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Choose the problems that interest you, including any of the extra credit ones. Anything above 60 points
is very good (A), above 70 is excellent (A+). “Extra credit” simply marks problems that are more free-style
and do not come with very specific directions.

1 [Pen-and-pencil 20 points] Ill-Conditioning of the Inverse Power Method

[Due to Trefethen and Bau]
The inverse power method solves the linear system

(A− λI)y = xk−1

at every step. As λ becomes closer to a true eigenvalue, this system becomes closer to singular. Show that
this is not a problem anyway, that is, show that if the linear system above is solved using a stable method,
even though the computed solution ŷ may be quite far from the true y due to ill-conditioning, the normalized
ŷ/ ‖ŷ‖ will point in the right direction, that it is, it will not be far from the correct direction y/ ‖y‖ [Hint: It
is OK to make simplifying assumptions, such as that all the eigenvalues are distinct or that xk−1 is “generic”].

2 [Up to 85 points] Ill-Conditioned Matrices

2.1 [25 pts] Solving Linear Systems via SVD: The Hilbert Matrix

Recall the example of a very ill-conditioned symmetric positive-definite matrix from Homework 2, the
Hilbert matrix, whose entries are:

aij =
1

i+ j − 1
.

Let the size of the matrix be n = 15. Compute the right-hand side (rhs) b = Ax so that the exact
solution is x = 1 (all unit entries). Solve the linear system in MATLAB and report the relative error in
the approximate solution x̂ (for example, in the Euclidian norm, δx = ‖x− x̂‖2).

[5 pts] Now compute the SVD decomposition of A. Look at the singular values of A and comment on
whether you can see how ill-conditioned this matrix is based on this [Hint: The MATLAB function diag
can be used to extract the diagonal of a matrix or to construct a diagonal matrix ]. Construct the matrix
pseudo-inverse A† from the SVD, and from it a solution x̂ = A†b, and see if this is any more accurate than
the previous direct solution. [Hint: To check your answers you can use the MATLAB function pinv and
compare to your answer for small n].

[15pts] For a given relative tolerance ε, a modified pseudo-inverse Â
†

is obtained by first setting to
zero all singular values that are smaller than εσ1, where σ1 is the largest singular value. For several
logarithmically-spaced tolerances (for example, ε = 10−i for i = 1, 2, . . . , 16), compute the modified

pseudo-inverse and then a solution x̂ = Â
†
b. Plot the relative error in the modified solution versus the

tolerance on a log-log scale. You should see a clear minimum error for some ε = ε̃. Report this optimal ε̃
and the smallest error, and verify your solution by using the built-in function

x̃ = pinv(A, ε̃σ1) ? b.

Note that the SVD itself is stable against perturbations so pinv does not suffer from ill-conditioning.
[5pts] Explain what kinds of errors are traded off, that is, what kind of errors dominate for large versus for

small tolerances [Hint: You should recall similar plots of errors versus parameter from the first homework ].
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2.2 [25 pts] Defective Matrices

The MATLAB code:

d i agona l s=ones (n , 2 ) ; d i agona l s ( : , 1 ) = 2 ;
A = f u l l ( spd iags ( d iagona l s , [ 0 , 1 ] , n , n ) ) ;

constructs an n× n matrix that has twos on the diagonal and ones along the upper diagonal (these types of
matrices appear in finite-difference algorithms). The characteristic equation for this matrix is (λ− 2)n = 0
so that the only eigenvalue is λ = 2 and it has algebraic multiplicity n, but there is only one eigenvector,
i.e., the geometric multiplicity is 1. This matrix is thus (very) defective (“defectiveness” is d = n− 1). In
the lectures I claimed that this leads to severe ill-conditioning of the eigenvalue problem. Interestingly,
because of the special structure, MATLAB’s eig function works well for this problem (verify this), but
see problem 2.3 for a problematic case.

Theory suggests that perturbing the matrix to A + ε (δA), where ε is a small perturbation parameter
and δA is some random perturbation (for example, generated using MATLAB’s randn function), perturbs
the eigenvalues by

δλ ∼ ‖εδA‖1/(1+d) ∼ ε1/(1+d), (1)

where d is the defectiveness of the eigenvalue, in this case, d = n − 1. Verify this scaling claim by
doing numerical perturbations of the matrix and computing the new eigenvalues using MATLAB’s eig
for n = 4, 8 and 16. Choose the perturbation scales ε logarithmically-spaced (for example, ε = 10−i for
i = 1, 2, . . . , 16), and plot the magnitude of the resulting perturbation in the eigenvalues (for example, you can
use norm(eig(A)−2) in MATLAB) versus ε on a log-log scale. From the plot verify the theoretical prediction
given by Eq. (1) [Hint: A power-law scaling shows up in a log-log plot as a straight line, and the exponent
is determined by the slope. So showing the theoretical estimate ε1/n on the same plot will do the trick ].

[5pts] Give some theoretical justification for Eq. (1), even if not a complete theorem.

