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Abstract
We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of

reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react
with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we
ensure that the microscopic reaction rules for various association and dissociation reactions are consistent
with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses
Strang splitting in time to separate reaction and diffusion, and solves both the diffusion-only and
reaction-only subproblems exactly, even at high packing densities. To efficiently process reactions
without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions
in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all
of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based
methods such as Reaction-Diffusion Master Equation (RDME) algorithms, the results of SRBD are
statistically independent of the size of the grid used to accelerate the processing of reactions. We use
the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction- and diffusion-
limited irreversible association in three dimensions, and compare to existing theoretical predictions at
low and moderate densities. We also study long-time tails in the time correlation functions for reversible
association at thermodynamic equilibrium, and compare to recent theoretical predictions. Finally,
we compare different particle and continuum methods on a model exhibiting a Turing-like instability
and pattern formation. Our studies reinforce the common finding that microscopic mechanisms and
correlations matter for diffusion-limited systems, making continuum and even mesoscopic modeling of
such systems difficult or impossible. We also find that for models in which particles diffuse off lattice,
such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.
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I. INTRODUCTION

It is widely appreciated that fluctuations affect reactive systems in important ways and should
be retained, rather than averaged over, in reaction-diffusion modeling. In stochastic biochemical
systems, such as reactions inside the cytoplasm, or in catalytic processes, some of the reacting
molecules are present in very small numbers and therefore discrete stochastic models are
necessary to describe the system [1, 2]. In diffusion-limited reactive systems, such as simple
coagulation 2A → A2 or annihilation A + B → ∅, spatial fluctuations in the concentration
of the reactants grow as the reaction progresses and must be accounted for to accurately
model the correct macroscopic behavior [3–6]. In unstable systems, such as diffusion-driven
Turing instabilities [7–11], fluctuations are responsible for initiating the instability and have
been shown to profoundly affect the patterns in ways relevant to morphogenesis [7, 8]. In
systems with a marginally-stable manifold, fluctuations lead to a drift along this manifold
that cannot be described by the traditional law of mass action; this has been suggested as
being an important mechanism in the emergence of life [12–14].

Much of the work on modeling stochastic chemistry has been for homogeneous, “well-mixed”
systems, but there is also a steady and growing interest in spatial models [1, 2, 15]. Reaction-
diffusion problems are often studied using the Reaction Diffusion Master Equation (RDME)
[16–19], which extends the well-known Chemical Master Equation (CME) to spatially-varying
systems. In the RDME, the system is subdivided into reactive subvolumes (cells) and diffusion is
modeled as a discrete random walk by particles hopping between cells, while reactions are mod-
eled using CMEs local to each cell [15]. A large number of efficient and elaborate event-driven
kinetic Monte Carlo algorithms for solving the CME and RDME, exactly or approximately, have
been developed with many tracing their origins to the Stochastic Simulation Algorithm (SSA)
of Gillespie [20]. Of particular importance to the work presented here is the next subvolume
method [21], which is an event-driven algorithm in which each cell independently schedules the
next reactive or diffusive event to take place inside it. There are also a number of approximate
techniques that speed the Monte Carlo simulation of the RDME when there are many particles
per reactive cell, i.e., when the fluctuations are relatively weak. For example, in multinomial
diffusion algorithms [22, 23] the diffusive hops between reactive cells are simulated by sampling
the number of jumps between neighboring cells using a multinomial distribution. This can be
combined with tau leaping for the reactions using time splitting, as summarized in Appendix A
in [24], to give a method that does not simulate each individual event. One can take this one step
further toward the continuum limit by switching to a real number rather than an integer repre-
sentation for the number of molecules in each cell, and use fluctuating hydrodynamics to simulate
diffusion [24], giving a method that scales efficiently to the deterministic reaction-diffusion limit.

The RDME, and related approaches based on local reactions inside each reactive cell, have
a number of important drawbacks, such as the lack of convergence as the RDME grid is refined
in the presence of binary reactions [25–27]. This means that one must choose the cells to be
not too large, so that spatial variations are resolved, nor too small, so that binary reactions do
not disappear. In fact, the common justification for the RDME is to assume that each cell is
well-mixed and homogeneous [20], which is not true if one makes the cells too small or too large.
Variants of the RDME have been proposed that improve or eliminate the lack of convergence
as the grid is refined, the most relevant to this work being the convergent RDME (CRDME)
of Isaacson [27], in which reactions can happen between molecules in neighboring cells as well.
Another drawback of the RDME is the fact that the CME, and therefore the RDME, require
as input the macroscopic or mesoscopic rates that enter in the law of mass action, rather
than microscopic rates that define the reaction-diffusion process. The conversion from the
microscopic to the macroscopic rates is nontrivial even for systems with only a single reaction,
and even at very low densities [28, 29], let alone at finite densities [4, 30] or for systems with
many species and reactions. It is not correct, in general, to use the macroscopic law of mass
action coefficients in the RDME, since this double counts fluctuations, as it is well-known
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that the reaction rates are renormalized by spatial fluctuations [4, 30, 31]. The conversion
of microscopic to mesoscopic rates, i.e., rates that depend on the cell size, is to our knowledge
a completely open problem. As clearly shown by the calculations of Erban and Chapman
[29], one can, alternatively, think of the RDME as a microscopic (rather than a mesoscopic or
coarse-grained) model if the cell size is comparable to the reaction radius, as is rather common
in physics where this is usually simply referred to as a “lattice model” of reaction-diffusion [31].
But when the cells are microscopic in size, the RDME suffers from large grid artifacts such as
dependence on the exact shape of the cells and broken translational and rotational invariance.

An alternative approach, which removes all of the aforementioned drawbacks, is to use a
particle model of reaction-diffusion systems. The main drawback of particle methods, which
we address in this work, is their inefficiency relative to RDME-like coarse-grained descriptions.
In particle-based models, molecules of each reactive species are tracked explicitly, and can
appear, disappear or change species via reactions. This leads to a grid-free method that
takes as input well-defined microscopic rates. Particle-based reaction-diffusion models are a
combination of two models, a model of diffusion and a model of reaction. A typical diffusion
model employed in biochemical modeling is that the individual particles diffuse as uncorrelated
Brownian walkers, with each species k having a specified diffusion coefficient Dk. While this
model is not easily justified in either gases or liquids, it is commonly used and we will adopt
it in this work, postponing further discussion to the Conclusions. There are three commonly-
used reactive models, which we explain on the binary reaction A + B → C involving two
reacting particles of species A and B. Note that reactions involving more than two particles are
microscopically extremely improbable and do not need to be considered. In the surface reactivity
or Smoluchowski model, two particles of species A and B react as soon as they approach closer
than a distance RAB, which defines the reactive radius for a particular reaction. As explained
in detail in the Introduction of [29], matching this kind of microscopic reaction model to
measured macroscopic reaction rates typically requires reaction radii that are too small; using a
reactive radius comparable to the expected steric exclusion between molecules leads to a notable
over-estimation of the reaction rate. Furthermore, the Smoluchowski model is difficult to make
consistent with detailed balance (and thus all of equilibrium statistical mechanics) for reversible
reactions. This is because microscopic reversibility requires that the reverse reaction C → A+B
place the products at a distance exactly equal to RAB, which would lead to their immediate
reaction. One way to resolve this problem is to allow some contacts between particles A and B
to be non-reactive, i.e., to replace the fully absorbing boundary conditions in the Smoluchowski
model with partial absorption Robin boundaries, as proposed by Collins and Kimball [32], and
studied in more detail and employed in simulations in a number of subsequent papers [33–36].

The volume reactivity or Doi model [28, 29] corrects the shortcomings of the surface reactivity
models. Somewhat ironically, the model was proposed by Doi in his seminal work [28] only as
a way to study the Smoluchowski model in a mathematically simpler way; recently Erban and
Chapman [29] suggested that this model has a lot of merit on its own right. We employ the Doi
model in this work and therefore it is important to formulate it precisely. In this model, all pairs
of particles of species A and B that are closer than the reactive radius RAB can react with one
another as a Poisson process of rate λ, that is, the probability that a pair of particles for which
rAB ≤ RAB react during an infinitesimal time interval dt is λ dt [65]. Since this model takes as
input two rather than one parameter, one can adjust them independently to model experimental
systems more realistically. Notably, the reactive radius can be chosen to have a realistic value
corresponding to the physical size of the reacting molecules, and the reaction rate λ can be
tuned to reproduce measured macroscopic rates. Nevertheless, we admit that in practical
applications the Doi model itself is a rather crude approximation of the actual molecular
structure and reaction mechanisms, and it may be difficult to define precisely and measure
accurately anything other than some effective macroscopic reaction rates. As we explain in more
detail later, achieving microscopic reversibility (detailed balance) is quite straightforward in
the Doi model. Furthermore, while the Smoluchowski model is inherently diffusion-limited, the
Doi model can be used to study either reaction-limited (λ small) or diffusion-limited systems
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(λ large). In the limit of infinitely fast reactions, λ→∞, the Doi model becomes equivalent
to the Smoluchowski model, whereas in the limit λ→ 0 one obtains a well-mixed model.

