
Numerical Methods I, Fall 2010
Assignment I: Numerical Computing

Aleksandar Donev
Courant Institute, NYU, donev@courant.nyu.edu

September 9th, 2010
Due: September 23rd, 2010

Choose the problems that interest you, including any of the extra credit ones. Anything above 70 points
is excellent. “Extra credit” simply marks problems that are more free-style and do not come with very
specific directions.

1 [Up to 20 points] Floating-Point Operations

Choose a “processor” to work with, meaning some programming tool and some machine to run on. For
example, you may choose MATLAB on your laptop, or you may choose the GNU C compiler on a Courant
server (report what you chose). If you know how to use a compiled language, it is recommended (extra
credit!) that you try both MATLAB and the compiled language.

1.1 [10 pts] Non-normalized numbers

Using single and/or double precision, do some simple calculations that lead to exceptions and report what
your processor gives you. Where you can, verify that the bit string (use hex format in MATLAB) for the
numbers you get corresponds to what the IEEE standard specifies. Try the following:

• Overflow other than division by zero (e.g., two to a large power). Verify that the result would have been
larger than the largest IEEE number if it had not overflowed (for example, by pen-and-paper, repeating
the same calculation with higher precision or in Maple/Mathematica).
• Divide a normal number by zero and infinity.
• Generate some NaNs and then perform some arithmetic operations between a normal number and a NaN .
• Perform a few comparisons (e.g., x < y, x > y, x == y) between infinities, NaNs, and normal numbers

to determine if and how these are ordered.
• Generate some denormalized numbers if your processor supports that. Generate a signed +0 and −0

and take their square roots.

1.2 [10pts extra credit] IEEE exceptions

Can you control the behavior that occurs? For example:

• Can you trap/detect exceptions when they occur or at the end of a computation?
• Can you enable/disable denormals and gradual underflow? Does that affect the speed of calculations

involving denormals?
• Can you go beyond double precision, e.g., quad precision?

2 [20 points] Stability and Error Propagation

[From Dahlquist & Bjorck, also Exercise 9 (second ed) / 10 (first ed) in second chapter of textbook]
Review from the lecture slides:

Consider error propagation in evaluating

yn =

ˆ 1

0

xn

x+ 5
dx

based on the identity (you may want to derive this yourself)

yn + 5yn−1 = n−1.
1



Since yn < yn−1, we have that
6yn < yn + 5yn−1 = n−1 < 6yn−1,

0 < yn <
1

6n
< yn−1,

so for large n we have tight bounds
1

6(n+ 1)
< yn <

1

6n
(1)

2.1 [10pts] Forward iteration

Calculate yn for n = 1, 2, · · · using the forward iteration yn = n−1 − 5yn−1, starting from y0 = ln(1.2),
using both single and double precision. Plot the results together with the bounds (1) [choose your axes
wisely, e.g., plot nyn instead of yn]. Report the result for the largest n = nmax where you actually trust
the answer to 4 significant digits, and explain your choices and observations the best you can.

Hints: Maple tells us that y14 = 0.01122918662647553, y15 = 0.01052073353428904 and y16 =
0.00989633232855484.

2.2 [10pts] Backward iteration

Now start with n = 2nmax and repeat the calculation going backward, yn−1 = (5n)−1 − yn/5, starting with
both the lower and upper bound for yn in (1), at least for double precision. Plot the results on top of the
plot from the forward iteration. How many digits do you trust in the answer for ynmax now?

3 [Up to 85 points] Numerical Cancellation

Choose some of these problems, trying to earn 40 points.

3.1 [20 points] Numerical Differentiation

The derivative of a function f(x) at a point x0 can be calculated using finite differences, for example the
first-order one-sided difference

f ′(x = x0) ≈
f(x0 + h)− f(x0)

h

or the second-order centered difference

f ′(x = x0) ≈
f(x0 + h)− f(x0 − h)

2h
,

where h is sufficiently small so that the approximation is good. Consider a simple function such as
f(x) = sin(x) and x0 = π/4 and calculate the above finite differences for several h on a logarithmic scale
(say h = 2−m for m = 1, 2, · · · ) and compare to the known derivative. For what h can you get the most
accurate answer? Obtain an estimate of the truncation error in the one-sided and the centered difference
formulas by performing a Taylor series expansion of f(x0 + h) around x0. Also estimate what the roundoff
error is due to cancellation of digits in the differencing. At some h, the combined error should be smallest
(optimal, which usually happens when the errors are approximately equal in magnitude). Estimate this
h and compare to the numerical observations.

