
Numerical Methods I, Fall 2014
Assignment II: Linear Systems

Aleksandar Donev
Courant Institute, NYU, donev@courant.nyu.edu

September 18th, 2014
Due: October 5th, 2014

For the purposes of grading the maximum number of points is considered to be 125 points, but you can
get more via extra credit pieces. Please do not do extra credit problems for a grade, do them
if they interest you to challenge yourself.

Make sure to follow good programming practices in your MATLAB codes. For example, make sure that
parameters, such as the number of variables n, are not hard-wired into the code and are thus easy to change.
Use fprintf to format your output nicely for inclusion in your report.

1 [15 pts] Conditioning numbers

1. [5 pts] What is the conditioning number for a diagonal matrix with diagonal entries d1, . . . , dn in the
row sum, column sum, and spectral norms? Can you prove a theorem about which matrices have unit
condition number κ = 1 in each norm, or at least give examples of such matrices?

2. [5pts] Prove that the condition number satisfies

κ (AB) ≤ κ (A)κ (B)

for square nonsingular matrices A and B.
3. [5pts] Prove that if the perturbed matrix A+ δA is singular, then

κ(A) ≥ ‖A‖
‖δA‖

,

meaning that a well-conditioned matrix is “far” from singular.

2 [35 + 10 pts] Ill-Conditioned Systems: The Hilbert Matrix

Consider solving linear systems with the matrix of coefficients A defined by

aij =
1

i+ j − 1
,

which is a well-known example of an ill-conditioned symmetric positive-definite matrix, see for example
this Wikipedia article
http://en.wikipedia.org/wiki/Hilbert_matrix

2.1 [10 pts] Conditioning numbers

[10pts] Form the Hilbert matrix in MATLAB and compute the conditioning number for increasing size of
the matrix n for the L1, L2 and L∞ (the column sum, row sum, and spectral matrix) norms based on the
definition κ(A) = ‖A‖

∥∥A−1∥∥ and using MATLAB’s norm function. Note that the inverse of the Hilbert
matrix can be computed analytically, and is available in MATLAB as invhilb. Compare to the answer
with that returned by the built-in exact calculation cond and the estimate returned by the function rcond
(check the help pages for details).

1

2.2 [10pts] Solving ill-conditioned systems

[5pts] Compute the right-hand side (rhs) vector b = Ax so that the exact solution is x = 1 (all unit
entries). Solve the linear system using MATLAB’s built-in solver and see how many digits of accuracy you
get in the solution for several n, using, for example, the infinity norm.

[5pts] Do your results conform to the theoretical expectation discussed in class? After what n does it no
longer make sense to even try solving the system due to severe ill-conditioning?

2.3 [15 pts] Iterative Improvement

For this problem, fix n at the value for which the Hilbert matrix is barely well-conditioned enough to
handle in single precision.

In the previous problem we attempted to solve a linear system b = Ax for which the exact solution
is x = 1. What is really meant by “exact” is that given an exactly-represented matrix A and the exactly-
represented vector x = 1, we have that b = Ax exactly, meaning, if calculated and represented exactly
using infinite precision arithmetic. Since we cannot represent either the Hilbert matrix or the vector of
ones exactly in MATLAB (without using the symbolic toolbox), lets instead assume that A is whatever
the single-precision approximation to the Hilbert matrix is, and x = fl(1) to be a vector where each
entry is whatever the single-precision floating-point approximation to 1 is. In this way, we can use double
precision arithmetic as a proxy for infinite-precision arithmetic, namely, we can assume that double-precision
calculations for all practical purposes give an exact answer. The MATLAB code

A=h i l b (n , ’ s i n g l e ’) ;
x exact=ones (n , 1 , ’ s i n g l e ’) ;
b exact=double (A)∗ double (x exact) ;
b=s i n g l e (b exact) ;

can thus be taken to form a linear system in single precision for which the solution is xexact to “infinite”
precision.

The numerical solution x = A\b will be a bad approximation since for this n the system is too ill-conditioned
for single precision and b is a single-precision approximation to bexact. Verify that indeed the solution
MATLAB computes with x = A\b (or an explicit Cholesky factorization) is far from the exact solution.

Interestingly, there is a way to compute a much better approximation by using a method called iterative
refinement. In iterative refinement, we take an initial guess x to the solution and repeat the following
steps iteratively:

1. Compute the residual r = b−Ax using higher-precision arithmetic. That is, in MATLAB, use

r=s i n g l e (b exact−double (A)∗ double (x)) ;

so that the residual is computed to 16 and not just 8 decimal places before it is rounded to single precision.
2. Solve the linear system A (∆x) = r for ∆x, paying attention to efficiency [Hint: You can reuse a

Cholesky factorization of A many times].
3. Correct the solution x← x+ ∆x.

