
- Orthogonal polynomial intepolation (Chebyshev, Legendre, etc.).
- As for root finding, in dimensions higher than one things are more complicated!

Polynomial interpolation in 1D

- The interpolating polynomial is degree at most m

$$
\phi(x)=\sum_{i=0}^{m} a_{i} x^{i}=\sum_{i=0}^{m} a_{i} p_{i}(x),
$$

where the monomials $p_{i}(x)=x^{i}$ form a basis for the space of polynomial functions.

- The coefficients $\mathbf{a}=\left\{a_{1}, \ldots, a_{m}\right\}$ are solutions to the square linear system:

$$
\phi\left(x_{i}\right)=\sum_{j=0}^{m} a_{j} x_{i}^{j}=y_{i} \text { for } i=0,2, \ldots, m
$$

- In matrix notation, if we start indexing at zero:

$$
\left[\mathbf{V}\left(x_{0}, x_{1}, \ldots, x_{m}\right)\right] \mathbf{a}=\mathbf{y}
$$

where the Vandermonde matrix $\mathbf{V}=\left\{v_{i, j}\right\}$ is given by

$$
v_{i, j}=x_{i}^{j}
$$

The Vandermonde approach

$$
\mathbf{V a}=\mathbf{x}
$$

- One can prove by induction that

$$
\operatorname{det} \mathbf{V}=\prod_{j<k}\left(x_{k}-x_{j}\right)
$$

which means that the Vandermonde system is non-singular and thus: The intepolating polynomial is unique if the nodes are distinct.

- Polynomail interpolation is thus equivalent to solving a linear system.
- However, it is easily seen that the Vandermonde matrix can be very ill-conditioned.
- Solving a full linear system is also not very efficient because of the special form of the matrix.

Choosing the right basis functions

- There are many mathematically equivalent ways to rewrite the unique interpolating polynomial:

$$
x^{2}-2 x+4=(x-2)^{2}
$$

- One can think of this as choosing a different polynomial basis $\left\{\phi_{0}(x), \phi_{1}(x), \ldots, \phi_{m}(x)\right\}$ for the function space of polynomials of degree at most m :

$$
\phi(x)=\sum_{i=0}^{m} a_{i} \phi_{i}(x)
$$

- For a given basis, the coefficients a can easily be found by solving the linear system

$$
\phi\left(x_{j}\right)=\sum_{i=0}^{m} a_{i} \phi_{i}\left(x_{j}\right)=y_{j} \quad \Rightarrow \quad \boldsymbol{\Phi} \mathbf{a}=\mathbf{y}
$$

Lagrange basis

$$
\Phi \mathbf{a}=\mathbf{y}
$$

- This linear system will be trivial to solve if $\boldsymbol{\Phi}=\mathbf{I}$, i.e., if

$$
\phi_{i}\left(x_{j}\right)=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

- The $\phi_{i}(x)$ is itself a polynomial interpolant on the same nodes but with function values $\delta_{i j}$, and is thus unique.
- Note that the nodal polynomial

$$
w_{m+1}(x)=\prod_{i=0}^{m}\left(x-x_{i}\right)
$$

vanishes at all of the nodes but has degree $m+1$.

Lagrange interpolant

- It can easily be seen that the following characteristic polynomial provides the desired basis:

$$
\phi_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}=\frac{w_{m+1}(x)}{\left(x-x_{i}\right) w_{m+1}^{\prime}\left(x_{i}\right)}
$$

- The resulting Lagrange interpolation formula is

$$
\phi(x)=\sum_{i=0}^{m} y_{i} \phi_{i}(x)=\sum_{i=0}^{m}\left[\frac{y_{i}}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}\right] \prod_{j \neq i}\left(x-x_{j}\right)
$$

- This is useful analytically but expensive and cumbersome to use computationally!

