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Introduction

Confined Boomerang Colloids

Figure: (Left) Lithographed boomerangs in a slit channel from Chakrabarty et al.
(Right) Brownian dynamics of boomerangs (Brennan Sprinkle+Florencio
Balboa) [1].
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Introduction

Microrollers: Fingering Instability

Experiments by Michelle Driscoll (lab of Paul Chaikin, NYU Physics, now
at Northwestern). Simulations by Blaise Delmotte [2] show that
Brownian motion affects the fingering instability(AVI).
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Introduction

Microrollers: Uniform Suspension

Simulations by Brennan Sprinkle+Blaise Delmotte [1] of a uniform
suspension of microrollers at packing fraction φ = 0.4 (MP4).
Compare to experiments (AVI) by Michelle Driscoll.
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Introduction

Rigid MultiBlob Models

The rigid body is discretized through a number of “beads” or “blobs”
with hydrodynamic radius a.
Standard is stiff springs but we want rigid multiblobs [3].
Equivalent to a (smartly!) regularized first-kind boundary
integral formulation [3].
How to efficiently simulate the active and Brownian motion of
the rigid particles?
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Modeling (Brownian) Stokesian Suspensions

Fluctuating Hydrodynamics

We consider a rigid body Ω immersed in a fluctuating fluid. In the fluid
domain, we have the fluctuating Stokes equation

ρ∂tv + ∇π = η∇2v + (2kBTη)
1
2 ∇ ·Z

∇ · v = 0,

with no-slip BCs on the bottom wall, and the fluid stress tensor

σ = −πI + η
(
∇v + ∇Tv

)
+ (2kBTη)

1
2 Z (1)

consists of the usual viscous stress as well as a stochastic stress
modeled by a symmetric white-noise tensor Z (r, t), i.e., a Gaussian
random field with mean zero and covariance

〈Zij(r, t)Zkl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).
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Modeling (Brownian) Stokesian Suspensions

Fluid-Body Coupling

At the fluid-body interface the no-slip boundary condition is assumed to
apply,

v (q) = u + ω × q− ŭ (q) for all q ∈ ∂Ω, (2)

with the inertial body dynamics

m
du

dt
= F−

∫
∂Ω
λ (q) dq, (3)

I
dω

dt
= τ −

∫
∂Ω

[q× λ (q)] dq (4)

where λ (q) is the normal component of the stress on the outside of the
surface of the body, i.e., the traction

λ (q) = σ · n (q) .

To model activity we can add active slip ŭ due to active boundary layers,
or consider external forces/torques.
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Modeling (Brownian) Stokesian Suspensions

Mobility Problem

From linearity, the rigid-body motion is defined by a linear mapping
U = NF via the deterministic mobility problem:

∇π = η∇2v and ∇ · v=0 +BCs

v (q) = u + ω × q− ŭ (q) for all q ∈ ∂Ω, (5)

With force and torque balance∫
∂Ω
λ (q) dq = F and

∫
∂Ω

[q× λ (q)] dq = τ , (6)

where λ (q) = σ · n (q) with

σ = −πI + η
(
∇v + ∇Tv

)
. (7)
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Modeling (Brownian) Stokesian Suspensions

Overdamped Brownian Dynamics

Consider a suspension of Nb rigid bodies with configuration
Q = {q, θ} consisting of positions and orientations (described
using quaternions) immersed in a Stokes fluid.

By eliminating the fluid from the equations in the overdamped limit
(infinite Schmidt number) we get the equations of Brownian
Dynamics

dQ(t)

dt
= U = NF + (2kBT N )

1
2 W (t) + (kBT ) ∂Q ·N ,

where N (Q) is the body mobility matrix, with “square root” given
by fluctuation-dissipation balance

N
1
2

(
N

1
2

)T
= N .

U = {u, ω} collects the linear and angular velocities
F (Q) = {f, τ} collects the applied forces and torques.
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Modeling (Brownian) Stokesian Suspensions

Difficulties/Goals

Complex shapes We want to stay away from analytical approximations
that only work for spherical particles.

Boundary conditions Whenever observed experimentally there are
microscope slips (glass plates) that modify the
hydrodynamics strongly. Because of gravity the particles
sediment close to the bottom wall (∼ 100nm).

Many-body hydrodynamics Want to be able to scale the algorithms to
suspensions of many particles.

Brownian increments How to generate N
1
2 W, i.e., Gaussian random

variables with covariance N .

