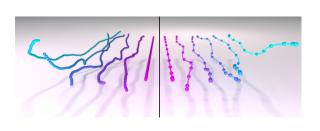
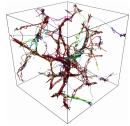
Bending fluctuations in semiflexible, inextensible, slender filaments in Stokes flow: Towards a spectral discretization

Ondrej Maxian, Brennan Sprinkle, and Aleks Donev Courant Institute, NYU February 2, 2023

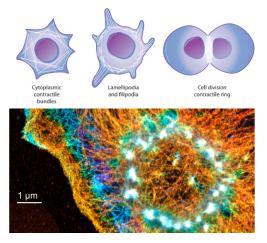




Importance of actin cytoskeleton

Dynamic cross-linked network of slender filaments

- ▶ Morphology ↔ mechanical properties of cell
- Dictate cell's shape and ability to move and divide



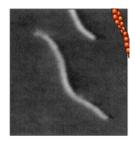
Fluctuating actin filaments

Actin filament fluctuations used for

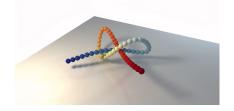
- Sensing
- Motility
- ► Stress release (untying knots!)

Key point: actin filaments are semiflexible $\ell_p \gtrsim L$

- In this sense, shapes are smooth
- Spectral methods!



$$L=5~\mu\mathrm{m}$$
, $\ell_p/Lpprox3$



Stationary probability distribution

- $\mathbf{X} \in \mathbb{R}^{N} = \text{finite dimensional DOFs with energy function } \mathcal{E}(\mathbf{X}).$
 - Stationary distribution (probability of observing a state)

$$d\mu_{\mathrm{GB}} = \underbrace{rac{1}{Z}}_{ ext{Normalization}} \underbrace{e^{-\mathcal{E}(\mathbf{X})/k_BT}}_{ ext{Boltzmann weight}} \underbrace{d\mathbf{X}}_{ ext{Lebesque measure}}$$

Gibbs-Boltzmann distribution (stat. mech.)

- ▶ Prob. depends on ratio of energy with k_BT (thermal energy)
- lacktriangle Dynamics must be time-reversible with respect to $\mu_{\sf GB}$

Dynamics: (Overdamped) Langevin equations

Commonly-used model for micro-structures immersed in liquid

$$\frac{\partial \mathbf{X}}{\partial t} = \underbrace{-\mathbf{M}(\mathbf{X}) \frac{\partial \mathcal{E}}{\partial \mathbf{X}}(\mathbf{X})}_{\text{Deterministic}} + \sqrt{2k_B T} \underbrace{\mathbf{M}(\mathbf{X}) \circ \mathbf{M}^{-1/2}(\mathbf{X})}_{\text{Mixed Strato-Ito}} \underbrace{\mathcal{W}(t)}_{\text{White noise}}$$

- ▶ **M**(**X**) is SPD mobility operator, encoding (hydro)dynamics
- Noise form & "kinetic" interpretation chosen to sample from GB distribution & be time reversible at equilibrium

Converting to Ito form gives

$$\frac{\partial \mathbf{X}}{\partial t} = -\mathbf{M} \frac{\partial \mathcal{E}}{\partial \mathbf{X}} + \underbrace{k_B T (\partial_{\mathbf{X}} \cdot \mathbf{M})}_{\text{Stochastic drift term}} + \sqrt{2k_B T} \underbrace{\mathbf{M}^{1/2} \mathcal{W}(t)}_{\text{Multiplicative noise}}$$

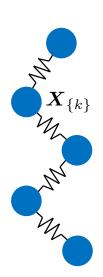
Goal is to write and solve such an equation for fibers

Bead/blob-spring model for fibers

Create "fiber" out of beads (blobs) and springs

- ▶ DOFs: $\mathbf{X}_{\{i\}}$ = bead positions
- No constraints
- Energy and Langevin equation straightforward
- Only drift terms from mobility (vanish for triply-periodic systems)

