
Numerical Methods I
Numerical Computing

Aleksandar Donev
Courant Institute, NYU1

donev@courant.nyu.edu

1MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014

September 3rd, 2014

A. Donev (Courant Institute) Lecture I 9/2014 1 / 61

Outline

1 Logistics

2 Conditioning

3 Sources of Error

4 Roundoff Errors
IEEE
Floating-Point Computations
Propagation of Roundoff Errors

5 Truncation Error

6 Conclusions

7 Some Computing Notes

A. Donev (Courant Institute) Lecture I 9/2014 2 / 61

Logistics

Course Essentials

Course webpage:
http://cims.nyu.edu/~donev/Teaching/NMI-Fall2014

Registered students: NYU Courses for announcements, grades, and
sample solutions.

Office hours: 3 - 5 pm Tuesdays or by appointment.

No required textbook, but several recommended textbooks are
listed on the homepage and freely available and are highly
recommended.

Computing is an essential part: MATLAB will be the main tool. Get
access to it asap (e.g., Courant Labs).

Optional readings and MATLAB resources linked on course page.

A. Donev (Courant Institute) Lecture I 9/2014 3 / 61

http://cims.nyu.edu/~donev/Teaching/NMI-Fall2014

Logistics

Assignment 0: Questionnaire

Please email me the following information with subject “Numerical
Methods I questionnaire”:

1 Name, degree you are working on and class (year), and prior degree(s)
or professional experience.

2 List all programming languages/environments that you have used,
when and why, and your level of experience (just starting, beginner,
intermediate, advanced, wizzard).

3 Why did you choose this course? Have you taken any other course in
applied mathematics, numerical analysis, or computing.

4 What are your future plans/hopes for activities in the field of applied
and computational mathematics? Is there a specific area or
application you are interested in (e.g., theoretical numerical analysis,
finance, computational genomics)?

5 Was the first lecture at a reasonable level/pace for your background?

A. Donev (Courant Institute) Lecture I 9/2014 4 / 61

Logistics

Agenda

If you have not done it already: Review Linear Algebra and start
playing with MATLAB.

There will be regular homework assignments, usually computational,
but with lots of freedom. Submit the solutions on time (preferably
early), preferably as a PDF (give LaTex/lyx a try!), via NYU Courses.
Always submit codes electronically.

First assignment posted and due in two weeks.

There will be a takehome final similar to the homeworks but covering
a new relevant topic.

Please ask questions during class or office hours!

A. Donev (Courant Institute) Lecture I 9/2014 5 / 61

Logistics

Academic Integrity Policy

If you use any external source, even Wikipedia, make sure you
acknowledge it by referencing all help.
It is encouraged to discuss with other students the mathematical
aspects, algorithmic strategy, code design, techniques for debugging,
and compare results.
Copying of any portion of someone else’s solution or allowing others
to copy your solution is considered cheating.
Code sharing is not allowed. You must type (or create from things
you’ve typed using an editor, script, etc.) every character of code you
use.
Submitting an individual and independent final is crucial and no
collaboration will be allowed for the final.
Common bad justifications for copying:

We are too busy and the homework is very hard, so we cannot do it on
our own.
We do not copy each other but rather “work together.”
I just emailed Joe Doe my solution as a “reference.”

A. Donev (Courant Institute) Lecture I 9/2014 6 / 61

Conditioning

Conditioning of a Computational Problem

A rather generic computational problem is to find a solution x that
satisfies some condition F (x , d) = 0 for given data d .

Scientific computing is concerned with devising an algorithm for
computing x given d , implementing the algorithm in a code, and
computing the actual answer for some relevant data.

For example, consider the simple problem of computing x =
√

d if
you were not given an intrinsic function sqrt:

F (x , d) = x −
√

d .

Well-posed problem: Unique solution that depends continuously on
the data.
If we perturb d by a little, the solution x gets perturbed by a small
amount (can be made precise).

Otherwise it is an intrinsically ill-posed problem and no numerical
method can help with that.

A. Donev (Courant Institute) Lecture I 9/2014 7 / 61

Conditioning

Absolute and Relative Errors

A numerical algorithm always computes an approximate solution x̂
given some approximate data d instead of the (unknown) exact
solution x .

We define absolute error δx and relative error ε = δx/x :

x̂ = x + δx , x̂ = (1 + ε)x

The relative conditioning number

K = sup
δd 6=0

‖δx‖ / ‖x‖
‖δd‖ / ‖d‖

is an important intrinsic property of a computational problem.
Here sup stands for supremum, (almost) the same as maximum over
all perturbations of the data.

A. Donev (Courant Institute) Lecture I 9/2014 8 / 61

Conditioning

Conditioning Number

If K ∼ 1 the problem is well-conditioned. If the relative error in the
data is small, we can compute an answer to a similar relative accuracy.

An ill-conditioned problem is one that has a large condition number,
K � 1.

Note that ill-conditioining depends on the desired accuracy:
K is “large” if a given target solution accuracy of the solution
cannot be achieved for a given input accuracy of the data.

We may still sometimes solve a problem that is ill-conditioned, if it is
known that the possibly large error δx does not matter.
But we ought to always be aware of it!

A. Donev (Courant Institute) Lecture I 9/2014 9 / 61

Conditioning

Conditioning Example

Consider solving the equation, for some given d :

x3 − 3x2 + 3x − 1 = (x − 1)3 = d .

