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Examples of Passive and Active Colloids

Brownian Motion
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Examples of Passive and Active Colloids

Experiments: Non-Spherical Designer Colloids

Figure: (Left) Cross-linked spheres; Kraft et al. PRE 2013. (Right) Lithographed
boomerangs; Chakrabarty et al. PRL 2013.
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Examples of Passive and Active Colloids

Simulations: Dense Boomerang Suspension

Figure: (Left) Lithographed boomerang colloids. (Right) Brownian dynamics of
boomerangs above a bottom wall [1].
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Examples of Passive and Active Colloids

Light-Activated Diffusio/Osmophoresis

Figure: From Jeremie Palacci and Paul Chaikin (Science 2013)
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Examples of Passive and Active Colloids

Light-Activated Colloidal Surfers

QuickTime

A. Donev (CIMS) BDHI 9/2019 7 / 54



Examples of Passive and Active Colloids

Uniform Suspension of Microrollers: Simulation

Experiments on uniform suspensions by Michelle Driscoll (in progress).
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Examples of Passive and Active Colloids

Uniform Suspension of Microrollers: Simulation

Simulations by Brennan Sprinkle [1] of a uniform suspension of
microrollers at packing fraction φ = 0.4 (MP4).
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Examples of Passive and Active Colloids

Bent Active Nanorods

Figure: From the Courant Applied Math Lab of Michael Shelley
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Examples of Passive and Active Colloids

Thermal Fluctuation Flips

QuickTime
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Quick Primer on Brownian Motion

Brownian Motion

Consider a single spherical particle of radius a with position q(t)
diffusing in an unbounded domain with the fluid at rest at infinity.

If there are no forces applied on the particle, the displacement of the
particle in each direction over a time interval ∆t has a normal
(Gaussian) probability distribution with mean zero and variance
(mean square displacement)

〈(qα (t + ∆t)− qα (t))2〉 = 2D∆t, α = x , y , z

where D is the diffusion coefficient in units of m2/s.

Therefore, we can write the recurrence relationship

qα (t + ∆t) = qα (t) +N (0, 2D∆t) ,

where N
(
m, σ2

)
denotes a Gaussian random variable

(pseudo-random number on a computer) with mean m and variance
σ2 (standard deviation σ).
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Quick Primer on Brownian Motion

The simplest SDE

If we take the time step size ∆t → 0 the trajectory q(t) converges
to a continuous-time stochastic process with (almost surely)
continuous trajectories that we call Brownian Motion.

In this limit we formally write this as a stochastic differential
equation (SDE)

d

dt
qα(t) =

√
2D Wα(t) (physics notation)

dqα(t) =
√

2D dBα(t) (math notation) ,

where W(t) ≡ dB(t)/dt is a white noise process, and B(t) is the
standard Wiener process or standard Brownian motion.

I will employ heavily vector/matrix (physics) notation,

dq (t)

dt
=
√

2D W (t) .
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Quick Primer on Brownian Motion

Classical Fluid Dynamics

Now imagine that the sphere was large (macroscopic) so that
Brownian motion did not play a role (more on this soon).

If we apply a force F on the sphere (e.g. gravity), small enough so
that Reynolds number Re� 1, hydrodynamics (steady Stokes
equations) says that the velocity of the particle (e.g., sedimenting
sphere) is

u =
dq

dt
=

1

6πηa
F = µF,

where µ is the mobility of the sphere.

We also have the following fundamental Einstein relationship
between diffusion and mobility:

D = (kBT )µ.

Understanding where this comes from requires a whole class on
nonequilibrium statistical mechanics.
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Quick Primer on Brownian Motion

Single Colloidal Sphere

Assuming we can combine these gives the Stokes-Einstein relation
(approximate but nearly exact)

D ≈ kBT

6πηa
⇒ dq (t)

dt
= µF +

√
2kBTµW (t) .

When the particle is confined near walls (no-slip boundaries) the
diffusion coefficient depends on how far the particle is from the wall.
Different directions are also different – mobility is in general a 3× 3
matrix, i.e., a mobility tensor.