There are a number of existing particle-based algorithms for simulating reaction-diffusion sys-
tems. For the Smoluchowski model, an exact and efficient algorithm is the First Passage Kinetic
Monte Carlo (FPKMC), first proposed by Oppelstrup et al. in [37] and then extended and im-
proved in [38–40], and generalized to lattice models in [41]. The event-driven FPKMC algorithm
is a combination of two key ideas: solving pair problems analytically as in the Green’s Function
Reaction Dynamics (GFRD) [42, 43], and using protective domains to ensure an exact breakdown
of the multibody problem into pairwise problems [66], as in diffusion Monte Carlo methods used
in quantum mechanics [44]. The FPKMC algorithm can, in principle, be generalized to the Doi
model, but not without sacrificing its exactness. Namely, while for the Smoluchowski model the
multibody reactive hard-sphere problem can always be broken into two-body problems, in the Doi
model three or more particles can be within a reactive distance. However, FPKMC is not efficient
at higher density, where it becomes more and more difficult to break the multibody problem into
few-body problems. For these reasons, we pursue a different approach in this work, which is most
efficient at higher densities and is rather straightforward to implement compared to FPKMC.

Prior approaches to simulating the Doi model have been based on time splitting between
diffusion and reaction. Detailed algorithmic descriptions are missing in prior work, but the
basic idea is as follows. Given a time step size ∆t, the particles are first diffused over the
time interval ∆t, and then reactions are processed between pairs of particles within the reactive
radius; this is similar to what is done in a number of popular software packages for particle
modeling of reaction-diffusion such as Smoldyn [45] and MesoRD [46]. Two main factors make
such particle methods inefficient. The first one is the use of hopping in small intervals ∆t
to bring particles to react; this is completely bypassed by the FPKMC method [37] at the
expense of algorithmic complexity. The second factor is that at every time step, one must
do neighbor searches in order to identify pairs of particles that may react during the time step.
This is a necessary cost when reaction-diffusion is combined with molecular dynamics [47],
but, as we show here, is a superfluous cost when simulating simple reaction-diffusion processes.
Furthermore, even with the expensive neighbor searches performed, the algorithm used by
Robinson et al. [48] employs some approximations when processing reactions, which can
introduce uncontrolled bias. For example, the reactions are processed in turn in the same order,
and it is assumed that the probability of reaction during the time interval is small, λ∆t� 1.

In this paper, we develop Split Reactive Brownian Dynamics (SRBD) as an efficient algorithm
for simulating the Doi model with controlled accuracy. Our algorithm still uses time splitting
between diffusion and reaction, and therefore, will be less efficient at low densities. However,
unlike existing methods, it bypasses the need to find pairs of nearby particles at each time
step. In this sense, SRBD gains efficiency not by increasing ∆t as FPKMC does, but rather,
by reducing the cost of one time step. Notably, if the reaction rate is small and reactions
are infrequent, the algorithm adds a minimal cost per time step for processing the reactions, on
top of the cost of diffusing the particles. If the reaction rate is large and a particle can undergo
more than one reaction per time step, the algorithm correctly accounts for this. The only error
introduced is the splitting error, and therefore the error can be controlled easily by reducing
the time step so that particles diffuse only a fraction of the reactive radius per time step.

In Section II we present the microscopic reactive model used in SRBD, along with algorithmic
details of how diffusion and reaction are handled in the SRBD time stepping scheme. In Section
III, we use the SRBD algorithm to study the differences between reaction-limited and diffusion-
limited regimes for irreversible dissociation, reversible association, and a pattern-forming
system. We offer some conclusions and a discussion of open problems in Section IV.
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II. STOCHASTIC REACTIVE BROWNIAN DYNAMICS

In SRBD, we cover the domain with a regular grid of cells. However, unlike the reactive cells
in RDME, and like cells used in other particle algorithms such as molecular dynamics, in SRBD
the cells are only used to help efficiently identify pairs of particles that are closer than their
reactive distance, and the size of the cells only affects the computational efficiency but does not
affect the results. We denote the largest reactive distance among all possible binary reactions
with Rmax. The only condition on the cell size in SRBD is that all cells must be larger than
Rmax in each dimension. This ensures that only particles that are in neighboring cells (we
count a given cell as a neighbor of itself) can be within a reactive distance of one another.
If the set of possible reactions changes with time and at some point Rmax exceeds the current
cell size, one can simply re-generates the grid of cells at the beginning of the next time step.

The SRBD algorithm itself is a combination of the key ideas behind two existing methods. The
first one is the next subvolume method [21] for solving the RDME exactly, and the second one is
the Isotropic Direct Simulation Monte Carlo (I-DSMC) method for simulating a stochastic hard
sphere dynamics model of a fluid [49, 50]. Unlike the next subvolume method, which treats diffu-
sion using a master equation as just one more reactive channel, we treat diffusion separately from
reaction. This allows one to substitute the“motion module” from simple diffusion of uncorrelated
walkers to something more realistic, such as hydrodynamically correlated walkers [51]. Following
the diffusive propagation of the particles, we process reactions between reactive pairs using an
exact event-driven algorithm in which reactions are scheduled in an event queue and processed
one by one. As in the next subvolume method, reactive events are scheduled per cell rather than
per particle as in FPKMC. As in the I-DSMC method (and also the CRDME method), reactions
can take place between molecules in two disjoint neighboring cells, using rejection to correct for
the fact that pairs of particles chosen to react may not actually be within the reactive distance.

In this section we give a complete description of the SRBD algorithm, as implemented in For-
tran in a code that is available freely at https://github.com/stochasticHydroTools/SRBD.
We assume periodic boundary conditions throughout this paper. We will focus the algorithmic
description on the handling of binary reactions involving two species, A+B → . . . , or involving
the same species A + A→ . . . . However, it should be clear that the algorithm can be trivially
generalized to handle reaction networks containing many competing reaction channels and
many species (as done in our code).

For comparison, in our code and in the results reported here, we have also studied a method
in which the diffusion model is the same as in SRBD (independent Brownian walkers), but
the reactions are performed using a grid of cells as in the RDME. The difference with the
RDME is that the particles diffuse via a continuous random walk instead of a jump process.
This kind of model was proposed and studied in [52], and an algorithm was developed based
on time splitting of reaction and diffusion. We modify the method described in [52] in order to
improve translational (Galilean) invariance. Namely, before performing reactions, we randomly
shift the grid of reactive cells by an amount uniformly distributed in [−h/2, h/2), where h
is the grid spacing, along each dimension. This is commonly done in a number of other particle
methods [53] in periodic domains. We will refer to this approach as Split Brownian Dynamics
with Reaction Master Equation (S-BD-RME). In S-BD-RME, we employ the same microscopic
reaction rules given in Section II A 1 for SRBD, replacing “within distance R” by “in the same
reactive cell,” and replacing “uniformly in a sphere centered at the A with radius R” with
“in the same reactive cell”. This makes all reactions in S-BD-RME local to a reactive cell,
making it possible to parallelize the algorithm straightforwardly.

Also for comparison, we will include in a number of our tests the traditional RDME approach.
We solve the RDME not by using the expensive next reaction method, but rather, by using an
efficient (easily parallelizable) but approximate algorithm described in detail in Appendix A in
[24]. This algorithm is based on time splitting of diffusion and reaction and treating diffusion
using the multinomial diffusion algorithm proposed in [23]; the only source of error in this
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algorithm is the finite size of the time step size ∆t, and we have confirmed that reducing ∆t in half
does not statistically change the results reported here. One can use the S-BD-RME algorithm
to simulate the RDME simply by replacing the continuous random walks by discrete jumping
on a lattice, and not performing random grid shifts. However, this defeats the key efficiency of
the RDME over particle methods, namely, that one does not have to track individual particles.
Instead, in the RDME one only keeps track of the total number of particles of each species in
each reactive cell. This can be a great saving if there are many particles per cell, but will be less
efficient than particle tracking if there are on average fewer than one molecule per reactive cell.