The solution (assume real numbers) is

x = d1/3 + 1.

If we now perturb d ← d + δd ,

x + δx = (d + δd)1/3 + 1 ⇒ δx = (d + δd)1/3 − d1/3

If we know d = 0 to within |δd | < 10−6 , then we only know x ≈ 1 to
within an absolute error

|δx | <
(
10−6

)
1/3 = 10−2

with the same relative error, which is much worse than the error in d
(ill-conditioned?).

This may not be a problem if all we care about is that (x − 1)3 ≈ 0,
and do not really care about x itself!

A. Donev (Courant Institute) Lecture I 9/2014 10 / 61

Conditioning

A Priori Error Analysis

It is great when the computational error in a given numerical result
can be bounded or estimated and the absolute or relative error
reported along with the result.

A priori analysis gives guaranteed error bounds but it may involve
quantities that are difficult to compute (e.g., matrix inverse, condition
number).

A posteriori analysis tries to estimate the error from quantities that
are actually computed.

Take the example

Solve the linear system Ax = b

where the matrix A is considered free of errors, but b is some input
data that has some error.

A. Donev (Courant Institute) Lecture I 9/2014 11 / 61

Conditioning

A priori Analysis

In forward error analysis one tries to estimate the error bounds on
the result in each operation in the algorithm in order to bound the
error in the result

‖δx‖ given ‖δb‖

It is often too pessimistic and hard to calculate: δx = A−1 (δb).

In backward error analysis one calculates, for a given output, how
much one would need to perturb the input in order for the answer to
be exact.

‖δb‖ given x̂ ≈ x

It is often much tighter and easier to perform than forward analysis:
δb = r = Ax̂− b.

Note that if b is only known/measured/represented with accuracy
smaller than ‖r‖ then x̂ is a perfectly good solution.

A posteriori analysis tries to estimate ‖δx‖ given ‖r‖.

A. Donev (Courant Institute) Lecture I 9/2014 12 / 61

Sources of Error

Computational Error

Numerical algorithms try to control or minimize, rather then eliminate, the
various computational errors:

Approximation error due to replacing the computational problem with an
easier-to-solve approximation. Also called discretization
error for ODEs/PDEs.

Truncation error due to replacing limits and infinite sequences and sums
by a finite number of steps. Closely related to approximation
error.

Roundoff error due to finite representation of real numbers and arithmetic
on the computer, x 6= x̂ .

Propagated error due to errors in the data from user input or previous
calculations in iterative methods.

Statistical error in stochastic calculations such as Monte Carlo
calculations.

A. Donev (Courant Institute) Lecture I 9/2014 13 / 61

Sources of Error

Consistency, Stability and Convergence

Instead of solving F (x , d) = 0 directly, many numerical methods generate
a sequence of solutions to

Fn(xn, dn) = 0, where n = 0, 1, 2, . . .

where for each n it is easier to obtain xn given d .

A numerical method is consistent if the approximation error vanishes
as Fn → F (typically n→∞).

A numerical method is stable if propagated errors decrease as the
computation progresses (n increases).

A numerical method is convergent if the numerical error can be made
arbitrarily small by increasing the computational effort (larger n).

Rather generally

consistency+stability→convergence

A. Donev (Courant Institute) Lecture I 9/2014 14 / 61

Sources of Error

Example: Consistency

[From Dahlquist & Bjorck] Consider solving

F (x) = f (x)− x = 0,

where f (x) is some non-linear function so that an exact solution is
not known.

A simple problem that is easy to solve is:

f (xn)− xn+1 = 0 ⇒ xn+1 = f (xn).

This corresponds to choosing the sequence of approximations:

Fn (xn, dn ≡ xn−1) = f (xn−1)− xn

This method is consistent because if dn = x is the solution, f (x) = x ,
then

Fn (xn, x) = x − xn ⇒ xn = x ,

which means that the true solution x is a fixed-point of the
iteration.

A. Donev (Courant Institute) Lecture I 9/2014 15 / 61

Sources of Error

Example: Convergence

For example, consider the calculation of square roots, x =
√

c.

Warm up MATLAB programming: Try these calculations numerically.

First, rewrite this as an equation:

f (x) = c/x = x

The corresponding fixed-point method

xn+1 = f (xn) = c/xn

oscillates between x0 and c/x0 since c/(c/x0) = x0.
The error does not decrease and the method does not converge.

But another choice yields an algorithm that converges (fast) for any
initial guess x0:

f (x) =
1

2

(c

x
+ x
)

A. Donev (Courant Institute) Lecture I 9/2014 16 / 61

Sources of Error

Example: Convergence

Now consider the Babylonian method for square roots

xn+1 =
1

2

(
c

xn
+ xn

)
, based on choosing f (x) =

1

2

(c

x
+ x
)
.

The relative error at iteration n is

εn =
xn −

√
c√

c
=

xn√
c
− 1 ⇒ xn = (1 + εn)

√
c.

It can now be proven that the error will decrease at the next step, at
least in half if εn > 1, and quadratically if εn < 1.

εn+1 =
xn+1√

c
− 1 =

1√
c
· 1

2

(
c

xn
+ xn

)
− 1 =

ε2
n

2(1 + εn)
.