Big problem: need small Δt to resolve stiff springs



Blob-link model

Replace springs with rigid rods

- ▶ DOFs: $\tau_{\{i\}}$ = unit tangent vectors + \mathbf{X}_{MP}
- Obtain positions of nodes X via

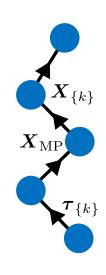
$$\mathbf{X}_{\{i\}} = \mathbf{X}_{\mathsf{MP}} + \Delta s \sum_{\mathsf{MP}}^{i} \boldsymbol{ au}_{\{k\}}$$

defines invertible map $\mathbf{X} = \mathcal{X} \begin{pmatrix} \mathbf{ au} \\ \mathbf{X}_{\mathsf{MP}} \end{pmatrix}$

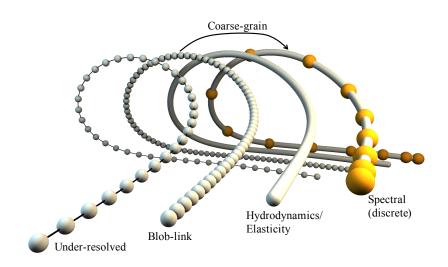
lacksquare Constraint $oldsymbol{ au}_{\{i\}}\cdotoldsymbol{ au}_{\{i\}}=1$

Removes stiffest timescale BUT

- ightharpoonup Slender fibers ightharpoonup small lengthscales
- ▶ Still have small $\Delta t!$
- Small lengthscales come from hydrodynamics of long blob-link chain



Big idea: mix continuum and discrete



Spectral method

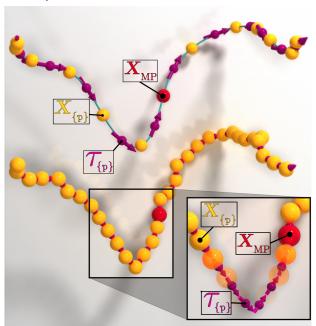
Mixed discrete-continuum description

- lacktriangle Hydrodynamics uses a continuum curve ightarrow special quadrature
- lacktriangle Discrete spatial DOFs ightarrow Langevin equation (Brennan/Aleks)
- Spectral method: the spatial DOFs define the continuum curve $\mathbb{X}(s)$ used for elasticity & hydro

Big idea: resolve hydrodynamics ightarrow reduce DOFs ightarrow increase Δt

- Small problem: constrained motion
- au = series of connected rigid rods
- ► Mix of new methods + existing rigid body methods

Blob link and spectral



Building spectral discretization

DOFs: au at N nodes of type 1 (no EPs) Chebyshev grid, $extsf{X}_{MP}$

- lacktriangle Chebyshev polynomial $m{ au}(s)$ constrained $\|m{ au}(s_j)\|=1$
- Obtain $\mathbb{X}(s)$ by integrating $\tau(s)$ on $N_x = N+1$ point grid (type 2, with EPs). Set $\mathbf{X}_{\{i\}} = \mathbb{X}(s_i)$.
- ightharpoonup Defines set of nodes $\mathbf{X}_{\{i\}}$ and invertible mapping

$$\mathbf{X} = \mathcal{X} \begin{pmatrix} \mathbf{ au} \\ \mathbf{X}_{\mathsf{MP}} \end{pmatrix}$$

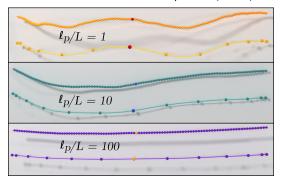
- Can apply discrete blob-link methods (Brennan Sprinkle) for constrained discrete Langevin equation
- Combine with continuum methods for elasticity and hydrodynamics

Continuum part: energy

Fibers resist bending according to curvature energy functional

$$\mathcal{E}_{\mathsf{bend}}\left[\mathbb{X}(\cdot)\right] = \frac{\kappa}{2} \int_0^L \partial_s^2 \mathbb{X}(s) \cdot \partial_s^2 \mathbb{X}(s) \, ds$$