Note that only step 1 requires using double precision, all the rest can be performed without calling double
at all. Implement this in MATLAB and verify that the improved solution indeed converges to the exact
solution to within full single precision (meaning 7− 8 decimal places). By approximately what factor does
the error ‖x− xexact‖∞ decrease every iteration (numerically or maybe you have some theoretical estimate)?
Increase n by one and try again, until something breaks and even iterative refinement does not work.

2.4 [10pts Extra Credit] Iterative methods

Try an iterative method for the ill-conditioned Hilbert system and see if it performs better or worse than
GEM with respect to roundoff errors.

2

3 [30 points] Least-Squares Fitting

Consider fitting a data series (xi, yi), i = 1, . . . , n, consisting of n = 100 data points that approximately
follow a polynomial relation,

y = f(x) =
d∑

k=0

ckx
k,

where ck are some unknown coefficients that we need to estimate from the data points, and d is the degree
of the polynomial. Observe that we can rewrite the problem of least-squares fitting of the data in the form
of an overdetermined linear system

[A(x)] c = y,

where the matrix A will depend on the x-coordinates of the data points, and the right hand side is formed
from the y-coordinates.

Let the correct solution for the unknown coefficients c be given by ck = k, and the degree be d = 9.
Using the built-in function rand generate synthetic (artificial) data points by choosing n points 0 ≤ xi ≤ 1
randomly, uniformly distributed from 0 to 1. Then calculate

y = f(x) + εδ,

where δ is a random vector of normally-distributed perturbations (e.g., experimental measurement errors),
generated using the function randn. Here ε is a parameter that measures the magnitude of the uncertainty in
the data points. [Hint: Plot your data for ε = 1 to make sure the data points approximately follow y = f(x).]

3.1 [20pts] Different Methods

For several logarithmically-spaced perturbations (for example, ε = 10−i for i = 0, 1, . . . , 16), estimate the
coefficients c̃ from the least-squares fit to the synthetic data and report the error ‖c− c̃‖. Do this using
three different methods available in MATLAB to do the fitting:

a) [5pts] The built-in function polyfit, which fits a polynomial of a given degree to data points [Hint: Note
that in MATLAB vectors are indexed from 1 and thus the order of the coefficients that polyfit returns is
the opposite of the one we use here, namely, c1 is the coefficient of xd.]

b) [5pts] Using the backslash operator to solve the overdetermined linear system Ac̃ = y.

c) [5pts] Forming the system of normal equations discussed in class,(
ATA

)
c = ATy,

and solving that system using the backslash operator.

[5pts] Report the results for different ε from all three methods in one printout or plot, and explain what
you observe.

3.2 [10pts] Conditioning

[5pts] If ε = 0 we should get the exact result from the fitting. How close can you get to the exact
result for each of three methods? Is one of the three methods clearly inferior to the others? Can you
explain your results? Hint: Theory suggests that the conditioning number of solving overdetermined linear
systems is the square root of the conditioning number of the matrix in the normal system of equations,

κ (A) =
√
κ
(
ATA

)
.

[5pts] Test empirically whether the conditioning of the problem get better or worse as the polynomial
degree d is increased.

3

4 [45 + 20 points] Rank-1 Matrix Updates

In a range of applications, such as for example machine learning, the linear system Ax = b needs to be
re-solved after a rank-1 update of the matrix,

A→ Ã = A+ uvT ,

for some given vectors v and u. More generally, problems of updating a matrix factorization (linear solver)
after small updates to the matrix appear very frequently and many algorithms have been developed for
special forms of the updates. The rank-1 update is perhaps the simplest and best known, and we explore it
in this problem. From now on, assume that A is invertible and its inverse or LU factorizations are known,
and that we want to update the solution after a rank-1 update of the matrix. We will work with random
dense matrices for simplicity.

4.1 [15pts] Direct update

[5pts] In MATLAB, generate a random (use the built-in function randn) n× n matrix A for some given
input n and compute its LU factorization. Also generate a right-hand-side (rhs) vector b and solve Ax = b.

[7.5pts] For several n, compute and plot the time it takes to compute the solution using the particular
machine you used. Can you tell from the data how the execution time scales with n [example, O(n2) or
O(n3)]? [Hint: The MATLAB functions tic and toc might be useful in timing sections of code].

[2.5 pts] Now generate random vectors v and u and obtain the updated solution x̃ of the system Ãx̃ = b.