For n > 1 we have εn ≥ 0 ⇒ εn+1 ≤ min

{
ε2
n

2
,
ε2
n

2εn
=
εn
2

}
A. Donev (Courant Institute) Lecture I 9/2014 17 / 61

Sources of Error

Example: (In)Stability

[From Dahlquist & Bjorck] Consider error propagation in evaluating

yn =

∫ 1

0

xn

x + 5
dx

based on the identity
yn + 5yn−1 = n−1.

Forward iteration yn = n−1 − 5yn−1, starting from y0 = ln(1.2),
enlarges the error in yn−1 by 5 times, and is thus unstable.

Backward iteration yn−1 = (5n)−1 − yn/5 reduces the error by 5 times
and is thus stable. But we need a starting guess?

Since yn < yn−1,

6yn < yn + 5yn−1 = n−1 < 6yn−1

and thus 0 < yn <
1

6n < yn−1 <
1

6(n−1) so for large n we have tight
bounds on yn−1 and the error should decrease as we go backward.

A. Donev (Courant Institute) Lecture I 9/2014 18 / 61

Sources of Error

Beyond Convergence

An algorithm will produce the correct answer if it is convergent, but...
Not all convergent methods are equal. We can differentiate them
further based on:

Accuracy How much computational work do you need to expand to get
an answer to a desired relative error?
The Babylonian method is very good since the error rapidly
decays and one can get relative error ε < 10−100 in no more
than 8 iterations if a smart estimate is used for x0 [see
Wikipedia article].

Robustness Does the algorithm work (equally) well for all (reasonable)
input data d? The Babylonian method converges for every
positive c and x0, and is thus robust.

Efficiency How fast does the implementation produce the answer?
This depends on the algorithm, on the computer, the
programming language, the programmer, etc. (more next
class)

A. Donev (Courant Institute) Lecture I 9/2014 19 / 61

Roundoff Errors

Representing Real Numbers

Computers represent everything using bit strings, i.e., integers in
base-2. Integers can thus be exactly represented. But not real
numbers! This leads to roundoff errors.

Assume we have N digits to represent real numbers on a computer
that can represent integers using a given number system, say decimal
for human purposes.

Fixed-point representation of numbers

x = (−1)s · [aN−2aN−3 . . . ak . ak−1 . . . a0]

has a problem with representing large or small numbers: 1.156 but
0.011.

A. Donev (Courant Institute) Lecture I 9/2014 20 / 61

Roundoff Errors

Floating-Point Numbers

Instead, it is better to use a floating-point representation

x = (−1)s · [0 . a1a2 . . . at] · βe = (−1)s ·m · βe−t ,

akin to the common scientific number representation: 0.1156 · 101

and 0.1156 · 10−1.

A floating-point number in base β is represented using one sign bit
s = 0 or 1, a t-digit integer mantissa 0 ≤ m = [a1a2 . . . at] ≤ βt − 1,
and an integer exponent L ≤ e ≤ U.

Computers today use binary numbers (bits), β = 2.

Also, for various reasons, numbers come in 32-bit and 64-bit packets
(words), sometimes 128 bits also.
Note that this is different from whether the machine is 32-bit or
64-bit, which refers to memory address widths.

A. Donev (Courant Institute) Lecture I 9/2014 21 / 61

Roundoff Errors IEEE

The IEEE Standard for Floating-Point Arithmetic (IEEE
754)

The IEEE 754 (also IEC559) standard documents:

Formats for representing and encoding real numbers using bit strings
(single and double precision).

Rounding algorithms for performing accurate arithmetic operations
(e.g., addition,subtraction,division,multiplication) and conversions
(e.g., single to double precision).

Exception handling for special situations (e.g., division by zero and
overflow).

A. Donev (Courant Institute) Lecture I 9/2014 22 / 61

Roundoff Errors IEEE

IEEE Standard Representations

Normalized single precision IEEE floating-point numbers (single
in MATLAB, float in C/C++, REAL in Fortran) have the
standardized storage format (sign+power+fraction)

Ns + Np + Nf = 1 + 8 + 23 = 32 bits

and are interpreted as

x = (−1)s · 2p−127 · (1.f)2,

where the sign s = 1 for negative numbers, the power 1 ≤ p ≤ 254
determines the exponent, and f is the fractional part of the
mantissa.

A. Donev (Courant Institute) Lecture I 9/2014 23 / 61

Roundoff Errors IEEE

IEEE representation example

[From J. Goodman’s notes] Take the number x = 2752 = 0.2752 · 104.
Converting 2752 to the binary number system

x = 211 + 29 + 27 + 26 = (101011000000)2 = 211 · (1.01011)2

= (−1)02138−127 · (1.01011)2 = (−1)02(10001010)2−127 · (1.01011)2

On the computer:

x = [s | p | f]

= [0 | 100, 0101, 0 | 010, 1100, 0000, 0000, 0000, 0000]

= (452c0000)16

fo rmat hex ;
>> a=s i n g l e (2 . 7 5 2 E3)
a =

452 c0000

A. Donev (Courant Institute) Lecture I 9/2014 24 / 61

Roundoff Errors IEEE

IEEE formats contd.

Double precision IEEE numbers (default in MATLAB, double in
C/C++, REAL(KIND(0.0d0)) in Fortran) follow the same principle,
but use 64 bits to give higher precision and range

Ns + Np + Nf = 1 + 11 + 52 = 64 bits

x = (−1)s · 2p−1023 · (1.f)2.

Higher (extended) precision formats are not really standardized or
widely implemented/used (e.g., quad=1 + 15 + 112 = 128 bits,
double double, long double).