Lagrange basis on 10 nodes

Newton's interpolation formula

- By choosing a different basis we get different representations, and Newton's choice is:

$$
\phi_{i}(x)=w_{i}(x)=\prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

- There is a simple recursive formula to calculate the coefficients a in this basis, using Newton's divided differences

$$
\begin{gathered}
D_{i}^{0} f=f\left(x_{i}\right)=y_{i} \\
D_{i}^{k}=\frac{D_{i+1}^{k-1}-D_{i}^{k-1}}{x_{i+1}-x_{i}}
\end{gathered}
$$

- Note that the first divided difference is

$$
D_{i}^{1}=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}} \approx f^{\prime}\left(x_{i}\right)
$$

and D_{i}^{2} corresponds to second-order derivatives, etc.

Convergence and stability

- We have lost track of our goal: How good is polynomial interpolation?
- Assume we have a function $f(x)$ that we are trying to approximate over an interval $I=\left[x_{0}, x_{m}\right]$ using a polynomial interpolant.
- Using Taylor series type analysis it is not hard to show that

$$
\exists \xi \in I \text { such that } E_{m}(x)=f(x)-\phi(x)=\frac{f^{(m+1)}(\xi)}{(m+1)!}\left[\prod_{i=0}^{m}\left(x-x_{i}\right)\right]
$$

Question: Does $\left\|E_{m}(x)\right\|_{\infty}=\max _{x \in I}|f(x)| \rightarrow 0$ as $m \rightarrow \infty$.

- For equi-spaced nodes, $x_{i+1}=x_{i}+h$, a bound is

$$
\left\|E_{m}(x)\right\|_{\infty} \leq \frac{h^{n+1}}{4(m+1)}\left\|f^{(m+1)}(x)\right\|_{\infty}
$$

- The problem is that higher-order derivatives of seemingly nice functions can be unbounded!

Runges phenomenon for 10 nodes

Uniformly-spaced nodes

- Not all functions can be approximated well by an interpolating polynomial with equally-spaced nodes over an interval.
- Interpolating polynomials of higher degree tend to be very oscillatory and peaked, especially near the endpoints of the interval.
- Even worse, the interpolation is unstable, under small perturbations of the points $\tilde{\mathbf{y}}=\mathbf{y}+\delta \mathbf{y}$,

$$
\|\delta \phi(x)\|_{\infty} \leq \frac{2^{m+1}}{m \log m}\|\delta \mathbf{y}\|_{\infty}
$$

- It is possible to improve the situation by using specially-chosen nodes (e.g., Chebyshev nodes), or by interpolating derivatives (Hermite interpolation).
- In general however, we conclude that interpolating using high-degree polynomials is a bad idea!

Interpolation in 1D (Cleve Moler)

Piecewise linear interpolation

Shape-preserving Hermite interpolation

Full degree polynomial interpolation

Spline interpolation

Figure 3.8. Four interpolants.

Piecewise Lagrange interpolants

- The idea is to use a different low-degree polynomial function $\phi_{i}(x)$ in each interval $I_{i}=\left[x_{i}, x_{i+1}\right]$.
- Piecewise-constant interpolation: $\phi_{i}^{(0)}(x)=y_{i}$.
- Piecewise-linear interpolation:

$$
\phi_{i}^{(1)}(x)=y_{i}+\frac{y_{i+1}-y_{i}}{x_{i+1}-x_{i}}\left(x-x_{i}\right) \text { for } x \in I_{i}
$$

- For node spacing h the error estimate is now bounded and stable:

$$
\left\|f(x)-\phi^{(1)}(x)\right\|_{\infty} \leq \frac{h^{2}}{8}\left\|f^{(2)}(x)\right\|_{\infty}
$$

Piecewise Hermite interpolants

- If we are given not just the function values but also the first derivatives at the nodes:

$$
z_{i}=f^{\prime}\left(x_{i}\right)
$$

we can find a cubic polynomial on every interval that interpolates both the function and the derivatives at the endpoints:

$$
\begin{gathered}
\phi_{i}\left(x_{i}\right)=y_{i} \text { and } \phi_{i}^{\prime}\left(x_{i}\right)=z_{i} \\
\phi_{i}\left(x_{i+1}\right)=y_{i+1} \text { and } \phi_{i}^{\prime}\left(x_{i+1}\right)=z_{i+1} .
\end{gathered}
$$

- This is called the piecewise cubic Hermite interpolant.
- If the derivatives are not available we can try to estimate $z_{i} \approx \phi_{i}^{\prime}\left(x_{i}\right)$ (see MATLAB's pchip).

