
Numerical Methods I, Fall 2010
Assignment II: Square Linear Systems

Aleksandar Donev
Courant Institute, NYU, donev@courant.nyu.edu

September 23rd, 2010
Due: October 7th, 2010

Choose the problems that interest you, including any of the extra credit ones. Anything above 70 points
is excellent. “Extra credit” simply marks problems that are more free-style and do not come with very
specific directions.

1 [Up to 20pts pen-and-pencil] Conditioning numbers

1. [Up to 10 pts] What is the conditioning number for a diagonal matrix with diagonal entries d1, . . . , dn in
the row sum, column sum, and spectral norms? Can you prove a theorem about which matrices have
unit condition number in each norm, or at least give examples of such matrices?

2. [5pts] Prove that the condition number satisfies

κ (AB) ≤ κ (A)κ (B)

for square nonsingular matrices A and B.
3. [5pts] Prove that if the perturbed matrix A + δA is singular, then

κ(A) ≥ ‖A‖
‖δA‖

,

meaning that a well-conditioned matrix is “far” from singular.

2 [Up to 55 points] Ill-Conditioned Systems: The Hilbert Matrix

Consider solving linear systems with the matrix of coefficients

aij =
1

i+ j − 1
,

which is a well-known example of a very ill-conditioned symmetric positive-definite matrix, see for example
this Wikipedia article
http://en.wikipedia.org/wiki/Hilbert_matrix

2.1 [15 pts] Conditioning numbers

Form the Hilbert matrix in MATLAB and compute the conditioning number for increasing size of the matrix
n for the column sum, row sum, and spectral matrix norms based on the definition κ(A) = ‖A‖

∥∥A−1∥∥.
Note that the inverse of the Hilbert matrix can be computed analytically, and is available in MATLAB as
invhilb. Compare to the answer with that returned by the built-in exact calculation cond and the estimate
rcond (check the help pages for details). Use the intrinsic function fprintf for format your output nicely
so it is readable and submit that output as part of your solution, in addition to the code itself.

Compute the right-hand side (rhs) b = Ax so that the exact solution is x = 1 (all unit entries). Solve
the linear system and see how many digits of accuracy you get in the solution for several n. Do your results
conform to the theoretical expectation? After what n does it no longer make sense to even try solving
the system due to severe ill-conditioning?

1

2.2 [20 pts] Iterative Improvement

For this problem, fix n at the value for which the Hilbert matrix is barely well-conditioned enough to
handle in single precision.

In the previous problem we attempted to solve a linear system b = Ax for which the exact solution
is x = 1. What is really meant by “exact” is that given an exactly-represented matrix A and the exactly-
represented vector x = 1, we have that b = Ax exactly, meaning, if calculated and represented exactly
using infinite precision arithmetic. Since we cannot represent either the Hilbert matrix or the vector of
ones exactly in MATLAB (without using the symbolic toolbox), lets instead assume that A is whatever
the single-precision approximation to the Hilbert matrix is, and x = fl(1) to be a vector where each
entry is whatever the single-precision floating-point approximation to 1 is. In this way, we can use double
precision arithmetic as a proxy for infinite-precision arithmetic, namely, we can assume that double-precision
calculations for all practical purposes give an exact answer. The MATLAB code

A=h i l b (n , ’ s i n g l e ’) ;
x exact=ones (n , 1 , ’ s i n g l e ’) ;
b exact=double (A)∗ double (x exact) ;
b=s i n g l e (b exact) ;

can thus be taken to form a linear system in single precision for which the solution is xexact to “infinite”
precision.

The numerical solution x = A\b will be a bad approximation since for this n the system is too ill-conditioned
for single precision and b is a single-precision approximation to bexact. Verify that indeed the solution
MATLAB computes with x = A\b (or an explicit Cholesky factorization) is far from the exact solution.

Interestingly, there is a way to compute a much better approximation by using a method called iterative
refinement. In iterative refinement, we take an initial guess x to the solution and repeat the following
steps iteratively:

1. Compute the residual r = b−Ax using higher-precision arithmetic. That is, in MATLAB, use

r=s i n g l e (b exact−double (A)∗ double (x)) ;

so that the residual is computed to 16 and not just 8 decimal places before it is rounded to single precision.
2. Solve the linear system A (∆x) = r for ∆x, paying attention to efficiency [Hint: You can reuse a

Cholesky factorization of A many times].
3. Correct the solution x← x + ∆x.

Note that only step 1 requires using double precision, all the rest can be performed without calling double
at all. Implement this in MATLAB and verify that the improved solution indeed converges to the exact
solution to within full single precision (meaning 7− 8 decimal places). By approximately what factor does
the error ‖x− xexact‖∞ decrease every iteration (numerically or maybe you have some theoretical estimate)?
Increase n by one and try again, until something breaks and even iterative refinement does not work.

2.3 [20pts Extra Credit] Iterative methods

Try an iterative method for the ill-conditioned Hilbert system and see if it performs better or worse than
GEM with respect to roundoff errors.

3 [Up to 70 points] Rank-1 Matrix Updates

In a range of applications, such as for example machine learning, the linear system Ax = b needs to be
re-solved after a rank-1 update of the matrix,

A→ Ã = A + uvT ,

for some given vectors v and u. More generally, problems of updating a matrix factorization (linear solver)
after small updates to the matrix appear very frequently and many algorithms have been developed for
special forms of the updates. The rank-1 update is perhaps the simplest and best known, and we explore it
in this problem. From now on, assume that A is invertible and its inverse or LU factorizations are known,
and that we want to update the solution after a rank-1 update of the matrix. We will work with random
dense matrices for simplicity.