The more general SDE for Brownian motion is then
dq (t)

dt
=

(
µ (q) F + (kBT )

∂

∂q
· µ (q)

)
+
√

2kBTµ (q)W (t) .

Note that
dx (t)

dt
= a(x , t) +

√
b(x)W (t)

is notation for the limit as ∆t → 0 of

x (t + ∆t) = x(t) + a (x(t), t) ∆t +N (0, b(x(t)) ∆t) .
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Quick Primer on Brownian Motion

When is Brownian motion “important”

The diffusion time is the time it takes a particle to diffuse one radius,

τ =
a2

D
=

6πηa3

kBT
≈ (a/ (1µm))3

0.2
s.

If a ∼ 1mm then τ ∼ 106s which is quite long: We don’t see sand
particles diffusing.

But if a = 1µm, a typical colloidal particle made in the lab, then
τ ≈ 5s which is observable by microscopes.

Now what if there was also convective/advective flow carrying the
particles with speed v? We define the dimensionless Péclet number

Pe =
va

D
.

If Pe . 1, then diffusion is “important” and must be included.

But importantly, we see that deterministic and random motions are
intimately linked and given by the same hydrodynamic mobility.
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Minimally-Resolved Blob Model

Two Spheres Far Away

Now what if there were two spheres and we applied a force on one of
them? The force would create a fluid flow velocity v (r) and the other
particle would move also; this is called hydrodynamic interaction
although this is a misnomer.
Recall Re� 1 and we assume steady Stokes, so not v (r, t).

Since the steady Stokes equations are linear, we have that

u2 ≈ v (q2) = µ12 (q1,q2) F1,

where µ12 is the 3× 3 pair mobility tensor.

The Einstein relationship tells us that the Brownian motions of the
two spheres would become correlated. So one can call this
hydrodynamic correlations.

If the spheres were far apart at a distance r � a, then they would
look like “point particles.”
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Minimally-Resolved Blob Model

Point singularity approximation

A force applied at a point q is called a Stokeslet. The flow it creates
is the solution to the steady Stokes equation

∇π (r) = η∇2v (r) + Fδ (r − q)

∇ · v = 0 + boundary conditions,

which is also called the Green’s function for Stokes flow,

v (r) = G (r,q) .

For a three dimensional unbounded domain, the Green’s function is
the so-called Oseen tensor, with r = r′ − r′′:

G(r′, r′′) ≡ O(r′ − r′′) =
1

8πηr

(
I +

r ⊗ r

r2

)
. (1)

So for two spheres far away with applied forces we can add all the
pieces together because of the linearity of Stokes equations, and
ignore for now Brownian motion,

u1/2 =
dq1/2

dt
≈ 1

6πηa
F1/2 + O (q1 − q2) F2/1.
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Minimally-Resolved Blob Model

Mobility matrix

For a collection of spheres we can very generally write in matrix
notation

dQ/dt = M (Q) F,

where Q (t) = {q1 (t) , . . . ,qN (t)} collects the particle positions and
F collects the forces applied on the particles.

The mobility matrix M (Q) is symmetric and has all positive
eigenvalues (is positive definite) – it encodes the hydrodynamic
interactions/correlations.

If there are applied torques on the particles, this will induce
translational motion, especially near boundaries, and we have

dQ/dt = MF + McT,

But we can only analytically compute M (Q) or Mc (Q)
approximately for low-density or dilute suspensions.
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Minimally-Resolved Blob Model

Blob-blob pairwise mobility

Now, if the particles are not exactly points, there will be corrections
to this. The next order of approximation gives that the pairwise
mobility is the so-called Rotne-Prager mobility R,

µ12 ≈R (q1,q2) where

R
(
r′, r′′

)
= η−1

(
I +

a2

6
∇2

r′

)(
I +

a2

6
∇2

r′′

)
G(r′, r′′)

∣∣r′=rj
r′′=ri

.

For an unbounded domain we call R (r′, r′′) = R (r′ − r′′) = R (r)
the Rotne-Prager-Yamakawa (RPY) tensor, but this can be
generalized to confined domains [2].