Splines

- Note that in piecewise Hermite interpolation $\phi(x)$ has is continuously differentiable, $\phi(x) \in C_{l}^{1}$:
Both $\phi(x)$ and $\phi^{\prime}(x)$ are continuous across the internal nodes.
- We can make this even stronger, $\phi(x) \in C_{l}^{2}$, leading to piecewise cubic spline interpolation:
- The function $\phi_{i}(x)$ is cubic in each interval $I_{i}=\left[x_{i}, x_{i+1}\right]$ (requires $4 m$ coefficients).
- We interpolate the function at the nodes: $\phi_{i}\left(x_{i}\right)=\phi_{i-1}\left(x_{i}\right)=y_{i}$. This gives $m+1$ conditions plus $m-1$ conditions at interior nodes.
- The first and second derivatives are continous at the interior nodes:

$$
\phi_{i}^{\prime}\left(x_{i}\right)=\phi_{i-1}^{\prime}\left(x_{i}\right) \text { and } \phi_{i}^{\prime \prime}\left(x_{i}\right)=\phi_{i-1}^{\prime \prime}\left(x_{i}\right) \text { for } i=1,2, \ldots, m-1,
$$

which gives $2(m-1)$ equations, for a total of $4 m-2$ conditions.

Types of Splines

- We need to specify two more conditions arbitrarily (for splines of order $k \geq 3$, there are $k-1$ arbitrary conditions).
- The most appropriate choice depends on the problem, e.g.:
- Periodic splines, we think of node 0 and node m as one interior node and add the two conditions:

$$
\phi_{0}^{\prime}\left(x_{0}\right)=\phi_{m}^{\prime}\left(x_{m}\right) \text { and } \phi_{0}^{\prime \prime}\left(x_{0}\right)=\phi_{m}^{\prime \prime}\left(x_{m}\right)
$$

- Natural spline: Two conditions $\phi^{\prime \prime}\left(x_{0}\right)=\phi^{\prime \prime}\left(x_{m}\right)=0$.
- Once the type of spline is chosen, finding the coefficients of the cubic polynomials requires solving a tridiagonal linear system, which can be done very fast $(O(m))$.

Nice properties of splines

- Minimum curvature property:

$$
\int_{I}\left[\phi^{\prime \prime}(x)\right]^{2} d x \leq \int_{I}\left[f^{\prime \prime}(x)\right]^{2} d x
$$

- The spline approximation converges for zeroth, first and second derivatives (also third for uniformly-spaced nodes):

$$
\begin{aligned}
& \|f(x)-\phi(x)\|_{\infty} \leq \frac{5}{384} \cdot h^{4} \cdot\left\|f^{(4)}(x)\right\|_{\infty} \\
& \left\|f^{\prime}(x)-\phi^{\prime}(x)\right\|_{\infty} \leq \frac{1}{24} \cdot h^{3} \cdot\left\|f^{(4)}(x)\right\|_{\infty} \\
& \left\|f^{\prime \prime}(x)-\phi^{\prime \prime}(x)\right\|_{\infty} \leq \frac{3}{8} \cdot h^{2} \cdot\left\|f^{(4)}(x)\right\|_{\infty}
\end{aligned}
$$

In MATLAB

- $c=\operatorname{polyfit}(x, y, n)$ does least-squares polynomial of degree n which is interpolating if $n=$ length (x).
- Note that MATLAB stores the coefficients in reverse order, i.e., $c(1)$ is the coefficient of x^{n}.
- $y=$ polyval (c, x) evaluates the interpolant at new points.
- $y 1=\operatorname{interp} 1\left(x, y, x_{n e w}\right.$, method') or if x is ordered use interp1q. Method is one of 'linear', 'spline', 'cubic'.
- The actual piecewise polynomial can be obtained and evaluated using ppval.

