Hydrodynamics of transiently cross-linked actin networks: theory, numerics, and emergent behaviors

> **Ondrej Maxian**, Brennan Sprinkle, and Aleks Donev Courant Institute, NYU

> > Vancouver, May 2023

Outline

Cytoskeleton

Overdamped Langevin dynamics

Discrete fibers Elasticity Hydrodynamics

Fluctuating discrete fibers

Cross-linked actin gels

Conclusions and future work

Additional details

Outline

Cytoskeleton

Overdamped Langevin dynamics

Discrete fibers Elasticity Hydrodynamics

Fluctuating discrete fibers

Cross-linked actin gels

Conclusions and future work

Additional details

Importance of actin cytoskeleton

Dynamic cross-linked network of slender filaments

- Morphology \leftrightarrow mechanical properties of cell
- Dictate cell's shape and ability to move and divide

Fibers involved in cell mechanics

 L_p =persistence length, L =fiber length, $a = \epsilon L$ =fiber radius, ϵ =slenderness ratio

Cytoskeletal rheology

Ahmed and Betz. PNAS. (2015)

Fluctuating actin filaments

Actin filament *fluctuations* used for

- Sensing
- Motility
- Stress release (untying knots!)

Fluctuating actin filaments

Actin filament *fluctuations* used for

- Sensing
- Motility
- Stress release (untying knots!)

Key point: actin filaments are semiflexible $\ell_p\gtrsim L$

- In this sense, shapes are smooth
- Spectral methods!

$$L=5~\mu$$
m, $\ell_{p}/Lpprox$ 3

Fluctuating actin filaments

Actin filament *fluctuations* used for

- Sensing
- Motility
- Stress release (untying knots!)

Key point: actin filaments are semiflexible $\ell_p\gtrsim L$

- In this sense, shapes are smooth
- Spectral methods!

$$L=5~\mu{
m m},~\ell_p/Lpprox3$$

Outline

Cytoskeleton

Overdamped Langevin dynamics

Discrete fibers Elasticity Hydrodynamics

Fluctuating discrete fibers

Cross-linked actin gels

Conclusions and future work

Additional details

Statics: Gibbs-Boltzmann distribution

 $\mathbf{X} \in \mathbb{R}^{N}$ = finite dimensional DOFs with energy function $\mathcal{E}(\mathbf{X})$.

Stationary distribution (probability of observing a state)

Gibbs-Boltzmann distribution (stat. mech.)

Statics: Gibbs-Boltzmann distribution

 $\mathbf{X} \in \mathbb{R}^{N}$ = finite dimensional DOFs with energy function $\mathcal{E}(\mathbf{X})$.

Stationary distribution (probability of observing a state)

Gibbs-Boltzmann distribution (stat. mech.)

▶ Prob. depends on ratio of energy with $k_B T$ (thermal energy)

Statics: Gibbs-Boltzmann distribution

 $\mathbf{X} \in \mathbb{R}^{N}$ = finite dimensional DOFs with energy function $\mathcal{E}(\mathbf{X})$.

Stationary distribution (probability of observing a state)

Gibbs-Boltzmann distribution (stat. mech.)

- ▶ Prob. depends on ratio of energy with $k_B T$ (thermal energy)
- Dynamics must be time-reversible with respect to µ_{GB}

Dynamics: (Overdamped) Langevin equations

Commonly-used model for micro-structures immersed in liquid

$$\frac{\partial \mathbf{X}}{\partial t} = \underbrace{-\mathbf{M}(\mathbf{X}) \frac{\partial \mathcal{E}}{\partial \mathbf{X}}(\mathbf{X})}_{\text{Deterministic}} + \sqrt{2k_BT} \underbrace{\mathbf{M}(\mathbf{X}) \circ \mathbf{M}^{-1/2}(\mathbf{X})}_{\text{Mixed Strato-Ito}} \underbrace{\mathcal{W}(t)}_{\text{White noise}}$$

► **M**(**X**) is SPD mobility operator, encoding (hydro)dynamics

 Noise form & "kinetic" interpretation chosen to sample from GB distribution & be time reversible at equilibrium

Dynamics: (Overdamped) Langevin equations

Commonly-used model for micro-structures immersed in liquid

$$\frac{\partial \mathbf{X}}{\partial t} = \underbrace{-\mathbf{M}(\mathbf{X}) \frac{\partial \mathcal{E}}{\partial \mathbf{X}}(\mathbf{X})}_{\text{Deterministic}} + \sqrt{2k_BT} \underbrace{\mathbf{M}(\mathbf{X}) \circ \mathbf{M}^{-1/2}(\mathbf{X})}_{\text{Mixed Strato-Ito}} \underbrace{\mathcal{W}(t)}_{\text{White noise}}$$

▶ **M**(**X**) is SPD mobility operator, encoding (hydro)dynamics

 Noise form & "kinetic" interpretation chosen to sample from GB distribution & be time reversible at equilibrium

Converting to Ito form gives

$$\frac{\partial \mathbf{X}}{\partial t} = -\mathbf{M} \frac{\partial \mathcal{E}}{\partial \mathbf{X}} + \underbrace{k_B T \left(\partial_{\mathbf{X}} \cdot \mathbf{M}\right)}_{\text{Stochastic drift term}} + \sqrt{2k_B T} \underbrace{\mathbf{M}^{1/2} \mathcal{W}(t)}_{Multiplicative \text{ noise}}$$

Goal is to write and solve such an equation for fibers

Outline

Cytoskeleton

Overdamped Langevin dynamics

Discrete fibers Elasticity Hydrodynamics

Fluctuating discrete fibers

Cross-linked actin gels

Conclusions and future work

Additional details

Create "fiber" out of beads (blobs) and springs ► DOFs: X_{i} = bead positions

- DOFs: X_{{i}} = bead positions
- No constraints

- ► DOFs: X_{{i}} = bead positions
- No constraints
- Energy and Langevin equation straightforward

- DOFs: X_{{i}} = bead positions
- No constraints
- Energy and Langevin equation straightforward
- Only drift terms from mobility (vanish for triply-periodic systems)

Create "fiber" out of beads (blobs) and springs

- DOFs: X_{{i}} = bead positions
- No constraints
- Energy and Langevin equation straightforward
- Only drift terms from mobility (vanish for triply-periodic systems)

