
Numerical Methods I
Polynomial Interpolation

Aleksandar Donev
Courant Institute, NYU1

donev@courant.nyu.edu

1MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014

October 30th, 2014

A. Donev (Courant Institute) Lecture VIII 10/2014 1 / 45

Outline

1 Function spaces

2 Polynomial Interpolation in 1D

3 Piecewise Polynomial Interpolation

4 Higher Dimensions

A. Donev (Courant Institute) Lecture VIII 10/2014 2 / 45

Function spaces

Function Spaces

Function spaces are the equivalent of finite vector spaces for
functions (space of polynomial functions P, space of smoothly
twice-differentiable functions C2, etc.).

Consider a one-dimensional interval I = [a, b]. Standard norms for
functions similar to the usual vector norms:

Maximum norm: ‖f (x)‖∞ = maxx∈I |f (x)|
L1 norm: ‖f (x)‖1 =

∫ b

a
|f (x)| dx

Euclidian L2 norm: ‖f (x)‖2 =
[∫ b

a
|f (x)|2 dx

]1/2
Weighted norm: ‖f (x)‖w =

[∫ b

a
|f (x)|2 w(x)dx

]1/2
An inner or scalar product (equivalent of dot product for vectors):

(f , g) =

∫ b

a
f (x)g?(x)dx

A. Donev (Courant Institute) Lecture VIII 10/2014 3 / 45

Function spaces

Finite-Dimensional Function Spaces

Formally, function spaces are infinite-dimensional linear spaces.
Numerically we always truncate and use a finite basis.

Consider a set of m + 1 nodes xi ∈ X ⊂ I , i = 0, . . . ,m, and define:

‖f (x)‖X2 =

[
m∑
i=0

|f (xi)|2
]1/2

,

which is equivalent to thinking of the function as being the vector
fX = y = {f (x0), f (x1), · · · , f (xm)}.
Finite representations lead to semi-norms, but this is not that
important.

A discrete dot product can be just the vector product:

(f , g)X = fX · gX =
m∑
i=0

f (xi)g?(xi)

A. Donev (Courant Institute) Lecture VIII 10/2014 4 / 45

Function spaces

Function Space Basis

Think of a function as a vector of coefficients in terms of a set of n
basis functions:

{φ0(x), φ1(x), . . . , φn(x)} ,

for example, the monomial basis φk(x) = xk for polynomials.

A finite-dimensional approximation to a given function f (x):

f̃ (x) =
n∑

i=1

ciφi (x)

Least-squares approximation for m > n (usually m� n):

c? = arg min
c

∥∥∥f (x)− f̃ (x)
∥∥∥
2
,

which gives the orthogonal projection of f (x) onto the
finite-dimensional basis.

A. Donev (Courant Institute) Lecture VIII 10/2014 5 / 45

Function spaces

Least-Squares Approximation

Discrete case: Think of fitting a straight line or quadratic through
experimental data points.

The function becomes the vector y = fX , and the approximation is

yi =
n∑

j=1

cjφj(xi) ⇒ y = Φc,

Φij = φj(xi).

This means that finding the approximation consists of solving an
overdetermined linear system

Φc = y

Note that for m = n this is equivalent to interpolation. MATLAB’s
polyfit works for m ≥ n.

A. Donev (Courant Institute) Lecture VIII 10/2014 6 / 45

Function spaces

Normal Equations

Recall that one way to solve this is via the normal equations:

(Φ?Φ) c? = Φ?y

A basis set is an orthonormal basis if

(φi , φj) =
m∑

k=0

φi (xk)φj(xk) = δij =

{
1 if i = j

0 if i 6= j

Φ?Φ = I (unitary or orthogonal matrix) ⇒

c? = Φ?y ⇒ ci = φXi · fX =
m∑

k=0

f (xk)φi (xk)

A. Donev (Courant Institute) Lecture VIII 10/2014 7 / 45

Polynomial Interpolation in 1D

Interpolation in 1D (Cleve Moler)

A. Donev (Courant Institute) Lecture VIII 10/2014 8 / 45

Polynomial Interpolation in 1D

Interpolation

The task of interpolation is to find an interpolating function φ(x)
which passes through m + 1 data points (xi , yi):

φ(xi) = yi = f (xi) for i = 0, 2, . . . ,m,

where xi are given nodes.