A. Microscopic Model

We denote the time-dependent positions of particle i with species s(i) by qi (t) ∈ Rd, where
the dimension d is a small integer (typically 1, 2 or 3), and i = 1, . . . , Np, where Np(t) is the total
number of particles at time t. As explained in the Introduction, in this work we use the simplest
model of diffusion: each particle is treated as a sphere with only translational degrees of freedom
and diffuses as a Brownian walker (i.e., performs a continuous random walk) independently of
any other particles. We assume that all particles of species k diffuse with the same coefficient
Dk, k = 1, . . . , Ns. As also explained in the Introduction, we use the Doi model [29] for binary
reactions: each pair of particles of species A and B (respectively, A) that are closer than the
reactive radius RAB (respectively, RAA) can react with one another as a Poisson process of
rate λ. Different reactions r, r = 1, . . . , Nr, have different rates λr (with units of inverse time)
specified as input parameters. In this work we assume an additive hard-sphere model,

RAB = RA +RB, and similarly, RAA = 2RA,

where the radius Rk of particles of species k is an input parameter. This can easily be relaxed,
and a different reaction distance can be specified for each binary reaction.

A proper microscopic reaction model requires complete specification of what happens when a
chemical reaction occurs. Specifically, it requires one to specify which reactant particles change
species or disappear, and which product particles are created and where. We have constructed
a list of microscopic reactive rules implemented in our code by following the principle of
microscopic reversibility or detailed balance. We explain this in some detail because of its
importance to having a reaction-diffusion model consistent with equilibrium thermodynamics
and statistical mechanics [54], which we believe to be of utmost importance. To our knowledge,
few prior works have paid close attention to this condition; for example, the Doi model of
a reversible reaction A+B ↔ C proposed in [55] is not consistent with detailed balance.

1. Detailed Balance

We postulate, consistent with a long tradition of works in statistical mechanics [17–19], that
chemical reactions do not alter the state of thermodynamic equilibrium. Instead, the state
of thermodynamic equilibrium is set by chemical potentials only. For an ideal solution/gas
of non-interacting particles, the desired equilibrium distribution is given by a product Poisson
measure, i.e., the probability of finding any given molecule (particle) is uniform over the domain
and independent of other molecules. The principle of detailed balance then requires that,
starting from a configuration sampled from the equilibrium state, the probability of observing
a forward reaction is equal to that of the reverse reaction. That is, the reaction-diffusion
Markov process should be time reversible with respect to an equilibrium distribution given
by a product Poisson invariant measure [67].

Satisfying detailed balance with respect to such a simple equilibrium measure is straight-
forward and simply requires making each reverse reaction be the microscopic reverse of the
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corresponding forward reaction. For each forward reaction, we define a specific mechanism that
we believe is physically sensible, but note that this choice is not unique. However, once the
forward mechanism is chosen the reverse mechanism is uniquely determined by detailed balance.
We summarize the forward/reverse reaction rules we have used in our code in Appendix A.

It is important to note that we do not require that each reaction be reversible nor do we
require the existence of a thermodynamic equilibrium. Our method can be used without
difficulty to model systems that never reach equilibrium or violate detailed balance. For
example, for a reaction A→ B + C, one can treat the maximum possible distance between
the product particles RBC as an input parameter (unbinding radius) potentially different
from the Doi reactive radius (binding radius) for the reverse reaction. However, by adopting
microscopically reversible reaction rules we guarantee that if all reactions are reversible
(with the same binding and unbinding radius), there exists a unique state of thermodynamic
equilibrium given by a uniform product Poisson measure; furthermore, the equilibrium
dynamics will be time reversible. This makes our model fully consistent with the fundamental
principles of equilibrium statistical mechanics; for example, as we show in Section III C, the
equilibrium constants (concentrations) will be independent of kinetics (rates).

2. Enhancement of diffusion coefficients by reaction

It is important here to point out a somewhat unphysical consequence of the microscopic
Doi reaction model for reversible reactions: increased species diffusion due to reactions. For
specificity, let us consider the reversible reaction A + B ↔ C and denote the number densities
of the reactants with n = (nA, nB, nC). In the RDME model, reacting particles have effectively
the same position, since they need to be on the same lattice site to react. Similarly, the reverse
reaction creates particles at the same site. This implies that if one constructs, for example,
the linear combination ñ = nA + nB + 2nC , the reaction strictly preserves ñ locally. This
means that ñ evolves by diffusion only.

In the SRBD or S-BD-RME models, however, the positions of the reacting particles are off
lattice. This means that, even in the absence of explicit particle diffusion, the quantity ñ will
evolve due to reactions. In particular, assume that an A and a B particle react and the B
becomes a C, and thereafter the C decays via the reverse reaction into a B and creates an A
within a reactive radius of the original B. This net consequence of this sequence of successive
forward and reverse reactions is that the A particle has randomly displaced, from one position
inside a reactive sphere centered at the B particle, to a new position within this sphere. This
is an effective diffusive jump of the A particle and leads to an enhancement of the diffusion
coefficient of the quantity ñ on the order of R2

AB/τ , where τ is a reactive time for the sequence
A+B → C → A+B. This effective enhancement can become important when RAB is large, and
lead to different physical behavior between the RDME and the SRBD or S-BD-RME models, as
we will demonstrate explicitly in Sections III C and III D, and discuss further in the Conclusions.

B. Time Splitting

The only approximation we make in our SRBD algorithm is that diffusion and reaction are
handled separately by using time splitting. We use the well-known second-order Strang splitting
method, and then solve the diffusion and reaction subproblems exactly. Specifically, one time
step of duration ∆t going from time level n to n+1 is performed as described in Algorithm 1. The
errors induced in expectation values (observables) by the Strang splitting are of order O (∆t2).
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Algorithm 1 Split time step of the SRBD or S-BD-RME algorithms.
1. Diffuse all particles i present at time tn for half a time step

q
n+ 1

2
i = qni +

√
Ds(i)∆tN (0, 1) ,

where N (0, 1) denotes a Gaussian random variate of mean zero and unit variance, sampled
independently for each particle and at each time step.

2. Process reactions exactly over a time interval ∆t during which the particles do not diffuse (i.e.,
they stay in place) using Algorithm 2. If using S-BD-RME, choose a grid of cells to perform the
reactions in, potentially randomly shifted from a reference grid to improve translational invariance,
and then process reactions in each cell independently using the traditional SSA algorithm.

3. Diffuse all remaining and newly-created particles i for half a time step

qn+1
i = q

n+ 1
2

i +
√
Ds(i)∆tN (0, 1) .

C. Processing Reactions in SRBD

We now turn our attention to the core of the SRBD algorithm, processing reactions over a time
interval ∆t during which the particles do not diffuse. We perform this reaction-only step exactly,
i.e., we sample from the correct Markov process without any approximations. We focus here on
processing binary reactions since reactions involving zero or one reactants are trivial to handle.

A naive algorithm would proceed as follows. First, for each binary reaction, create a list
of all pairs of particles that could react because they are within a reactive distance of each
other (note that one pair can in principle participate in a number of different reactions). Let
the number of potential pairs for reaction r be Npr. Set the propensity (rate) for reaction r
to Nprλr, and select the next reaction to happen and increment the time counter (if less than
∆t) using the traditional SSA algorithm. Once a specific reaction is selected, select one of the
Npr pairs for that reaction uniformly at random, and process the reaction using the microscopic
reaction rules described in Appendix A. Update the list of pairs and repeat the process until a
time ∆t has elapsed. This algorithm, while clearly correct, is very inefficient due to the need to
search for pairs of overlapping particles at each step, and to update this list after each reaction
is processed. In Algorithm 2 we summarize an algorithm that is identical in law. In other words,
the algorithm selects pairs of particles with the correct probability rates, without ever explicitly
searching for pairs within a reactive distance. We detail the various steps in subsequent sections.

Note that the algorithm presented here requires having efficient dynamic spatial data
structures that enable finding all particles that are in a given cell, as well as keeping an
accurate count of the number of particles of each species in each cell. The most efficient, in
both storage and time, and simplest data structure that can be used for this purpose is what
we will refer to as linked-list cells (LLCs) [56]. These are essentially integer-based linked lists,
one list for each cell and each species, that stores an integer identifier for all particles of the
given species in the given cell, see the book [57] for implementation details. Additionally, one
requires a data structure for managing the event queue; our implementation uses a heap of
fixed size equal to the number of cells for this purpose.

1. Scheduling reactions

For unary reactions such as decay A→ . . . , what we mean by a reaction occurring in cell i is
that the particle undergoing the reaction is in cell i. For binary hetero-reactions with different
reactants A + B → ... with Doi rate λ, we schedule separately the two ordered reactions
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Algorithm 2 Summary of the SRBD reaction step 2 in Algorithm 1 during the n-th time step.
1. Prepare: Build linked-list cells (LLCs) and reset the event queue.
2. Sample the time to the next reaction for each cell i (see Algorithm 3) δti and compute the

scheduled next reaction time ti = t+ δti. If the scheduled time ti ≤ tn + ∆t, insert the scheduled
reaction event into the event queue with time stamp ti.

