Numerical Methods I Eigenvalue Problems

Aleksandar Donev

Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu
${ }^{1}$ MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014
October 2nd, 2014

Outline

(1) Review of Linear Algebra: Eigenvalues
(2) Conditioning of Eigenvalue Problems
(3) Computing Eigenvalues and Eigenvectors
4. Methods based on $Q R$ factorizations
(5) Conclusions

Eigenvalue Decomposition

- For a square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, there exists at least one λ such that

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x} \quad \Rightarrow \quad(\mathbf{A}-\lambda \mathbf{I}) \mathbf{y}=\mathbf{0}
$$

- Putting the eigenvectors \mathbf{x}_{j} as columns in a matrix \mathbf{X}, and the eigenvalues λ_{j} on the diagonal of a diagonal matrix $\boldsymbol{\Lambda}$, we get

$$
\mathbf{A X}=\mathbf{X} \mathbf{\Lambda}
$$

- A matrix is non-defective or diagonalizable if there exist n linearly independent eigenvectors, i.e., if the matrix \mathbf{X} is invertible:

$$
\begin{aligned}
\mathbf{X}^{-1} \mathbf{A} \mathbf{X} & =\mathbf{\Lambda} \\
\mathbf{A} & =\mathbf{X} \boldsymbol{\Lambda} \mathbf{X}^{-1} .
\end{aligned}
$$

- The transformation from \mathbf{A} to $\boldsymbol{\Lambda}=\mathbf{X}^{-1} \mathbf{A X}$ is called a similarity transformation and it preserves the eigenspace.

Unitarily Diagonalizable Matrices

- A matrix is unitarily diagonalizable if there exist n linearly independent orthogonal eigenvectors, i.e., if the matrix \mathbf{X} can be chosen to be unitary (orthogonal), $\mathbf{X} \equiv \mathbf{U}$, where $\mathbf{U}^{-1}=\mathbf{U}^{\star}$:

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\star} .
$$

Note that unitary matrices generalize orthogonal matrices to the complex domain, so we use adjoints (conjugate transposes) instead of transposes throughout.

- Theorem: A matrix is unitarily diagonalizable iff it is normal, i.e., it commutes with its adjoint:

$$
\mathbf{A}^{\star} \mathbf{A}=\mathbf{A} \mathbf{A}^{\star} .
$$

- Theorem: Hermitian (symmetric) matrices, $\mathbf{A}^{\star}=\mathbf{A}$, are unitarily diagonalizable and have real eigenvalues.

Left Eigenvectors

- The usual eigenvectors are more precisely called right eigenvectors. There is also left eigenvector corresponding to a given eigenvalue λ

$$
\mathbf{y}^{\star} \mathbf{A}=\lambda \mathbf{y}^{\star} \quad \Rightarrow \quad \mathbf{A}^{\star} \mathbf{y}=\lambda \mathbf{y} .
$$

$$
\mathbf{Y}^{\star} \mathbf{A}=\mathbf{\Lambda} \mathbf{Y}^{\star}
$$

- For a matrix that is diagonalizable, observe that

$$
\mathbf{Y}^{\star}=\mathbf{X}^{-1}
$$

and so the left eigenvectors provide no new information.

- For unitarily diagonalizable matrices, $\mathbf{Y}=\left(\mathbf{X}^{-1}\right)^{\star}=\mathbf{U}$, so that the left and right eigenvectors coincide.

Non-diagonalizable Matrices

- For matrices that are not diagonalizable, one can use Jordan form factorizations, or, more relevant to numerical mathematics, the Schur factorization (decomposition):

$$
\mathbf{A}=\mathbf{U} \mathbf{T} \mathbf{U}^{\star},
$$

where \mathbf{T} is upper-triangular.

