Numerical Methods I Eigenvalue Problems

Aleksandar Donev

Courant Institute, NYU¹ donev@courant.nyu.edu

¹MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014

October 2nd, 2014

Outline

- Review of Linear Algebra: Eigenvalues
- 2 Conditioning of Eigenvalue Problems
- 3 Computing Eigenvalues and Eigenvectors
- 4 Methods based on QR factorizations
- Conclusions

Eigenvalue Decomposition

• For a square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, there exists at least one λ such that

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \quad \Rightarrow \quad (\mathbf{A} - \lambda\mathbf{I})\,\mathbf{y} = \mathbf{0}$$

• Putting the eigenvectors \mathbf{x}_j as columns in a matrix \mathbf{X} , and the eigenvalues λ_j on the diagonal of a diagonal matrix $\mathbf{\Lambda}$, we get

$$AX = X\Lambda$$
.

 A matrix is non-defective or diagonalizable if there exist n linearly independent eigenvectors, i.e., if the matrix X is invertible:

$$\mathbf{X}^{-1}\mathbf{A}\mathbf{X} = \mathbf{\Lambda}$$

$$\mathbf{A} = \mathbf{X}\mathbf{\Lambda}\mathbf{X}^{-1}.$$

• The transformation from **A** to $\Lambda = X^{-1}AX$ is called a **similarity** transformation and it preserves the eigenspace.

Unitarily Diagonalizable Matrices

• A matrix is unitarily diagonalizable if there exist n linearly independent orthogonal eigenvectors, i.e., if the matrix X can be chosen to be unitary (orthogonal), $X \equiv U$, where $U^{-1} = U^*$:

$$A = U\Lambda U^{\star}$$
.

Note that unitary matrices generalize orthogonal matrices to the complex domain, so we use **adjoints** (conjugate transposes) instead of transposes throughout.

 Theorem: A matrix is unitarily diagonalizable iff it is normal, i.e., it commutes with its adjoint:

$$A^*A = AA^*$$
.

• Theorem: Hermitian (symmetric) matrices, $A^* = A$, are unitarily diagonalizable and have real eigenvalues.

Left Eigenvectors

• The usual eigenvectors are more precisely called **right eigenvectors**. There is also **left eigenvector** corresponding to a given eigenvalue λ

$$\mathbf{y}^{\star}\mathbf{A} = \lambda \mathbf{y}^{\star} \quad \Rightarrow \quad \mathbf{A}^{\star}\mathbf{y} = \lambda \mathbf{y}.$$

$$\mathbf{Y}^{\star}\mathbf{A}=\mathbf{\Lambda}\mathbf{Y}^{\star}$$

For a matrix that is diagonalizable, observe that

$$\mathbf{Y}^{\star} = \mathbf{X}^{-1}$$

and so the left eigenvectors provide no new information.

• For unitarily diagonalizable matrices, $\mathbf{Y} = (\mathbf{X}^{-1})^* = \mathbf{U}$, so that the left and right eigenvectors coincide.

Non-diagonalizable Matrices

 For matrices that are not diagonalizable, one can use Jordan form factorizations, or, more relevant to numerical mathematics, the Schur factorization (decomposition):

$$A = UTU^*$$

where **T** is **upper-triangular**.

- The eigenvalues are on the diagonal of **T**.
- Note: Observe that $\mathbf{A}^* = (\mathbf{U}\mathbf{T}\mathbf{U}^*)^* = \mathbf{U}\mathbf{T}^*\mathbf{U}^*$ so for Hermitian matrices $\mathbf{T} = \mathbf{T}^*$ is real diagonal.
- An important property / use of eigenvalues:

$$A^{n} = (UTU^{*})(UTU^{*})\cdots(UTU^{*}) = UT(U^{*}U)T(U^{*}U)\cdots TU^{*}$$

$$A^n = UT^nU^*$$

Sensitivity of Eigenvalues

• Now consider a perturbation of a diagonalizable matrix $\delta {\bf A}$ and see how perturbed the similar matrix becomes:

$$\mathbf{X}^{-1} (\mathbf{A} + \delta \mathbf{A}) \mathbf{X} = \mathbf{\Lambda} + \delta \mathbf{\Lambda} \quad \Rightarrow$$

$$\delta \mathbf{\Lambda} = \mathbf{X}^{-1} (\delta \mathbf{A}) \mathbf{X} \quad \Rightarrow$$

$$\|\delta \mathbf{\Lambda}\| \le \|\mathbf{X}^{-1}\| \|\delta \mathbf{A}\| \|\mathbf{X}\| = \kappa (\mathbf{X}) \|\delta \mathbf{A}\|$$