3. Event loop: Until the event queue is empty, do:

(a) Select cell i on top of the queue with time stamp ti, t
n ≤ ti ≤ tn + ∆t, and advance the global

time to t = ti.
(b) Select next reaction to happen in cell i using a traditional KMC/SSA method.
(c) If the reaction is unary, select a particle in cell i to undergo the chosen reaction. If the

reaction is binary, select a pair of particles, one in cell i and the other in one of its neighboring
cells, to undergo the chosen reaction. For binary reactions, if particles do not overlap, i.e.,
they are not within a reactive radius of each other, then skip to step 3e.

(d) Process the reaction (see Algorithm 4), creating/destroying particles and updating the LLCs
as necessary.

(e) For each cell j that is a neighbor of cell i (including cell i) that was (potentially) affected by the
reaction, reschedule the time to the next reaction δtj (see Algorithm 3). If tj = t+δtj < t+∆t
schedule the next event for cell j at time tj and update the event queue, otherwise delete
cell j from the queue.

A + B → ... and B + A→ ..., i.e., we distinguish one of the two particles as the “first” particle
and the other as the “second” particle. Each of these two reactions occurs with half the rate of
the original (unordered) reaction. We associate a given binary reaction to the cell in which the
first particle is located. For binary reactions with a single species, A + A→ . . . , we also order
the two reacting particles into a first and a second particle, and associate the reaction with the
cell of the first particle. The effective rate of the ordered reactions is again half of the original
rate because each pair is scheduled for reaction twice. A little thought reveals that no special
treatment is needed for a homo-reaction A+ A→ . . . , where both of the particles are in the
same cell except for rejecting self-reactions; each pair of particles can again be selected twice.

Scheduling the time δt until the next reaction to occur in a given cell is done by computing
the total reaction rate (called propensity in the SSA literature) α over all reactions associated
with that cell, and sampling an exponentially-distributed time lag δt with mean α−1, as
detailed in Algorithm 3. Note that the computation in Algorithm 3 over-estimates the actual
rate for binary reactions since it does not account for whether the particles actually overlap;
we correct for this using rejection. Specifically, if a pair selected to react does not overlap,
we reject the pair. Similarly, for homo-reactions A + A → . . . we correct for the fact that
we compute the number of pairs of particles of species A as N2

A/2 instead of NA (NA − 1) /2
by rejecting reactions of a particle with itself.

2. Processing binary reactions

Once a given cell is chosen to have a reaction occur in it, one must select one (for unary
reactions) or two (for binary reactions) particles to participate in the reaction, randomly and
uniformly from among all particles of the required species that are in the given cell or one
of its neighboring cells. This step is made efficient by using LLCs and the counts of the number
of particles of each species in each cell. We give additional details of the processing of binary
reactions in Algorithm 4.
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Algorithm 3 Algorithm used to schedule the time to the next reaction δti for cell i during
steps 2 and 3e in Algorithm 2.

• For each binary reaction r for cell i, A+B → ... where we allow for the possibility that B = A
and the order of the reactants matters if B 6= A, compute the rate in cell i as

αr =
λ

2
NAN

′
B

where NA is the number of A particles in cell i, and N ′B is the total number of B particles in
the neighborhood of i.

• Add the rates of all possible reactions, α =
∑Nr

r=1 αr (as in ordinary SSA).
• Sample an exponentially distributed random number δti with mean α−1.

Algorithm 4 Algorithm used in steps 3d and 3e of Algorithm 2 to process a binary reaction
A+B → . . . (where it may be that B = A) associated with cell i at global time t.

• Randomly and uniformly select a particle of species A that is in cell i, and another particle of
species B from a cell j that neighbors cell i. Note that this can select the same particle twice
if B = A; when this happens, skip the remaining steps.

• Test if the two particles are within their reactive distance, and if not, skip the remaining steps.
• Otherwise, process the reaction by deleting and adding particles depending on the reaction products,

following the microscopic reaction rules explained in Appendix A. While processing the reactions,
keep the LLCs up to date and keep track of whether any reaction changes the population of cell i
(number of particles of each species in that cell), and also whether the population of cell j changes.
• Reschedule the time to the next reaction δti for cell i using Algorithm 3. If ti = t+ δti < t+ ∆t

schedule the next event for cell i at time ti and update the event queue, otherwise delete cell i
from the queue.

• If the population of cell i changed, update the event prediction for all neighbor cells of i.
• If the population of cell j changed, update the event prediction for all cell neighbors of j that

are not also neighbors of i.

III. EXAMPLES

In this section we apply the SRBD algorithm to a number of reaction-diffusion problems, and
compare the numerical results to theoretical predictions and results obtained using RDME, as well
as S-BD-RME. First, in Section III A, we explore the relationship between microscopic reaction
rates and the effective macroscopic rates for reaction- and especially diffusion-limited irreversible
bimolecular reactions in three dimensions. In Section III B we briefly discuss how the choice of
the grid cell size in the SRBD algorithm affects the computational efficiency of the algorithm. In
Section III C we study the dynamics of concentration fluctuations at thermodynamic equilibrium
for diffusion-limited reversible association in two dimensions. Lastly, in Section III D we study
the formation of Turing-like patterns in a reaction-limited two-dimensional system.

A. Conversion from microscopic to macroscopic reaction rates

One of the key issues when comparing different methods, such as SRBD and RDME, is
ensuring that the parameters in the two models are both consistent with the same effective
macroscopic model at length scales much larger than the discretization scale (i.e., reactive
distances in SRBD or grid size in RDME), and time scales much larger than the microscopic
ones. This is especially difficult to do because the effective macroscopic model is non-trivial
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to obtain for reaction-diffusion problems, and is not always given by a simple deterministic
reaction-diffusion partial differential equation. In particular, a large body of literature has
emerged over the past several decades showing that the macroscopic behavior is unusual for
diffusion-limited systems, i.e., systems in which reactions happen quickly once reactants find
each other in physical proximity [4–6, 30, 54, 58, 59]. For example, the traditional law of mass
action is known to break down in simple diffusion-limited coagulation even in three dimensions
[4, 30], making it impossible to even define what is meant by an effective or macroscopic
reaction rate. Even when the law of mass action is formally recovered for the instantaneous
reaction rate, long-term memory effects appear in the long-time dynamics [5, 6]. In general, in
diffusion-limited systems nontrivial correlations between fluctuations of the number densities of
different species appear at molecular scales, and diffusion coefficients enter in the macroscopic
“reaction rates” in addition to the microscopic reaction rates. This is to be contrasted with the
much simpler behavior for reaction-limited systems, where diffusion dominates and uniformly
mixes the reactants, thus eliminating microscopic spatial correlations between different species.

To illustrate these subtle physical effects and confirm that the SRBD model and algorithm pro-
duce the correct results both in reaction-limited and diffusion-limited settings, we study here two
simple examples for which analytical predictions are available. The first is a one-species model of
coagulation, A+A→ A, and the second one is a two-species model of annihilation, A+B → B,
both of which we study in three dimensions. We define an effective macroscopic binary reaction
rate k as follows. We insert particles of species A randomly and uniformly into the system via the
reaction ∅ →

ki
A, and wait until a steady state is established at a given average (over space and

time) number density nA. The effective forward rate for the binary reaction at the steady state
number density (observe that the average number density of B molecules is unchanged by the reac-
tion A+B → B) is then defined as k = ki/ (nAnB) for A+B → B, and k = ki/n

2
A for A+A→ A.

1. Reaction-Limited versus Diffusion-Limited Rates

For sufficiently low packing densities φ (defined precisely later), one can estimate the effective
(macroscopic) association or forward reaction rate k0 = limφ→0+ k for binary reactions in SRBD
by generalizing the approach originally proposed by Smoluchowski for the Doi reactivity model.
In this approach, many-body effects are neglected, as later justified by Doi [28]. Details can
be found in the work of Erban and Chapman [29]; here we summarize the important results.
For a single reaction A+ B → . . . or A+ A→ . . . in three dimensions, at low densities, the
macroscopic reaction rate k0 (units m3/s) is predicted to be related to the microscopic rate
λ (units s−1) and the reactive radius R in the Doi model via [29]

k0 = s (4πDR)

[
1−

√
D

λR2
tanh

(√
λR2

D

)]
, (1)

where s = 1, D = DAB = DA + DB and R = RAB = RA + RB for A + B → . . . , and s = 1/2,
D = 2DA and R = RAA = 2RA for A+ A→ . . . .