Interpolating $\left(1+x^{2}\right)^{-1}$ in MATLAB

```
n=10;
x=linspace( - 5, 5, n);
y=(1+x.^2).^^(-1);
plot(x,y,'ro'); hold on;
x_fine=linspace (-5,5,100);
y_fine=(1+x_fine.^2). ^(-1);
plot(x_fine,y_fine,'b-');
c=polyfit(x,y,n);
y_interp=polyval(c, x_fine);
plot(x_fine,y_interp,'k_');
y_interp=interp1(x,y, x_fine,'spline');
plot(x_fine,y_interp,'k-');
% Or equivalently:
pp=spline(x,y);
y_interp=ppval(pp,x_fine)
```

Piecewise Polynomial Interpolation

Runge's function with spline

Not-a-knot spline interpolant

Regular grids

- Now $\mathbf{x}=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbf{R}^{n}$ is a multidimensional data point. Focus on 2 D since 3 D is similar.
- The easiest case is when the data points are all inside a rectangle

$$
\Omega=\left[x_{0}, x_{m_{x}}\right] \times\left[y_{0}, y_{m_{y}}\right]
$$

where the $m=\left(m_{x}+1\right)\left(m_{y}+1\right)$ nodes lie on a regular grid

$$
\mathbf{x}_{i, j}=\left\{x_{i}, y_{j}\right\}, \quad f_{i, j}=f\left(\mathbf{x}_{i, j}\right)
$$

- We can use separable basis functions:

$$
\phi_{i, j}(\mathbf{x})=\phi_{i}(x) \phi_{j}(y)
$$

Full degree polynomial interpolation

We can directly apply Lagrange interpolation to each coordinate separately:

$$
\phi(x)=\sum_{i, j} f_{i, j} \phi_{i, j}(x, y)=\sum_{i, j} f_{i, j} \phi_{i}(x) \phi_{j}(y),
$$

but this still suffers from Runge's phenomenon:

Piecewise-Polynomial Interpolation

- Juse as in 1D, one can use a different interpolation function $\phi_{i, j}: \Omega_{i, j} \rightarrow \mathbb{R}$ in each rectange of the grid

$$
\Omega_{i, j}=\left[x_{i}, x_{i+1}\right] \times\left[y_{j}, y_{j+1}\right] .
$$

- For separable polynomials, the equivalent of piecewise linear interpolation in 1D is the piecewise bilinear interpolation

$$
\phi_{i, j}(x, y)=a_{i, j} x y+b_{i, j} x+c_{i, j} y+d_{i, j} .
$$

- There are 4 unknown coefficients in $\phi_{i, j}$ that can be found from the 4 data (function) values at the corners of rectangle $\Omega_{i, j}$.
- Note that the pieces of the interpolating function $\phi_{i, j}(x, y)$ are not linear (but also not quadratic since no x^{2} or y^{2}) since they contain quadratic product terms $x y$: bilinear functions.
This is because there is not a plane that passes through 4 generic points in 3D.

Bilinear Interpolation

- It is better to think in terms of a basis set $\left\{\phi_{i, j}(x, y)\right\}$, where each basis function $\phi_{i, j}$ is itself piecewise bilinear, one at the node (i, j)-th node of the grid, zero elsewhere:

$$
\phi(x)=\sum_{i, j} f_{i, j} \phi_{i, j}(x, y)
$$

- Furthermore, it is sufficient to look at a unit reference rectangle $\hat{\Omega}=[0,1] \times[0,1]$ since any other rectangle or even parallelogram can be obtained from the reference one via a linear transformation:

$$
\mathbf{B}_{i, j} \hat{\Omega}+\mathbf{b}_{i, j}=\Omega_{i, j},
$$

and the same transformation can then be applied to the interpolation function:

$$
\phi_{i, j}(\mathbf{x})=\hat{\phi}\left(\mathbf{B}_{i, j} \hat{\mathbf{x}}+\mathbf{b}_{i, j}\right)
$$