- Conclusion: The conditioning of the eigenvalue problem is related to the conditioning of the matrix of eigenvectors.
- If X is unitary then $\|\mathbf{X}\|_2 = 1$ (from now on we exclusively work with the 2-norm): Unitarily diagonalizable matrices are always perfectly conditioned!
- Warning: The absolute error in all eigenvalues is of the same order, meaning that the relative error will be very large for the smallest eigenvalues.

Sensitivity of Individual Eigenvalues

PERTURBATION
$$A \times = \lambda \times$$
ANALYSIS $A(\mathcal{E}) = A + \mathcal{E} \cdot \delta A$, $\mathcal{E} \ll 1$

PIFFERENTATE $A(\mathcal{E}) \cdot \lambda(\mathcal{E}) = \lambda(\mathcal{E}) \cdot \lambda(\mathcal{E})$

PRE-MULTIPLY $\rightarrow (\delta A) \cdot \lambda + A \cdot \lambda' = \lambda' \times \lambda + \lambda \times'$

BY $y^*(\delta A) \times + (y^*A) \times' = \lambda' \times \lambda + \lambda \times'$
 $\lambda'(y \cdot x) + (\lambda y^*) \times (y^*A) \times (y^*A$

Sensitivity of Individual Eigenvalues

$$\delta \lambda \approx \frac{\mathbf{y}^{\star} \left(\delta \mathbf{A} \right) \mathbf{x}}{\mathbf{y}^{\star} \mathbf{x}}$$

Recalling the Cauchy-Schwartz inequality:

$$|\mathbf{y} \cdot \mathbf{x}| = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta_{xy} \le \|\mathbf{x}\| \|\mathbf{y}\|$$

$$|\delta \lambda| \leq \frac{\|\mathbf{x}\| \, \|\delta \mathbf{A}\| \, \|\mathbf{y}\|}{\|\mathbf{x}\| \, \|\mathbf{y}\| \cos \theta_{xy}} = \frac{\|\delta \mathbf{A}\|}{\cos \theta_{xy}}$$

Defining a conditioning number for a given eigenvalue

$$\kappa\left(\lambda,\mathbf{A}
ight) = \sup_{\delta\mathbf{A}} rac{\left|\delta\lambda
ight|}{\left\|\delta\mathbf{A}
ight\|} = rac{1}{\cos heta_{\mathsf{x}\mathsf{y}}}$$

• For unitarily diagonalizable matrices y = x and thus $\kappa(\lambda, A) = 1$: perfectly conditioned!

Sensitivity of Eigenvectors

 A priori estimate: The conditioning number for the eigenvector itself depends on the separation between the eigenvalues

$$\kappa\left(\mathbf{x}, \mathbf{A}\right) = \left(\min_{j} |\lambda - \lambda_{j}|\right)^{-1}$$

- This indicates that **multiple eigenvalues require care**. Even for Hermitian matrices eigenvectors are hard to compute.
- If there is a defective (non-diagonalizable) matrix with eigenvalue for which the difference between the algebraic and geometric multiplicities is d > 0, then

$$\delta \lambda \sim \|\delta \mathbf{A}\|^{1/(1+d)}$$

which means the conditioning number is infinite: **Defective eigenvalues are very badly conditioned**.