- \triangleright $\kappa =$ bending stiffness
- $\ell_p = \kappa/(k_B T)$ defines a "persistence length"
- Fibers bend on this length, shorter than this straight
- ▶ Hope for spectral methods when $\ell_p \simeq L$ (actin)



Discretizing energy

Discretize inner product on Chebyshev grid

$$\begin{split} \mathcal{E}_{\mathsf{bend}} \left[\mathbb{X}(\cdot) \right] &= \frac{\kappa}{2} \int_0^L \partial_s^2 \mathbb{X}(s) \cdot \partial_s^2 \mathbb{X}(s) \, ds \\ &= \frac{\kappa}{2} \left(\mathbf{E}_{N_x \to 2N_x} \mathbf{D}^2 \mathbf{X} \right)^T \mathbf{W}_{2N} \left(\mathbf{E}_{N_x \to 2N_x} \mathbf{D}^2 \mathbf{X} \right) \\ &= \frac{\kappa}{2} \left(\mathbf{D}^2 \mathbf{X} \right)^T \widetilde{\mathbf{W}} \left(\mathbf{D}^2 \mathbf{X} \right) \\ &= \mathbf{X}^T \mathbf{L} \mathbf{X} \end{split}$$

- Upsampling to grid of size $2N_x$ to integrate exactly
- No aliasing
- Corresponds to inner product weights matrix W
- Force $\mathbf{F} = -\partial \mathcal{E}/\partial \mathbf{X} = -\mathbf{L}\mathbf{X}$
- ► Force density $\mathbf{f} = \widetilde{\mathbf{W}}^{-1} \mathbf{F}$ (FEM: $\langle \mathbf{X}, \mathbf{f} \rangle = \mathbf{X}^T \mathbf{F}$)

Continuum part: hydrodynamics

Goal is to approximate blob-link methods (radius \hat{a}), which give velocity \mathbf{U} by

$$\mathbf{U}_{\{i\}} = \sum_{j} \mathbf{M}_{\mathsf{RPY}} \left(\mathbf{X}_{\{i\}}, \mathbf{X}_{\{j\}}; \hat{\mathsf{a}}
ight) \mathbf{F}_{\{j\}}$$

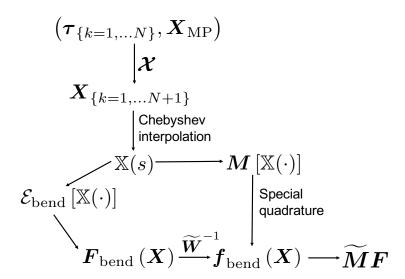
- M_{RPY}= symmetrically regularized form of Stokeslet (RPY tensor)
- Expresses velocity on one blob from force on another

Convert sum over blobs \rightarrow integral over curve

$$\mathbf{U}(s) = \int_{0}^{L} \mathbf{M}_{\mathsf{RPY}} \left(\mathbb{X}(s), \mathbb{X} \left(s' \right); \hat{a} \right) \mathbf{f} \left(s' \right) ds'$$

- Have developed special quadrature schemes on spectral grid
- Mix of singularity subtraction + precomputations
- ightharpoonup Requires $\mathcal{O}(1)$ points to resolve integral
- ► Compare to blob-link: $\mathcal{O}(L/\hat{a})$ points!