[10pts extra credit] Higher order derivatives can also be calculated in this way, for example, the second-order
derivative centered approximation

f ′′(x = x0) ≈
f(x0 + h)− 2f(x0) + f(x0 − h)

h2

is commonly used. Explore the best possible accuracy for this formula with double precision.

2



3.2 [20 points] Computing π

There are many methods to compute many digits of π, and lots of them suffer from numerical accuracy
problems. Here is one of them due to Archimedes: Start with t0 = 1/

√
3 and then iterate

ti+1 =

√
1 + t2i − 1

ti
(2)

and for large i you can get a good approximation π ≈ 6 · 2i · ti.
Do this calculation with both single and double precision, and report how many digits of accuracy you

get and after how many iterations (Note: π = 3.141592653589793238462643383 · · · and MATLAB has a
built-in constant pi), accompanied with some plots of the convergence. Are there numerical problems and
can you explain why they occur when they occur? Find a way to rewrite the iteration (2) so that you
avoid cancellation errors in the numerator and get much better accuracy and repeat the calculation.

3.3 [20 points] Beneficial Cancellation:
Computing ln(1 + x) for small x

[Due to William Kahan / David Goldberg]
Introduction: When calculating ln(1 + x) for 0 < x� 1 that is close to machine precision, the argument

1 + x has a large roundoff error and the relative error in the result is large. The MATLAB function log1p
is designed so as to avoid this problem and give an accurate result.

You may choose to work with ln(1+x)
x

instead to make the behavior near zero easier to study. Also,
Exercise 13 (second ed) / 14 (first ed) in the second chapter of textbook contains a similar example but for
exp(x)−1. If you wish you can do that instead of ln(1+x). The corresponding MATLAB function is expm1.

Explore what log1p does by doing these steps:

1. [5pts] Calculate log(1 + x) for logarithmically-spaced (small) values of x using MATLAB, and comment
the relative error compared to the built-in function log1p (a picture is worth a thousand words!).

2. [10pts] Do you trust the built-in function? Give some justification why, for example, by comparing to
the Taylor series of ln(1 + x) for small x. If you did not have the built-in function, an alternative would
have been to use the naive direct calculation of log(1 + x) for x > x0 and the Taylor series for x ≤ x0.
Try to find an x0 that is optimal, that is, one for which the worst relative accuracy over the interval
0 < x < 1 is smallest.

3. [5pts] A wise person that knows a lot about IEEE arithmetic has shown that using the following
alternative calculation

ln(1 + x) =

{
x if x < ε
x ln(1+x)
(1+x)−1 otherwise

gives a relative error of several ulps (i.e., within machine precision) for all 0 ≤ x < 3/4 if the log is
computed to within half an ulp [see paper by David Goldberg on IEEE].
Try this and see how it compares to the built-in log1p.
[Extra credit:] Can you explain why this magic works (no proof necessary, just look at an example)?

3.4 [Up to 25 points extra credit] The Fibonacci sequence

[Due to Jonathan Goodman]
The Fibonacci numbers are defined by the recurrence relation

fk+1 = fk + fk−1, (3)

with f0 = 1 and f1 = 1. Consider also the apparently-related sequence

pk+1 =

(
1 +

√
3

100

)
pk + pk−1, (4)

with p0 = 1 and p1 = 1.
3



1. [5 pts] For both single and double precision arithmetic, plot fk and pk on a log-scale plot and comment
on how large k can be before there are numerical problems in computing fk.

2. [10 pts] For a set of logarithmically-spaced k’s, run the calculation backward for the Fibonacci sequence,
fk−1 = fk+1 − fk, starting from the computed fk and fk−1 and going backward to f0. Compare the
result to the correct value f0 = 1 and comment on why there is an error for larger k, for both single and
double precision.

3. [10 pts] Now also run the modified sequence (4) backward and compare to the correct p0 = 1 and
comment on the difference with (3) [Note: Problem 2 above is related]. Can you provide an estimate for
the order of magnitude of the error in p0 based on how the error propagates?

4