The need for iterative algorithms

- The eigenvalues are roots of the characteristic polynomial of A, which is generally of order n.
- According to Abel's theorem, there is no closed-form (rational) solution for n > 5.
- All eigenvalue algorithms must be iterative!
 This is a fundamental difference from, example, linear solvers.
- There is an important distinction between iterative methods to:
 - Compute all eigenvalues (similarity transformations).
 - Compute **only one or a few eigenvalues**, typically the smallest or the largest one (power-like methods).
- Bounds on eigenvalues are important, e.g., Courant-Fisher theorem for the Rayleigh quotient:

$$\min \lambda \leq r_A(\mathbf{x}) = \frac{\mathbf{x}^* \mathbf{A} \mathbf{x}}{\mathbf{x}^* \mathbf{x}} \leq \max \lambda$$

The Power Method

Recall that for a diagonalizable matrix

$$A^n = X\Lambda^n X^{-1}$$

- and assume $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \cdots |\lambda_n|$ and that the columns of **X** are normalized, $||\mathbf{x}_i|| = 1$.
- ullet Any **initial guess** vector ${f q}_0$ can be represented in the linear basis formed by the eigenvectors

$$\mathbf{q}_0 = \mathbf{X}\mathbf{a}$$

 Recall iterative methods for linear systems: Multiply a vector with the matrix A many times:

$$\mathbf{q}_{k+1} = \mathbf{A}\mathbf{q}_k$$

$$\mathbf{q}_n = \mathbf{A}^n \mathbf{q}_0 = (\mathbf{X} \mathbf{\Lambda}^n \mathbf{X}^{-1}) \, \mathbf{X} \mathbf{a} = \mathbf{X} \, (\mathbf{\Lambda}^n \mathbf{a})$$

Power Method

• As $n \to \infty$, the eigenvalue of largest modulus λ_0 will dominate,

$$oldsymbol{\Lambda}^n = \lambda_1^n \mathsf{Diag} \left\{ 1, \left(rac{\lambda_2}{\lambda_1}
ight)^n, \dots
ight\} o \lambda_1^n \mathsf{Diag} \left\{ 1, 0, \dots, 0
ight\}$$

$$\mathbf{q}_n = \mathbf{X} (\mathbf{\Lambda}^n \mathbf{a}) o \lambda_1^n \mathbf{X} \left[egin{array}{c} a_1 \ 0 \ dots \ 0 \end{array}
ight] = \lambda_1^n \mathbf{x}_1$$

Therefore the normalized iterates converge to the eigenvector:

$$\tilde{\mathbf{q}}_n = rac{\mathbf{q}_n}{\|\mathbf{q}_n\|}
ightarrow \mathbf{x}_1$$

• The Rayleigh quotient converges to the eigenvalue:

$$r_{A}(\mathbf{q}_{n}) = \frac{\mathbf{q}_{n}^{\star} \mathbf{A} \mathbf{q}_{n}}{\mathbf{q}_{n} \cdot \mathbf{q}_{n}} = \tilde{\mathbf{q}}_{n}^{\star} \mathbf{A} \tilde{\mathbf{q}}_{n} \to \lambda_{1}$$

An alternative derivation

$$\eta_{n} = A \quad \eta_{0} = \sum_{n} a_{i} \cdot x_{i}$$

$$= \sum_{n} a_{i} \left(A^{n} \times_{i}\right) = \sum_{n} a_{i} \left(\lambda_{i}^{n} \times_{i}\right) = \sum_{n} a_{i} \lambda_{1} \left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{n} \cdot x_{i} \Rightarrow a_{1} \lambda_{1} \times_{1} + O\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}$$

$$\Rightarrow \int_{n \to \infty} a_{i} \left(\lambda_{i}^{n} \times_{i}\right) = \sum_{n \to \infty} a_{1} \lambda_{1} \times_{1} + O\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}$$

$$\Rightarrow \int_{n \to \infty} a_{i} \cdot x_{i}$$

$$\Rightarrow \int_{n \to \infty} a_{i} \left(\lambda_{i}^{n} \times_{i}\right) = \sum_{n \to \infty} a_{1} \lambda_{1} \times_{1} + O\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}$$

$$\Rightarrow \int_{n \to \infty} a_{i} \left(\lambda_{i}^{n} \times_{i}\right) = \sum_{n \to \infty} a_{1} \lambda_{1} \times_{1} + O\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}$$