Stochastic drift How to include the (kBT ) ∂Q ·N term in temporal
integrators.
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Minimally-Resolved Blob Model

Magnetic Rollers with Brownian Diffusion

Left: Without + Right: With Brownian motion [2]
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Minimally-Resolved Blob Model

Minimally-Resolved Simulations

Represent each spherical particle by a single blob, and solve the Ito
equations of Brownian Dynamics with Hydrodynamic
Interactions (BD-HI) for the (correlated) positions of the N spherical
microrollers Q (t) = {q1 (t) , . . . ,qN (t)} subjected to external
magnetic torques T,

dQ = MFdt + McT + (2kBT M)
1
2 dB + kBT (∂Q ·M) dt, (8)

where B(t) is a vector of Brownian motions, and F (Q) are applied
forces.

How to compute deterministic velocities MF efficiently?

How to generate Brownian increments (2kBT M)
1
2 ∆B efficiently?

How to generate stochastic drift kBT (∂Q ·M) efficiently by only
solving mobility problems?
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Minimally-Resolved Blob Model

Blobs in Stokes Flow

The blob-blob mobility matrix M describes the hydrodynamic
relations between the blobs, accounting for the influence of the
boundaries:

v (r) ≈ w = Mλ. (9)

The 3× 3 block Mij maps a force on blob j to a velocity of blob i .

For well-separated spheres of radius a we have the Faxen expressions

Mij ≈ η−1

(
I +

a2

6
∇2

r′

)(
I +

a2

6
∇2

r′′

)
G(r′, r′′)

∣∣r′=rj
r′′=ri

(10)

where G is the Green’s function for steady Stokes flow, given the
appropriate boundary conditions.
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Minimally-Resolved Blob Model

Rotne-Prager-Yamakawa tensor

For homogeneous and isotropic systems (no boundaries!),

Mij = f (rij)I + g (rij) r̂ij ⊗ r̂ij , (11)

For a three dimensional unbounded domain, the Green’s function is
the Oseen tensor,

G(r, r′) ≡ O(r − r′) =
1

8πr

(
I +

r ⊗ r

r2

)
. (12)

This gives the well-known Rotne-Prager-Yamakawa (RPY) tensor
for the mobility of pairs of blobs,

f (r) =
1

6πηa

{
3a
4r + a3

2r3 , rij > 2a

1− 9r
32a , rij ≤ 2a
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Minimally-Resolved Blob Model

Confined Geometries

The Green’s function is only known explicitly in some very special
circumstances, e.g., for a single no-slip boundary G is the
Oseen-Blake tensor.

For blobs next to a wall the Rotne-Prager-Blake tensor has been
computed by Swan (MIT) and Brady (Caltech) and we will use it here.
It is still missing corrections when the blobs overlap the wall so we
have made a heuristic fix [2].

General requirements for a proper RPY tensor:

Asymptotically converge to the Faxen expression for large distances
from particles and walls.
Be non-singular and continuous for all configurations including
overlaps of blobs and blobs with walls.
Mobility must vanish identically when a blob is exactly on the
boundary (no motion next to wall).
Mobility must be symmetric positive semidefinite (SPD) for all
configurations.
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Minimally-Resolved Blob Model

How to Approximate the Mobility

In order to make this method work we need a way to compute the
(action of the) blob-blob mobility M.

It all depends on boundary conditions:

In unbounded domains we can just use the RPY tensor (always SPD!)
with a Fast Multipole Method (FMM).
For single wall we use the Rotne-Prager-Blake tensor of Swan/Brady
with GPU-accelerated O(N2

b ) matrix-vector product.
For periodic domains we can use the spectral Ewald method [4] with
FFTs.
In more general cases we can use a FD/FE/FV fluid Stokes solver [3]
To compute the (action of the) Green’s functions on the fly [5]
In the spectral Ewald [4] or Stokes solver [5] approach adding thermal
fluctuations (Brownian motion) can be done using fluctuating
hydrodynamics.
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Minimally-Resolved Blob Model

Generating Brownian increments

We need a fast way to compute the Brownian velocities

Ub =

√
2kBT

∆t
M

1
2 W

where W is a vector of Gaussian random variables.

The product M
1
2 W can be computed iteratively by repeated

multiplication of a vector by M using (preconditioned) Krylov
subspace Lanczos methods.

When particles are sedimented close to a bottom wall, pairwise
hydrodynamic interactions decay rapidly like 1/r3, which appears to
be enough to make the Krylov method converge in a small constant
number of iterations, without any preconditioning.
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Minimally-Resolved Blob Model

Conditioning
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Figure: Convergence of Lancsoz iteration for M
1
2 W (inset without wall).
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Minimally-Resolved Blob Model

Periodic suspensions

Because of the long-ranged 1/r nature of the Oseen kernel in free
space, the number of iterations is found to grow with the number of
particles, leading to an overall complexity of at least O

(
N4/3

)
.