- The eigenvalues are on the diagonal of \mathbf{T}.
- Note: Observe that $\mathbf{A}^{\star}=\left(\mathbf{U T} \mathbf{U}^{\star}\right)^{\star}=\mathbf{U T} \mathbf{U}^{\star}$ so for Hermitian matrices $\mathbf{T}=\mathbf{T}^{\star}$ is real diagonal.
- An important property / use of eigenvalues:

$$
\mathbf{A}^{n}=\left(\mathbf{U T U}^{\star}\right)\left(\mathbf{U T U}^{\star}\right) \cdots\left(\mathbf{U T U}^{\star}\right)=\mathbf{U T}\left(\mathbf{U}^{\star} \mathbf{U}\right) \mathbf{T}\left(\mathbf{U}^{\star} \mathbf{U}\right) \cdots \mathbf{T U}^{\star}
$$

$$
\mathbf{A}^{n}=\mathbf{U T}^{n} \mathbf{U}^{\star}
$$

Sensitivity of Eigenvalues

- Now consider a perturbation of a diagonalizable matrix $\delta \mathbf{A}$ and see how perturbed the similar matrix becomes:

$$
\begin{gathered}
\mathbf{X}^{-1}(\mathbf{A}+\delta \mathbf{A}) \mathbf{X}=\mathbf{\Lambda}+\delta \mathbf{\Lambda} \Rightarrow \\
\delta \mathbf{\Lambda}=\mathbf{X}^{-1}(\delta \mathbf{A}) \mathbf{X} \Rightarrow \\
\|\delta \mathbf{\Lambda}\| \leq\left\|\mathbf{X}^{-1}\right\|\|\delta \mathbf{A}\|\|\mathbf{X}\|=\kappa(\mathbf{X})\|\delta \mathbf{A}\|
\end{gathered}
$$

- Conclusion: The conditioning of the eigenvalue problem is related to the conditioning of the matrix of eigenvectors.
- If \mathbf{X} is unitary then $\|\mathbf{X}\|_{2}=1$ (from now on we exclusively work with the 2-norm): Unitarily diagonalizable matrices are always perfectly conditioned!
- Warning: The absolute error in all eigenvalues is of the same order, meaning that the relative error will be very large for the smallest eigenvalues.

Sensitivity of Individual Eigenvalues

$$
\begin{aligned}
& \text { perturabtiad Ax } A x \\
& \text { ANALYS is } \\
& A(\varepsilon)=A+\varepsilon \cdot \delta A \\
& \varepsilon \ll 1
\end{aligned}
$$

$$
\begin{aligned}
& y^{*}(\delta A) x+\left(y^{*} A\right)_{\text {EQuic }}^{\prime}= \\
& \lambda^{\prime}(y \cdot x)+{ }^{-1}\left(\lambda y^{*}\right) x^{\prime} \Rightarrow \\
& y^{*}(\delta A) x=(y \cdot x) \lambda^{\prime} \Rightarrow \\
& \lambda^{\prime}=y^{*} \frac{(\delta A) x}{(y \cdot x)} \\
& \begin{array}{c}
\text { SENSitivit; } \\
\text { OF }
\end{array}
\end{aligned}
$$

Sensitivity of Individual Eigenvalues

$$
\delta \lambda \approx \frac{\mathbf{y}^{\star}(\delta \mathbf{A}) \mathbf{x}}{\mathbf{y}^{\star} \mathbf{x}}
$$

- Recalling the Cauchy-Schwartz inequality:

$$
\begin{aligned}
&|\mathbf{y} \cdot \mathbf{x}|=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta_{x y} \leq\|\mathbf{x}\|\|\mathbf{y}\| \\
&|\delta \lambda| \leq \frac{\|\mathbf{x}\|\|\delta \mathbf{A}\|\|\mathbf{y}\|}{\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta_{x y}}=\frac{\|\delta \mathbf{A}\|}{\cos \theta_{x y}}
\end{aligned}
$$

- Defining a conditioning number for a given eigenvalue

$$
\kappa(\lambda, \mathbf{A})=\sup _{\delta \mathbf{A}} \frac{|\delta \lambda|}{\|\delta \mathbf{A}\|}=\frac{1}{\cos \theta_{x y}}
$$

- For unitarily diagonalizable matrices $\mathbf{y}=\mathbf{x}$ and thus $\kappa(\lambda, \mathbf{A})=1$: perfectly conditioned!

Sensitivity of Eigenvectors

- A priori estimate: The conditioning number for the eigenvector itself depends on the separation between the eigenvalues

$$
\kappa(\mathbf{x}, \mathbf{A})=\left(\min _{j}\left|\lambda-\lambda_{j}\right|\right)^{-1}
$$

- This indicates that multiple eigenvalues require care. Even for Hermitian matrices eigenvectors are hard to compute.
- If there is a defective (non-diagonalizable) matrix with eigenvalue for which the difference between the algebraic and geometric multiplicities is $d>0$, then

$$
\delta \lambda \sim\|\delta \mathbf{A}\|^{1 /(1+d)}
$$

which means the conditioning number is infinite: Defective eigenvalues are very badly conditioned.