When the two spheres overlap we need to define the RPY tensor
differently, but this can be done in a way such that [2]

R (r, r) =
1

6πηa
I.
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Minimally-Resolved Blob Model

Blob-bob mobility matrix

The 3× 3 block Mij of mobility matrix M (Q) maps a force on
particle j to a velocity of particle i .

For dilute suspensions we might at first assume that each pair of
particles is not affected by the other particles, and just add over all
pairs by linearity, giving the pairwise approximation:

Mij (Q) ≡Mij

(
qi ,qj

)
= R

(
qi ,qj

)
for all (i , j).

We will call spherically-symmetric particles that interact/correlate
through the RPY mobility “blobs”.

Even if the suspension is not dilute we may approximate the particles
as blobs without violating basic physics laws!

A. Donev (CIMS) BDHI 9/2019 23 / 54



Minimally-Resolved Blob Model

Brownian Hydrodynamics with blobs

Represent each spherical particle by a single blob, and solve the Ito
equations of Brownian HydroDynamics for the (correlated)
positions of the N spherical microrollers Q (t) = {q1 (t) , . . . ,qN (t)},

dQ/dt = MF + McT + kBT (∂Q ·M) + (2kBT M)
1
2 W (t) .

Computational issues (not discussed here heavily but very important
to my research group):

How to compute deterministic velocities MF (matrix-vector
product) efficiently?
How to generate Brownian increments N (0, 2kBT∆tM) or,
equivalently, Brownian velocities N (0, (2kBT/∆t) M) efficiently?
How to generate stochastic drift kBT (∂Q ·M) efficiently by only
multiplying vectors by M, without derivatives.
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Minimally-Resolved Blob Model

Generating Brownian increments

We need a fast way to compute the Brownian velocities

Ub =

√
2kBT

∆t
M

1
2 W = N (0, 2kBT/∆t M)

where W is a vector of Gaussian random variables.

The product M
1
2 W can be computed iteratively by repeated

multiplication of a vector by M using (preconditioned) Krylov
subspace Lanczos methods.

When particles are sedimented close to a bottom wall, pairwise
hydrodynamic interactions decay rapidly like 1/r3, which appears to
be enough to make the Krylov method converge in a small constant
number of iterations, without any preconditioning.
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Minimally-Resolved Blob Model

Stochastic drift term

dQ(t)

dt
= MF+ (2kBT M)

1
2 W (t) + (kBT ) ∂Q ·M

Key idea to get (∂Q ·M)i = ∂Mij/∂Qj is to use random finite
differences (RFD) [3]: If 〈∆P∆QT = I〉,

lim
δ→0

1

δ
〈
{
M
(

Q +
δ

2
∆Q

)
−M

(
Q− δ

2
∆Q

)}
∆P〉 =

{∂QM (Q)} : 〈∆P∆QT 〉 = kBT ∂Q ·M (Q) .

This leads to a stochastic Adams-Bashforth temporal integrator [3],

Qn+1 −Qn

∆t
=

(
3

2
MnFn − 1

2
Mn−1Fn−1

)
+

√
2kBT

∆t
(Mn)

1
2 Wn

+
kBT

δ

(
M
(

Q +
δ

2
W̃

n
)
−M

(
Q− δ

2
W̃

n
))

W̃
n
.
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Driven Colloidal Monolayers

Microrollers: Fingering Instability

Experiments by Michelle Driscoll (lab of Paul Chaikin, NYU Physics, now
at Northwestern), simulations by Blaise Delmotte [4, 3].
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Driven Colloidal Monolayers

Role of Brownian Motion

Simulations show that thermal fluctuation are quantitatively important
because they set the gravitational height.[3].
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Driven Colloidal Monolayers

Critters

Simulations by Blaise Delmotte revealed that stable motile clusters
termed critters can form purely by hydrodynamic interactions [4].
Still trying to create critters that don’t shed particles in the lab...
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Driven Colloidal Monolayers

Sedimentation of colloidal monolayer

Experiments in lab of Paul Chaikin show that a sedimenting front roughens
due to a sort of “instability”.
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Driven Colloidal Monolayers