$$\Rightarrow \int_{n \to \infty} a_{i} \left(\lambda_{i}^{n} \times_{i}\right) = \sum_{n \to \infty} a_{1} \lambda_{1} \times_{1} + O\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}$$

$$\Rightarrow \int_{n \to \infty} a_{i} \left(\lambda_{i}^{n} \times_{i}\right) = \sum_{n \to \infty} a_{1} \lambda_{1} \times_{1} + O\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}$$

$$\Rightarrow \int_{n \to \infty} a_{i} \left(\lambda_{i}^{n} \times_{i}\right) = \sum_{n \to \infty} a_{1} \lambda_{1} \times_{1} + O\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}$$

$$\Rightarrow \int_{n \to \infty} a_{1} \times_{1} + O\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}$$

Power Method Implementation

Start with an initial guess \mathbf{q}_0 , and then iterate:

• Compute matrix-vector product and normalize it:

$$\mathbf{q}_k = rac{\mathbf{A}\mathbf{q}_{k-1}}{\left\|\mathbf{A}\mathbf{q}_{k-1}
ight\|}$$

Use Raleigh quotient to obtain eigenvalue estimate:

$$\hat{\lambda}_k = \mathbf{q}_k^{\star} \mathbf{A} \mathbf{q}_k$$

Test for convergence: Evaluate the residual

$$\mathbf{r}_k = \mathbf{A}\mathbf{q}_k - \hat{\lambda}_k \mathbf{q}_k$$

and terminate if the error estimate is small enough:

$$\left|\lambda_1 - \hat{\lambda}_k\right| \approx \frac{\|\mathbf{r}_k\|}{\cos \theta_{xy}} < \varepsilon$$

Convergence Estimates

The normalized iterates converge to the eigenvector linearly:

$$\|\mathbf{q}_k - (\pm \mathbf{x}_1)\| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$$

 If A is normal the eigenvalue estimate converges a bit faster but still linearly

$$\left\|\hat{\lambda}_k - \lambda_1\right\| \sim O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)$$

- The power method is fast when the dominant eigenvalue is well-separated from the rest (even if it is degenerate).
- This conclusion is rather general for all iterative methods:
 Convergence is good for well-separated eigenvalues, bad otherwise.
- The power method is typically too slow to be used in practice and there are more sophisticated alternatives (Lanczos/Arnoldi iteration).

Inverse Power Iteration

- Observe that applying the power method to \mathbf{A}^{-1} will find the largest of λ_j^{-1} , i.e., the **smallest eigenvalue** (by modulus).
- If we have an **eigenvalue estimate** $\mu \approx \lambda$, then doing the power method for the matrix

$$(A - \mu I)^{-1}$$

will give the eigenvalue closest to μ .

- Convergence will be faster if μ is much closer to λ then to other eigenvalues.
- Recall that in practice $(\mathbf{A} \mu \mathbf{I})^{-1} \mathbf{q}$ is computed by solving a linear system, not matrix inversion (one can reuse an LU factorization)!
- Finally, if we have an estimate of both the eigenvalue and the eigenvector, we can use Rayleigh Quotient Iteration (see homework).

Estimating all eigenvalues / eigenvectors

- Iterative methods akin the power method are not suitable for estimating all eigenvalues.
- Basic idea: Build a sequence of matrices \mathbf{A}_k that all share eigenvalues with \mathbf{A} via similarity transformations:

$$\mathbf{A}_{k+1} = \mathbf{P}^{-1}\mathbf{A}_k\mathbf{P}$$
, starting from $\mathbf{A}_1 = \mathbf{A}$.

 A numerically stable and good way to do this is to use the QR factorization:

$$\mathbf{A}_k = \mathbf{Q}_{k+1} \mathbf{R}_{k+1}$$

$$\mathbf{A}_{k+1} = \mathbf{Q}_{k+1}^{-1} \mathbf{A}_k \mathbf{Q}_{k+1} = \left(\mathbf{Q}_{k+1}^{-1} \mathbf{Q}_{k+1} \right) \mathbf{R}_{k+1} \mathbf{Q}_{k+1} = \mathbf{R}_{k+1} \mathbf{Q}_{k+1}.$$

 Note that the fact the Q's are orthogonal is crucial to keep the conditioning from getting worse.