The need for iterative algorithms

- The eigenvalues are roots of the characteristic polynomial of \mathbf{A}, which is generally of order n.
- According to Abel's theorem, there is no closed-form (rational) solution for $n \geq 5$.
- All eigenvalue algorithms must be iterative! This is a fundamental difference from, example, linear solvers.
- There is an important distinction between iterative methods to:
- Compute all eigenvalues (similarity transformations).
- Compute only one or a few eigenvalues, typically the smallest or the largest one (power-like methods).
- Bounds on eigenvalues are important, e.g., Courant-Fisher theorem for the Rayleigh quotient:

$$
\min \lambda \leq r_{A}(\mathbf{x})=\frac{\mathbf{x}^{\star} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\star} \mathbf{x}} \leq \max \lambda
$$

- Recall that for a diagonalizable matrix

$$
\mathbf{A}^{n}=\mathbf{X} \boldsymbol{\Lambda}^{n} \mathbf{X}^{-1}
$$

and assume $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \cdots\left|\lambda_{n}\right|$ and that the columns of \mathbf{X} are normalized, $\left\|\mathbf{x}_{j}\right\|=1$.

- Any initial guess vector \mathbf{q}_{0} can be represented in the linear basis formed by the eigenvectors

$$
\mathbf{q}_{0}=\mathbf{X a}
$$

- Recall iterative methods for linear systems: Multiply a vector with the matrix A many times:

$$
\begin{gathered}
\mathbf{q}_{k+1}=\mathbf{A} \mathbf{q}_{k} \\
\mathbf{q}_{n}=\mathbf{A}^{n} \mathbf{q}_{0}=\left(\mathbf{X} \boldsymbol{\Lambda}^{n} \mathbf{X}^{-1}\right) \mathbf{X} \mathbf{a}=\mathbf{X}\left(\boldsymbol{\Lambda}^{n} \mathbf{a}\right)
\end{gathered}
$$

Power Method

- As $n \rightarrow \infty$, the eigenvalue of largest modulus λ_{0} will dominate,

$$
\begin{gathered}
\boldsymbol{\Lambda}^{n}=\lambda_{1}^{n} \operatorname{Diag}\left\{1,\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}, \ldots\right\} \rightarrow \lambda_{1}^{n} \operatorname{Diag}\{1,0, \ldots, 0\} \\
\mathbf{q}_{n}=\mathbf{X}\left(\boldsymbol{\Lambda}^{n} \mathbf{a}\right) \rightarrow \lambda_{1}^{n} \mathbf{X}\left[\begin{array}{c}
a_{1} \\
0 \\
\vdots \\
0
\end{array}\right]=\lambda_{1}^{n} \mathbf{x}_{1}
\end{gathered}
$$

- Therefore the normalized iterates converge to the eigenvector:

$$
\tilde{\mathbf{q}}_{n}=\frac{\mathbf{q}_{n}}{\left\|\mathbf{q}_{n}\right\|} \rightarrow \mathbf{x}_{1}
$$

- The Rayleigh quotient converges to the eigenvalue:

$$
r_{A}\left(\mathbf{q}_{n}\right)=\frac{\mathbf{q}_{n}^{\star} \mathbf{A} \mathbf{q}_{n}}{\mathbf{q}_{n} \cdot \mathbf{q}_{n}}=\tilde{\mathbf{q}}_{n}^{\star} \mathbf{A} \tilde{\mathbf{q}}_{n} \rightarrow \lambda_{1}
$$

An alternative derivation

$$
\begin{gathered}
q_{0}=\sum_{n} a_{i} \cdot x_{i} \\
q_{n}=A^{n} q_{0}=\sum_{n} a_{i}\left(A^{n} x_{i}\right) \\
=\sum_{n i} a_{i}\left(\lambda_{i}^{n} x_{i}\right)= \\
=\sum a_{i} \lambda_{1}^{n}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{n} \cdot x_{i} \Rightarrow a_{1} \lambda_{1}^{n} x_{1}+O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{n}\right. \\
\Rightarrow \tilde{q}_{n} \rightarrow x_{1}+O(\varepsilon) x_{2}+O(\varepsilon) x_{3}+\cdots \\
\sim_{\text {where }} \\
\sim \varepsilon\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{n}
\end{gathered}
$$