The type of interpolation is classified based on the form of φ(x):

Full-degree polynomial interpolation if φ(x) is globally polynomial.
Piecewise polynomial if φ(x) is a collection of local polynomials:

Piecewise linear or quadratic
Hermite interpolation
Spline interpolation

Trigonometric if φ(x) is a trigonometric polynomial (polynomial of
sines and cosines).
Orthogonal polynomial intepolation (Chebyshev, Legendre, etc.).

As for root finding, in dimensions higher than one things are more
complicated!

A. Donev (Courant Institute) Lecture VIII 10/2014 9 / 45

Polynomial Interpolation in 1D

Polynomial interpolation in 1D

The interpolating polynomial is degree at most m

φ(x) =
m∑
i=0

aix
i =

m∑
i=0

aipi (x),

where the monomials pi (x) = x i form a basis for the space of
polynomial functions.
The coefficients a = {a1, . . . , am} are solutions to the square linear
system:

φ(xi) =
m∑
j=0

ajx
j
i = yi for i = 0, 2, . . . ,m

In matrix notation, if we start indexing at zero:

[V(x0, x1, . . . , xm)] a = y

where the Vandermonde matrix V = {vi ,j} is given by

vi ,j = x j
i .

A. Donev (Courant Institute) Lecture VIII 10/2014 10 / 45

Polynomial Interpolation in 1D

The Vandermonde approach

Va = x

One can prove by induction that

det V =
∏
j<k

(xk − xj)

which means that the Vandermonde system is non-singular and thus:
The intepolating polynomial is unique if the nodes are distinct.

Polynomail interpolation is thus equivalent to solving a linear system.

However, it is easily seen that the Vandermonde matrix can be very
ill-conditioned.

Solving a full linear system is also not very efficient because of the
special form of the matrix.

A. Donev (Courant Institute) Lecture VIII 10/2014 11 / 45

Polynomial Interpolation in 1D

Choosing the right basis functions

There are many mathematically equivalent ways to rewrite the unique
interpolating polynomial:

x2 − 2x + 4 = (x − 2)2.

One can think of this as choosing a different polynomial basis
{φ0(x), φ1(x), . . . , φm(x)} for the function space of polynomials of
degree at most m:

φ(x) =
m∑
i=0

aiφi (x)

For a given basis, the coefficients a can easily be found by solving the
linear system

φ(xj) =
m∑
i=0

aiφi (xj) = yj ⇒ Φa = y

A. Donev (Courant Institute) Lecture VIII 10/2014 12 / 45

Polynomial Interpolation in 1D

Lagrange basis

Φa = y

This linear system will be trivial to solve if Φ = I, i.e., if

φi (xj) = δij =

{
1 if i = j

0 if i 6= j
.

The φi (x) is itself a polynomial interpolant on the same nodes but
with function values δij , and is thus unique.

Note that the nodal polynomial

wm+1(x) =
m∏
i=0

(x − xi)

vanishes at all of the nodes but has degree m + 1.

A. Donev (Courant Institute) Lecture VIII 10/2014 13 / 45

Polynomial Interpolation in 1D

Lagrange interpolant

It can easily be seen that the following characteristic polynomial
provides the desired basis:

φi (x) =

∏
j 6=i (x − xj)∏
j 6=i (xi − xj)

=
wm+1(x)

(x − xi)w ′m+1(xi)

The resulting Lagrange interpolation formula is

φ(x) =
m∑
i=0

yiφi (x) =
m∑
i=0

[
yi∏

j 6=i (xi − xj)

]∏
j 6=i

(x − xj)

This is useful analytically but expensive and cumbersome to use
computationally!

A. Donev (Courant Institute) Lecture VIII 10/2014 14 / 45

Polynomial Interpolation in 1D

Lagrange basis on 10 nodes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−7

−6

−5

−4

−3

−2

−1

0

1

2
A few Lagrange basis functions for 10 nodes

φ
5

φ
1

φ
3

A. Donev (Courant Institute) Lecture VIII 10/2014 15 / 45

Polynomial Interpolation in 1D

Newton’s interpolation formula

By choosing a different basis we get different representations, and
Newton’s choice is:

φi (x) = wi (x) =
i−1∏
j=0

(x − xj)

There is a simple recursive formula to calculate the coefficients a in
this basis, using Newton’s divided differences

D0
i f = f (xi) = yi

Dk
i =

Dk−1
i+1 − Dk−1

i

xi+1 − xi
.