Big problem: need small Δt to resolve stiff springs

Replace springs with rigid rods

Replace springs with rigid rods

DOFs: \(\tau_{\{i\}} = unit tangent vectors + \(X_{MP}\)

Replace springs with rigid rods

- DOFs: \(\mathcal{\mathcal{t}}_{\{i\}}\) = unit tangent vectors + \(\mathcal{X}_{\mathcal{MP}}\)
- Obtain positions of nodes X via

$$\mathbf{X}_{\{i\}} = \mathbf{X}_{\mathsf{MP}} + \Delta s \sum_{\mathsf{MP}}^{i} \boldsymbol{ au}_{\{k\}}$$

defines invertible map
$$\mathbf{X} = \mathcal{X} egin{pmatrix} \mathbf{ au} \\ \mathbf{X}_{\mathsf{MP}} \end{pmatrix}$$

Replace springs with rigid rods

- DOFs: \(\mathcal{\mathcal{t}}_{\{i\}}\) = unit tangent vectors + \(\mathcal{X}_{\mathcal{MP}}\)
- Obtain positions of nodes X via

$$\mathbf{X}_{\{i\}} = \mathbf{X}_{\mathsf{MP}} + \Delta s \sum_{\mathsf{MP}}^{i} \boldsymbol{ au}_{\{k\}}$$

defines invertible map
$$\mathbf{X} = \mathcal{X} egin{pmatrix} \mathbf{ au} \\ \mathbf{X}_{\mathsf{MP}} \end{pmatrix}$$

• Constraint
$$oldsymbol{ au}_{\{i\}} \cdot oldsymbol{ au}_{\{i\}} = 1$$

Replace springs with rigid rods

- DOFs: \(\mathcal{\mathcal{t}}_{\{i\}}\) = unit tangent vectors + \(\mathcal{X}_{\mathcal{MP}}\)
- Obtain positions of nodes X via

$$\mathbf{X}_{\{i\}} = \mathbf{X}_{\mathsf{MP}} + \Delta s \sum_{\mathsf{MP}}^{i} \boldsymbol{ au}_{\{k\}}$$

defines invertible map
$$oldsymbol{\mathsf{X}} = oldsymbol{\mathcal{X}} egin{pmatrix} oldsymbol{ au} \\ oldsymbol{\mathsf{X}}_{\mathsf{MP}} \end{pmatrix}$$

► Constraint \(\tau_{\{i\}} \cdot \tau_{\{i\}} = 1\)\) Removes stiffest timescale but:

Replace springs with rigid rods

- DOFs: \(\mathcal{t}_{\{i\}} = unit tangent vectors + \mathbf{X}_{MP}\)
- Obtain positions of nodes X via

$$\mathbf{X}_{\{i\}} = \mathbf{X}_{\mathsf{MP}} + \Delta s \sum_{\mathsf{MP}}^{i} \boldsymbol{ au}_{\{k\}}$$

defines invertible map
$$oldsymbol{\mathsf{X}} = oldsymbol{\mathcal{X}} egin{pmatrix} oldsymbol{ au} \\ oldsymbol{\mathsf{X}}_{\mathsf{MP}} \end{pmatrix}$$

• Constraint $au_{\{i\}} \cdot au_{\{i\}} = 1$

Removes stiffest timescale but:

• Slender fibers \rightarrow small lengthscales

Replace springs with rigid rods

- DOFs: \(\mathcal{t}_{\{i\}}\) = unit tangent vectors + \(\mathbf{X}_{\mathbf{MP}}\)
- Obtain positions of nodes X via

$$\mathbf{X}_{\{i\}} = \mathbf{X}_{\mathsf{MP}} + \Delta s \sum_{\mathsf{MP}}^{i} \boldsymbol{ au}_{\{k\}}$$

defines invertible map
$$oldsymbol{\mathsf{X}} = oldsymbol{\mathcal{X}} egin{pmatrix} oldsymbol{ au} \\ oldsymbol{\mathsf{X}}_{\mathsf{MP}} \end{pmatrix}$$

• Constraint $au_{\{i\}} \cdot au_{\{i\}} = 1$

Removes stiffest timescale but:

- Slender fibers \rightarrow small lengthscales
- Still have small $\Delta t!$

Replace springs with rigid rods

- DOFs: \(\mathcal{t}_{\{i\}}\) = unit tangent vectors + \(\mathbf{X}_{\mathbf{MP}}\)
- Obtain positions of nodes X via

$$\mathbf{X}_{\{i\}} = \mathbf{X}_{\mathsf{MP}} + \Delta s \sum_{\mathsf{MP}}^{i} \boldsymbol{ au}_{\{k\}}$$

defines invertible map
$$oldsymbol{\mathsf{X}} = oldsymbol{\mathcal{X}} egin{pmatrix} oldsymbol{ au} \\ oldsymbol{\mathsf{X}}_{\mathsf{MP}} \end{pmatrix}$$

• Constraint $oldsymbol{ au}_{\{i\}} \cdot oldsymbol{ au}_{\{i\}} = 1$

Removes stiffest timescale but:

- Slender fibers \rightarrow small lengthscales
- Still have small $\Delta t!$
- Small lengthscales come from *hydrodynamics* of long blob-link chain

Big idea: mix continuum and discrete

"Bending fluctuations in semiflexible, inextensible, slender filaments in Stokes flow" by O. Maxian et al., 2023, **ArXiv:2301.11123** https://github.com/stochasticHydroTools/SlenderBody

Mixed discrete-continuum description

Mixed discrete-continuum description

• Hydrodynamics uses a continuum curve \rightarrow special quadrature

Mixed discrete-continuum description

- Hydrodynamics uses a continuum curve \rightarrow special quadrature
- ▶ Discrete spatial DOFs \rightarrow Langevin equation (Brennan Sprinkle)

Mixed discrete-continuum description

- Hydrodynamics uses a continuum curve \rightarrow special quadrature
- ▶ Discrete spatial DOFs → Langevin equation (Brennan Sprinkle)
- Spectral method: the spatial DOFs define the continuum curve X(s) used for elasticity & hydro

Mixed discrete-continuum description

- Hydrodynamics uses a continuum curve \rightarrow special quadrature
- ▶ Discrete spatial DOFs → Langevin equation (Brennan Sprinkle)
- Spectral method: the spatial DOFs define the continuum curve X(s) used for elasticity & hydro

Big idea: resolve hydrodynamics ightarrow reduce DOFs ightarrow increase Δt
Spectral method