Now $\tilde{q}_{n}^{*} A \tilde{q}_{n}=x_{1}^{*} A x_{1}+O\left(\varepsilon^{2}\right) \sum_{i_{i j 1}} x_{1}^{*} A x_{j}$

Power Method Implementation

Start with an initial guess \mathbf{q}_{0}, and then iterate:
(1) Compute matrix-vector product and normalize it:

$$
\mathbf{q}_{k}=\frac{\mathbf{A} \mathbf{q}_{k-1}}{\left\|\mathbf{A} \mathbf{q}_{k-1}\right\|}
$$

(2) Use Raleigh quotient to obtain eigenvalue estimate:

$$
\hat{\lambda}_{k}=\mathbf{q}_{k}^{\star} \mathbf{A} \mathbf{q}_{k}
$$

(3) Test for convergence: Evaluate the residual

$$
\mathbf{r}_{k}=\mathbf{A} \mathbf{q}_{k}-\hat{\lambda}_{k} \mathbf{q}_{k}
$$

and terminate if the error estimate is small enough:

$$
\left|\lambda_{1}-\hat{\lambda}_{k}\right| \approx \frac{\left\|\mathbf{r}_{k}\right\|}{\cos \theta_{x y}}<\varepsilon
$$

Convergence Estimates

- The normalized iterates converge to the eigenvector linearly:

$$
\left\|\mathbf{q}_{k}-\left(\pm \mathbf{x}_{1}\right)\right\|=O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{k}\right)
$$

- If \mathbf{A} is normal the eigenvalue estimate converges a bit faster but still linearly

$$
\left\|\hat{\lambda}_{k}-\lambda_{1}\right\| \sim O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{2 k}\right)
$$

- The power method is fast when the dominant eigenvalue is well-separated from the rest (even if it is degenerate).
- This conclusion is rather general for all iterative methods:

Convergence is good for well-separated eigenvalues, bad otherwise.

- The power method is typically too slow to be used in practice and there are more sophisticated alternatives (Lanczos/Arnoldi iteration).

Inverse Power Iteration

- Observe that applying the power method to \mathbf{A}^{-1} will find the largest of λ_{j}^{-1}, i.e., the smallest eigenvalue (by modulus).
- If we have an eigenvalue estimate $\mu \approx \lambda$, then doing the power method for the matrix

$$
(\mathbf{A}-\mu \mathbf{I})^{-1}
$$

will give the eigenvalue closest to μ.

- Convergence will be faster if μ is much closer to λ then to other eigenvalues.
- Recall that in practice $(\mathbf{A}-\mu \mathbf{I})^{-1} \mathbf{q}$ is computed by solving a linear system, not matrix inversion (one can reuse an $L U$ factorization)!
- Finally, if we have an estimate of both the eigenvalue and the eigenvector, we can use Rayleigh Quotient Iteration (see homework).

Estimating all eigenvalues / eigenvectors

- Iterative methods akin the power method are not suitable for estimating all eigenvalues.
- Basic idea: Build a sequence of matrices \mathbf{A}_{k} that all share eigenvalues with \mathbf{A} via similarity transformations:

$$
\mathbf{A}_{k+1}=\mathbf{P}^{-1} \mathbf{A}_{k} \mathbf{P}, \text { starting from } \mathbf{A}_{1}=\mathbf{A}
$$

- A numerically stable and good way to do this is to use the $Q R$ factorization:

$$
\mathbf{A}_{k}=\mathbf{Q}_{k+1} \mathbf{R}_{k+1}
$$

$$
\mathbf{A}_{k+1}=\mathbf{Q}_{k+1}^{-1} \mathbf{A}_{k} \mathbf{Q}_{k+1}=\left(\mathbf{Q}_{k+1}^{-1} \mathbf{Q}_{k+1}\right) \mathbf{R}_{k+1} \mathbf{Q}_{k+1}=\mathbf{R}_{k+1} \mathbf{Q}_{k+1}
$$

- Note that the fact the Q's are orthogonal is crucial to keep the conditioning from getting worse.