3D simulations of sedimentation

Simulations of Brennan Sprinkle show the gravitational height matters,
but no precise explanation yet.
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Driven Colloidal Monolayers

2D simulations of sedimentation

Quasi-2D simulations of Brennan Sprinkle show that Brownian motion in
the plane don’t matter that much.
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Rigid Multiblob Method

Rigid MultiBlob Models

The rigid body is discretized through a number of “beads” or “blobs”
with hydrodynamic radius a.
Standard is stiff springs but we want rigid multiblobs.
Equivalent to a (smartly!) regularized first-kind boundary
integral formulation [5].
We can efficiently simulate the driven and Brownian motion of
the rigid multiblobs.
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Rigid Multiblob Method

Nonspherical Rigid Multiblobs

Figure: Rigid multiblob models of a rigid cylinder (rod) going from minimally
resolved (left) to well-resolved (right).
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Rigid Multiblob Method

Rigid MultiBlobs

We add rigidity forces as Lagrange multipliers λ = {λ1, . . . ,λn} to
constrain a group of blobs forming body p to move rigidly,∑

j

Mijλj =up + ωp ×
(
ri − qp

)
+ ŭp (2)

∑
i∈Bp

λi =fp∑
i∈Bp

(ri − qp)× λi =τ p.

where u is the velocity of the tracking point q, ω is the angular
velocity of the body around q, f is the total force applied on the body,
τ is the total torque applied to the body about point q, and ri is the
position of blob i .

This can be a very large linear system for suspensions of many
bodies discretized with many blobs:
Use iterative solvers with a good preconditioner.
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Rigid Multiblob Method

Suspensions of Rigid Bodies

In matrix notation we have a saddle-point linear system of equations
for the rigidity forces λ and unknown motion U = (u,ω),[

M −K
KT 0

] [
λ
U

]
=

[
ŭ
F

]
, (3)

where F = (f, τ ) are the applied forces and torques.

Solution U = NF−
(
NKTM−1

)
ŭ

gives the multiblob mobility matrix [sorry for change of notation of
letter N ]

N =
(
KTM−1K

)−1
(4)

The inverse of the mobility matrix is called the resistance matrix,
R = N−1 = KTM−1K.

The surface velocity ŭ can be used to model active slip or to
generate Brownian velocities [1].
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Rigid Multiblob Method

Lubrication for spherical colloids

Use Stokesian Dynamics approach introduced by Brady to account
for the strong lubrication for thin gaps by adding lubrication forces:(

M −K
KT ∆MB

)(
λ
U

)
=

(
−ŭ
F

)
, (5)

∆MB is a lubrication correction to the resistance matrix formed
by adding pairwise contributions for each pair of nearby surfaces
(either particle-particle or particle-wall) — can be computed
semi-analytically or tabulated by using an expensive but accurate
reference method (e.g., boundary integral).

Lubrication-corrected mobility matrix

N =
[
N−1 + ∆MB

]−1
= N · [I + ∆MB ·N ]−1 .

One can even use a single blob per sphere (minimally-resolved) by
adding rotation/torque to the RPY tensor, and setting K = I.
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Rigid Multiblob Method

Generating Brownian Displacements ∼N
1
2 W

Assume that we knew how to efficiently generate Brownian blob

velocities M
1
2 W.

Key idea: Solve the mobility problem with random slip ŭ,[
M −K
−KT 0

] [
λ
U

]
= −

[
ŭ = (2kBT )1/2 M

1
2 W

F

]
, (6)

U = NF + (2kBT )
1
2 NKTM−1M

1
2 W = NF + (2kBT )

1
2 N

1
2 W.

which defines a N
1
2 = NKTM−1M

1
2 :

N
1
2

(
N

1
2

)†
= N

(
KTM−1K

)
N = NN−1N = N .
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Rigid Multiblob Method

Random Traction Euler-Maruyuama

One can use the RFD idea to make more efficient temporal integrators for
Brownian rigid multiblobs [1], such as the following Euler scheme:

1 Solve a mobility problem with a random force+torque:[
M −K
−KT 0

]n [
λRFD

URFD

]
=

[
0

−W̃

]
. (7)

2 Compute random finite differences:

FRFD =
kBT

δ

(
KT

(
Qn + δW̃

)
− (Kn)T

)
λRFD

ŭRFD =
kBT

δ

(
M
(

Qn + δW̃
)
−Mn

)
λRFD+

− kBT

δ

(
K
(

Qn + δW̃
)
−Kn

)
URFD .
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Rigid Multiblob Method

Random Traction EM contd.