Mixed discrete-continuum description

- \blacktriangleright Hydrodynamics uses a continuum curve \rightarrow special quadrature
- ▶ Discrete spatial DOFs → Langevin equation (Brennan Sprinkle)
- Spectral method: the spatial DOFs define the continuum curve X(s) used for elasticity & hydro

Big idea: resolve hydrodynamics ightarrow reduce DOFs ightarrow increase Δt

Small problem: constrained motion

Spectral method

Mixed discrete-continuum description

- Hydrodynamics uses a continuum curve \rightarrow special quadrature
- ▶ Discrete spatial DOFs \rightarrow Langevin equation (Brennan Sprinkle)
- Spectral method: the spatial DOFs define the continuum curve X(s) used for elasticity & hydro

Big idea: resolve hydrodynamics ightarrow reduce DOFs ightarrow increase Δt

- Small problem: constrained motion
- au = series of connected rigid rods

Spectral method

Mixed discrete-continuum description

- Hydrodynamics uses a continuum curve \rightarrow special quadrature
- ▶ Discrete spatial DOFs \rightarrow Langevin equation (Brennan Sprinkle)
- Spectral method: the spatial DOFs define the continuum curve X(s) used for elasticity & hydro

Big idea: resolve hydrodynamics ightarrow reduce DOFs ightarrow increase Δt

- Small problem: constrained motion
- au = series of connected rigid rods
- Mix of new methods + existing rigid body methods

Blob link and spectral

DOFs: au at N nodes of type 1 (no EPs) Chebyshev grid, X_{MP}

▶ Chebyshev polynomial au(s) constrained $\| au(s_j)\| = 1$

DOFs: au at N nodes of type 1 (no EPs) Chebyshev grid, X_{MP}

- Chebyshev polynomial au(s) constrained $\| au(s_j)\| = 1$
- ▶ Obtain X(s) by integrating τ(s) on N_x = N + 1 point grid (type 2, with EPs). Set X_{i} = X(s_i).

DOFs: au at N nodes of type 1 (no EPs) Chebyshev grid, X_{MP}

- ▶ Chebyshev polynomial au(s) constrained $\| au(s_j)\| = 1$
- ▶ Obtain X(s) by integrating τ(s) on N_x = N + 1 point grid (type 2, with EPs). Set X_{i} = X(s_i).
- Defines set of nodes X_{{i}} and invertible mapping

$$\mathbf{X} = \mathcal{X} egin{pmatrix} m{ au} \ \mathbf{X}_{\mathsf{MP}} \end{pmatrix}$$

DOFs: au at N nodes of type 1 (no EPs) Chebyshev grid, $X_{\rm MP}$

- ▶ Chebyshev polynomial au(s) constrained $\| au(s_j)\| = 1$
- ▶ Obtain X(s) by integrating τ(s) on N_x = N + 1 point grid (type 2, with EPs). Set X_{i} = X(s_i).
- Defines set of nodes X_{{i}} and invertible mapping

$$\mathbf{X} = \mathcal{X}egin{pmatrix} m{ au} \ \mathbf{X}_{\mathsf{MP}} \end{pmatrix}$$

 Can apply discrete blob-link methods (Brennan Sprinkle) for constrained *discrete* Langevin equation

DOFs: au at N nodes of type 1 (no EPs) Chebyshev grid, $X_{\rm MP}$

- ▶ Chebyshev polynomial au(s) constrained $\| au(s_j)\| = 1$
- ▶ Obtain X(s) by integrating τ(s) on N_x = N + 1 point grid (type 2, with EPs). Set X_{i} = X(s_i).
- Defines set of nodes X_{{i}} and invertible mapping

$$\mathbf{X} = \mathcal{X}egin{pmatrix} m{ au} \ \mathbf{X}_{\mathsf{MP}} \end{pmatrix}$$

- Can apply discrete blob-link methods (Brennan Sprinkle) for constrained *discrete* Langevin equation
- Combine with continuum methods for elasticity and hydrodynamics

Continuum part: energy

Fibers resist bending according to curvature energy functional

$$\mathcal{E}_{\mathsf{bend}}\left[\mathbb{X}(\cdot)\right] = rac{\kappa}{2} \int_0^L \partial_s^2 \mathbb{X}(s) \cdot \partial_s^2 \mathbb{X}(s) \, ds$$

• $\kappa = \text{bending stiffness}$

Continuum part: energy

Fibers resist bending according to curvature energy functional

$$\mathcal{E}_{\mathsf{bend}}\left[\mathbb{X}(\cdot)\right] = rac{\kappa}{2} \int_0^L \partial_s^2 \mathbb{X}(s) \cdot \partial_s^2 \mathbb{X}(s) \, ds$$

- $\kappa = \text{bending stiffness}$
- $\ell_p = \kappa/(k_B T)$ defines a "persistence length"
- Fibers bend on this length, shorter than this straight
- Hope for spectral methods when $\ell_p \simeq L$ (actin)

Discretize inner product on Chebyshev grid

$$\begin{aligned} \mathcal{E}_{\mathsf{bend}} \left[\mathbb{X}(\cdot) \right] &= \frac{\kappa}{2} \int_0^L \partial_s^2 \mathbb{X}(s) \cdot \partial_s^2 \mathbb{X}(s) \, ds \\ &= \frac{\kappa}{2} \left(\mathbf{E}_{N_x \to 2N_x} \mathbf{D}^2 \mathbf{X} \right)^T \mathbf{W}_{2N} \left(\mathbf{E}_{N_x \to 2N_x} \mathbf{D}^2 \mathbf{X} \right) \\ &= \frac{\kappa}{2} \left(\mathbf{D}^2 \mathbf{X} \right)^T \widetilde{\mathbf{W}} \left(\mathbf{D}^2 \mathbf{X} \right) \\ &= \mathbf{X}^T \mathbf{L} \mathbf{X} \end{aligned}$$

