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Importance of actin cytoskeleton

Dynamic cross-linked network of slender filaments

I Morphology ↔ mechanical properties of cell

I Dictate cell’s shape and ability to move and divide

Nature education, Herron et al. Nat Commun. (2022)
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Fibers involved in cell mechanics

Pawlizak and Käs, University of Leipzig

Lp =persistence length, L =fiber length, a = εL =fiber radius,
ε =slenderness ratio
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Cytoskeletal rheology

Ahmed and Betz. PNAS . (2015)
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Fluctuating actin filaments
Actin filament fluctuations used for

I Sensing

I Motility

I Stress release (untying knots!)

Key point: actin filaments are
semiflexible `p & L

I In this sense, shapes are smooth

I Spectral methods!

L = 5 µm, `p/L ≈ 3

Pawlizak and Käs, University of Leipzig., Ward et al. (Dogic lab) Nat. Mat. (2015)



7/46

Fluctuating actin filaments
Actin filament fluctuations used for

I Sensing

I Motility

I Stress release (untying knots!)

Key point: actin filaments are
semiflexible `p & L

I In this sense, shapes are smooth

I Spectral methods!
L = 5 µm, `p/L ≈ 3

Pawlizak and Käs, University of Leipzig., Ward et al. (Dogic lab) Nat. Mat. (2015)



7/46

Fluctuating actin filaments
Actin filament fluctuations used for

I Sensing

I Motility

I Stress release (untying knots!)

Key point: actin filaments are
semiflexible `p & L

I In this sense, shapes are smooth

I Spectral methods!
L = 5 µm, `p/L ≈ 3

Pawlizak and Käs, University of Leipzig., Ward et al. (Dogic lab) Nat. Mat. (2015)



8/46

Outline

Cytoskeleton

Overdamped Langevin dynamics

Discrete fibers
Elasticity
Hydrodynamics

Fluctuating discrete fibers

Cross-linked actin gels

Conclusions and future work

Additional details



9/46

Statics: Gibbs-Boltzmann distribution

X ∈ RN = finite dimensional DOFs with energy function E (X).

I Stationary distribution (probability of observing a state)

dµGB =
1

Z︸︷︷︸
Normalization

e−E(X)/kBT︸ ︷︷ ︸
Boltzmann weight

dX︸︷︷︸
Lebesque measure

Gibbs-Boltzmann distribution (stat. mech.)

I Prob. depends on ratio of energy with kBT (thermal energy)

I Dynamics must be time-reversible with respect to µGB
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Dynamics: (Overdamped) Langevin equations

Commonly-used model for micro-structures immersed in liquid

∂X

∂t
= −M (X)

∂E
∂X

(X)
︸ ︷︷ ︸

Deterministic

+
√

2kBT M (X) ◦M−1/2 (X)︸ ︷︷ ︸
Mixed Strato-Ito

W(t)︸ ︷︷ ︸
White noise

I M (X) is SPD mobility operator, encoding (hydro)dynamics

I Noise form & “kinetic” interpretation chosen to sample from
GB distribution & be time reversible at equilibrium

Converting to Ito form gives

∂X

∂t
= −M

∂E
∂X

+ kBT (∂X ·M)︸ ︷︷ ︸
Stochastic drift term

+
√

2kBT M1/2W(t)︸ ︷︷ ︸
Multiplicative noise

Goal is to write and solve such an equation for fibers
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Bead/blob-spring model for fibers

Create “fiber” out of beads (blobs) and springs

I DOFs: X{i} = bead positions

I No constraints

I Energy and Langevin equation straightforward

I Only drift terms from mobility (vanish for
triply-periodic systems)

Big problem: need small ∆t to resolve stiff springs

X{k}
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Blob-link model

Replace springs with rigid rods

I DOFs: τ {i} = unit tangent vectors + XMP

I Obtain positions of nodes X via

X{i} = XMP + ∆s
i∑

MP

τ {k}

defines invertible map X = X
(

τ
XMP

)

I Constraint τ {i} · τ {i} = 1

Removes stiffest timescale but:

I Slender fibers → small lengthscales

I Still have small ∆t!