Note that the first divided difference is

D1
i =

f (xi+1)− f (xi)

xi+1 − xi
≈ f ′ (xi) ,

and D2
i corresponds to second-order derivatives, etc.

A. Donev (Courant Institute) Lecture VIII 10/2014 16 / 45

Polynomial Interpolation in 1D

Convergence and stability

We have lost track of our goal: How good is polynomial interpolation?

Assume we have a function f (x) that we are trying to approximate
over an interval I = [x0, xm] using a polynomial interpolant.

Using Taylor series type analysis it is not hard to show that

∃ξ ∈ I such that Em(x) = f (x)− φ(x) =
f (m+1) (ξ)

(m + 1)!

[
m∏
i=0

(x − xi)

]
.

Question: Does ‖Em(x)‖∞ = maxx∈I |f (x)| → 0 as m→∞.

For equi-spaced nodes, xi+1 = xi + h, a bound is

‖Em(x)‖∞ ≤
hn+1

4(m + 1)

∥∥∥f (m+1) (x)
∥∥∥
∞
.

The problem is that higher-order derivatives of seemingly nice
functions can be unbounded!

A. Donev (Courant Institute) Lecture VIII 10/2014 17 / 45

Polynomial Interpolation in 1D

Runge’s counter-example: f (x) = (1 + x2)−1

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1
Runges phenomenon for 10 nodes

x

y

A. Donev (Courant Institute) Lecture VIII 10/2014 18 / 45

Polynomial Interpolation in 1D

Uniformly-spaced nodes

Not all functions can be approximated well by an interpolating
polynomial with equally-spaced nodes over an interval.

Interpolating polynomials of higher degree tend to be very oscillatory
and peaked, especially near the endpoints of the interval.

Even worse, the interpolation is unstable, under small perturbations
of the points ỹ = y + δy,

‖δφ(x)‖∞ ≤
2m+1

m log m
‖δy‖∞

It is possible to improve the situation by using specially-chosen
nodes (e.g., Chebyshev nodes), or by interpolating derivatives
(Hermite interpolation).

In general however, we conclude that interpolating using
high-degree polynomials is a bad idea!

A. Donev (Courant Institute) Lecture VIII 10/2014 19 / 45

Piecewise Polynomial Interpolation

Interpolation in 1D (Cleve Moler)

A. Donev (Courant Institute) Lecture VIII 10/2014 20 / 45

Piecewise Polynomial Interpolation

Piecewise Lagrange interpolants

The idea is to use a different low-degree polynomial function φi (x)
in each interval Ii = [xi , xi+1].

Piecewise-constant interpolation: φ
(0)
i (x) = yi .

Piecewise-linear interpolation:

φ
(1)
i (x) = yi +

yi+1 − yi
xi+1 − xi

(x − xi) for x ∈ Ii

For node spacing h the error estimate is now bounded and stable:∥∥∥f (x)− φ(1)(x)
∥∥∥
∞
≤ h2

8

∥∥∥f (2) (x)
∥∥∥
∞

A. Donev (Courant Institute) Lecture VIII 10/2014 21 / 45

Piecewise Polynomial Interpolation

Piecewise Hermite interpolants

If we are given not just the function values but also the first
derivatives at the nodes:

zi = f ′(xi),

we can find a cubic polynomial on every interval that interpolates
both the function and the derivatives at the endpoints:

φi (xi) = yi and φ′i (xi) = zi

φi (xi+1) = yi+1 and φ′i (xi+1) = zi+1.

This is called the piecewise cubic Hermite interpolant.

If the derivatives are not available we can try to estimate zi ≈ φ′i (xi)
(see MATLAB’s pchip).

A. Donev (Courant Institute) Lecture VIII 10/2014 22 / 45

Piecewise Polynomial Interpolation

Splines

Note that in piecewise Hermite interpolation φ(x) has is continuously
differentiable, φ(x) ∈ C 1

I :
Both φ(x) and φ′(x) are continuous across the internal nodes.