• Upsampling to grid of size $2N_x$ to integrate *exactly*

$$\begin{aligned} \mathcal{E}_{\text{bend}} \left[\mathbb{X}(\cdot) \right] &= \frac{\kappa}{2} \int_0^L \partial_s^2 \mathbb{X}(s) \cdot \partial_s^2 \mathbb{X}(s) \, ds \\ &= \frac{\kappa}{2} \left(\mathbf{E}_{N_x \to 2N_x} \mathbf{D}^2 \mathbf{X} \right)^T \mathbf{W}_{2N} \left(\mathbf{E}_{N_x \to 2N_x} \mathbf{D}^2 \mathbf{X} \right) \\ &= \frac{\kappa}{2} \left(\mathbf{D}^2 \mathbf{X} \right)^T \widetilde{\mathbf{W}} \left(\mathbf{D}^2 \mathbf{X} \right) \\ &= \mathbf{X}^T \mathbf{L} \mathbf{X} \end{aligned}$$

- Upsampling to grid of size $2N_x$ to integrate *exactly*
- No aliasing

$$\begin{aligned} \mathcal{E}_{\text{bend}} \left[\mathbb{X}(\cdot) \right] &= \frac{\kappa}{2} \int_0^L \partial_s^2 \mathbb{X}(s) \cdot \partial_s^2 \mathbb{X}(s) \, ds \\ &= \frac{\kappa}{2} \left(\mathbf{E}_{N_x \to 2N_x} \mathbf{D}^2 \mathbf{X} \right)^T \mathbf{W}_{2N} \left(\mathbf{E}_{N_x \to 2N_x} \mathbf{D}^2 \mathbf{X} \right) \\ &= \frac{\kappa}{2} \left(\mathbf{D}^2 \mathbf{X} \right)^T \widetilde{\mathbf{W}} \left(\mathbf{D}^2 \mathbf{X} \right) \\ &= \mathbf{X}^T \mathbf{L} \mathbf{X} \end{aligned}$$

- Upsampling to grid of size $2N_x$ to integrate *exactly*
- No aliasing
- Corresponds to inner product weights matrix $\widetilde{\mathbf{W}}$

Li et al. Geophys. J. Int. (2017).

$$\begin{aligned} \mathcal{E}_{\text{bend}} \left[\mathbb{X}(\cdot) \right] &= \frac{\kappa}{2} \int_0^L \partial_s^2 \mathbb{X}(s) \cdot \partial_s^2 \mathbb{X}(s) \, ds \\ &= \frac{\kappa}{2} \left(\mathbf{E}_{N_x \to 2N_x} \mathbf{D}^2 \mathbf{X} \right)^T \mathbf{W}_{2N} \left(\mathbf{E}_{N_x \to 2N_x} \mathbf{D}^2 \mathbf{X} \right) \\ &= \frac{\kappa}{2} \left(\mathbf{D}^2 \mathbf{X} \right)^T \widetilde{\mathbf{W}} \left(\mathbf{D}^2 \mathbf{X} \right) \\ &= \mathbf{X}^T \mathbf{L} \mathbf{X} \end{aligned}$$

- Upsampling to grid of size $2N_x$ to integrate *exactly*
- No aliasing
- Corresponds to inner product weights matrix W

• Force
$$\mathbf{F} = -\partial \mathcal{E} / \partial \mathbf{X} = -\mathbf{L} \mathbf{X}$$

$$\begin{aligned} \mathcal{E}_{\text{bend}} \left[\mathbb{X}(\cdot) \right] &= \frac{\kappa}{2} \int_0^L \partial_s^2 \mathbb{X}(s) \cdot \partial_s^2 \mathbb{X}(s) \, ds \\ &= \frac{\kappa}{2} \left(\mathbf{E}_{N_x \to 2N_x} \mathbf{D}^2 \mathbf{X} \right)^T \mathbf{W}_{2N} \left(\mathbf{E}_{N_x \to 2N_x} \mathbf{D}^2 \mathbf{X} \right) \\ &= \frac{\kappa}{2} \left(\mathbf{D}^2 \mathbf{X} \right)^T \widetilde{\mathbf{W}} \left(\mathbf{D}^2 \mathbf{X} \right) \\ &= \mathbf{X}^T \mathbf{L} \mathbf{X} \end{aligned}$$

- Upsampling to grid of size $2N_x$ to integrate *exactly*
- No aliasing
- Corresponds to inner product weights matrix W

• Force
$$\mathbf{F} = -\partial \mathcal{E} / \partial \mathbf{X} = -\mathbf{L} \mathbf{X}$$

Force density
$$\mathbf{f} = \widetilde{\mathbf{W}}^{-1} \mathbf{F}$$
 (FEM: $\langle \mathbf{X}, \mathbf{f} \rangle = \mathbf{X}^T \mathbf{F}$)

Fluid dynamics of an immersed fiber

Immersed blob continuum hydrodynamic model (without Brownian fluctuations):

$$\nabla \pi (\mathbf{r}, t) = \eta \nabla^2 \mathbf{v} (\mathbf{r}, t) + \int_0^L ds \mathbf{f}(s, t) \delta_a (\mathbb{X}(s, t) - \mathbf{r})$$
$$\mathbf{U}(s, t) = \partial_t \mathbb{X}(s, t) = \int d\mathbf{r} \mathbf{v} (\mathbf{r}, t) \delta_a (\mathbb{X}(s, t) - \mathbf{r})$$
$$\mathbf{f} = -\kappa_b \mathbb{X}_{ssss} + \lambda$$

Fluid dynamics of an immersed fiber

Immersed blob continuum hydrodynamic model (without Brownian fluctuations):

$$\nabla \pi (\mathbf{r}, t) = \eta \nabla^2 \mathbf{v} (\mathbf{r}, t) + \int_0^L ds \mathbf{f}(s, t) \delta_a (\mathbb{X}(s, t) - \mathbf{r})$$
$$\mathbf{U}(s, t) = \partial_t \mathbb{X}(s, t) = \int d\mathbf{r} \mathbf{v} (\mathbf{r}, t) \delta_a (\mathbb{X}(s, t) - \mathbf{r})$$
$$\mathbf{f} = -\kappa_b \mathbb{X}_{ssss} + \boldsymbol{\lambda}$$

For the discrete case just replace integrals by sums over blobs.

Hydrodynamic mobility kernel

We can (temporarily) eliminate the fluid velocity to write an equation for fiber only.

Hydrodynamic mobility kernel

- We can (temporarily) eliminate the fluid velocity to write an equation for fiber only.
- Define the positive semi-definite hydrodynamic kernel

$$\boldsymbol{\mathcal{R}}\left(\mathbf{r}_{1},\mathbf{r}_{2}\right)=\int\delta_{a}\left(\mathbf{r}_{1}-\mathbf{r}'\right)\mathbb{G}\left(\mathbf{r}',\mathbf{r}''\right)\delta_{a}\left(\mathbf{r}_{2}-\mathbf{r}''\right)d\mathbf{r}'d\mathbf{r}'',$$

where \mathbb{G} is the Green's function for (periodic) Stokes flow.