The basic $Q R$ method

- The behavior of the QR iteration can be understood most transparently as follows [following Trefethen and Bau]:
- Observation: The range of the matrix \mathbf{A}^{k} converges to the space spanned by the eigenvectors of \mathbf{A}, with the eigenvectors corresponding to the largest eigenvalues dominating as $k \rightarrow \infty$ (so this is ill-conditioned).
- Recall: The columns of \mathbf{Q} in $\mathbf{A}=\mathbf{Q R}$ form an orthonormal basis for the range of \mathbf{A}.
- Idea: Form a well-conditioned basis for the eigenspace of \mathbf{A} by factorizing:

$$
\mathbf{A}^{k}=\tilde{\mathbf{Q}}_{k} \tilde{\mathbf{R}}_{k}
$$

and then calculate

$$
\mathbf{A}_{k}=\tilde{\mathbf{Q}}_{k}^{-1} \mathbf{A} \tilde{\mathbf{Q}}_{k}=\tilde{\mathbf{Q}}_{k}^{\star} \mathbf{A} \tilde{\mathbf{Q}}_{k}
$$

- It is not too hard to show that this produces the same sequence of matrices \mathbf{A}_{k} as the QR algorithm.

Why the $Q R$ algorithm works

- Summary: The columns of $\tilde{\mathbf{Q}}_{k}$ converge to the eigenvectors, and

$$
\mathbf{A}_{k}=\tilde{\mathbf{Q}}_{k}^{\star} \mathbf{A} \tilde{\mathbf{Q}}_{k} .
$$

- We can recognize the above as a matrix of Rayleigh quotients, which for diagonalizable matrices

$$
\left(\mathbf{A}_{k}\right)_{i j}=\tilde{\mathbf{q}}_{i}^{\star} \mathbf{A} \tilde{\mathbf{q}}_{j} \rightarrow \lambda_{i} \delta_{i j}= \begin{cases}\lambda_{i} & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

showing that (under suitable assumptions):

$$
\mathbf{A}_{k} \rightarrow \boldsymbol{\Lambda}
$$

- It can also be shown that

$$
\tilde{\mathbf{Q}}_{k}=\mathbf{Q}_{1} \mathbf{Q}_{2} \cdots \mathbf{Q}_{k} \rightarrow \mathbf{X}
$$

More on $Q R$ algorithm

- The convergence of the basic $Q R$ algorithm is closely related to that of the power method: It is only fast if all eigenvalues are well-separated.
- For more general (non-diagonalizable) matrices in complex arithmetic, the algorithm converges to the Schur decomposition $\mathbf{A}=\mathbf{U T U}$ *,

$$
\mathbf{A}_{k} \rightarrow \mathbf{T} \text { and } \tilde{\mathbf{Q}}_{k} \rightarrow \mathbf{U}
$$

- It is possible to implement the algorithm entirely using real arithmetic (no complex numbers).
- There are several key improvements to the basic method that make this work in practice: Hessenberg matrices for faster $Q R$ factorization, shifts and deflation for acceleration.
- There are other sophisticated algorithms as well, such as the divide-and-conquer algorithm, and the best are implemented in the library LAPACK (MATLAB).

Eigenvalues in MATLAB

- In MATLAB, sophisticated variants of the QR algorithm (LAPACK library) are implemented in the function eig:

$$
\begin{gathered}
\Lambda=\operatorname{eig}(A) \\
{[X, \Lambda]=\operatorname{eig}(A)}
\end{gathered}
$$

- For large or sparse matrices, iterative methods based on the Arnoldi iteration (ARPACK library), can be used to obtain a few of the largest/smallest/closest-to- μ eigenvalues:

$$
\begin{gathered}
\Lambda=\operatorname{eigs}\left(A, n_{e i g s}\right) \\
{[X, \Lambda]=\operatorname{eigs}\left(A, n_{\text {eigs }}\right)}
\end{gathered}
$$

- The Schur decomposition is provided by $[U, T]=\operatorname{schur}(A)$.

Conclusions/Summary

- Eigenvalues are well-conditioned for unitarily diagonalizable matrices (includes Hermitian matrices), but ill-conditioned for nearly non-diagonalizable matrices.
- Eigenvectors are well-conditioned only when eigenvalues are well-separated.
- Eigenvalue algorithms are always iterative.
- The power method and its variants can be used to find the largest or smallest eigenvalue, and they converge fast if there is a large separation between the target eigenvalue and nearby ones.
- Estimating all eigenvalues and/or eigenvectors can be done by combining the power method with $Q R$ factorizations.
- MATLAB has high-quality implementations of sophisticated variants of these algorithms.