There is also software-emulated variable precision arithmetic (e.g.,
Maple, MATLAB’s symbolic toolbox, libraries).

A. Donev (Courant Institute) Lecture I 9/2014 25 / 61

Roundoff Errors IEEE

IEEE non-normalized numbers

The extremal exponent values have special meaning:

value power p fraction f

±0 0 0

denormal (subnormal) 0 > 0

±∞(inf) 255 = 0

Not a number (NaN) 255 > 0

A denormal/subnormal number is one which is smaller than the
smallest normalized number (i.e., the mantissa does not start with 1).
For example, for single-precision IEEE

x̃ = (−1)s · 2−126 · (0.f)2.

Denormals are not always supported and may incur performance
penalties (specialized hardware instructions).

A. Donev (Courant Institute) Lecture I 9/2014 26 / 61

Roundoff Errors Floating-Point Computations

Important Facts about Floating-Point

Not all real numbers x , or even integers, can be represented exactly as
a floating-point number, instead, they must be rounded to the
nearest floating point number x̂ = fl(x).

The relative spacing or gap between a floating-point x and the
nearest other one is at most ε = 2−Nf , sometimes called ulp (unit of
least precision). In particular, 1 + ε is the first floating-point number
larger than 1.

Floating-point numbers have a relative rounding error that is
smaller than the machine precision or roundoff-unit u,

|x̂ − x |
|x |

≤ u = 2−(Nf +1) =

{
2−24 ≈ 6.0 · 10−8 for single precision

2−53 ≈ 1.1 · 10−16 for double precision

The rule of thumb is that single precision gives 7-8 digits of
precision and double 16 digits.

There is a smallest and largest possible number due to the limited
range for the exponent (note denormals).

A. Donev (Courant Institute) Lecture I 9/2014 27 / 61

Roundoff Errors Floating-Point Computations

Important Floating-Point Constants

Important: MATLAB uses double precision by default (for good reasons!).
Use x=single(value) to get a single-precision number.

MATLAB code Single precision Double precision

ε eps, eps(’single’) 2−23 ≈ 1.2 · 10−7 2−52 ≈ 2.2 · 10−16

xmax realmax 2128 ≈ 3.4 · 1038 21024 ≈ 1.8 · 10308

xmin realmin 2−126 ≈ 1.2 · 10−38 2−1022 ≈ 2.2 · 10−308

x̃max realmin*(1-eps) 2−126 ≈ 1.2 · 10−38 21024 ≈ 1.8 · 10308

x̃min realmin*eps 2−149 ≈ 1.4 · 10−45 2−1074 ≈ 4.9 · 10−324

A. Donev (Courant Institute) Lecture I 9/2014 28 / 61

Roundoff Errors Floating-Point Computations

IEEE Arithmetic

The IEEE standard specifies that the basic arithmetic operations
(addition,subtraction,multiplication,division) ought to be performed
using rounding to the nearest number of the exact result:

x̂ } ŷ = x̂ ◦ y

This guarantees that such operations are performed to within machine
precision in relative error (requires a guard digit for subtraction).

Floating-point addition and multiplication are not associative but
they are commutative.

Operations with infinities follow sensible mathematical rules (e.g.,
finite/inf = 0).

Any operation involving NaN’s gives a NaN (signaling or not), and
comparisons are tricky (see homework).

A. Donev (Courant Institute) Lecture I 9/2014 29 / 61

Roundoff Errors Floating-Point Computations

Floating-Point in Practice

Most scientific software uses double precision to avoid range and
accuracy issues with single precision (better be safe then sorry).
Single precision may offer speed/memory/vectorization advantages
however (e.g. GPU computing).

Do not compare floating point numbers (especially for loop
termination), or more generally, do not rely on logic from pure
mathematics.

Optimization, especially in compiled languages, can rearrange terms
or perform operations using unpredictable alternate forms (e.g.,
wider internal registers).
Using parenthesis helps , e.g. (x + y)− z instead of x + y − z , but
does not eliminate the problem.

Library functions such as sin and ln will typically be computed almost
to full machine accuracy, but do not rely on that for special/complex
functions.

A. Donev (Courant Institute) Lecture I 9/2014 30 / 61

Roundoff Errors Floating-Point Computations

Floating-Point Exceptions

Computing with floating point values may lead to exceptions, which
may be trapped or halt the program:

Divide-by-zero if the result is ±∞, e.g., 1/0.

Invalid if the result is a NaN, e.g., taking
√
−1 (but not MATLAB

uses complex numbers!).

Overflow if the result is too large to be represented, e.g., adding two
numbers, each on the order of realmax .

Underflow if the result is too small to be represented, e.g., dividing a
number close to realmin by a large number.
Note that if denormals are supported one gets gradual
underflow, which helps but may cost more.

Numerical software needs to be careful about avoiding exceptions
where possible:
Mathematically equivalent expressions (forms) are not
necessarily computationally-equivalent!

A. Donev (Courant Institute) Lecture I 9/2014 31 / 61

Roundoff Errors Floating-Point Computations

Avoiding Overflow / Underflow

For example, computing
√

x2 + y 2 may lead to overflow in computing
x2 + y 2 even though the result does not overflow.

MATLAB’s hypot function guards against this. For example (see
Wikipedia “hypot”),

√
x2 + y 2 = |x |

√
1 +

(y

x

)2
ensuring that |x | > |y |

works correctly!