Hydrodynamic mobility kernel

- We can (temporarily) eliminate the fluid velocity to write an equation for fiber only.
- Define the positive semi-definite hydrodynamic kernel

$$\boldsymbol{\mathcal{R}}\left(\mathbf{r}_{1},\mathbf{r}_{2}\right)=\int\delta_{a}\left(\mathbf{r}_{1}-\mathbf{r}'\right)\mathbb{G}\left(\mathbf{r}',\mathbf{r}''\right)\delta_{a}\left(\mathbf{r}_{2}-\mathbf{r}''\right)d\mathbf{r}'d\mathbf{r}'',$$

where G is the Green's function for (periodic) Stokes flow.Choosing a surface delta function

$$\delta_{a}(\mathbf{r}) = \left(4\pi a^{2}\right)^{-1} \delta\left(r-a\right)$$

gives the Rotne-Prager-Yamakawa (RPY) kernel.

$$\mathbf{U}_{k} = \frac{d\mathbf{X}_{k}}{dt} = \left(\mathcal{M}\left[\mathbb{X}\left(\cdot\right)\right] \mathbf{f}\left(\cdot\right)\right)\left(\mathbf{X}_{k}\right) = \int_{0}^{L} ds' \ \mathcal{R}\left(\mathbf{X}_{k}, \mathbb{X}(s')\right) \mathbf{f}(s')$$

$$\mathbf{U}_{k} = \frac{d\mathbf{X}_{k}}{dt} = \left(\mathcal{M}\left[\mathbb{X}\left(\cdot\right)\right] \mathbf{f}\left(\cdot\right)\right)\left(\mathbf{X}_{k}\right) = \int_{0}^{L} ds' \ \mathcal{R}\left(\mathbf{X}_{k}, \mathbb{X}(s')\right) \mathbf{f}(s')$$

- Have developed special quadrature schemes on spectral grid
- Mix of singularity subtraction + precomputations

$$\mathbf{U}_{k} = \frac{d\mathbf{X}_{k}}{dt} = \left(\mathcal{M}\left[\mathbb{X}\left(\cdot\right)\right] \mathbf{f}\left(\cdot\right)\right)\left(\mathbf{X}_{k}\right) = \int_{0}^{L} ds' \ \mathcal{R}\left(\mathbf{X}_{k}, \mathbb{X}(s')\right) \mathbf{f}(s')$$

- Have developed special quadrature schemes on spectral grid
- Mix of singularity subtraction + precomputations
- Requires $\mathcal{O}(1)$ points to resolve integral
- Compare to blob-link: $O(L/\hat{a})$ points!

$$\mathbf{U}_{k} = \frac{d\mathbf{X}_{k}}{dt} = \left(\mathcal{M}\left[\mathbb{X}\left(\cdot\right)\right] \mathbf{f}\left(\cdot\right)\right)\left(\mathbf{X}_{k}\right) = \int_{0}^{L} ds' \ \mathcal{R}\left(\mathbf{X}_{k}, \mathbb{X}(s')\right) \mathbf{f}(s')$$

- Have developed special quadrature schemes on spectral grid
- Mix of singularity subtraction + precomputations
- Requires $\mathcal{O}(1)$ points to resolve integral
- Compare to blob-link: $O(L/\hat{a})$ points!
- Converting between continuous force densities f(s) to discrete forces F (Galerkin projection), we get a mobility matrix

$$\mathbf{U}=\widetilde{\mathbf{M}}\mathbf{F}$$

Applying mobility

Outline

Cytoskeleton

Overdamped Langevin dynamics

Discrete fibers Elasticity Hydrodynamics

Fluctuating discrete fibers

Cross-linked actin gels

Conclusions and future work

Additional details

Langevin equation must be modified because of inextensibility

Langevin equation must be modified because of inextensibility

▶ $au_{\{i\}}$ remains unit vector, rotates as rigid rod (ang. vel. $oldsymbol{\Omega}_{\{i\}})$

$$\partial_t oldsymbol{ au}_{\{i\}} = oldsymbol{\Omega}_{\{i\}} imes oldsymbol{ au}_{\{i\}} o \partial_t oldsymbol{ au} = - {\sf C} oldsymbol{\Omega}$$

Langevin equation must be modified because of inextensibility

▶ $au_{\{i\}}$ remains unit vector, rotates as rigid rod (ang. vel. $oldsymbol{\Omega}_{\{i\}}$)

$$\partial_t oldsymbol{ au}_{\{i\}} = oldsymbol{\Omega}_{\{i\}} imes oldsymbol{ au}_{\{i\}} o \partial_t oldsymbol{ au} = - oldsymbol{C} oldsymbol{\Omega}$$

Results in constrained motions for X

$$\partial_t \mathbf{X} = \mathcal{X} \begin{pmatrix} -\mathbf{C} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{\Omega} \\ \mathbf{U}_{\mathsf{MP}} \end{pmatrix} := \mathcal{X} \bar{\mathbf{C}} \alpha := \mathbf{K} \alpha$$

Langevin equation must be modified because of inextensibility

▶ $au_{\{i\}}$ remains unit vector, rotates as rigid rod (ang. vel. $\mathbf{\Omega}_{\{i\}}$)

$$\partial_t oldsymbol{ au}_{\{i\}} = oldsymbol{\Omega}_{\{i\}} imes oldsymbol{ au}_{\{i\}} o \partial_t oldsymbol{ au} = - oldsymbol{C} oldsymbol{\Omega}$$

Results in constrained motions for X

$$\partial_t \mathsf{X} = \mathcal{X} \begin{pmatrix} -\mathsf{C} & \mathsf{0} \\ \mathsf{0} & \mathsf{I} \end{pmatrix} \begin{pmatrix} \mathsf{\Omega} \\ \mathsf{U}_{\mathsf{MP}} \end{pmatrix} := \mathcal{X} ar{\mathsf{C}} lpha := \mathsf{K} lpha$$