Let us define a dimensionless number

r =
λR2

D
,

which compares the reaction rate to the diffusion rate. First, note that for all values of r
we have k0 < 4πDR. If r � 1, the system is diffusion-limited, and k0 ≈ kSRBD

S approaches
the Smoluchowski rate kSRBD

S = 4πDR, i.e., the rate that would be obtained if particles reacted
upon first touching. For r � 1, the system is reaction-limited, and we obtain

k0 ≈ kmix = s
4π

3
R3λ. (2)
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This result has a very simple physical interpretation. In the limit r � 1, the particle positions
are uncorrelated, i.e., the system is “uniformly mixed” at microscopic scales. Therefore, to find
the instantaneous reaction rate one can simply multiply by λ the total number of overlapping
particle pairs VrnAnB (taking nB ≡ nA for the one-species case), where Vr = 4πR3/3 is the reac-
tive volume, which gives the total reaction rate as k0nAnB ≈ λVrnAnB. The formula (2), unlike
(1), applies at all densities, i.e., k ≈ k0 independent of the density for reaction-limited systems.
Furthermore, while it is not possible to generalize (1) to two dimensions, there is no problem in
generalizing (2) to any dimension, simply by using the corresponding formula for the volume of
the reactive sphere Vr. Lastly, while (1) does not generalize to the case of many species and reac-
tions, (2) continues to apply for each reaction in reaction-limited systems. This emphasizes the
fact that reaction-limited systems are much simpler to model than diffusion-limited ones. We will
use this in Section III D when studying Turing-like pattern formation in a reaction-limited system.

One can argue that, in general, if a system is well described by (deterministic or fluctuating)
hydrodynamics, it should be in the reaction-limited regime unless the reactants are very dilute.
For a generic binary reaction A + B → . . . , an important characteristic length scale is the so-
called penetration depth, i.e., the typical distance a molecule travels between successive reactions,

Lp =

√
DAB

knAB
, where nAB = nA + nB.

This length scale should be macroscopic, which means that the number of molecules in a
penetration volume NL = nABL

3
p � 1; otherwise a hydrodynamic-level description would

not be appropriate on length scales of order Lp. Let us also define the packing fraction
φ = (4π/3)nABR

3
AB. Under this condition we see that unless φ� 1,

k

RABDAB

=
1

NL

(
Lp
RAB

)
∼
(
φN2

L

)− 1
3 � 1,

which implies that the reaction is reaction-limited, r � 1. Before we return to a reaction-limited
system in Section III D, we focus on the harder case of diffusion-limited systems, in which
a particle-level description is required to capture the nontrivial spatial correlations among
the reactants.

2. Diffusion-Limited Reactions

Erban and Chapman [29] have computed the conversion from microscopic to macroscopic
rates for RDME; the same formulas have also been computed by Winkler and Frey in
[4, 30]. Specifically, in three dimensions the effective macroscopic rate is related to the input
(microscopic) rate kRDME that enters in the RDME and the grid spacing h via [29, 30]

1

k0

=
1

kRDME

+
β = 0.25273

hD
, (3)

where D = DAB for A+ B and D = DA for A+ A. This formula contains the same physics
as (1), with h playing the role of RAB, and kRDME/h

3 playing the role of λ. The appropriate
definition of the dimensionless number is now r = kRDME/ (hD). For reaction-limited
systems, r � 1, the effective rate k ≈ k0 ≈ kRDME is the same as the microscopic rate. For
diffusion-limited systems, r � 1, we have k0 ≈ kRDME

S = hD/β, which is the RDME equivalent
of the Smoluchowski/Doi formula kSRBD

S = 4πDR, and no longer involves the precise value of
kRDME. If one keeps kRDME and D fixed but reduces the grid spacing h, one gets k0 → 0, i.e.,
binary reactions are lost because reactants can no longer find each other by diffusion [25–27].
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The simple analytical results (1) and (3) are limited to low densities since they neglect
all many-body effects. The only theory we are aware of for non-vanishing densities is the
renormalization group analysis of Winkler and Frey [4, 30] for the coagulation reaction
A + A → A in three dimensions. The nontrivial computation detailed in [4] predicts that
the leading order correction to (3) is given by the non-analytic correction (see (33) in [4])

k

k0

= 1 + α

(
k0

DA

) 3
2

n
1
2
A = 1 + γ

(
k0

kRDME
S

)3/2

φ
1
2 , (4)

where k0 = limφ→0 k is given by (3), nA is the number density of A molecules with φ = nAh
3

being the packing density, α =
(
2π
√

2
)−1

is a universal constant for some set of models that

are invariant under the renormalization group [30], and γ = α/β3/2 is a constant. We expect a
similar formula to apply to SRBD as well, defining the packing fraction as φ = nA · (4πR3

AA/3);
however, the renormalization group analysis performed in [30] does not apply to the Doi
reactivity model, and a different coefficient γ is expected. We are not aware of any finite-density
theory for a reaction involving two different species.

In order to confirm that our SRBD algorithm correctly reproduces these rigorous theoretical
results, we perform simulations of diffusion-limited coagulation and annihilation reactions. First,
we consider a system with only one species and two reactions, A+A→ A and ∅ →

ki
A. We have

confirmed that the results presented here are not affected by finite-size artifacts by increasing the
system size (i.e., the number of particles) up to as many as 1283 cells (for both SRBD and RDME,
where in SRBD we set the cell size to h = R) [68]. In arbitrary units, the SRBD parameters cho-
sen are R = RAA = 2RA = 1 and λ = 0.4775 (corresponding to kmix = 1.0), and DA = 0.03255,
giving r ≈ 7.33 and therefore f = k0/k

SRBD
S = 0.6340. For the RDME, we set h = 1, DA =

0.25272 and set the microscopic binary reaction rate to kRDME = 1, giving f = k0/k
RDME
S = 0.5.

Our results for k/k0 − 1 as a function of φ are shown in the left panel of Fig. 1 for both
SRBD and RDME. Based on our numerical confirmation (not shown) that the temporal
discretization errors in SRBD are quadratic in ∆t, we also show estimated result for ∆t→ 0
obtained by extrapolating the numerical results for two different time step sizes ∆t. For
the RDME runs, we use ∆t = 0.5. The results demonstrate that the SRBD results are in
agreement with the known theoretical results. In particular, we see that the extrapolated
curve would pass through the origin, indicating that k → k0 as φ→ 0, as it must. The results
for SRBD are consistent with a non-analytic φ1/2 dependence for small φ, but it is difficult to
say anything more quantitative due to the lack of a theoretical prediction for the dependence
on density. For RDME, we see agreement with the theory of Winkler and Frey [30] for small
but finite densities, although it is clear that higher-order terms are non-negligible for φ & 0.5.

For annihilation we consider a system with two species and the reactions A + B → B
(i.e., conserved number of B molecules) and ∅ →

ki
A. We change the number density of B

molecules nB and wait until a steady state is reached at a specific average density nA of
A molecules. In this case we define a packing density as φ = (nA + nB) · (4πR3

AB/3). We
set RAB = 1 and λ = 0.2387 (giving kmix = 1), and DA = DB = 0.03255, giving r ≈ 3.67
and therefore f = k0/k

SRBD
S = 0.5. We set the rate of (random) insertion ki of A’s into the

system to ki = k0n
2
B, so that if k = k0 it would be that nA = nB at equilibrium. Therefore,

knAnB = k0n
2
B, giving k/k0 = nB/nA. In the right panel of Fig. 1 we compute the deviation of

the measured reaction rate from the low-density prediction (1) via the ratio nB/nA at several
packing densities and for several values of the time step size. Again the results are consistent
with a splitting error of order O (∆t2) (not shown), and for sufficiently small ∆t and φ→ 0
the results are in perfect agreement with the theory (1). For finite densities, there is no known
theory but we expect that for fixed composition (4) will hold with a different coefficient γ;
indeed, the results appear to be consistent with a non-analytic φ1/2 dependence for small φ.
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Figure 1: Conversion from microscopic to macroscopic reaction rates for (partially) diffusion-limited
systems (f = k0/kS ∼ 1/2) at finite packing densities φ. Error bars are smaller or comparable to
symbol size. (Left) Correction to the low-density rate k0, given by (1) for SRBD and by (3) for
RDME, for coagulation, A + A → A and ∅ → A. For SRBD, we use two different time step sizes
(see legend) and extrapolate to the exact result without splitting errors. For the RDME an exact
renormalization calculation gives the leading order non-analytic φ1/2 correction [4, 30], which matches
our numerical results for sufficiently small densities. For SRBD the result is well-fit by the empirical
fit k/k0 = 1 + 1.215φ1/2 + 0.312φ (dotted black line). (Right) Deviation k/k0 = nB/nA from the
low-density rate k0 given by (1) for SRBD for annihilation, A+B → B and ∅ → A, for several time
step sizes (see legend). For ∆t = 1 we show results obtained using a system that is twice larger
(i.e., eight times the number of particles) and see no measurable finite-size effects. There is no theory
for finite densities but the result is consistent with the empirical fit k/k0 ≈ 1 + 0.458φ1/2.