2.3 [20 pts + 10 pts extra credit] Rayleigh Quotient Iteration

In MATLAB A = gallery(5) produces an“interesting”5×5 matrix that satisfies the equation A5 = 0 (try it!),
which means that the only eigenvalue is the solution to λ5 = 0, i.e., λ = 0 is a 5-fold degenerate eigenvalue.

[5 pts] Use MATLAB’s svd to determine the rank of this matrix by computing its SVD, and from the rank
calculate how many linearly independent eigenvectors correspond to the eigenvalue of algebraic multiplicity
5 (i.e., determine the geometric multiplicity) [Hint: This is a defective matrix ]. Now try eig(A) and see if
the results are correct and how far they are from being correct.

Now let’s see if an iterative method can help, as it has for some other problems in the other homeworks.
The Rayleigh quotient iteration is a very fast method to refine an initial normalized guess for an eigenvector
x0 and to improve the initial eigenvalue estimate λ0 = x?

0Ax0. It is basically an inverse power method
but it updates the eigenvalue estimate at every step, k = 1, 2, . . .:

1. Solve (A− λk−1I)y = xk−1.
2. Normalize the solution, xk = y/ ‖y‖.
3. Update the eigenvalue estimate, λk = x?

kAxk.

The iteration converges very rapidly, specifically, cubically. You can read more about it on Wikipedia, for
example.

[15 pts] Implement the Rayleigh quotient iteration in MATLAB (do not use the Wikipedia code!) and
test it on some “harmless” matrix, for example, A = randn(5). That is, verify that for any initial guess the
algorithm converges to an eigenvector/eigenvalue pair, in some sense close to the initial guess. Then try it
on the weird matrix gallery(5) and see if it converges and obtains a much better estimate of the eigenvalue
λ = 0 than MATLAB’s built-in function eig.

[Extra credit 15pts] Show that, under suitable assumptions, the Rayleigh iteration converges cubically.

3 [Up to 40 points] PCA: Digraph Matrix of English

[Due to Cleve Moler]
There are many interesting applications of principal component analysis (which is nothing more than the

singular-value decomposition) in varied disciplines. This one focuses on a simple but hopefully interesting
example of analysing some of the structure of written language (spelling).
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For this assignment use English, which has 26 letters, indexed from 1− 26 in some way. The ASCII
encoding of characters is one way to index the letters (’A’ has ASCII code 65), but for this assignment you
may find that putting the vowels (AEIOUY) first will be better. A digraph frequency matrix is a 26× 26
matrix where each entry aij counts how many times the letter i-th letter follows the j-th letter in some
piece of text. All blanks and non-letter characters are removed, and the text is capitalized so there is no
difference between ’A’ and ’a’, and often it is assumed that the first letter follows the last letter. A digraph
matrix can be constructed in MATLAB from a piece of text saved in a file ’text.txt’ by first converting
the text to a vector of integers k where each element is in the range 1− 26:

% Read the f i l e :
f i l e =’ t ext . txt ’ ; % Sample text
f i d = fopen ( f i l e ) ; txt = f r ead ( f i d ) ; f c l o s e ( f i d ) ;

% Convert to i n t e g e r s between 1 and 26 :
numtxt = upper ( char ( txt ) ) − ’A’ + 1 ;
% El iminate any weird c h a r a c t e r s and spaces :
k=numtxt ( ( numtxt >= 1) & ( numtxt <= 2 6 ) ) ;

[5pts] Find some (large) piece of English text (cut and paste from Wikipedia, for example) and convert it
to a in integer vector k, and then from that construct the digraph matrix A for that text. Normalize the
matrix so that the largest element in the matrix is 1.0. Visualize (plot) the matrix, for example, using the
MATLAB function pcolor (alse note that colorbar may be useful).

[10pts] Now compute the SVD (PCA),

A =
26∑
i=1

σiuiv
?
i ,

and visualize (plot) the first (principal) rank-1 component A1 = σ1u1v
?
1, the second principal component

A2 = σ2u2v
?
2, and the rank-2 approximation to the matrix, A1 + A2.

[5pts] Can you see some features of the English language that the first principal component captures?
[Hint: Doing sum(A) computes the frequency of occurence of the different letters (make sure you understand
why!)]

[5pts] Can you see some features of the English language that the second principal component captures?
Hint: The following permutation will reorder the letters so that the vowels come first:

p = [ 1 , 5 , 9 , 1 5 , 2 1 , 2 5 , 2 : 4 , 6 : 8 , 1 0 : 1 4 , 1 6 : 2 0 , 2 2 : 2 4 , 2 6 ] ;
char (p+’A’−1) % The re−ordered ’ alphabet ’

[5pts] Are there any obvious features that the rank-2 approximation misses?
[10 pts extra credit] Do some testing to make sure that what you are observing is a feature of the

language and not the particular text you chose. For example, try a different, a longer text, and maybe even
something in another language. How long does the text need to be to see the features?
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