Discrete time: solve for α = (Ω, U_{MP}), rotate by ΩΔt, update midpoint

Close system by introducing Lagrange multiplier forces $\pmb{\Lambda}$

Close system by introducing Lagrange multiplier forces $\pmb{\Lambda}$

 No work done for inextensible motions (principle of virtual work)

Close system by introducing Lagrange multiplier forces $\pmb{\Lambda}$

- No work done for inextensible motions (principle of virtual work)
- Constraint $\mathbf{K}^{\mathsf{T}} \mathbf{\Lambda} = \mathbf{0}$ (comes from L^2 adjoint of \mathbf{K})

Close system by introducing Lagrange multiplier forces $\pmb{\Lambda}$

- No work done for inextensible motions (principle of virtual work)
- Constraint $\mathbf{K}^{T} \mathbf{\Lambda} = \mathbf{0}$ (comes from L^{2} adjoint of \mathbf{K})

Results in saddle point system for α and $\pmb{\Lambda}$

$$\begin{split} \mathbf{K} \boldsymbol{\alpha} &= \widetilde{\mathbf{M}} \left(-\mathbf{L} \mathbf{X} + \mathbf{\Lambda} \right) \\ \mathbf{K}^{T} \mathbf{\Lambda} &= \mathbf{0}, \end{split}$$

Close system by introducing Lagrange multiplier forces $\pmb{\Lambda}$

- No work done for inextensible motions (principle of virtual work)
- Constraint $\mathbf{K}^{\mathsf{T}} \mathbf{\Lambda} = \mathbf{0}$ (comes from L^2 adjoint of \mathbf{K})

Results in saddle point system for lpha and $oldsymbol{\Lambda}$

$$egin{aligned} \mathsf{K} lpha &= \widetilde{\mathsf{M}} \left(-\mathsf{L} \mathsf{X} + \mathbf{\Lambda}
ight) \ \mathsf{K}^{\mathsf{T}} \mathbf{\Lambda} &= \mathbf{0}, \end{aligned}$$

Deterministic dynamics (eliminate Λ)

$$\partial_t \mathbf{X} = -\widehat{\mathbf{N}} \mathbf{L} \mathbf{X}, \qquad \widehat{\mathbf{N}} = \mathbf{K} \left(\mathbf{K}^T \widetilde{\mathbf{M}}^{-1} \mathbf{K} \right)^{\dagger} \mathbf{K}^T$$
Deterministic dynamics

Close system by introducing Lagrange multiplier forces $\pmb{\Lambda}$

- No work done for inextensible motions (principle of virtual work)
- Constraint $\mathbf{K}^{\mathsf{T}} \mathbf{\Lambda} = \mathbf{0}$ (comes from L^2 adjoint of \mathbf{K})

Results in saddle point system for α and $\pmb{\Lambda}$

$$egin{aligned} \mathsf{K} lpha &= \widetilde{\mathsf{M}} \left(-\mathsf{L} \mathsf{X} + \mathbf{\Lambda}
ight) \ \mathsf{K}^{\mathsf{T}} \mathbf{\Lambda} &= \mathbf{0}, \end{aligned}$$

Deterministic dynamics (eliminate Λ)

$$\partial_t \mathbf{X} = -\widehat{\mathbf{N}} \mathbf{L} \mathbf{X}, \qquad \widehat{\mathbf{N}} = \mathbf{K} \left(\mathbf{K}^T \widetilde{\mathbf{M}}^{-1} \mathbf{K} \right)^{\dagger} \mathbf{K}^T$$

Apply $\widehat{\mathbf{N}}$ via iterative saddle pt solve with block-diagonal preconditioner.

Discrete Langevin equation

Deterministic dynamics + time reversibility \rightarrow Langevin equation

$$\partial_{t} \mathbf{X} = -\underbrace{\widehat{\mathbf{NLX}}}_{\text{Backward Euler}} + \underbrace{k_{B} T \partial_{\mathbf{X}} \cdot \widehat{\mathbf{N}}}_{\text{Midpoint integrator}} + \underbrace{\sqrt{2k_{B} T} \widehat{\mathbf{N}}^{1/2}}_{\text{Saddle point solve}} \mathcal{W}(t)$$

Discrete Langevin equation

Deterministic dynamics + time reversibility \rightarrow Langevin equation

 Drift term captured *in expectation* via solving at the midpoint (Brennan/Aleks)

Discrete Langevin equation

Deterministic dynamics + time reversibility \rightarrow Langevin equation

$$\partial_t \mathbf{X} = -\underbrace{\widehat{\mathbf{NLX}}}_{\text{Backward Euler}} + \underbrace{k_B T \partial_{\mathbf{X}} \cdot \widehat{\mathbf{N}}}_{\text{Midpoint integrator}} + \underbrace{\sqrt{2k_B T} \widehat{\mathbf{N}}^{1/2}}_{\text{Saddle point solve}} \mathcal{W}(t)$$

- Drift term captured *in expectation* via solving at the midpoint (Brennan/Aleks)
- $\widehat{\mathbf{N}}^{1/2}$ captured via saddle point solve

$$\begin{split} \mathbf{K} \boldsymbol{\alpha} &= \widetilde{\mathbf{M}} \left(-\mathbf{L} \mathbf{X} + \mathbf{\Lambda} \right) + \sqrt{\frac{2k_B T}{\Delta t}} \widetilde{\mathbf{M}}^{1/2} \mathbf{W} \\ \mathbf{K}^T \mathbf{\Lambda} &= \mathbf{0}, \\ \Rightarrow \boldsymbol{\alpha} &= \mathsf{Deterministic} + \sqrt{\frac{2k_B T}{\Delta t}} \widehat{\mathbf{N}}^{1/2} \mathbf{W} \end{split}$$

▶ $\mathbf{W} \sim \mathcal{N}(0,1)$

$$P_{\mathsf{eq}}\left(\bar{\boldsymbol{\tau}}\right) = Z^{-1} \exp\left(-\mathcal{E}_{\mathsf{bend}}(\bar{\boldsymbol{\tau}})/k_B T\right) \prod_{p=1}^{N} \delta\left(\boldsymbol{\tau}_{\{p\}}^{T} \boldsymbol{\tau}_{\{p\}} - 1\right)$$

The overdamped Langevin equation is in detailed balance wrt the distribution

$$P_{\mathsf{eq}}\left(\bar{\boldsymbol{\tau}}\right) = Z^{-1} \exp\left(-\mathcal{E}_{\mathsf{bend}}(\bar{\boldsymbol{\tau}})/k_B T\right) \prod_{p=1}^{N} \delta\left(\boldsymbol{\tau}_{\{p\}}^{T} \boldsymbol{\tau}_{\{p\}} - 1\right)$$