I Small lengthscales come from hydrodynamics of
long blob-link chain

X{k}

⌧ {k}

XMP
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Big idea: mix continuum and discrete
Coarse-grain

Hydrodynamics/
Elasticity

Spectral 
(discrete)

Under-resolved
Blob-link

“Bending fluctuations in semiflexible, inextensible, slender filaments
in Stokes flow” by O. Maxian et al., 2023, ArXiv:2301.11123
https://github.com/stochasticHydroTools/SlenderBody

https://arxiv.org/abs/2301.11123
https://github.com/stochasticHydroTools/SlenderBody
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Spectral method

Mixed discrete-continuum description

I Hydrodynamics uses a continuum curve → special quadrature

I Discrete spatial DOFs → Langevin equation (Brennan
Sprinkle)

I Spectral method: the spatial DOFs define the continuum
curve X(s) used for elasticity & hydro

Big idea: resolve hydrodynamics → reduce DOFs → increase ∆t

I Small problem: constrained motion

I τ = series of connected rigid rods

I Mix of new methods + existing rigid body methods
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Blob link and spectral
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Building spectral discretization

DOFs: τ at N nodes of type 1 (no EPs) Chebyshev grid, XMP

I Chebyshev polynomial τ (s) constrained ‖τ (sj)‖ = 1

I Obtain X(s) by integrating τ (s) on Nx = N + 1 point grid
(type 2, with EPs). Set X{i} = X(si ).

I Defines set of nodes X{i} and invertible mapping

X = X
(

τ
XMP

)

I Can apply discrete blob-link methods (Brennan Sprinkle) for
constrained discrete Langevin equation

I Combine with continuum methods for elasticity and
hydrodynamics
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Continuum part: energy
Fibers resist bending according to curvature energy functional

Ebend [X(·)] =
κ

2

∫ L

0
∂2sX(s) · ∂2sX(s) ds

I κ = bending stiffness

I `p = κ/(kBT ) defines a “persistence length”
I Fibers bend on this length, shorter than this straight
I Hope for spectral methods when `p ' L (actin)
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Discretizing energy

Discretize inner product on Chebyshev grid

Ebend [X(·)] =
κ

2

∫ L

0
∂2sX(s) · ∂2sX(s) ds

=
κ

2

(
ENx→2Nx D2X

)T
W2N

(
ENx→2Nx D2X

)

=
κ

2

(
D2X

)T
W̃
(
D2X

)

= XTLX
I Upsampling to grid of size 2Nx to integrate exactly

I No aliasing

I Corresponds to inner product weights matrix W̃

I Force F = −∂E/∂X = −LX

I Force density f = W̃
−1

F (FEM: 〈X, f〉 = XTF)

Li et al. Geophys. J. Int. (2017).
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Fluid dynamics of an immersed fiber

Immersed blob continuum hydrodynamic model (without Brownian
fluctuations):

∇π (r, t) =η∇2v (r, t) +

∫ L

0
ds f(s, t)δa (X(s, t)− r)

U (s, t) = ∂tX (s, t) =

∫
dr v (r, t) δa (X(s, t)− r)

f = −κbXssss + λ

I For the discrete case just replace integrals by sums over blobs.
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Hydrodynamic mobility kernel

I We can (temporarily) eliminate the fluid velocity to write an
equation for fiber only.

I Define the positive semi-definite hydrodynamic kernel

R (r1, r2) =

∫
δa
(
r1 − r′

)
G
(
r′, r′′

)
δa
(
r2 − r′′

)
dr′dr′′,

where G is the Green’s function for (periodic) Stokes flow.