Verify the new solution x̃ by directly verifying that the residual r = b− Ãx̃ is small.

4.2 [15pts] SMW Formula

It is not hard to show that Ã is invertible if and only if vTA−1u 6= −1, and in that case

Ã
−1

= A−1 − A
−1uvTA−1

1 + vTA−1u
. (1)

This is the so-called Sherman-Morrison formula, a generalization of which is the Woodbury formula, as
discussed on Wikipedia:
http://en.wikipedia.org/wiki/Sherman-Morrison-Woodbury_formula.

[10pts] The SMW formula (1) can be used to compute a new solution x̃ = Ã
−1
b. Be careful to do this as

robustly and efficiently as you can, that, is, not actually calculating matrix inverses but rather (re)using
matrix factorizations to solve linear systems [Hint: You only need to solve two triangular systems to update
the solution once you have the factorization of A]. For some n (say n = 100), compare the result from

using the formula (1) versus solving the updated system Ãx̃ = b directly.
[5pts] For the largest n for which you can get an answer in a few minutes, compare the time it takes to

solve the original system for x versus the time it takes to compute the updated answer x̃.

4.3 [15pts] Cholesky factorization updates

Modify your code from the previous problem 1.2 to make the matrix and the update symmetric (i.e., u = v),
and to use the Cholesky instead of the LU factorization. Make sure to use the symmetry to make the
code simpler and more efficient, and explain in words how you used the symmetry (instead of cutting and
pasting code). A quick way to generate a symmetric positive-definite n× n matrix in MATLAB is:

A = gallery(′randcorr′, n).

As a new alternative to computing x̃, consider computing the Cholesky factor L̃ by updating the previous
factor L instead of recomputing the whole factorization anew, as discussed at length in Ref. [?] (no need
to read this paper) and implemented in the MATLAB function cholupdate. Compare the accuracy and
speed of using cholupdate to your own implementation of the Sherman-Morrison-Woodbury formula.

4

4.3.1 [20pts Extra Credit] Your own cholupdate

While the actual algorithms used internally by MATLAB are based on some more sophisticated linear
algebra software, it is not too hard to implement your own version of cholupdate. Here is one idea [?]:

From the identity

Ã = L̃L̃
T

= A+ vvT = L
(
I + ppT

)
LT = LLpL

T
pL

T ,

where Lp = v and Lp is the Cholesky factor of I + ppT , we see that L̃ = LLp can be generated from the
previous factorization by factorizing the very special matrix M = I +ppT = LpL

T
p . Can you come up with

a formula/algorithm for factorizing M? Hint: Try the following form for the elements of the matrix Lp:

l
(P)
ij =

αipi if i = j

βjpi if i > j

0 otherwise

and find an algorithm for computing the unknown multipliers α and β. Verify that this works by testing
it on an example.

5 [Up to 25 points Extra Credit] The Laplacian Matrix

Sparse matrices appear frequently in all fields of scientific computing. As emphasized in the lectures, their
properties and the associated linear algebra depend very strongly on the origin of the matrix. Here I suggest
working with a matrix that arises in solving the Poisson equation in a two-dimensional domain, simply
because this matrix is available in MATLAB directly. If you want to choose some other sparse matrix
to explore, including some of the MATLAB gallery ones, that is OK too.

The matrix representation of the Laplacian operator ∆ ≡∇2 that appears when solving Poisson’s PDE
(details in Numerical Methods II) inside a bounded domain

∇2x = b = 1 in the interior and x = 0 on the boundary,

can be generated in MATLAB for some simple two-dimensional domains using the delsq function (see
MATLAB help topic “Finite Difference Laplacian”). For example:

A = de l sq (numgrid (’ S ’ , n)) ;

generates a positive-definite discrete Laplacian matrixA for a square domain of n×n grid points. This exercise
is about exploring the properties of this matrix and solving the linear system Ax = b = 1 using MATLAB.

[10 pts] Generate some sample Laplacian matrices and visualize their sparsity structure using spy. Can
you see any connections between the sparsity structure and the problem (domain) geometry? Solve this
system using direct methods, such as Cholesky factorization, and report the solution time and the fill-in that
appears. Explore how these scale with the size of the domain n and try some matrix reordering algorithm
that is built into MATLAB.

[15 pts] Now also try an iterative method, for example, the preconditioned conjugate gradient (PCG)
method available in MATLAB via the function pcg [Hint: The help page will be very useful], and report
how fast the method converges (or does not). Try some preconditioner and see if it speeds the convergence
and decreases the overall solution time or not.

5

