Fast Reactive Brownian Dynamics

Aleksandar Donev
Chiao-Yu Yang (now at UC Berkeley)

Courant Institute, New York University

Spatially Distributed Stochastic Dynamical Systems in Biology
Newton Institute, Cambridge University
June 21st 2016
Consider a Petri dish with solution of three “chemical” species U, V and W that can diffuse and react via:

$$U + W \rightarrow V + W$$
$$V + V \Leftrightarrow W$$
$$V \Leftrightarrow 0$$
$$U \Leftrightarrow 0.$$

We use parameters giving a limit cycle together with $D_V = D_W = D_U/10$ to get a Turing-like pattern.

We want to understand the role fluctuations play in the formation of the Turing pattern.
Many chemical reactions occur in a viscous solvent and are **affected by diffusion**, making a mean-field or “well-mixed” deterministic reaction-diffusion PDE approximation inappropriate.

Classical examples where the **Law of Mass Action (LMA)** reaction-diffusion equations **fails spectacularly** is annihilation $A + B \rightarrow 0$

But even in $A + B \rightleftharpoons C$ there are power-law tail signatures in the dynamics even at chemical equilibrium.

Spatial fluctuations play a key role and spatial diffusion must be accounted for; this is different from (in addition to) fluctuations coming from there being **very few reactants** of certain species.

Primarily interested in the case when **fluctuations are weak**, i.e., lots of molecules are involved, but fluctuations still make a difference.
Grid-Based Methods

- The traditional approach to simulation of reaction-diffusion problems is to solve the **Reaction-Diffusion Master Equation** (RDME), which has the following issues:

 - Diffusion events/hops dominate when cells are “well-mixed” (they must be!) making solving the RDME exactly **expensive** (but one can do **multinominal diffusion** and/or **tau leaping** to speed things up).
 - Diffusion is modeled by a jump process instead of the more physical continuous random walk leading to a **fluctuating Fick’s law** (fluctuating hydrodynamics [1]).
 - LMA is postulated instead of following from the model; this requires **effective macroscopic rates** instead of microscopic ones. LMA is **missing a length scale** (**reactive distance**).
 - The results depend strongly on the cell size and are thus **not grid-independent**: binary reactions lost as cell size shrinks [2] See Sam Isaacson’s **Convergent RDME** (CRDME) [3] for one **grid-based** fix (reactions between neighboring cells).
Particles are modeled as species-labeled spheres that diffuse as independent Brownian walkers (but note importance of hydrodynamic interactions) and react based on a microscopic reaction rule.

Particle methods are grid-free and closure-free (they take reactive length scale as input).

Key problem is lack of efficiency. This is what I address in this talk.

To handle reactions two models are commonly used:

- In the surface-reactivity / Smoluchowski model particles react upon touching. This automatically includes steric repulsion but lacks a mechanism to control reaction rate (but one can introduce unbinding).
- In the volume-reactivity / Doi model particles react with a certain Poisson reaction rate while they overlap. This allows to separately and independently control the reactive distance and the effective reaction rate [2].
The Smoluchowski model can be simulated exactly by the event-driven First Passage Kinetic Monte Carlo method (FPKMC) [4], called eGFRD in the biochemical community.

FPKMC becomes inefficient at larger densities, it is hard to generalize, and it is quite complicated to implement.

Approximate reactive Brownian Dynamics exist (e.g., Smoldyn) but they make uncontrolled approximations in diffusion and reactions.

The Doi model is much simpler and more flexible so we use it here. Consider $A + B \rightarrow ...$

Particles are spheres of a given reactive radius R_A and R_B. They diffuse as independent Brownian walkers, and while two particles overlap ($r_{AB} \leq R_A + R_B$) they react as a Poisson process with a given rate λ. Only binary reactions are allowed.

Use our Split Reactive Brownian Dynamics (SRBD) to simulate Doi model efficiently with controlled accuracy!
SRBD is a combination of ideas taken from the Isotropic Direct Simulation Monte Carlo (IDSMC) algorithm (used for simulating binary collisions in low-density gases) and the next subvolume method for solving the RDME:

- **Strang time splitting** is used to separate diffusion from reaction \((D/2 + R + D/2)\). This is the only error introduced so error is controlled by reducing the time step size \(\Delta t\).

- Simulating the diffusion exactly without reactions is trivial and inexpensive for independent Brownian walkers:

\[
q_k(t + \Delta t) = q_k(t) + \sqrt{2D_k \Delta t} \mathcal{N}(0,1)
\]

One can include hydrodynamic interactions (expensive!).

- The difficult part is to **simulate reactions exactly** while particles are stationary (fixed). This is our key contribution.

It is possible to make some approximations and speed this up greatly but we want to control the error by a single parameter \(\Delta t\).
Selecting Reactions

- An obvious but very slow method is to first make a list of all overlapping pairs of particles, and then use a Gillespie-like / SSA / KMC algorithm to select pairs to react in sequence.
- The key idea is to accomplish the same (in law) without making a list of all overlapping pairs, by using an **event-driven algorithm** not on particle pairs but on grid cells!
- Introduce back a **computational grid** which is not part of model (think of neighbor search in MD) with spacing larger than all potential reactive distances: Particles can only overlap/react with a particle in their own cell or neighboring cells.
- For each cell i, schedule the next potential binary reaction between a particle in cell i and a particle in the neighborhood of cell i (9 cells in 2D or 27 cells in 3D).
- Make an **event queue** (heap) of all cells, and then process reactions by choosing the next cell (next subvolume) in which to try a reaction.
Basic Time Stepping Algorithm

1. Diffuse for half a time step

\[q_{k}^{n+1} = q_{k}^{n} + \sqrt{D_k \Delta t} \mathcal{N}(0, 1) \]

2. Prepare: Build **linked-list cells** (LLCs) and schedule next reaction for each cell (if before time \(\Delta t \)) and build an event queue.