B. Optimal Cell Size

We recall that, as far as accuracy is concerned, the choice of the grid cell size h in SRBD
is arbitrary beyond requiring h ≥ Rmax. However, the choice of h is crucial to the efficiency of
the algorithm. We expect that there will be an optimal choice hopt that balances the increased
costs of maintaining and building the grid data structures versus the benefits of reducing the
number of particle pairs that need to be checked for overlap. If hopt < Rmax then we must
set h = Rmax in order to ensure correctness of the algorithm.

In Fig. 2 we show some empirical results on the cost of the SRBD algorithm as a function of the
grid spacing. As a comparison, we use the computational time TD needed to diffuse the particles
only, without processing any reactions. When we set the reaction rates to zero so that no reactions
actually happen, managing the LLCs and event queue used to process reactions in SRBD (even
though empty), increases the cost and it is optimal to set h = L, where L is the system size.
However, when reactions do happen, we see that the computational time is very sensitive to the
choice of grid size h and there is an optimal value hopt that minimizes the cost. As expected, for
dilute systems it is best to set the cell size to be larger than the reactive radius, hopt > Rmax, so
that the cost is dominated by diffusion as particles try to find reactive partners, rather than being
dominated by managing the grid-based data structures used in the SRBD algorithm. For larger
densities however, the optimal choice is to make the cells as small as possible, hopt = Rmax. The
exact optimal value of h will depend not only on details of the computational implementation
and system size, but also on the reaction rates and densities in a nontrivial way, and we
recommend that empirical testing is the best way to choose the optimal cell size in practice.
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Figure 2: Ratio of SRBD computational time T needed to simulate a reaction-diffusion process and
the computational time TD needed to simulate diffusion-only process, as a function of cell size relative
to reactive radius, for annihilation A+B → B and ∅ → A. We use the same parameters as used to
produce Fig. 1, and set ∆t = 1, and employ system sizes ranging from 15.5 to 62 thousand particles.
For low densities, an optimal cell size is observed ranging from h = 4R to h = 2R. For densities
φ ≥ 1/2, the minimum cost occurs for h = R and the optimal grid size is the smallest possible one.
For comparison, we include for φ = 1/32 results for the case when the reaction rates are set to zero
so that they are still scheduled but never actually happen.

C. Long-time tails for reversible association A+B ↔ C

In this section we continue investigating diffusion-limited reactions at thermodynamic
equilibrium in two dimensions. We focus here on the reversible association reaction A+B →

k
C

and C →̃
k
A + B, where the ratio of the forward and backward rate is chosen to give an

equilibrium steady state with average number densities 〈nA〉 = 〈nB〉 = 〈nC〉 = n. In fact, SRBD
reaches not just a steady state but a time-reversible state of true thermodynamic equilibrium.
Recall that the microscopic association and dissociation mechanisms chosen in our Doi model
formulation (see Section II A 1) ensure detailed balance with respect to a uniformly mixed
equilibrium distribution. This means that the steady state is a thermodynamic equilibrium state
in which the A, B and C molecules are uniformly mixed in the domain and uncorrelated with one
another. This implies that the forward reaction rate for the association is k = πR2

ABλ as if the
system were reaction-limited and thus locally well-mixed. This holds independently of the value
of λ, i.e., independently of whether the reaction is actually diffusion-limited or reaction-limited.

However, the unusual macroscopic behavior of the system for diffusion-limited parameters
becomes evident if one considers not the static or instantaneous rate, but rather, the dynamics
of the fluctuations around the equilibrium values. In particular, it has been known for some
time that the microscopic reaction mechanism affects the autocorrelation function (ACF) of
the fluctuations in the number density,

ACF(t) = 〈(nC(τ + t)− n) (nC(τ)− n)〉 ,

where nC(t) = NC(t)/V is the instantaneous number density averaged over the spatial extent
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Figure 3: Autocorrelation function of the total number of C molecules in a two-dimensional system
undergoing the reversible association A+B ↔ C. Solid lines show results for SRBD with different
values for the reactive radius R (see legend), and dashed lines of the same color are for RDME
with reactive grid spacing h = 2R. The dotted lines are theoretical predictions for RDME based
on fluctuating hydrodynamics [5]. The thick dashed dotted orange line shows the exponential decay
predicted for a perfectly mixed system, and the thick dashed green line shows the theoretical tail
(5). The inset focuses on early times and uses a linear scaling of the x axis in order to emphasize the
exponential decay observed in reaction-limited systems. Note that the long-time tail has non-negligible
statistical noise compared to the signal when the ACF drops below 10−2.

of the domain. If the system were reaction-limited and the usual law of mass action kinetics
applied, the ACF would show exponential decay, ACF (t) ∼ exp (−3knt). However, when
the reaction is diffusion-limited, one observes a long-time power-law tail in the ACF [5, 6],

ACF (t) ≈ 5

216nπDt
ACF (0) , (5)

where for simplicity we have assumed equal diffusion coefficient for all species, DA/B/C = D.
The fundamental physics behind this long-time tail is the fact that the reaction locally
conserves ñ = nA + nB + 2nC , which can only relax by slow diffusion. It is important to
note that the asymptotic behavior (5) is independent of the reaction rate, i.e., independent
of λ. Therefore, the ACF switches at some characteristic time τ from exponential behavior
ACF (t� τ) ∼ exp (−3knt) with decay rate independent of λ, to an inverse time decay (5) with
coefficient independent of λ at long times. The value of λ determines the value of τ . For slow
reactions, i.e., the reaction-limited case, exponential decay dominates over most of the decay.
For fast reactions, i.e., the diffusion-limited case, the exponential decay lasts for only a very short
amount of time, and the majority of the decay of the ACF is much slower than exponential.

In Fig. 3 we show the ACF for SRBD (solid lines) for several values of the reactive
radius R = RAB = 2RA = 2RB, for n = 0.23873 particles per unit (two-dimensional) area,

D = 0.032549, k = 1, k̃ = n, for a square domain of length L = 64 and time step size ∆t = 0.25.
For each R, we show in the same color for comparison RDME (dashed lines) with a grid
spacing h = 2R = 4RA/B, which was determined empirically to lead to an excellent matching
between SRBD and RDME at short to intermediate times. The inset in the figure focuses on
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short times and shows that ACF (t→ 0+) decays exponentially as predicted for a well-mixed
(reaction-limited) system (orange dashed-dotted line). This is because SRBD reaches a steady
state of thermodynamic equilibrium consistent with an ideal solution (gas) of A, B and C
molecules. We have confirmed (not shown) that the two-particle (second order) correlation
functions of our system are consistent with an ideal gas mixture to within statistical uncertainty.

For later times however, all of the ACFs shown in Fig. 3 show a much slower t−1 decay than
predicted for a well-mixed system. For RDME we see that the ACF has the same universal tail
given by (5), shown as a thick dashed green line, independent of the value of the grid spacing
h, as predicted by the theory. However, for SRBD, different values of the reactive distance
R lead to the same t−1 decay at long times, but with a different coefficient. Empirically we find
that fitting the SRBD tails with (5) gives an effective diffusion coefficient Deff = D + 0.13knR2.
As already discussed in Section II A 2, this enhancement of the effective diffusion coefficient
by reactions comes because a sequence of association/dissociation reactions in SRBD leads
to displacements of A and B molecules. Quite generally, we expect to see enhancement of
the diffusion coefficients on the order of ∼ R2/τ , where τ is a reactive time for the sequence
A+B → C → A+B, but the exact dependence is difficult to compute analytically.

In [5, 6], Gopich et al. developed a perturbative (one-loop) renormalization theory for the tail
of the ACF based on fluctuating hydrodynamics. In this theory, one assumes that the fluctuations
are weak and solves the fluctuating hydrodynamics equations linearized around the equilibrium
state, and then evaluates the nonlinear term due to the binary reactions to quadratic order in the
fluctuations in order to estimate the leading-order corrections due to fluctuations. The theory is
a continuum theory, but can be easily modified to account for the spatial discretization in RDME.
Specifically, we have replaced the spectral (negative) Laplacian q2 with the modified (negative)
Laplacian sin2 (qh/2) / (h/2)2 in Eq. (3) in [5], and replaced the integral over wavenumbers q in
Eq. (11) in [5] with a sum over the discrete Fourier modes supported on the periodic RDME grid.
The integral over time in Eq. (11) in [5] can be performed analytically, and the resulting sum
over wavenumbers evaluated numerically. This gives a complete theory for ACF(t), not just the
tail computed explicitly in [5]. In Fig. 3 we show this theory with dotted lines for different values
of the RDME grid spacing h. The improved theory is found to be in excellent agreement with the
numerical data for h = 4 (dark blue lines), with the agreement becoming progressively worse for
smaller h, i.e., as the system becomes more and more diffusion-limited. By increasing the number
density, i.e., the number of molecules per cell, we have confirmed that the mismatch with the
theory for intermediate times for diffusion-limited reactions cannot be blamed on the fact that
the fluctuations are not weak enough for the perturbation analysis to apply. Instead, it appears
that the theory is missing some of the microscopic correlations that develop in diffusion-limited
systems, revealing once again the difficulty of quantitative continuum modeling of such systems.