1 Compute correlated random slip:

ŭn =

(
2kBT

∆t

)1/2

(Mn)
1
2 Wn

2 Solve the saddle-point system:[
M −K
−KT 0

]n [
λn

Un

]
= −

[
ŭn + ŭRFD

Fn − FRFD

]
. (8)

3 Move the particles (rotate for orientation)

Qn+1 = Qn + ∆t Un.
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Fluctuating Hydrodynamics

Fluctuating Hydrodynamics

We consider a rigid body Ω immersed in a fluctuating fluid. In the fluid
domain, we have the fluctuating Stokes equation

ρ∂tv + ∇π = η∇2v + (2kBTη)
1
2 ∇ ·Z

∇ · v = 0,

with no-slip BCs on the bottom wall, and the fluid stress tensor

σ = −πI + η
(
∇v + ∇Tv

)
+ (2kBTη)

1
2 Z (9)

consists of the usual viscous stress as well as a stochastic stress
modeled by a symmetric white-noise tensor Z (r, t), i.e., a Gaussian
random field with mean zero and covariance

〈Zij(r, t)Zkl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).
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Fluctuating Hydrodynamics

Fluid-Body Coupling

At the fluid-body interface the no-slip boundary condition is assumed to
apply,

v (q) = u + ω × q− ŭ (q) for all q ∈ ∂Ω, (10)

with the inertial body dynamics

m
du

dt
= F−

∫
∂Ω
λ (q) dq, (11)

I
dω

dt
= τ −

∫
∂Ω

[q× λ (q)] dq (12)

where λ (q) is the normal component of the stress on the outside of the
surface of the body, i.e., the traction

λ (q) = σ · n (q) .

To model activity we can add active slip ŭ due to active boundary layers,
or consider external forces/torques.
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Fluctuating Hydrodynamics

Mobility Problem

From linearity, the rigid-body motion is defined by a linear mapping
U = NF via the deterministic mobility problem:

∇π = η∇2v and ∇ · v=0 +BCs

v (q) = u + ω × q− ŭ (q) for all q ∈ ∂Ω, (13)

With force and torque balance∫
∂Ω
λ (q) dq = F and

∫
∂Ω

[q× λ (q)] dq = τ , (14)

where λ (q) = σ · n (q) with

σ = −πI + η
(
∇v + ∇Tv

)
. (15)
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Fluctuating Hydrodynamics

Overdamped Brownian Dynamics

Consider a suspension of Nb rigid bodies with configuration
Q = {q, θ} consisting of positions and orientations (described
using quaternions) immersed in a Stokes fluid.

By eliminating the fluid from the equations in the overdamped limit
(infinite Schmidt number) we get the equations of Brownian
Dynamics

dQ(t)

dt
= U = NF + (2kBT N )

1
2 W (t) + (kBT ) ∂Q ·N ,

where N (Q) is the body mobility matrix, with “square root” given
by fluctuation-dissipation balance

N
1
2

(
N

1
2

)T
= N .

U = {u, ω} collects the linear and angular velocities
F (Q) = {f, τ} collects the applied forces and torques.
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Fluctuating Hydrodynamics

Microrollers: Uniform Suspension

Simulations by Brennan Sprinkle+Blaise Delmotte [1] of a uniform
suspension of microrollers at packing fraction φ = 0.4 (GIF).
Compare to experiments (AVI) by Michelle Driscoll.
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Tutorial Examples

Example 1: Bound Roller Dimer
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Tutorial Examples

Example 1: Deterministic 12 blobs
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Tutorial Examples

Example 1: Bound Roller Dimer

A. Donev (CIMS) BDHI 9/2019 52 / 54



Tutorial Examples

Example 2: Formation of Critters
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Tutorial Examples
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