These kind of careful constructions may have higher computational
cost (more CPU operations) or make roundoff errors worse.

A more sophisticated alternative is to trap floating exceptions (e.g.,
throw/catch construct) when they happen and then use an alternative
mathematical form, depending on what exception happened.

A. Donev (Courant Institute) Lecture I 9/2014 32 / 61

Roundoff Errors Propagation of Roundoff Errors

Propagation of Errors

Assume that we are calculating something with numbers that are not
exact, e.g., a rounded floating-point number x̂ versus the exact real
number x .

For IEEE representations, recall that

|x̂ − x |
|x |

≤ u =

{
6.0 · 10−8 for single precision

1.1 · 10−16 for double precision

In general, the absolute error δx = x̂ − x may have contributions
from each of the different types of error (roundoff, truncation,
propagated, statistical).

Assume we have an estimate or bound for the relative error∣∣∣∣δx

x

∣∣∣∣ / εx � 1,

based on some analysis, e.g., for roundoff error the IEEE standard
determines εx = u.

A. Donev (Courant Institute) Lecture I 9/2014 33 / 61

Roundoff Errors Propagation of Roundoff Errors

Propagation of Errors: Multiplication/Division

How does the relative error change (propagate) during numerical
calculations?

For multiplication and division, the bounds for the relative error in
the operands are added to give an estimate of the relative error in the
result:

εxy =

∣∣∣∣(x + δx) (y + δy)− xy

xy

∣∣∣∣ =

∣∣∣∣δx

x
+
δy

y
+
δx

x

δy

y

∣∣∣∣ / εx + εy .

This means that multiplication and division are safe, since operating
on accurate input gives an output with similar accuracy.

A. Donev (Courant Institute) Lecture I 9/2014 34 / 61

Roundoff Errors Propagation of Roundoff Errors

Addition/Subtraction

For addition and subtraction, however, the bounds on the absolute
errors add to give an estimate of the absolute error in the result:

|δ(x + y)| = |(x + δx) + (y + δy)− xy | = |δx + δy | < |δx |+ |δy | .

This is much more dangerous since the relative error is not
controlled, leading to so-called catastrophic cancellation.

A. Donev (Courant Institute) Lecture I 9/2014 35 / 61

Roundoff Errors Propagation of Roundoff Errors

Loss of Digits

Adding or subtracting two numbers of widely-differing magnitude
leads to loss of accuracy due to roundoff error.

If you do arithmetic with only 5 digits of accuracy, and you calculate

1.0010 + 0.00013000 = 1.0011,

only registers one of the digits of the small number!

This type of roundoff error can accumulate when adding many terms,
such as calculating infinite sums.

As an example, consider computing the harmonic sum numerically:

H(N) =
N∑
i=1

1

i
= Ψ(N + 1) + γ,

where the digamma special function Ψ is psi in MATLAB.
We can do the sum in forward or in reverse order.

A. Donev (Courant Institute) Lecture I 9/2014 36 / 61

Roundoff Errors Propagation of Roundoff Errors

Growth of Truncation Error

% C a l c u l a t i n g t he harmonic sum f o r a g i v e n i n t e g e r N:
funct ion nhsum=harmonic (N)

nhsum =0.0;
f o r i =1:N

nhsum=nhsum +1.0/ i ;
end

end

% S i n g l e−p r e c i s i o n v e r s i o n :
funct ion nhsum=harmonicSP (N)

nhsumSP=s i n g l e (0 . 0) ;
f o r i =1:N % Or , f o r i=N:−1:1

nhsumSP=nhsumSP+s i n g l e (1 . 0) / s i n g l e (i) ;
end
nhsum=d o u b l e (nhsumSP) ;

end

A. Donev (Courant Institute) Lecture I 9/2014 37 / 61

Roundoff Errors Propagation of Roundoff Errors

contd.

n p t s =25;
Ns=zeros (1 , n p t s) ; hsum=zeros (1 , n p t s) ;
r e l e r r=zeros (1 , n p t s) ; r e l e r r S P=zeros (1 , n p t s) ;
nhsum=zeros (1 , n p t s) ; nhsumSP=zeros (1 , n p t s) ;
f o r i =1: n p t s

Ns (i)=2ˆ i ;
nhsum (i)=harmonic (Ns (i)) ;
nhsumSP (i)=harmonicSP (Ns (i)) ;
hsum (i)=(p s i (Ns (i)+1)− p s i (1)) ; % T h e o r e t i c a l r e s u l t
r e l e r r (i)=abs (nhsum (i)−hsum (i)) / hsum (i) ;
r e l e r r S P (i)=abs (nhsumSP (i)−hsum (i)) / hsum (i) ;

end

A. Donev (Courant Institute) Lecture I 9/2014 38 / 61

Roundoff Errors Propagation of Roundoff Errors

contd.