2

3.1 [10pts] Sherman-Morrison-Woodbury (SMW) formula

Show that Ã is invertible if and only if vTA−1u 6= −1, and in that case

Ã
−1

= A−1 − A−1uvTA−1

1 + vTA−1u
. (1)

This is the so-called Sherman-Morrison formula, a generalization of which is the Woodbury formula, as
discussed on Wikipedia:
http://en.wikipedia.org/wiki/Sherman-Morrison-Woodbury_formula.

3.2 [20pts] SMW in MATLAB

In MATLAB, generate a random (use the built-in function randn) n× n matrix A for some given input n
and compute its LU factorization. Also generate a right-hand-side (rhs) vector b and solve Ax = b. Then
generate random vectors v and u and update the previous solution x using 1 to obtain the solution x̃ to
Ãx̃ = b. Be careful to do this as efficiently as you can, that, is, not performing unnecessary operations [Hint:
You only need to solve two triangular systems to update the solution]. Verify the new solution x̃ in two ways:

1. By computing a new factorization Ã = L̃Ũ and solving Ãx̃ = b.
2. By directly verifying that the residual is small. How does the norm of the residual compare to that

obtained by solving Ãx̃ = b directly (question 1 above).

For several n, compare the time it takes to compute the updated solution directly versus the time it takes
to use the Sherman-Morrison-Woodbury formula. Make an estimate of how these times should scale with
n [example, O(n3)] and see if the numerical data approximate conforms to the expectation [Hint: The
MATLAB functions tic and toc might be useful in timing sections of code].

3.3 [20pts] Cholesky factorization updates

Modify your code from the previous problem 1.2 to make the matrix and the update symmetric (i.e., u = v),
and to use the Cholesky instead of the LU factorization. Make sure to use the symmetry to make the code
simpler and more efficient. A quick way to generate a symmetric positive-definite n×n matrix in MATLAB is:

A = gallery(′randcorr′, n).

As a new alternative to computing x̃, consider computing the Cholesky factor L̃ by updating the previous
factor L instead of recomputing the whole factorization anew, as discussed at length in Ref. [1] (no need
to read this paper) and implemented in the MATLAB function cholupdate. Compare the accuracy and
speed of using cholupdate to your own implementation of the Sherman-Morrison-Woodbury formula.

3.3.1 [20pts Extra Credit] Your own cholupdate

While the actual algorithms used internally by MATLAB are based on some more sophisticated linear
algebra software, it is not too hard to implement your own version of cholupdate. Here is one idea [1]:

From the identity

Ã = L̃L̃
T

= A + vvT = L
(
I + ppT

)
LT = LLpL

T
pL

T ,

where Lp = v and Lp is the Cholesky factor of I + ppT , we see that L̃ = LLp can be generated from the
previous factorization by factorizing the very special matrix M = I +ppT = LpL

T
p . Can you come up with

a formula/algorithm for factorizing M? Hint: Try the following form for the elements of the matrix Lp:

l
(P)
ij =

αipi if i = j

βjpi if i > j

0 otherwise

and find an algorithm for computing the unknown multipliers α and β. Verify that this works by testing
it on an example.

3

4 [30 points Extra Credit] The Laplacian Matrix

Sparse matrices appear frequently in all fields of scientific computing. As emphasized in the lectures, their
properties and the associated linear algebra depend very strongly on the origin of the matrix. Here I suggest
working with a matrix that arises in solving the Poisson equation in a two-dimensional domain, simply
because this matrix is available in MATLAB directly. If you want to choose some other sparse matrix
to explore, including some of the MATLAB gallery ones, that is OK too.

The matrix representation of the Laplacian operator ∆ ≡∇2 that appears when solving Poisson’s PDE
(details in Numerical Methods II) inside a bounded domain

∇2x = b = 1 in the interior and x = 0 on the boundary,

can be generated in MATLAB for some simple two-dimensional domains using the delsq function (see
MATLAB help topic “Finite Difference Laplacian”). For example:

A = de l sq (numgrid (’ S ’ , n)) ;

generates a positive-definite discrete Laplacian matrix A for a square domain of n×n grid points. This exercise
is about exploring the properties of this matrix and solving the linear system Ax = b = 1 using MATLAB.

Generate some sample Laplacian matrices and visualize their sparsity structure using spy. Can you see
any connections between the sparsity structure and the problem (domain) geometry? Solve this system
using direct methods, such as Cholesky factorization, and report the solution time and the fill-in that
appears. Explore how these scale with the size of the domain n and try some matrix reordering algorithm
that is built into MATLAB.

Now also try an iterative method, for example, the preconditioned conjugate gradient (PCG) method
available in MATLAB via the function pcg [Hint: The help page will be very useful], and report how fast
the method converges (or does not). Try some preconditioner and see if it speeds the convergence and
decreases the overall solution time or not.

References

[1] P.E. Gill, G.H. Golub, W. Murray, and M.A. Saunders. Methods for modifying matrix factorizations.
Mathematics of Computation, 28(126):505–535, 1974.

4