D. Pattern formation

In this section we study a two-dimensional reaction-limited system with three species U , V and
W , undergoing seven reactions according to the Baras-Pearson-Mansour (BPM) model [60, 61],

U +W → V +W

V + V � W

V � 0

U � 0.

The reaction rates are chosen to give a limit cycle for the reaction in the absence of diffusion,
and the diffusion coefficient of the U species is chosen to be very different, DV = DW = DU/10,
which leads to the formation of Turing-like spot patterns forming a hexagonal or a monoclinic
structure (see Fig. 5 in [24]). A typical quasi steady-state pattern obtained for the parameters
we use is illustrated in Fig. 4.
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Figure 4: Typical Turing-like quasi-steady patterns for the BPM model at time t = 104, illustrated
here by color plots of the number densities for U molecules. Left panel is for RDME, middle panel
is for S-BD-RME, and right panel is for SRBD. The reactive distance is set to R = h = 0.125, i.e.,
a 2562 grid, but the images were produced using a 642 grid to compute local number densities, in
order to reduce the fluctuations.

This system was studied using the RDME and fluctuating hydrodynamics by some of us in [24],
and it was concluded that fluctuations accelerate the initial formation of a disordered spot pattern,
and also accelerate the subsequent annealing of defects to form a lattice of spots. Here we repeat
the same computations but using SRBD and S-BD-RME, in order to understand the importance
of the microscopic model to the pattern formation. We have studied systems that are either initial-
ized in a uniformly mixed state corresponding to a point on the limit cycle, which leads to initial
oscillations of the average concentrations which get damped until a fixed Turing pattern is estab-
lished, as well as systems initialized to be at the unstable fixed point of the limit cycle, so that fluc-
tuations kick it onto the limit cycle via growing oscillations until eventually a fixed pattern forms.
Here we focus on the setup studied in [24] and initialize the system on the limit cycle; initially
the particles of all three species are uniformly and randomly distributed throughout the domain.

We use the same reaction parameters as reported in Section VB in [24]. Although the system
is two-dimensional we think of it as a three-dimensional system with a small thickness ∆z = 0.5
in the third dimension [69], so that number densities are still expressed in units of particles per
unit volume rather than per unit area. For simplicity, in SRBD we set RU = RV = RW = R/2,
where R is the reactive distance. The chosen reaction rates and diffusion coefficients are such
that the system is reaction-limited, so that we can easily obtain the effective macroscopic
reaction rate for any binary reaction from the two-dimensional equivalent of (2) [70],

k = s
(
πR2∆z

)
λ. (6)

This allows to obtain λ for each reaction from the knowledge of the desired effective reaction rate
k for each of the three binary reactions in the BPM model. For S-BD-RME and RDME, we can
simply use the desired effective rates k as input microscopic rates, independent of the reactive
cell size h. We vary R and h while keeping the overall system size fixed at Lx = Ly = 32.

In SRBD we use the minimal possible grid spacing h = R for sampling reactions, in order
to maximize computational efficiency; in what follows we will use h when comparing SRBD
and RDME/S-BD-RME simulations but we remind the reader that h has no physical meaning
for SRBD. We change the grid size Nx = Ny = Lx/h from Nx = 64 to Nx = 512; for the chosen
rate parameters we would need grids larger than 1024× 1024 to enter the diffusion-limited
regime. Our RDME computations are performed using the split scheme described in Appendix
A of [24]. The time step size ∆t for all methods is limited by the fast diffusion of U molecules,
and we set the diffusive Courant number to DU∆t/h2 ≈ 0.3. The total number of molecules
(particles) in the system can be as large as 2.5 · 106∆z, i.e., about a million particles for our
setup. As a rough idea of the computational effort involved, we note that for Nx = 256, the
total running time up to physical time T = 104 on a 3GHz Intel Xeon processor was 4.5h
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Figure 5: Total number NU (t) of U molecules in a pattern-forming BPM reaction-diffusion model
in two dimensions. Initially NU oscillates on the limit cycle of the reaction-only model, until a
Turing-like spatial instability leads to the formation of a quasi-steady spot pattern. (Left) Results
for SRBD for different values of the reactive distance R (see legend). The computations used a grid
(size shown in legend) of spacing h = R for processing reactions. (Right) Comparison between SRBD
with R = 0.125 to S-BD-RME and RDME with reactive grid spacing h = R = 0.125. The pattern
formation is delayed for deterministic CFD [24] on a grid of spacing h = 0.125, initialized with a
statistically indistinguishable initial condition.

for RDME, 12h for S-BD-RME, and 19h for SRBD. For Nx = 512, the running time was 54h
for S-BD-RME and 48h for SRBD, which decreased to 43h when a 2562 grid was used to
process the reactions in SRBD (see discussion in Section III B).

In Fig. 5, we show the total number of U molecules as a function of physical time. This
number oscillates according to the limit cycle for a while, until a quasi-steady pattern is formed.
The types of “steady” Turing-like patterns obtained using SRBD and S-BD-RME are visually
indistinguishable from those obtained using RDME, as illustrated in Fig. 4. In the presence
of fluctuations the final patterns are not strictly stationary and the Turing spots can diffuse,
however, this happens on a slow time scale not studied here. Of main interest to us is the
typical time it takes for the Turing pattern to emerge.

In the left panel of Fig. 5, we show results for SRBD for four different values of the particle
diameter R. Somewhat unexpectedly, the results for S-BD-RME with grid spacing h = R were
found to be visually indistinguishable from those for SRBD with reactive radius R. For SRBD
or S-BD-RME, we do not see a Turing pattern emerging even after t = 105 when R = 0.5. By
contrast, a pattern is formed in less time even if the deterministic reaction-diffusion equations
(corresponding to the limit ∆z →∞) are solved using standard computational fluid dynamics
(CFD) techniques [24] starting from a random initial condition. A pattern does form for SRBD
for R = 0.25, and it forms faster yet for R = 0.125, and no noticeable change happens when
we reduce the reactive distance even further to R = 0.0625. Somewhat surprisingly, the results
for RDME were found to be rather independent of the grid size, as also observed in Fig. 7 in
[24], and are statistically hard to distinguish from those obtained using SRBD or S-BD-RME
for R ≤ 0.125, as illustrated in the right panel of Fig. 5.

We can explain the difference between RDME and SRBD/S-BD-RME by the observation
that diffusion is enhanced by reactions in methods in which diffusion takes place off lattice,
as we discussed in Section II A 2 and quantified in Section III C. Indeed, the formation of the
pattern can be suppressed also by enlarging the diffusion coefficients of the particles in RDME.
Since the effective enlargement of the diffusion coefficients in SRBD/S-BD-RME is proportional
to R2, using smaller reactive radii makes the effect smaller.

We can make the comparison between the different methods for R = 0.125 more quantitative
by fitting the total number of U molecules as a function of time to the empirical fit (see Eq.
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Figure 6: Scatter plot of the fitting coefficients a0 and a3 in the empirical fit (7) for the dynamics
of pattern formation in the BPM model, for 16 statistically independent simulations using one of
four different methods (see legend).