Applying mobility



Discrete part: inextensibility

Langevin equation must be modified because of inextensibility

lacksquare $m{ au}_{\{i\}}$ remains unit vector, rotates as rigid rod (ang. vel. $m{\Omega}_{\{i\}})$

$$\partial_t oldsymbol{ au}_{\{i\}} = oldsymbol{\Omega}_{\{i\}} imes oldsymbol{ au}_{\{i\}}
ightarrow \partial_t oldsymbol{ au} = - oldsymbol{\mathsf{C}} oldsymbol{\Omega}$$

Results in constrained motions for X

$$\partial_t \mathbf{X} = \mathcal{X} egin{pmatrix} -\mathbf{C} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} egin{pmatrix} \mathbf{\Omega} \\ \mathbf{U}_\mathsf{MP} \end{pmatrix} := \mathcal{X} \mathbf{ar{C}} lpha := \mathbf{K} lpha$$

lackbox Discrete time: solve for $lpha=(oldsymbol{\Omega}, oldsymbol{\mathsf{U}}_\mathsf{MP})$, rotate by $oldsymbol{\Omega} \Delta t$, update midpoint

Deterministic dynamics

Close system by introducing Lagrange multiplier forces Λ

- No work done for inextensible motions (principle of virtual work)
- ► Constraint $\mathbf{K}^T \mathbf{\Lambda} = \mathbf{0}$ (comes from L^2 adjoint of \mathbf{K})

Results in saddle point system for lpha and $oldsymbol{\Lambda}$

$$\mathbf{K} \boldsymbol{\alpha} = \widetilde{\mathbf{M}} \left(-\mathbf{L} \mathbf{X} + \mathbf{\Lambda} \right)$$
 $\mathbf{K}^T \mathbf{\Lambda} = \mathbf{0},$

Deterministic dynamics (eliminate Λ)

$$\partial_t \mathbf{X} = -\widehat{\mathbf{N}} \mathbf{L} \mathbf{X}, \qquad \widehat{\mathbf{N}} = \mathbf{K} \left(\mathbf{K}^T \widetilde{\mathbf{M}}^{-1} \mathbf{K} \right)^{\dagger} \mathbf{K}^T$$

N expensive if done densely (if nonlocal dynamics). Apply via iterative saddle pt solve with block-diagonal preconditioner (in progress)

Discrete Langevin equation

Deterministic dynamics + time reversibility \rightarrow Langevin equation

$$\partial_t \mathbf{X} = -\underbrace{\widehat{\mathbf{NLX}}}_{\text{Backward Euler}} + \underbrace{k_B T \partial_{\mathbf{X}} \cdot \widehat{\mathbf{N}}}_{\text{Midpoint integrator}} + \underbrace{\sqrt{2k_B T} \widehat{\mathbf{N}}^{1/2}}_{\text{Saddle point solve}} \mathcal{W}(t)$$

- Drift term captured in expectation via solving at the midpoint (Brennan/Aleks)
- $\triangleright \hat{\mathbf{N}}^{1/2}$ captured via saddle point solve

$$\mathbf{K}\alpha = \widetilde{\mathbf{M}} \left(-\mathbf{L}\mathbf{X} + \mathbf{\Lambda} \right) + \sqrt{\frac{2k_BT}{\Delta t}} \widetilde{\mathbf{M}}^{1/2} \mathbf{W}$$

$$\mathbf{K}^T \mathbf{\Lambda} = \mathbf{0},$$

$$\Rightarrow \alpha = \mathsf{Deterministic} + \sqrt{\frac{2k_BT}{\Delta t}} \widehat{\mathbf{N}}^{1/2} \mathbf{W}$$

 $ightharpoonup \mathbf{W} \sim \mathcal{N}(0,1)$

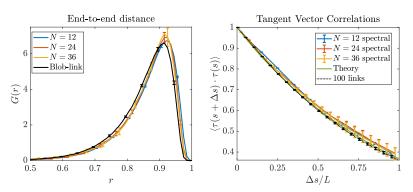
Implied GB distribution

The overdamped Langevin equation is in detailed balance wrt the distribution

$$P_{\rm eq}\left(\bar{\boldsymbol{\tau}}\right) = Z^{-1} \exp\left(-\mathcal{E}_{\rm bend}(\bar{\boldsymbol{\tau}})/k_BT\right) \prod_{p=1}^N \delta\left(\boldsymbol{\tau}_{\{p\}}^T \boldsymbol{\tau}_{\{p\}} - 1\right)$$