f i g u r e (1) ;
l o g l o g (Ns , r e l e r r , ’ ro−− ’ , Ns , r e l e r r S P , ’ bs− ’) ;
t i t l e (’ E r r o r i n harmonic sum ’) ;
x l a b e l (’N ’) ; y l a b e l (’ R e l a t i v e e r r o r ’) ;
l egend (’ d o u b l e ’ , ’ s i n g l e ’ , ’ L o c a t i o n ’ , ’ NorthWest ’) ;

f i g u r e (2) ;
s e m i l o g x (Ns , nhsum , ’ ro−− ’ , Ns , nhsumSP , ’ bs : ’ , Ns , hsum , ’ g.− ’) ;
t i t l e (’ Harmonic sum ’) ;
x l a b e l (’N ’) ; y l a b e l (’H(N) ’) ;
l egend (’ d o u b l e ’ , ’ s i n g l e ’ , ’ ”e x a c t ” ’ , ’ L o c a t i o n ’ , ’ NorthWest ’) ;

A. Donev (Courant Institute) Lecture I 9/2014 39 / 61

Roundoff Errors Propagation of Roundoff Errors

Results: Forward summation

10
0

10
2

10
4

10
6

10
8

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Error in harmonic sum

N

R
e

la
ti
v
e

 e
rr

o
r

double

single

10
0

10
2

10
4

10
6

10
8

0

2

4

6

8

10

12

14

16

18
Harmonic sum

N

H
(N

)

double

single

"exact"

A. Donev (Courant Institute) Lecture I 9/2014 40 / 61

Roundoff Errors Propagation of Roundoff Errors

Results: Backward summation

10
0

10
2

10
4

10
6

10
8

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Error in harmonic sum

N

R
e

la
ti
v
e

 e
rr

o
r

double

single

10
0

10
2

10
4

10
6

10
8

0

2

4

6

8

10

12

14

16

18
Harmonic sum

N

H
(N

)

double

single

"exact"

A. Donev (Courant Institute) Lecture I 9/2014 41 / 61

Roundoff Errors Propagation of Roundoff Errors

Numerical Cancellation

If x and y are close to each other, x − y can have reduced accuracy
due to catastrophic cancellation.
For example, using 5 significant digits we get

1.1234− 1.1223 = 0.0011,

which only has 2 significant digits!

If gradual underflow is not supported x − y can be zero even if x and
y are not exactly equal.

Consider, for example, computing the smaller root of the quadratic
equation

x2 − 2x + c = 0

for |c| � 1, and focus on propagation/accumulation of roundoff
error.

A. Donev (Courant Institute) Lecture I 9/2014 42 / 61

Roundoff Errors Propagation of Roundoff Errors

Cancellation example

Let’s first try the obvious formula

x = 1−
√

1− c.

Note that if |c| ≤ u the subtraction 1− c will give 1 and thus x = 0.
How about u � |c| � 1.

The calculation of 1− c in floating-point arithmetic adds the absolute
errors,

fl(1− c)− (1− c) ≈ |1| · u + |c| · u ≈ u,

so the absolute and relative errors are on the order of the roundoff
unit u for small c.

A. Donev (Courant Institute) Lecture I 9/2014 43 / 61

Roundoff Errors Propagation of Roundoff Errors

example contd.

Assuming that the numerical sqrt function computes the root to
within roundoff, i.e., to within relative accuracy of u.

Taking the square root does not change the relative error by more
than a factor of 2:

√
x + δx =

√
x

(
1 +

δx

x

)1/2

≈
√

x

(
1 +

δx

2x

)
.

For quick analysis, we will simply ignore constant factors such as 2,
and estimate that

√
1− c has an absolute and relative error of order

u.

The absolute errors again get added for the subtraction 1−
√

1− c,
leading to the estimate of the relative error∣∣∣∣δx

x

∣∣∣∣ ≈ εx =
u

x
.

A. Donev (Courant Institute) Lecture I 9/2014 44 / 61

Roundoff Errors Propagation of Roundoff Errors

Avoiding Cancellation

For small c the solution is

x = 1−
√

1− c ≈ c

2
,

so the relative error can become much larger than u when c is close
to u,

εx ≈
u

c
.

Just using the Taylor series result, x ≈ c
2 , already provides a good

approximation for small c. Here we can do better!

Rewriting in mathematically-equivalent but numerically-preferred
form is the first try, e.g., instead of

1−
√

1− c use
c

1 +
√

1− c
,

which does not suffer any problem as c becomes smaller, even smaller
than roundoff!

A. Donev (Courant Institute) Lecture I 9/2014 45 / 61

Truncation Error

Local Truncation Error

To recap: Approximation error comes about when we replace a
mathematical problem with some easier to solve approximation.

This error is separate and in addition to from any numerical
algorithm or computation used to actually solve the approximation
itself, such as roundoff or propagated error.

Truncation error is a common type of approximation error that comes
from replacing infinitesimally small quantities with finite step sizes
and truncating infinite sequences/sums with finite ones.

This is the most important type of error in methods for numerical
interpolation, integration, solving differential equations, and others.

A. Donev (Courant Institute) Lecture I 9/2014 46 / 61

Truncation Error

Taylor Series

Analysis of local truncation error is almost always based on using
Taylor series to approximate a function around a given point x :

f (x + h) =
∞∑
n=0

hn

n!
f (n)(x) = f (x) + hf ′(x) +

h2

2
f ′′(x) + . . . ,

where we will call h the step size.

This converges for finite h only for analytic functions (smooth,
differentiable functions).

We cannot do an infinite sum numerically, so we truncate the sum:

f (x + h) ≈ Fp(x , h) =

p∑
n=0

hn

n!
f (n)(x).

What is the truncation error in this approximation?
[Note: This kind of error estimate is one of the most commonly used
in numerical analysis.]