We can make this even stronger, φ(x) ∈ C 2
I , leading to piecewise

cubic spline interpolation:

The function φi (x) is cubic in each interval Ii = [xi , xi+1] (requires 4m
coefficients).
We interpolate the function at the nodes: φi (xi) = φi−1(xi) = yi .
This gives m + 1 conditions plus m − 1 conditions at interior nodes.
The first and second derivatives are continous at the interior nodes:

φ′i (xi) = φ′i−1(xi) and φ′′i (xi) = φ′′i−1(xi) for i = 1, 2, . . . ,m − 1,

which gives 2(m − 1) equations, for a total of 4m − 2 conditions.

A. Donev (Courant Institute) Lecture VIII 10/2014 23 / 45

Piecewise Polynomial Interpolation

Types of Splines

We need to specify two more conditions arbitrarily (for splines of
order k ≥ 3, there are k − 1 arbitrary conditions).

The most appropriate choice depends on the problem, e.g.:

Periodic splines, we think of node 0 and node m as one interior node
and add the two conditions:

φ′0(x0) = φ′m(xm) and φ′′0 (x0) = φ′′m(xm)

.
Natural spline: Two conditions φ′′(x0) = φ′′(xm) = 0.

Once the type of spline is chosen, finding the coefficients of the cubic
polynomials requires solving a tridiagonal linear system, which can
be done very fast (O(m)).

A. Donev (Courant Institute) Lecture VIII 10/2014 24 / 45

Piecewise Polynomial Interpolation

Nice properties of splines

Minimum curvature property:∫
I

[
φ′′(x)

]2
dx ≤

∫
I

[
f ′′(x)

]2
dx

The spline approximation converges for zeroth, first and second
derivatives (also third for uniformly-spaced nodes):

‖f (x)− φ(x)‖∞ ≤
5

384
· h4 ·

∥∥∥f (4) (x)
∥∥∥
∞∥∥f ′(x)− φ′(x)

∥∥
∞ ≤

1

24
· h3 ·

∥∥∥f (4) (x)
∥∥∥
∞∥∥f ′′(x)− φ′′(x)

∥∥
∞ ≤

3

8
· h2 ·

∥∥∥f (4) (x)
∥∥∥
∞

A. Donev (Courant Institute) Lecture VIII 10/2014 25 / 45

Piecewise Polynomial Interpolation

In MATLAB

c = polyfit(x , y , n) does least-squares polynomial of degree n which is
interpolating if n = length(x).

Note that MATLAB stores the coefficients in reverse order, i.e., c(1)
is the coefficient of xn.

y = polyval(c, x) evaluates the interpolant at new points.

y1 = interp1(x , y , xnew ,
′method ′) or if x is ordered use interp1q.

Method is one of ’linear’, ’spline’, ’cubic’.

The actual piecewise polynomial can be obtained and evaluated using
ppval .

A. Donev (Courant Institute) Lecture VIII 10/2014 26 / 45

Piecewise Polynomial Interpolation

Interpolating (1 + x2)−1 in MATLAB

n=10;
x=l i n s p a c e (−5 ,5 ,n) ;
y=(1+x . ˆ2) . ˆ (−1) ;
p l o t (x , y , ’ ro ’) ; hold on ;

x f i n e=l i n s p a c e (−5 ,5 ,100) ;
y f i n e=(1+ x f i n e . ˆ2) . ˆ (−1) ;
p l o t (x f i n e , y f i n e , ’ b− ’) ;

c=p o l y f i t (x , y , n) ;
y i n t e r p=p o l y v a l (c , x f i n e) ;
p l o t (x f i n e , y i n t e r p , ’ k−− ’) ;

y i n t e r p=i n t e r p 1 (x , y , x f i n e , ’ s p l i n e ’) ;
p l o t (x f i n e , y i n t e r p , ’ k−− ’) ;
% Or e q u i v a l e n t l y :
pp=s p l i n e (x , y) ;
y i n t e r p=ppva l (pp , x f i n e)

A. Donev (Courant Institute) Lecture VIII 10/2014 27 / 45

Piecewise Polynomial Interpolation

Runge’s function with spline

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Not−a−knot spline interpolant

A. Donev (Courant Institute) Lecture VIII 10/2014 28 / 45

Higher Dimensions

Two Dimensions

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

A. Donev (Courant Institute) Lecture VIII 10/2014 29 / 45

Higher Dimensions

Regular grids

Now x = {x1, . . . , xn} ∈ Rn is a multidimensional data point. Focus
on 2D since 3D is similar.