For blob-link, seems physical

$$P_{\mathsf{eq}}\left(\bar{\boldsymbol{\tau}}\right) = Z^{-1} \exp\left(-\mathcal{E}_{\mathsf{bend}}(\bar{\boldsymbol{\tau}})/k_B T\right) \prod_{p=1}^{N} \delta\left(\boldsymbol{\tau}_{\{p\}}^{T} \boldsymbol{\tau}_{\{p\}} - 1\right)$$

- For blob-link, seems physical
- Postulate that it extends to spectral (others possible)

$$P_{\mathsf{eq}}\left(\bar{\boldsymbol{\tau}}\right) = Z^{-1} \exp\left(-\mathcal{E}_{\mathsf{bend}}(\bar{\boldsymbol{\tau}})/k_B T\right) \prod_{p=1}^{N} \delta\left(\boldsymbol{\tau}_{\{p\}}^{T} \boldsymbol{\tau}_{\{p\}} - 1\right)$$

- For blob-link, seems physical
- Postulate that it extends to spectral (others possible)
- Justify through the theory of coarse-graining (in progress, Pep Espanol)

$$P_{\mathsf{eq}}\left(\bar{\boldsymbol{\tau}}\right) = Z^{-1} \exp\left(-\mathcal{E}_{\mathsf{bend}}(\bar{\boldsymbol{\tau}})/k_B T\right) \prod_{p=1}^{N} \delta\left(\boldsymbol{\tau}_{\{p\}}^{T} \boldsymbol{\tau}_{\{p\}} - 1\right)$$

- For blob-link, seems physical
- Postulate that it extends to spectral (others possible)
- Justify through the theory of coarse-graining (in progress, Pep Espanol)
- Here: present supporting numerical results

Samples from GB: free fibers

for finite N which disappears as N increases

Using the Langevin integrator to sample

to MCMC for smallest Δt

Reported in terms of longest relaxation timescale

Using the Langevin integrator to sample

to MCMC for smallest Δt

- Reported in terms of longest relaxation timescale
- Δt goes as N^{-4} must keep N low!

Using the Langevin integrator to sample

to MCMC for smallest Δt

- Reported in terms of longest relaxation timescale
- Δt goes as N^{-4} must keep N low!
- Unchanged with ℓ_p (modes are stiffer, but fewer required)

Relaxation of fiber to equilibrium

Blob-link vs. spectral

Relaxation of fiber to equilibrium

Blob-link vs. spectral

Getting a good approximation to mean end-to-end distance?

Relaxation of fiber to equilibrium

Blob-link vs. spectral

- Getting a good approximation to mean end-to-end distance?
- Is special quadrature doing what we want it to?

Quantifying relaxation $(\hat{\epsilon} = 10^{-2})$

Quantifying relaxation $(\hat{\epsilon} = 10^{-2})$

Spectral results approach blob-link with increasing N

Quantifying relaxation $(\hat{\epsilon} = 10^{-2})$

- Spectral results approach blob-link with increasing N
- Can extend spectral to smaller $\hat{\epsilon}$, but not blob-link!

Quantifying relaxation $(\hat{\epsilon} = 10^{-3})$

Outline

Cytoskeleton

Overdamped Langevin dynamics

Discrete fibers Elasticity Hydrodynamics

Fluctuating discrete fibers

Cross-linked actin gels

Conclusions and future work

Additional details

Dynamics of bundling in cross-linked actin networks

Couple the fibers to moving cross linkers (CLs, elastic springs)

THE Th

Dynamics of bundling in cross-linked actin networks

Couple the fibers to moving cross linkers (CLs, elastic springs)

T

CLs bind fibers, pulling them closer together; ratcheting action creates bundles

Filaments move in three ways:

Filaments move in three ways:

1. Cross linking forces

Filaments move in three ways:

- 1. Cross linking forces
- 2. Rigid body translation and rotation

Filaments move in three ways:

- 1. Cross linking forces
- 2. Rigid body translation and rotation
- 3. Semiflexible bending fluctuations

Filaments move in three ways:

- 1. Cross linking forces
- 2. Rigid body translation and rotation
- 3. Semiflexible bending fluctuations

Goal is to explore the role of the bending flucts

Filaments move in three ways:

- 1. Cross linking forces
- 2. Rigid body translation and rotation
- 3. Semiflexible bending fluctuations

Goal is to explore the role of the bending flucts

Intuition: fluctuations increase binding frequency

Filaments move in three ways:

- 1. Cross linking forces
- 2. Rigid body translation and rotation
- 3. Semiflexible bending fluctuations

Goal is to explore the role of the bending flucts

- Intuition: fluctuations increase binding frequency
- How small does ℓ_p have to be?

Filaments move in three ways:

- 1. Cross linking forces
- 2. Rigid body translation and rotation
- 3. Semiflexible bending fluctuations

Goal is to explore the role of the bending flucts

- Intuition: fluctuations increase binding frequency
- How small does ℓ_p have to be?
- Strategy: simulate fibers with #1 and #2 only, compare to fluctuating

Movie:
$$\ell_p/L = 10$$

Movie:
$$\ell_p/L = 1$$

Bundling statistics

Statistics confirm movies

Bundling statistics

• $\ell_p/L = 100$: similar to rigid

Bundling statistics

• $\ell_p/L = 100$: similar to rigid

▶ l_p/L = 10: small difference from "RBD" filaments without bending fluctuations
Bundling statistics

Statistics confirm movies

• $\ell_p/L = 100$: similar to rigid

- ▶ $l_p/L = 10$: small difference from "RBD" filaments without bending fluctuations
- ▶ $\ell_p/L = 1$: speed-up due to semiflexible bending fluctuations

Bundling statistics

Statistics confirm movies

• $\ell_p/L = 100$: similar to rigid

- ▶ $l_p/L = 10$: small difference from "RBD" filaments without bending fluctuations
- ▶ $\ell_p/L = 1$: speed-up due to semiflexible bending fluctuations
- Actin in vivo: $\ell_p/L \approx 30$

Bundling with sterics

Number of contacts reduced by 99% using "soft" erf potential (Gaussian force)