More precisely, we want to sample Gaussian random variables with
mean zero and covariance M:

〈UbUT
b 〉 = M

This is easier than computing some specific square roots, since there
is a lot of freedom! For example, if M = M1 + M2, where M1/2

are both SPD, then in law

M
1
2 W ≡M

1
2
1 W1 + M

1
2
2 W2.

With the group of James Swan (MIT ChemE), we have combined this
with fluctuating hydrodynamics in our Positively Split Ewald (PSE)

method [4]: M
1
2 W with only a few FFTs in linear time for periodic

suspensions (also works with multigrid [5]).
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Minimally-Resolved Blob Model

Stochastic drift term

dQ(t)

dt
= MF+ (2kBT M)

1
2 W (t) + (kBT ) ∂Q ·M

Key idea to get (∂Q ·M)i = ∂Mij/∂Qj is to use random finite
differences (RFD) [2]: If 〈∆P∆QT = I〉,

lim
δ→0

1

δ
〈
{
M
(

Q +
δ

2
∆Q

)
−M

(
Q− δ

2
∆Q

)}
∆P〉 = (13)

{∂QM (Q)} : 〈∆P∆QT 〉 = kBT ∂Q ·M (Q) . (14)

This leads to a stochastic Adams-Bashforth temporal integrator [2],

Qn+1 −Qn

∆t
=

(
3

2
MnFn − 1

2
Mn−1Fn−1

)
+

√
2kBT

∆t
(Mn)

1
2 Wn

+
kBT

δ

(
M
(

Q +
δ

2
W̃

n
)
−M

(
Q− δ

2
W̃

n
))

W̃
n
.
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Rigid Multiblob Method

Nonspherical Rigid Multiblobs

Figure: Rigid multiblob models of a rigid cylinder (rod) going from minimally
resolved (left) to well-resolved (right).
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Rigid Multiblob Method

Rigidly-Constrained Blobs

We add rigidity forces as Lagrange multipliers λ = {λ1, . . . ,λn} to
constrain a group of blobs forming body p to move rigidly,∑

j

Mijλj =up + ωp ×
(
ri − qp

)
+ ŭi (15)

∑
i∈Bp

λi =fp∑
i∈Bp

(ri − qp)× λi =τ p.

where u is the velocity of the tracking point q, ω is the angular
velocity of the body around q, f is the total force applied on the body,
τ is the total torque applied to the body about point q, and ri is the
position of blob i .
This can be a very large linear system for suspensions of many
bodies discretized with many blobs:
Use iterative solvers with a good preconditioner.
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Rigid Multiblob Method

Suspensions of Rigid Bodies

In matrix notation we have a saddle-point linear system of equations
for the rigidity forces λ and unknown motion U,[

M −K
−KT 0

] [
λ
U

]
=

[
ŭ
−F

]
. (16)

Solve formally using Schur complements

U = NF−
(
NKTM−1

)
ŭ = NF− M̆ŭ

The many-body mobility matrix N takes into account rigidity and
higher-order hydrodynamic interactions,

N =
(
KTM−1K

)−1
(17)

For much improved accuracy one can use a first-kind boundary
integral formulation to define a somewhat modified M , but almost
everything I say here can be generalized [6].
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Rigid Multiblob Method

Active Nanorod Clusters

Figure: Active flow around a pair of three-segment nanorods (Au-Pt-Au)
sedimented on top of a no-slip boundary and viewed from above, rotating at
≈ 0.7Hz in the counter-clockwise direction, consistent with experiments by
Megan Davies Wykes (Mike Shelley lab).
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Rigid Multiblob Method

Preconditioned Iterative Solver

So far everything I wrote is well-known and used by others as well.
But dense linear algebra does not scale!

To get a fast and scalable method we need an iterative method:

1 A fast method for performing the matrix-vector product, i.e.,
computing Mλ.

2 A suitable preconditioner, which is an approximate solver for (16), to
bound the number of GMRES iterations.

How to do the fast Mλ depends on the geometry (boundary
conditions) and number of blobs Nb:

fast-multipole method (FMM), spectral Ewald (FFT), both
O (NB logNb), or
a direct summation on the GPU of O

(
N2

b

)
but with very small

prefactor!
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Rigid Multiblob Method

Block-Diagonal Preconditioner

We have had great success with the indefinite block-diagonal
preconditioner [3]

P =

[
M̃ −K
−KT 0

]
(18)

where we neglect all hydrodynamic interactions between blobs on
distinct bodies in the preconditioner,

M̃
(pq)

= δpqM(pp). (19)

Note that the complete hydrodynamic interactions are taken into
account by the Krylov iterative solver.