A. Donev (Courant Institute) Lecture I 9/2014 47 / 61

Truncation Error

Taylor Remainder Theorem

The remainder theorem of calculus provides a formula for the error
(for sufficiently smooth functions):

f (x + h)− Fp(x , h) =
hp+1

(p + 1)!
f (p+1)(ξ),

where x ≤ ξ ≤ x + h.

In general we do not know what the value of ξ is, so we need to
estimate it. We want to know what happens for small step size h.

If f (p+1)(x) does not vary much inside the interval [x , x + h], that is,
f (x) is sufficiently smooth and h is sufficiently small, then we can
approximate ξ ≈ x .

This simply means that we estimate the truncation error with the
first neglected term:

f (x + h)− Fp(x , h) ≈ hp+1

(p + 1)!
f (p+1)(x).

A. Donev (Courant Institute) Lecture I 9/2014 48 / 61

Truncation Error

The Big O notation

It is justified more rigorously by looking at an asymptotic expansion
for small h :

|f (x + h)− Fp(x , h)| = O(hp+1).

Here the big O notation means that for small h the error is of
smaller magnitude than

∣∣hp+1
∣∣.

A function g(x) = O(G (x)) if |g(x)| ≤ C |G (x)| whenever x < x0 for
some finite constant C > 0.

Usually, when we write g(x) = O(G (x)) we mean that g(x) is of the
same order of magnitude as G (x) for small x ,

|g(x)| ≈ C |G (x)| .

For the truncated Taylor series C = f (p+1)(x)
(p+1)! .

A. Donev (Courant Institute) Lecture I 9/2014 49 / 61

Conclusions

Conclusions/Summary

No numerical method can compensate for an ill-conditioned
problem. But not every numerical method will be a good one for a
well-conditioned problem.

A numerical method needs to control the various computational
errors (approximation, truncation, roundoff, propagated,
statistical) while balancing computational cost.

A numerical method must be consistent and stable in order to
converge to the correct answer.

The IEEE standard standardizes the single and double precision
floating-point formats, their arithmetic, and exceptions. It is
widely implemented but almost never in its entirety.

Numerical overflow, underflow and cancellation need to be carefully
considered and may be avoided.
Mathematically-equivalent forms are not
numerically-equivalent!

A. Donev (Courant Institute) Lecture I 9/2014 50 / 61

Some Computing Notes

Peculiarities of MATLAB

MATLAB is an interpreted language, meaning that commands are
interpreted and executed as encountered. MATLAB caches some stuff
though...

Many of MATLAB’s intrinsic routines are however compiled and
optimized and often based on well-known libraries (BLAS, LAPACK,
FFTW, etc.).

Variables in scripts/worspace are global and persist throughout an
interactive session (use whos for info and clear to clear workspace).

Every variable in MATLAB is, unless specifically arranged otherwise, a
matrix, double precision float if numerical.

Vectors (column or row) are also matrices for which one of the
dimensions is 1.

Complex arithmetic and complex matrices are used where necessary.

A. Donev (Courant Institute) Lecture I 9/2014 51 / 61

Some Computing Notes

Matrices

>> format compact ; format l o n g
>> x=−1; % A s c a l a r t ha t i s r e a l l y a 1x1 mat r i x
>> whos (’ x ’)

Name S i z e Bytes C l a s s A t t r i b u t e s
x 1 x1 8 d o u b l e

>> y=s q r t (x) % Requ i r e s complex a r i t hm e t i c
y = 0 + 1.000000000000000 i
>> whos (’ y ’)

Name S i z e Bytes C l a s s A t t r i b u t e s
y 1 x1 16 d o u b l e complex

>> s i z e (x)
ans = 1 1
>> x (1)
ans = −1
>> x (1 , 1)
ans = −1
>> x (3)=1;
>> x
x = −1 0 1

A. Donev (Courant Institute) Lecture I 9/2014 52 / 61

Some Computing Notes

Vectorization / Optimization

MATLAB uses dynamic memory management (including garbage
collection), and matrices are re-allocated as needed when new
elements are added.

It is however much better to pre-allocate space ahead of time using,
for example, zeros.

The colon notation is very important in accessing array sections, and
x is different from x(:).

Avoid for loops unless necessary: Use array notation and intrinsic
functions instead.

To see how much CPU (computing) time a section of code took, use
tic and toc (but beware of timing small sections of code).

MATLAB has built-in profiling tools (help profile).

A. Donev (Courant Institute) Lecture I 9/2014 53 / 61

Some Computing Notes

Pre-allocation (fibb.m)

format compact ; format l o n g
c l e a r ; % C l e a r a l l v a r i a b l e s from memory

N=100000; % The number o f i t e r a t i o n s

% Try commenting t h i s l i n e out :
f=zeros (1 ,N) ; % Pre−a l l o c a t e f

t i c ;
f (1)=1;
f o r i =2:N

f (i)= f (i−1)+ i ;
end
e l a p s e d=toc ;

f p r i n t f (’ The r e s u l t i s f (%d)=%g , computed i n %g s \n ’ , . . .
N, f (N) , e l a p s e d) ;