I Choosing a surface delta function

δa (r) =
(
4πa2

)−1
δ (r − a)

gives the Rotne-Prager-Yamakawa (RPY) kernel.
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I Define the positive semi-definite hydrodynamic kernel
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Nonlocal PDE

I Define a positive semidefinite mobility operator

Uk =
dXk

dt
= (M [X (·)] f (·)) (Xk) =

∫ L

0
ds ′ R (

Xk ,X(s ′)
)

f(s ′)

I Have developed special quadrature schemes on spectral grid

I Mix of singularity subtraction + precomputations

I Requires O(1) points to resolve integral

I Compare to blob-link: O(L/â) points!

I Converting between continuous force densities f(s) to discrete
forces F (Galerkin projection), we get a mobility matrix

U = M̃F
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Applying mobility

Chebyshev
interpolation

Special 
quadrature

fW�1

X

fMF

Ebend [X(·)]
X(s)

X{k=1,...N+1}

�
⌧ {k=1,...N}, XMP

�

M [X(·)]

F bend (X) fbend (X)
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Discrete part: inextensibility

Langevin equation must be modified because of inextensibility

I τ {i} remains unit vector, rotates as rigid rod (ang. vel. Ω{i})

∂tτ {i} = Ω{i} × τ {i} → ∂tτ = −CΩ

I Results in constrained motions for X

∂tX = X
(
−C 0
0 I

)(
Ω

UMP

)
:= X C̄α := Kα

I Discrete time: solve for α = (Ω,UMP), rotate by Ω∆t,
update midpoint
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Deterministic dynamics

Close system by introducing Lagrange multiplier forces Λ

I No work done for inextensible motions (principle of virtual
work)

I Constraint KTΛ = 0 (comes from L2 adjoint of K)

Results in saddle point system for α and Λ

Kα = M̃ (−LX + Λ)

KTΛ = 0,

Deterministic dynamics (eliminate Λ)

∂tX = −N̂LX, N̂ = K
(

KTM̃
−1

K
)†

KT

Apply N̂ via iterative saddle pt solve with block-diagonal
preconditioner.
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Discrete Langevin equation
Deterministic dynamics + time reversibility → Langevin equation

∂tX = − N̂LX︸ ︷︷ ︸
Backward Euler

+ kBT∂X · N̂︸ ︷︷ ︸
Midpoint integrator

+
√

2kBT N̂
1/2

︸ ︷︷ ︸
Saddle point solve

W(t)

I Drift term captured in expectation via solving at the midpoint
(Brennan/Aleks)

I N̂
1/2

captured via saddle point solve

Kα = M̃ (−LX + Λ) +

√
2kBT

∆t
M̃

1/2
W

KTΛ = 0,

⇒ α = Deterministic +

√
2kBT

∆t
N̂

1/2
W

I W ∼ N (0, 1)
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Implied GB distribution

The overdamped Langevin equation is in detailed balance wrt the
distribution

Peq (τ̄ ) = Z−1 exp (−Ebend(τ̄ )/kBT )
N∏

p=1

δ
(
τT
{p}τ {p} − 1

)

I For blob-link, seems physical

I Postulate that it extends to spectral (others possible)

I Justify through the theory of coarse-graining (in progress, Pep
Espanol)

I Here: present supporting numerical results
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Samples from GB: free fibers

Bias
for finite N which disappears as N increases
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Using the Langevin integrator to sample

Convergence
to MCMC for smallest ∆t

I Reported in terms of longest relaxation timescale

I ∆t goes as N−4 – must keep N low!

I Unchanged with `p (modes are stiffer, but fewer required)
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Relaxation of fiber to equilibrium

Blob-link vs. spectral

I Getting a good approximation to mean end-to-end distance?