The easiest case is when the data points are all inside a rectangle

Ω = [x0, xmx]× [y0, ymy]

where the m = (mx + 1)(my + 1) nodes lie on a regular grid

xi ,j = {xi , yj} , fi ,j = f (xi ,j).

We can use separable basis functions:

φi ,j(x) = φi (x)φj(y).

A. Donev (Courant Institute) Lecture VIII 10/2014 30 / 45

Higher Dimensions

Full degree polynomial interpolation

We can directly apply Lagrange interpolation to each coordinate separately:

φ(x) =
∑
i ,j

fi ,jφi ,j(x , y) =
∑
i ,j

fi ,jφi (x)φj(y),

but this still suffers from Runge’s phenomenon:

A. Donev (Courant Institute) Lecture VIII 10/2014 31 / 45

Higher Dimensions

Piecewise-Polynomial Interpolation

Juse as in 1D, one can use a different interpolation function
φi ,j : Ωi ,j → R in each rectange of the grid

Ωi ,j = [xi , xi+1]× [yj , yj+1].

For separable polynomials, the equivalent of piecewise linear
interpolation in 1D is the piecewise bilinear interpolation

φi ,j(x , y) = ai ,jxy + bi ,jx + ci ,jy + di ,j .

There are 4 unknown coefficients in φi ,j that can be found from the 4
data (function) values at the corners of rectangle Ωi ,j .

Note that the pieces of the interpolating function φi ,j(x , y) are not
linear (but also not quadratic since no x2 or y2) since they contain
quadratic product terms xy : bilinear functions.
This is because there is not a plane that passes through 4 generic
points in 3D.

A. Donev (Courant Institute) Lecture VIII 10/2014 32 / 45

Higher Dimensions

Bilinear Interpolation

It is better to think in terms of a basis set {φi ,j(x , y)}, where each
basis function φi ,j is itself piecewise bilinear, one at the node (i , j)-th
node of the grid, zero elsewhere:

φ(x) =
∑
i ,j

fi ,jφi ,j(x , y).

Furthermore, it is sufficient to look at a unit reference rectangle
Ω̂ = [0, 1]× [0, 1] since any other rectangle or even parallelogram
can be obtained from the reference one via a linear transformation:

Bi ,j Ω̂ + bi ,j = Ωi ,j ,

and the same transformation can then be applied to the interpolation
function:

φi ,j(x) = φ̂(Bi ,j x̂ + bi ,j).

A. Donev (Courant Institute) Lecture VIII 10/2014 33 / 45

Higher Dimensions

Bilinear Basis Functions

Consider one of the corners (0, 0) of the reference rectangle and the
corresponding basis φ̂0,0 restricted to Ω̂:

φ̂0,0(x̂ , ŷ) = (1− x̂)(1− ŷ)

For an actual grid, the basis function corresponding to a given interior
node is simply a composite of 4 such bilinear terms, one for each
rectangle that has that interior node as a vertex: Often called a tent
function.

If higher smoothness is required one can consider, for example,
bicubic Hermite interpolation (when derivatives fx , fy and fxy are
known at the nodes as well).

Generalization of bilinear to 3D is trilinear interpolation

φ(x , y , z) = axyz + bxy + cxz + dyz + ex + fy + gz + h,

which has 8 coefficients which can be solved for given the 8 values at
the vertices of the cube.

A. Donev (Courant Institute) Lecture VIII 10/2014 34 / 45

Higher Dimensions

Bilinear basis functions

0

0.5

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

Bilinear basis function φ
0,0

 on reference rectangle

−2

−1

0

1

2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

1

Bilinear basis function φ
3,3

 on a 5x5 grid

A. Donev (Courant Institute) Lecture VIII 10/2014 35 / 45

Higher Dimensions

Bicubic basis functions

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

10

0.2

0.4

0.6

0.8

1

−2

−1

0

1

2

−2

−1

0

1

2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Bicubic basis function φ
3,3

 on a 5x5 grid

A. Donev (Courant Institute) Lecture VIII 10/2014 36 / 45

Higher Dimensions

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles.
Similarly tetrahedral meshes in 3D.