A. Donev (Courant Institute) Lecture I 9/2014 54 / 61

Some Computing Notes

Vectorization (vect.m)

funct ion v e c t (v e c t o r i z e)
N=1000000; % The number o f e l e m e n t s
x=l i n s p a c e (0 , 1 ,N) ; % G r i d o f N equ i−spaced p o i n t s

t i c ;
i f (v e c t o r i z e) % V e c t o r i z e d

x=s q r t (x) ;
e l s e % Non−v e c t o r i z e d

f o r i =1:N
x (i)= s q r t (x (i)) ;

end
end
e l a p s e d=toc ;

f p r i n t f (’CPU t ime f o r N=%d i s %g s \n ’ , N, e l a p s e d) ;
end

A. Donev (Courant Institute) Lecture I 9/2014 55 / 61

Some Computing Notes

MATLAB examples

>> f i b b % Without pre−a l l o c a t i n g
The r e s u l t i s f (100000)=5.00005 e +09, computed i n 6 .53603 s

>> f i b b % Pre−a l l o c a t i n g
The r e s u l t i s f (100000)=5.00005 e +09, computed i n 0 .000998 s

>> v e c t (0) % Non−v e c t o r i z e d
CPU t ime f o r N=1000000 i s 0 .074986 s

>> v e c t (1) % V e c t o r i z e d −− don ’ t t r u s t t he a c t u a l number
CPU t ime f o r N=1000000 i s 0 .002058 s

A. Donev (Courant Institute) Lecture I 9/2014 56 / 61

Some Computing Notes

Vectorization / Optimization

Recall that everything in MATLAB is a double-precision matrix, called
array.

Row vectors are just matrices with first dimension 1. Column vectors
have row dimension 1. Scalars are 1× 1 matrices.

The syntax x ′ can be used to construct the conjugate transpose of
a matrix.

The colon notation can be used to select a subset of the elements of
an array, called an array section.

The default arithmetic operators, +, -, *, / and ˆ are matrix
addition/subtraction/multiplication, linear solver and matrix
power.

If you prepend a dot before an operator you get an element-wise
operator which works for arrays of the same shape.

A. Donev (Courant Institute) Lecture I 9/2014 57 / 61

Some Computing Notes

Pre-allocation (fibb.m)

>> x =[1 2 3 ; 4 5 6] % C o n s t r u c t a m a t r i x
x = 1 2 3

4 5 6

>> s i z e (x) % Shape o f t he m a t r i x x
ans = 2 3

>> y=x (:) % A l l e l e m e n t s o f y
y = 1 4 2 5 3 6

>> s i z e (y)
ans = 6 1

>> x (1 , 1 : 3)
ans = 1 2 3

>> x (1 : 2 : 6)
ans = 1 2 3

A. Donev (Courant Institute) Lecture I 9/2014 58 / 61

Some Computing Notes

Pre-allocation (fibb.m)

>> sum (x)
ans =

5 7 9

>> sum (x (:))
ans =

21

>> z=1 i ; % Imag ina r y u n i t

>> y=x+z
y =

1.0000 + 1.0000 i 2 .0000 + 1.0000 i 3 .0000 + 1.0000 i
4 .0000 + 1.0000 i 5 .0000 + 1.0000 i 6 .0000 + 1.0000 i

>> y ’
ans =

1.0000 − 1 .0000 i 4 .0000 − 1 .0000 i
2 .0000 − 1 .0000 i 5 .0000 − 1 .0000 i
3 .0000 − 1 .0000 i 6 .0000 − 1 .0000 i

A. Donev (Courant Institute) Lecture I 9/2014 59 / 61

Some Computing Notes

Pre-allocation (fibb.m)

>> x∗y
??? E r r o r u s i n g ==> mtimes
I n n e r m a t r i x d i m e n s i o n s must a g r e e .

>> x .∗ y
ans =

1.0000 + 1.0000 i 4 .0000 + 2.0000 i 9 .0000 + 3.0000 i
16 .0000 + 4.0000 i 25 .0000 + 5.0000 i 36 .0000 + 6.0000 i

>> x∗y ’
ans =

14.0000 − 6 .0000 i 32 .0000 − 6 .0000 i
32 .0000 −15.0000 i 77 .0000 −15.0000 i

>> x ’∗ y
ans =

17.0000 + 5.0000 i 22 .0000 + 5.0000 i 27 .0000 + 5.0000 i
22 .0000 + 7.0000 i 29 .0000 + 7.0000 i 36 .0000 + 7.0000 i
27 .0000 + 9.0000 i 36 .0000 + 9.0000 i 45 .0000 + 9.0000 i

A. Donev (Courant Institute) Lecture I 9/2014 60 / 61

Some Computing Notes

Coding Guidelines

Learn to reference the MATLAB help: Including reading the
examples and “fine print” near the end, not just the simple usage.

Indendation, comments, and variable naming make a big
difference! Code should be readable by others.

Spending a few extra moments on the code will pay off when using it.

Spend some time learning how to plot in MATLAB, and in
particular, how to plot with different symbols, lines and colors using
plot, loglog, semilogx, semilogy.

Learn how to annotate plots: xlim, ylim, axis, xlabel, title, legend.
The intrinsics num2str or sprintf can be used to create strings with
embedded parameters.

Finer controls over fonts, line widths, etc., are provided by the
intrinsic function set...including using the LaTex interpreter to typeset
mathematical notation in figures.

A. Donev (Courant Institute) Lecture I 9/2014 61 / 61

	Logistics
	Conditioning
	Sources of Error
	Roundoff Errors
	IEEE
	Floating-Point Computations
	Propagation of Roundoff Errors

	Truncation Error
	Conclusions
	Some Computing Notes