The basic QR method

- The behavior of the QR iteration can be understood most transparently as follows [following Trefethen and Bau]:
- Observation: The range of the matrix \mathbf{A}^k converges to the space spanned by the eigenvectors of \mathbf{A} , with the eigenvectors corresponding to the largest eigenvalues dominating as $k \to \infty$ (so this is ill-conditioned).
- Recall: The columns of Q in A = QR form an orthonormal basis for the range of A.
- Idea: Form a well-conditioned basis for the eigenspace of A by factorizing:

$$\mathbf{A}^k = \tilde{\mathbf{Q}}_k \tilde{\mathbf{R}}_k$$

and then calculate

$$\mathbf{A}_k = \tilde{\mathbf{Q}}_k^{-1} \mathbf{A} \tilde{\mathbf{Q}}_k = \tilde{\mathbf{Q}}_k^{\star} \mathbf{A} \tilde{\mathbf{Q}}_k.$$

 It is not too hard to show that this produces the same sequence of matrices A_k as the QR algorithm.

Why the QR algorithm works

ullet Summary: The columns of $ilde{f Q}_{\it k}$ converge to the eigenvectors, and

$$\mathbf{A}_k = \tilde{\mathbf{Q}}_k^{\star} \mathbf{A} \tilde{\mathbf{Q}}_k.$$

 We can recognize the above as a matrix of Rayleigh quotients, which for diagonalizable matrices

$$(\mathbf{A}_k)_{ij} = \tilde{\mathbf{q}}_i^* \mathbf{A} \tilde{\mathbf{q}}_j \to \lambda_i \delta_{ij} = \begin{cases} \lambda_i & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

showing that (under suitable assumptions):

$$\mathbf{A}_k
ightarrow \mathbf{\Lambda}$$

It can also be shown that

$$\tilde{\mathbf{Q}}_k = \mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_k \to \mathbf{X}$$

More on QR algorithm

- The convergence of the basic QR algorithm is closely related to that
 of the power method: It is only fast if all eigenvalues are
 well-separated.
- For more general (non-diagonalizable) matrices in complex arithmetic, the algorithm converges to the Schur decomposition A = UTU*,

$$\mathbf{A}_k o \mathbf{T}$$
 and $\tilde{\mathbf{Q}}_k o \mathbf{U}$.

- It is possible to implement the algorithm entirely using real arithmetic (no complex numbers).
- There are several key improvements to the basic method that make this work in practice: Hessenberg matrices for faster QR factorization, shifts and deflation for acceleration.
- There are other sophisticated algorithms as well, such as the divide-and-conquer algorithm, and the best are implemented in the library LAPACK (MATLAB).

Eigenvalues in MATLAB

 In MATLAB, sophisticated variants of the QR algorithm (LAPACK library) are implemented in the function eig:

$$\Lambda = eig(A)$$

$$[X, \Lambda] = eig(A)$$

• For large or sparse matrices, iterative methods based on the **Arnoldi iteration** (ARPACK library), can be used to obtain a few of the largest/smallest/closest-to- μ eigenvalues:

$$\Lambda = eigs(A, n_{eigs})$$

$$[X, \Lambda] = eigs(A, n_{eigs})$$

• The **Schur decomposition** is provided by [U, T] = schur(A).

Conclusions/Summary

- Eigenvalues are well-conditioned for unitarily diagonalizable matrices (includes Hermitian matrices), but ill-conditioned for nearly non-diagonalizable matrices.
- Eigenvectors are well-conditioned only when eigenvalues are well-separated.
- Eigenvalue algorithms are always iterative.
- The power method and its variants can be used to find the largest or smallest eigenvalue, and they converge fast if there is a large separation between the target eigenvalue and nearby ones.
- Estimating **all eigenvalues and/or eigenvectors** can be done by combining the power method with *QR* factorizations.
- MATLAB has high-quality implementations of sophisticated variants of these algorithms.