A. Donev (Courant Institute) Lecture VIII 10/2014 37 / 45

Higher Dimensions

Basis functions on triangles

For irregular grids the x and y directions are no longer separable.

But the idea of using basis functions φi ,j , a reference triangle, and
piecewise polynomial interpolants still applies.

For a linear function we need 3 coefficients (x , y , const), for quadratic
6 (x , y , x2, y2, xy , const):

A. Donev (Courant Institute) Lecture VIII 10/2014 38 / 45

Higher Dimensions

Piecewise constant / linear basis functions

A. Donev (Courant Institute) Lecture VIII 10/2014 39 / 45

Higher Dimensions

In MATLAB

For regular grids the function

qz = interp2(x , y , z , qx , qy ,′ linear ′)

will evaluate the piecewise bilinear interpolant of the data
x , y , z = f (x , y) at the points (qx , qy).

Other method are ’spline’ and ’cubic’, and there is also interp3 for 3D.

For irregular grids one can use the old function griddata which will
generate its own triangulation or there are more sophisticated routines
to manipulate triangulations also.

A. Donev (Courant Institute) Lecture VIII 10/2014 40 / 45

Higher Dimensions

Regular grids

[x , y] = meshgrid (−2 : . 5 : 2 , −2 : . 5 : 2) ;
z = x .∗ exp(−x .ˆ2−y . ˆ 2) ;

t i = −2 : . 1 : 2 ;
[qx , qy] = meshgrid (t i , t i) ;

qz= i n t e r p 2 (x , y , z , qx , qy , ’ c ub i c ’) ;

mesh (qx , qy , qz) ; hold on ;
p lot3 (x , y , z , ’ o ’) ; hold o f f ;

A. Donev (Courant Institute) Lecture VIII 10/2014 41 / 45

Higher Dimensions

MATLAB’s interp2

−2

−1

0

1

2

−2

−1

0

1

2

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

A. Donev (Courant Institute) Lecture VIII 10/2014 42 / 45

Higher Dimensions

Irregular grids

x = rand (100 ,1)∗4−2; y = rand (100 ,1)∗4−2;
z = x .∗ exp(−x .ˆ2−y . ˆ 2) ;

t i = −2 : . 1 : 2 ;
[qx , qy] = meshgrid (t i , t i) ;

qz= g r i d d a t a (x , y , z , qx , qy , ’ c ub i c ’) ;

mesh (qx , qy , qz) ; hold on ;
p lot3 (x , y , z , ’ o ’) ; hold o f f ;

A. Donev (Courant Institute) Lecture VIII 10/2014 43 / 45

Higher Dimensions

MATLAB’s griddata

−2

−1

0

1

2

−2

−1

0

1

2

−0.4

−0.2

0

0.2

0.4

0.6

Piecewise linear

−2

−1

0

1

2

−2

−1

0

1

2

−0.4

−0.2

0

0.2

0.4

0.6

Cubic linear

A. Donev (Courant Institute) Lecture VIII 10/2014 44 / 45

Higher Dimensions

Conclusions/Summary

Interpolation means approximating function values in the interior of a
domain when there are known samples of the function at a set of
interior and boundary nodes.

Given a basis set for the interpolating functions, interpolation
amounts to solving a linear system for the coefficients of the basis
functions.

Polynomial interpolants in 1D can be constructed using several basis.

Using polynomial interpolants of high order is a bad idea: Not
accurate and not stable!

Instead, it is better to use piecewise polynomial interpolation:
constant, linear, Hermite cubic, cubic spline interpolant on each
interval.
In higher dimensions one must be more careful about how the domain
is split into disjoint elements (analogues of intervals in 1D): regular
grids (separable basis such as bilinear), or simplicial meshes
(triangular or tetrahedral).

A. Donev (Courant Institute) Lecture VIII 10/2014 45 / 45

	Function spaces
	Polynomial Interpolation in 1D
	Piecewise Polynomial Interpolation
	Higher Dimensions