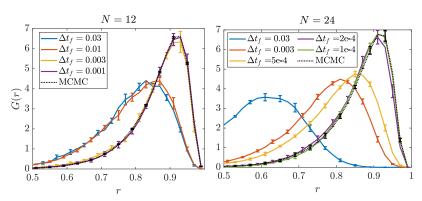
- ► For blob-link, physical
- Postulate that it extends to spectral (others possible)
- Justify through the theory of coarse-graining (in progress)
- ▶ Will present supporting numerical results

Samples from GB: free fibers



Bias for finite N which disappears as N increases

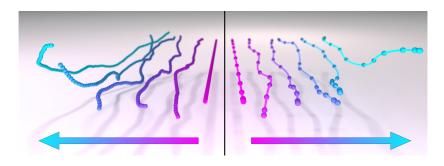
Using the Langevin integrator to sample



Convergence to MCMC for smallest Δt

- Reported in terms of longest relaxation timescale
- ▶ Goes as N^{-4} (not ideal); another reason to keep N low!
- Unchanged with ℓ_p (modes are stiffer, but fewer required)

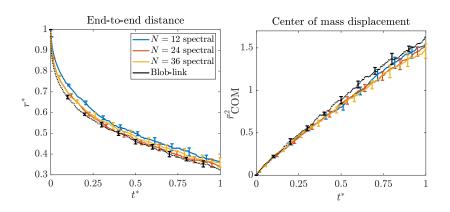
Relaxation of fiber to equilibrium



Blob-link vs. spectral

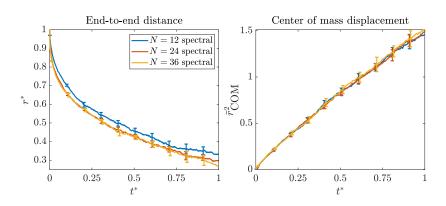
- ► Getting a good approximation to mean end-to-end distance?
- ▶ Is special quadrature doing what we want it to?

Quantifying relaxation $(\hat{\epsilon} = 10^{-2})$



- Spectral results approach blob-link with increasing N
- ightharpoonup Can extend spectral to smaller $\hat{\epsilon}$, but not blob-link!

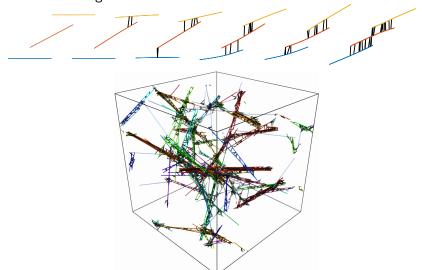
Quantifying relaxation $(\hat{\epsilon} = 10^{-3})$



Dynamics of bundling in cross-linked actin networks

Couple the fibers to moving cross linkers (CLs, elastic springs)

- CLs bind fibers, pulling them closer together
- Ratcheting action creates bundles



Goals for bundling

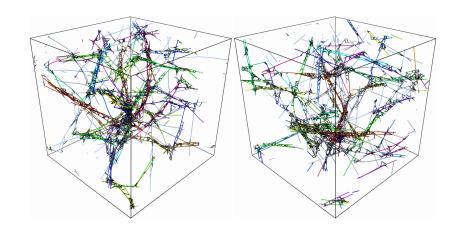
Filaments move in three ways

- 1. Cross linking forces
- 2. Rigid body translation and rotation
- 3. Semiflexible bending fluctuations

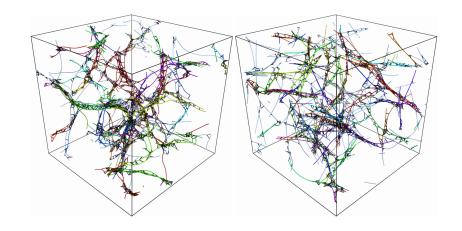
Goal is to explore the role of the bending flucts