I Is special quadrature doing what we want it to?
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Quantifying relaxation
(
ε̂ = 10−2

)

I Spectral results approach blob-link with increasing N

I Can extend spectral to smaller ε̂, but not blob-link!
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Quantifying relaxation
(
ε̂ = 10−3

)
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Dynamics of bundling in cross-linked actin networks
Couple the fibers to moving cross linkers (CLs, elastic springs)

CLs bind fibers, pulling them closer together;
ratcheting action creates bundles
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Goals for bundling

Filaments move in three ways:

1. Cross linking forces

2. Rigid body translation and rotation

3. Semiflexible bending fluctuations

Goal is to explore the role of the bending flucts

I Intuition: fluctuations increase binding frequency

I How small does `p have to be?

I Strategy: simulate fibers with #1 and #2 only, compare to
fluctuating
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Movie: `p/L = 10
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Movie: `p/L = 1
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Bundling statistics

Statistics confirm movies

I `p/L = 100: similar to rigid

I `p/L = 10: small difference from “RBD” filaments without
bending fluctuations

I `p/L = 1: speed-up due to semiflexible bending fluctuations

I Actin in vivo: `p/L ≈ 30
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Bundling with sterics

Number of contacts reduced by 99% using “soft” erf potential
(Gaussian force)

I But 5× time step reduction required
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Conclusions

Spectral method as a way to coarse-grain blob-link simulations

I Resolve hydrodynamics and elasticity with continuum
interpolant

I Langevin equation over discrete collection of points

I Good accuracy with O(1) points, larger ∆t

Future challenges

I Incorporate nonlocal interactions between fibers
(hydrodynamic+steric)

I More rigorous justification of GB (continuum limit?)

I Apply to rheology of actin networks
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Rheology – effect of fluctuations

High `p = 17 (actin): not much difference in bundle shapes in
deterministic (left) vs. fluctuating (right)

Turnover time set to 60% of bundling time (match rheology)
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Rheology – smaller `p

High `p = 1.7: major difference in deterministic (left) vs.
fluctuating (right)
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Rheology – hydrodynamic interactions

Deterministic & fluctuating – no difference in morphology

fluctuating fibers without (left) and with (right) hydro

But difference in stress (need formula for Brownian stress)???
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Special quadrature vs. direct quadrature
Compare to direct quadrature on Chebyshev grid, giving an
symmetric positive definite (SPD) mobility matrix

(
M̃

(direct)
F
)
{i}

:=
∑

j

M̃
(RPY)

{i},{j}F{j}

Direct quadrature abysmal failure for ε̂ = 10−3
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Special quadrature vs. oversampled quadrature

Given force on N point grid

I Construct Galerkin SPD mobility matrix on oversampled grid:

M̃ref = W̃
−1

ET
u WuM̃RPY,uWuEuW̃

−1

I Apply W̃
−1

to get force density
I Upsample to Nu pt grid with matrix Eu

I Oversampled RPY quad on upsampled grid with weights Wu

I Downsample velocity in L2 with matrix W̃
−1

ET
u Wu.

I Nu ≈ 0.4/ε required for engineering ( 2 digits) accuracy
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Special vs. oversampled quadrature: convergence
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Special quadrature vs. local drag

Local drag is other theory which scales with ε̂

Special quad better for ε̂ = 10−2
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Temporal convergence: local drag vs. special quad

Local drag requires time step 4–10 times smaller (ε̂ = 10−3)



52/46

Coarse-graining: geometric perspective
Solve the quadratic programming problem
(

τ
XMP

)
= argmin

∥∥∥X(SB) − X(BL)
∥∥∥
2

2
=

∥∥∥∥ES→BX
(

τ
XMP

)
− X(BL)

∥∥∥∥
2

2

τT
{p}τ {p} = 1, p = 1, . . . ,N

where ES→B samples X(s) at the blob-link locations.
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Experimental measurements vary widely

Parallel plate rheometer in both cases!

Jamney et al. J. Biol. Chem. (1994)

Kasza et al. BJ (2010)
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Variety of measurements due to morphological changes

Morphology can vary over time and with CL/actin concentration

I Changing network morphology → changing shear modulus

I Viscoelastic moduli should be steady state properties

Falzone et al. Nat. Commun. (2012)
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