(41) in [24])

NU(t) = (1− tanh ((t− a0)/a2)) (a1 sin(a3t+ a4) + a5) + a6, (7)

and comparing the distribution of the fitting parameters for the different methods over a
set of statistically-independent runs. This comparison is shown in Fig. 6. In this figure we
show the values of the fitting parameters a0, which represents the onset time for the pattern
formation, and a3, which represents the frequency of the oscillation, for 16 samples initialized
using statistically independent random configurations and using different random number
streams, for RDME, S-BD-RME, SRBD and deterministic CFD. Each of the methods forms
a cluster in this plane, and it is clear that deterministic CFD is quite distinct in both the
onset time and the frequency (note, however, that the range of the y axis is rather small)
from the methods that account for fluctuations. All methods that include fluctuations are
relatively similar in this comparison, but the RDME cluster is seen to be somewhat separated
from SRBD and S-BD-RME, which are themselves not distinguishable in this statistical test.
We believe that the small difference between RDME and SRBD/S-BD-RME stems from the
slightly enhanced diffusion in the Doi model compared to lattice-based models.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

We described a novel method for simulating the Doi or volume reactivity model of reaction-
diffusion systems. The SRBD algorithm is based on time splitting of diffusion and reaction, and
uses an event-driven algorithm to schedule and process reactions during a time step without any
approximations. This makes the method robust from the reaction-limited to the diffusion-limited
case, and allows one to easily control the numerical error in SRBD by reducing the time step size.
Unlike simpler algorithms for incorporating thermal fluctuations in reaction-diffusion models,
such as the widely-used RDME, a grid is only used in SRBD to dramatically improve computa-
tional efficiency, without affecting physical observables. The SRBD method is therefore a true
particle method that maintains Galilean invariance and isotropy, just like molecular dynamics.
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Our studies of irreversible association in Section III A showed the complexity of the conversion
from microscopic to effective macroscopic rates for diffusion-limited reactions. Such conversion is
in fact not possible in two dimensions, and even in three dimensions the corrections to the effective
rate depend non-analytically on the density [4, 30]. This brings into question the law of mass
action kinetics for diffusion-limited systems, even at macroscopic length and time scales, casting
doubts on any attempt to model such systems using local in space and time reaction-diffusion
equations. Our studies of diffusion-limited reversible association in Section III C indicated that
even though a simple law of mass action kinetics can model the instantaneous macroscopic
reaction rate, long-lived temporal correlations of the fluctuations lead to effective memory in
the dynamics [58]. Furthermore, we numerically demonstrated that by ensuring reversibility
of the microscopic reaction rules we achieve a state of true thermodynamic equilibrium [54].

For reaction-limited systems, diffusion is fast enough to mix the reactants at microscopic
and mesoscopic scales, and the conversion from microscopic to macroscopic rates is much
simpler. Indeed, in Section III D we found a good matching between the simpler and more
efficient RDME model and SRBD/S-BD-RDME for sufficiently small reactive distances, for
a system undergoing a pattern-forming Turing-like instability. Nevertheless, we found that
when finite-range reactions are combined with off-lattice diffusion, reversible reactions increase
the effective diffusion coefficient by an amount on the order of R2/τ , where R is the typical
reactive distance, and τ is the typical duration of a binding-unbinding sequence.

One can argue that the enhancement of the diffusion coefficients by reactions that we
observed in the Doi model is unphysical, since one considers reaction and diffusion to be
separate physical processes that cannot couple by the Curie principle. At the same time, for
diffusion-limited systems reaction and diffusion are intimately coupled, and it is not in fact
obvious that the traditional reaction-diffusion partial differential equation, in which reaction
and diffusion are completely decoupled, is appropriate (even once rates are renormalized).
Since diffusion affects macroscopic reaction rates, it is perhaps natural to expect that reactions
should in turn affect diffusion on macroscopic scales.

The enhanced diffusion in the Doi model occurs because of the simplifications of actual
reactive mechanisms. Notably, all molecules are considered to be point-like particles and only
identified by a species label. When a forward reaction A + B → C takes place, all information
about the original reactant particles is lost, and is subsequently stochastically re-created by the
reverse reaction. This is equivalent to saying that once the C ≡ AB complex forms, it rotates
and rearranges internally on a much faster time scale than it diffuses, which is unphysical.
In an actual reaction, however, the A or B will denote atomic units or molecular subunits that
will retain their identity via the reaction, and a more physically-realistic model may treat the
C as a combination A + B of units that are bonded by an elastic or rigid bond, thus retaining
the rotational diffusion of the C molecule (molecular complex), and the finite time scales of
the internal dynamics of this complex. Developing more physically realistic microscopic models
is well beyond the scope of the present work, but remains an important topic for future study.
It should be noted that the key algorithmic ideas developed in this work can find use well
beyond just the specific Doi model we employed in this work.

A key disadvantage of event-driven algorithms such as FPKMC and SRBD is the difficulty
of parallelization of event loops without making uncontrolled approximations. The diffusion
step in SRBD can be trivially parallelized since each particle diffuses independently of other
particles. The parallelizaton of the reactive step, however, requires sophisticated “time-warp”
technology only recently employed for kinetic Monte Carlo simulation [62]. Future work should
explore whether it is possible to parallelize SRBD using simpler techniques by using the fact
that the time step size provides an upper bound on the maximum time to the next event.

In the SRBD model used in this work, we assumed that the particles are independent
Brownian walkers. It is well-known that this model is not appropriate for particles diffusing
in a liquid, because of the importance of long-ranged hydrodynamic correlations (often called
hydrodynamic interactions) mediated by momentum transport in the solvent. The time
splitting used in SRBD makes it very easy to use recently-developed linear-scaling Brownian
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Dynamics with Hydrodynamic Interactions (BD-HI) [63] to diffuse particles. This would enable
studies of the importance of hydrodynamics to reaction-diffusion processes in crowded fluid
environments such as the cell cytoplasm.

While the SRBD method is most powerful and efficient at higher densities, by changing the size
of the grid used to accelerate the reaction handling one can also reasonably efficiently handle lower
densities, as shown in Section III B. Nevertheless, at very low densities the majority of the comput-
ing effort will be spent diffusing molecules, which will take a long time to find other molecules to
react with. The problem of diffusing molecules rapidly over large distances without incurring any
approximation errors is already elegantly solved by the FPKMC algorithm [37–39]. It is in fact
possible to combine the FPKMC idea of propagating particles inside protective regions when they
are far from other particles they could react with, with the SRBD handling for particles when they
come close to each other. This can be accomplished relatively easily by adding to FPKMC a new
kind of event, an SRBD time step, which is scheduled in regular intervals of ∆t to update those
particles not protected by a domain by a time step of the SRBD algorithm. This kind of algorithm
obviates the need for the complex handling of particle pairs in FPKMC while still retaining the
key speedup of the FPKMC algorithm, and works naturally with the Doi reaction model even in
regions of high densities. We leave such generalizations of the SRBD algorithm for future work.
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Appendix

Appendix A: MICROSCOPIC REACTION RULES

In this work, we adopt the following microscopic reaction rules based on classifying each
reaction into one of several categories:

1. Death: A→ ∅. Every particle of species A can disappear with rate λ per unit time.
2. Birth: ∅ → A. With rate λ, a particle A is created randomly and uniformly inside the

domain. This reaction is the reverse of death.
3. Conversion: A → B. Every particle of species A has a rate λ of changing species into
B. This reaction is its own reverse (swapping the roles of A and B).

4. Annihilation: A+B → ∅ with rate λ if within distance RAB, where B can be equal to
A. Both particles disappear.

5. Production: ∅ → A + B. The particle of species A is born randomly and uniformly in
the domain (as for birth), and the particle of species B is born with a random position
uniformly distributed within a reactive sphere of radius RAB around the position of the
particle of species A. This reaction is the reverse of annihilation.

6. Catalytic death: A+ B → A with rate λ if the A and B molecules are within distance
RAB. The particle of species B disappears.
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7. Catalytic birth: A → A + B. Every particle of species A has a rate λ of splitting per
unit time. A new particle of species B is born with a random position uniformly distributed
within a reactive sphere of radius RAB around the position of the particle of species A.
This reaction is the reverse of catalytic death.

8. Binding: A + B → C with rate λ if the A and B molecules are within distance RAB,
where we allow for B to be equal to A, or for both B and C to be equal to A (for example,
as in coagulation 2A→ A2). One of the two reactants of species A or B, chosen at random
with probability 1/2, changes species into C, and the other reactant particle disappears.
Note that in specific applications it may be more appropriate to always convert the A into
C instead of the random choice we implement here.

9. Unbinding: A→ B + C, where B and/or C can be equal to A. Every particle of species
A has a rate λ of splitting per unit time. The particle of species A becomes a product
particle of species B or C, chosen randomly with probability 1/2 (see comment for binding
about changes of this rule), and the second product particle is born randomly uniformly
in a sphere centered at the A with radius RBC . This reaction is the reverse of coagulation.

10. Catalytic conversion: A + B → A + C with rate λ if the A and B molecules are within
distance RAB, where C can be equal to A. The particle of species B changes species into
C. This reaction is its own reverse.

11. Transformation: A+B → C+D, with rate λ if the A and B molecules are within distance
RAB. Here B can be equal A, and C and D can both be equal to A (i.e., the case of catalysis
is excluded). One of the two reactant particles, chosen randomly with probability 1/2,
changes species into C, and the other reactant particle changes species into D. This reaction
is its own reverse. Note that in specific applications it may be more appropriate to always
convert the A into C and the B into a D instead of the random choice we implement here.

We note that we have combined here rules that could be simplified when some of the
product/reactant species are identical for the sake of brevity. For example, one could give
a more condensed reaction rule (and our code implements such condensed rules for efficiency)
for reactions such as A+ A↔ A or A+ A↔ A+B.
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