For the mobility problem, we find a small constant number of
GMRES iterations independent of the number of particles (rigid
multiblobs), growing only weakly with density.

But the resistance problem is harder (but fortunately less

important to us!), we get O
(
N

4/3
b

)
in 3D.
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Rigid Multiblob Method

Generating Brownian Displacements ∼N
1
2 W

Assume that we knew how to efficiently generate Brownian blob

velocities M
1
2 W (PSE for periodic, Lancsoz for sedimented

suspensions, fluctuating Stokes solver for slit channels).
For rigid multiblobs use the block-diagonal preconditioner in the
Lancsoz iteration.

Key idea: Solve the mobility problem with random slip ŭ,[
M −K
−KT 0

] [
λ
U

]
= −

[
ŭ = (2kBT )1/2 M

1
2 W

F

]
, (20)

U = NF + (2kBT )
1
2 NKTM−1M

1
2 W = NF + (2kBT )

1
2 N

1
2 W.

which defines a N
1
2 = NKTM−1M

1
2 :

N
1
2

(
N

1
2

)†
= N

(
KTM−1K

)
N = NN−1N = N .
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Rigid Multiblob Method

Random Traction Euler-Maruyuama

One can use the RFD idea to make more efficient temporal integrators
for Brownian rigid multiblobs [1], such as the following Euler scheme:

1 Solve a mobility problem with a random force+torque:[
M −K
−KT 0

]n [
λRFD

URFD

]
=

[
0

−W̃

]
. (21)

2 Compute random finite differences:

FRFD =
kBT

δ

(
KT

(
Qn + δW̃

)
− (Kn)T

)
λRFD

ŭRFD =
kBT

δ

(
M
(

Qn + δW̃
)
−Mn

)
λRFD+

− kBT

δ

(
K
(

Qn + δW̃
)
−Kn

)
URFD .
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Rigid Multiblob Method

Random Traction EM contd.

1 Compute correlated random slip:

ŭn =

(
2kBT

∆t

)1/2

(Mn)
1
2 Wn

2 Solve the saddle-point system:[
M −K
−KT 0

]n [
λn

Un

]
= −

[
ŭn + ŭRFD

Fn − FRFD

]
. (22)

3 Move the particles (rotate for orientation)

Qn+1 = Qn + ∆t Un

.
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Rigid Multiblob Method

Random Slip Trapezoidal Scheme

One can make more efficient temporal integrators (work by Brennan
Sprinkle and Florencio Balboa) that are more accurate and require
less GMRES solves per time step, for example, the following
trapezoidal scheme:

1 Solve a mobility problem with an uncorrelated random slip:[
M −K
−KT 0

]n [
λRFD

URFD

]
=

[
−W̃ ∈ Range (Mn)

0

]
. (23)

2 Compute random finite differences:

FRFD =
kBT

δ

(
KT

(
Qn + δURFD

)
− (Kn)T

)
W̃

ŭRFD =
kBT

δ

(
M
(
Qn + δURFD

)
−Mn

)
W̃
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Rigid Multiblob Method

Random Slip Trapezoidal Scheme contd.

1 Compute correlated random slip:

ŭn =

(
2kBT

∆t

)1/2

(Mn)
1
2 Wn

2 Take a predictor FBEM step:[
M −K
−KT 0

]n [
λp

Up

]
= −

[
ŭn

Fn

]
. (24)

3 Compute predicted Qp = Qn + ∆t Un.

4 Take a trapezoidal corrector FBEM step:[
M −K
−KT 0

]p [
λc

Uc

]
= −

[
ŭn + 2ŭRFD

Fp − 2FRFD

]
. (25)

5 Complete the update, Qn+1 = Qn + ∆t
2 (Up + Uc).
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Rigid Multiblob Method

Conclusions

We have constructed linear-scaling algorithms for Brownian
dynamics of nonspherical colloids in the presence of boundaries.

Key to generating Brownian increments efficiently in any finite
domain is to use fluctuating hydrodynamics (Stokes solver using
FFTs or multigrid) to handle the far-field hydrodynamic interactions.

Can a similar idea be used with grid-free fast multipole
methods in unbounded domains?

Specialized temporal integrators employing random finite
differences are required to obtain the correct stochastic drift terms.

Higher accuracy can be reached by using our recently-developed
fluctuating boundary integral method (FBIM) [6], which uses the
same ideas I described here for rigid multiblobs but replaces the RPY
tensor with a high-order singular quadrature.

FBIM is so far only developed in two dimensions as a
proof-of-concept: we need singular quadratures in 3D that are
SPD.
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Rigid Multiblob Method
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