• But $5 \times$ time step reduction required

Outline

Cytoskeleton

Overdamped Langevin dynamics

Discrete fibers Elasticity Hydrodynamics

Fluctuating discrete fibers

Cross-linked actin gels

Conclusions and future work

Additional details

Spectral method as a way to coarse-grain blob-link simulations

Spectral method as a way to coarse-grain blob-link simulations

 Resolve hydrodynamics and elasticity with continuum interpolant

Spectral method as a way to coarse-grain blob-link simulations

- Resolve hydrodynamics and elasticity with continuum interpolant
- Langevin equation over discrete collection of points

Spectral method as a way to coarse-grain blob-link simulations

- Resolve hydrodynamics and elasticity with continuum interpolant
- Langevin equation over discrete collection of points
- Good accuracy with $\mathcal{O}(1)$ points, larger Δt

Spectral method as a way to coarse-grain blob-link simulations

- Resolve hydrodynamics and elasticity with continuum interpolant
- Langevin equation over discrete collection of points
- Good accuracy with $\mathcal{O}(1)$ points, larger Δt

Future challenges

Spectral method as a way to coarse-grain blob-link simulations

- Resolve hydrodynamics and elasticity with continuum interpolant
- Langevin equation over discrete collection of points
- Good accuracy with $\mathcal{O}(1)$ points, larger Δt

Future challenges

 Incorporate nonlocal interactions between fibers (hydrodynamic+steric)

Spectral method as a way to coarse-grain blob-link simulations

- Resolve hydrodynamics and elasticity with continuum interpolant
- Langevin equation over discrete collection of points
- Good accuracy with $\mathcal{O}(1)$ points, larger Δt

Future challenges

- Incorporate nonlocal interactions between fibers (hydrodynamic+steric)
- More rigorous justification of GB (continuum limit?)

Spectral method as a way to coarse-grain blob-link simulations

- Resolve hydrodynamics and elasticity with continuum interpolant
- Langevin equation over discrete collection of points
- Good accuracy with $\mathcal{O}(1)$ points, larger Δt

Future challenges

- Incorporate nonlocal interactions between fibers (hydrodynamic+steric)
- More rigorous justification of GB (continuum limit?)
- Apply to rheology of actin networks

Rheology – effect of fluctuations

High $\ell_p = 17$ (actin): not much difference in bundle shapes in deterministic (left) vs. fluctuating (right)

Turnover time set to 60% of bundling time (match rheology)

Rheology – smaller ℓ_p

High $\ell_p = 1.7$: major difference in deterministic (left) vs. fluctuating (right)

Rheology – hydrodynamic interactions

Deterministic & fluctuating - no difference in morphology

fluctuating fibers without (left) and with (right) hydro

Rheology – hydrodynamic interactions

Deterministic & fluctuating - no difference in morphology

fluctuating fibers without (left) and with (right) hydro But difference in stress (need formula for Brownian stress)???

Outline

Cytoskeleton

Overdamped Langevin dynamics

Discrete fibers Elasticity Hydrodynamics

Fluctuating discrete fibers

Cross-linked actin gels

Conclusions and future work

Additional details

Special quadrature vs. direct quadrature

Compare to direct quadrature on Chebyshev grid, giving an **symmetric positive definite** (SPD) mobility matrix

$$\left(\widetilde{\mathsf{M}}^{(\mathsf{direct})}\mathsf{F}\right)_{\{i\}} := \sum_{j} \widetilde{\mathsf{M}}^{(\mathsf{RPY})}_{\{i\},\{j\}}\mathsf{F}_{\{j\}}$$

Direct quadrature abysmal failure for $\hat{\epsilon} = 10^{-3}$

Special quadrature vs. oversampled quadrature

Given force on N point grid

Construct Galerkin SPD mobility matrix on oversampled grid:

$$\widetilde{\mathbf{M}}_{\mathsf{ref}} = \widetilde{\mathbf{W}}^{-1} \mathbf{E}_u^{\mathcal{T}} \mathbf{W}_u \widetilde{\mathbf{M}}_{\mathsf{RPY}, u} \mathbf{W}_u \mathbf{E}_u \widetilde{\mathbf{W}}^{-1}$$

- Apply $\widetilde{\mathbf{W}}^{-1}$ to get force density
- Upsample to N_u pt grid with matrix \mathbf{E}_u
- Oversampled RPY quad on upsampled grid with weights W_u
- Downsample velocity in L^2 with matrix $\widetilde{\mathbf{W}}^{-1} \mathbf{E}_u^T \mathbf{W}_u$.
- $N_u \approx 0.4/\epsilon$ required for engineering (2 digits) accuracy

Special vs. oversampled quadrature: convergence

Special quadrature vs. local drag

Local drag is other theory which scales with $\hat{\epsilon}$

Special quad better for $\hat{\epsilon}=10^{-2}$

Temporal convergence: local drag vs. special quad

Local drag requires time step 4–10 times smaller ($\hat{\epsilon} = 10^{-3}$)

Coarse-graining: geometric perspective

Solve the quadratic programming problem

$$\begin{pmatrix} \boldsymbol{\tau} \\ \boldsymbol{\mathsf{X}}_{\mathsf{MP}} \end{pmatrix} = \operatorname{argmin} \left\| \boldsymbol{\mathsf{X}}^{(\mathsf{SB})} - \boldsymbol{\mathsf{X}}^{(\mathsf{BL})} \right\|_{2}^{2} = \left\| \boldsymbol{\mathsf{E}}_{S \to B} \boldsymbol{\mathcal{X}} \begin{pmatrix} \boldsymbol{\tau} \\ \boldsymbol{\mathsf{X}}_{\mathsf{MP}} \end{pmatrix} - \boldsymbol{\mathsf{X}}^{(\mathsf{BL})} \right\|_{2}^{2}$$
$$\boldsymbol{\tau}_{\{p\}}^{T} \boldsymbol{\tau}_{\{p\}} = 1, \qquad p = 1, \dots, N$$

where $\mathbf{E}_{S \to B}$ samples $\mathbb{X}(s)$ at the blob-link locations.

Experimental measurements vary widely

Variety of measurements due to morphological changes

Morphology can vary over time and with $\mathsf{CL}/\mathsf{actin}$ concentration

- \blacktriangleright Changing network morphology \rightarrow changing shear modulus
- Viscoelastic moduli should be steady state properties

Falzone et al. Nat. Commun. (2012)