Bilinear Basis Functions

- Consider one of the corners $(0,0)$ of the reference rectangle and the corresponding basis $\hat{\phi}_{0,0}$ restricted to $\hat{\Omega}$:

$$
\hat{\phi}_{0,0}(\hat{x}, \hat{y})=(1-\hat{x})(1-\hat{y})
$$

- For an actual grid, the basis function corresponding to a given interior node is simply a composite of 4 such bilinear terms, one for each rectangle that has that interior node as a vertex: Often called a tent function.
- If higher smoothness is required one can consider, for example, bicubic Hermite interpolation (when derivatives f_{x}, f_{y} and $f_{x y}$ are known at the nodes as well).
- Generalization of bilinear to 3D is trilinear interpolation

$$
\phi(x, y, z)=a x y z+b x y+c x z+d y z+e x+f y+g z+h
$$

which has 8 coefficients which can be solved for given the 8 values at the vertices of the cube.

Bilinear basis functions

Bilinear basis function $\phi_{0,0}$ on reference rectangle

Bilinear basis function $\phi_{3,3}$ on a 5×5 grid

Bicubic basis functions

Bicubic basis function $\phi_{3,3}$ on a 5×5 grid

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles. Similarly tetrahedral meshes in 3D.

Basis functions on triangles

- For irregular grids the x and y directions are no longer separable.
- But the idea of using basis functions $\phi_{i, j}$, a reference triangle, and piecewise polynomial interpolants still applies.
- For a linear function we need 3 coefficients (x, y, const), for quadratic 6 ($x, y, x^{2}, y^{2}, x y$, const):

Fig. 8.8. Locnt interpolation notes on + for $k=1$ (ieft). $k-1$ (anter). $k=2$ (raghl)

Piecewise constant / linear basis functions

Fig. 8.7. Characteristic piecewise Lagrange polynomial, in two and one space dimensions. Left, $k=0$: right, $k=1$

In MATLAB

- For regular grids the function

$$
q z=\operatorname{interp} 2\left(x, y, z, q x, q y,{ }^{\prime} \text { linear' }\right)
$$

will evaluate the piecewise bilinear interpolant of the data $x, y, z=f(x, y)$ at the points ($q x, q y$).

- Other method are 'spline' and 'cubic', and there is also interp3 for 3D.
- For irregular grids one can use the old function griddata which will generate its own triangulation or there are more sophisticated routines to manipulate triangulations also.

Regular grids

```
[x,y] = meshgrid(-2:.5:2, - 2:.5:2);
z = x.*exp(-x.^2-y.^2);
ti = - 2:.1:2;
[qx,qy] = meshgrid(ti,ti);
qz= interp2(x,y,z,qx,qy,'cubic');
mesh(qx,qy,qz); hold on;
plot3(x,y,z,'o'); hold off;
```


MATLAB's interp2

Irregular grids

```
x = rand(100,1)*4-2; y = rand (100,1)*4-2;
z = x.*exp(-x.^2-y.^2);
ti = - 2:.1:2;
[qx,qy] = meshgrid(ti,ti);
qz= griddata(x,y,z,qx,qy,' cubic');
mesh(qx,qy,qz); hold on;
plot3(x,y,z,'o'); hold off;
```


MATLAB's griddata

Conclusions/Summary

- Interpolation means approximating function values in the interior of a domain when there are known samples of the function at a set of interior and boundary nodes.
- Given a basis set for the interpolating functions, interpolation amounts to solving a linear system for the coefficients of the basis functions.
- Polynomial interpolants in 1D can be constructed using several basis.
- Using polynomial interpolants of high order is a bad idea: Not accurate and not stable!
- Instead, it is better to use piecewise polynomial interpolation: constant, linear, Hermite cubic, cubic spline interpolant on each interval.
- In higher dimensions one must be more careful about how the domain is split into disjoint elements (analogues of intervals in 1D): regular grids (separable basis such as bilinear), or simplicial meshes (triangular or tetrahedral).