- Intuition: fluctuations increase binding frequency
- ► How small does ℓ_p have to be?
- ➤ Strategy: simulate fibers with #1 and #2 only, compare to fluctuating

Movie: $\ell_p/L = 10$

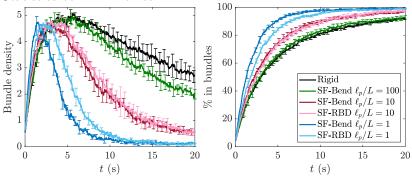


Movie: $\ell_p/L=1$



Bundling statistics

Statistics confirm movies



- \blacktriangleright $\ell_p/L = 100$: similar to rigid
- ho $\ell_p/L=10$: small difference from "RBD" filaments without bending fluctuations
- $ightharpoonup \ell_p/L=1$: speed-up due to semiflexible bending fluctuations
- Actin in vivo: $\ell_p/L \approx 30$

Conclusions

Spectral method as a way to coarse-grain blob-link simulations

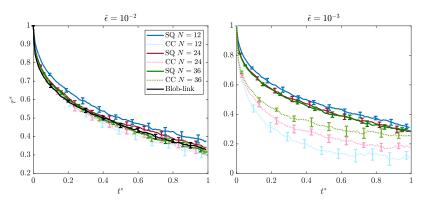
- Resolve hydrodynamics and elasticity with continuum interpolant
- Langevin equation over discrete collection of points
- ▶ Good accuracy with $\mathcal{O}(1)$ points, larger Δt

Future challenges

- Incorporate nonlocal interactions between fibers (hydrodynamic+steric)
- More rigorous justification of GB (continuum limit?)
- Apply to rheology of actin networks

Special quadrature vs. direct quadrature

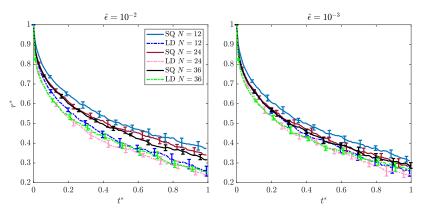
Compare to direct quadrature on Chebyshev grid



Direct quadrature abysmal failure for $\hat{\epsilon}=10^{-3}$

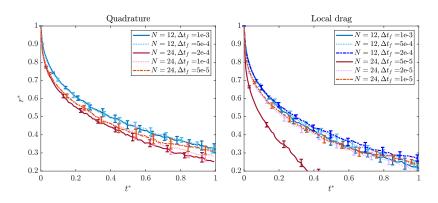
Special quadrature vs. local drag

Local drag is other theory which scales with $\hat{\epsilon}$



Special quad better for $\hat{\epsilon}=10^{-2}$

Temporal convergence: local drag vs. special quad



Local drag requires time step 4–10 times smaller ($\hat{\epsilon}=10^{-3}$)

Coarse-graining: geometric perspective

Solve the quadratic programming problem

$$\begin{pmatrix} \boldsymbol{\tau} \\ \mathbf{X}_{\mathsf{MP}} \end{pmatrix} = \operatorname{argmin} \left\| \mathbf{X}^{(\mathsf{SB})} - \mathbf{X}^{(\mathsf{BL})} \right\|_{2}^{2} = \left\| \mathbf{E}_{\mathcal{S} \to \mathcal{B}} \boldsymbol{\mathcal{X}} \begin{pmatrix} \boldsymbol{\tau} \\ \mathbf{X}_{\mathsf{MP}} \end{pmatrix} - \mathbf{X}^{(\mathsf{BL})} \right\|_{2}^{2}$$

$$\boldsymbol{\tau}_{\{p\}}^{\mathsf{T}} \boldsymbol{\tau}_{\{p\}} = 1, \qquad p = 1, \dots, N$$

where $\mathbf{E}_{S \to B}$ samples $\mathbb{X}(s)$ at the blob-link locations.