3. Event Loop: Until the event queue is empty, do:
 1. Select cell \(i \) on top of queue with time stamp \(t^n \leq t \leq t^n + \Delta t \).
 2. Select next reaction to happen in cell \(i \) using usual KMC/SSA method.
 3. Process the reaction (if particles overlap for binary), creating/destroying/updating particles+LLCs as necessary.
 4. For each cell \(i \) (potentially) affected by reaction, compute the total reaction rate \(\alpha \), sample an exponentially-distributed \(\delta t \) with mean \(\alpha^{-1} \). If \(t_i = t + \delta t < t + \Delta t \) schedule next event at time \(t_i \) and update event queue, otherwise delete cell \(i \) from queue.

4. Diffuse remaining/new particles for half a time step

\[q_{k}^{n+1} = q_{k}^{n+1/2} + \sqrt{D_k \Delta t} \mathcal{N}(0, 1) \]
Scheduling Reactions

- For reactions with different reactants $A + B \rightarrow ...$ with rate λ, we schedule separately $A + B \rightarrow ...$ and $B + A \rightarrow ...$
 - For binary reaction r of form $A + B \rightarrow ...$ (order matters!), the propensity function (rate) for cell i is
 \[
 \alpha_r = \frac{\lambda}{2} N_A N'_B
 \]
 where N_A is the number of A particles in cell i, and N'_B is the total number of B particles in the neighborhood of i.
 - For $A + A \rightarrow 0$, the rate is $\alpha_r = \frac{\lambda}{2} N_A N'_A$ since pairs are counted twice (we reject self-reactions later).

- We add all the rates in each cell, $\alpha = \sum_{r=1}^{N_r} \alpha_r$ (as in ordinary SSA).
- Note that this over-estimates the actual rate since it does not account for whether the particles actually overlap; we correct for this using rejection: If a pair is selected to react does not overlap (or the same particle A is selected twice) we reject the pair.
Processing Reactions

Once we select the next cell i to potentially have a reaction using the event queue, we need to:

- Select a particle at random from cell i of the first reactant species, and another particle of the second reactant species from the neighborhood of i (can be the same particle twice!).
- Test if the two particles are within their reactive distance, and if not, do nothing.
- Otherwise, process the reaction by deleting and adding particles (see next slide) depending on the reaction.
- While doing this, keep track of whether any event is processed that changes the population of cell i (number of particles of each species), and also whether the population of a neighboring cell j changes.
- Recompute reaction rates and schedule a new event for cell i.
- If population of i changed, update the event prediction for all neighbor cells of i, and, if population of j changed, update the event prediction for all cell neighbors of j that are not neighbors of i.
Reversible Reaction Rules

We have made a set of rules that obey **microscopic reversibility** (detailed balance) that dictate how reactions are processed, e.g.,

1. **Annihilation**: $A + B \rightarrow \emptyset$ if within distance $R_{AB} = R_A + R_B$.

2. **Birth**: $\emptyset \rightarrow A + B$. The A is born uniformly in the system, and B is born with position uniformly chosen within a reactive sphere of radius R_{AB} around the A.

3. **Merge**: $A + A \rightarrow B$ or $A + B \rightarrow C$. One of the reactants changes species and the others disappears.

4. **Replication**: $A \rightarrow B + C$, where B/C can be equal to A: A becomes a B or a C or remains as is, and another particle is born uniformly in a sphere centered at the A with radius R_{BC}.

5. **Transform**: $A + B \rightarrow C + D$ or $A + B \rightarrow A + C$ (catalysis): No particle changes position or new particles are created, only species are changed (e.g., B becomes a C or D).
From microscopic to macroscopic rates

- For a single reaction $A + B \rightarrow \ldots$, Erban and Chapman [2] derive that in 3D the **macroscopic reaction rate** k (units m^3/s) is related to the **microscopic rate** λ (units s^{-1}),

$$k = 4\pi D_{AB} R_{AB} \left[1 - \sqrt{\frac{D_{AB}}{\lambda R_{AB}^2}} \tanh \left(\sqrt{\frac{\lambda R_{AB}^2}{2D_{AB}}} \right) \right], \quad (1)$$

where $D_{AB} = D_A + D_B$ is the mutual diffusion coefficient and $R_{AB} = R_A + R_B$ is the reactive radius.

- For $A + A \rightarrow$ one just divides the rate by two, and using $D_{AA} = 2D_A$ gives

$$k_{AA} = 4\pi D_A R_{AA} \left[1 - \sqrt{\frac{2D_A}{\lambda R_{AA}^2}} \tanh \left(\sqrt{\frac{\lambda R_{AA}^2}{2D_A}} \right) \right], \quad (2)$$
This shows that the important parameter is the dimensionless number

\[r = \frac{\lambda R_{AB}^2}{D_{AB}} \text{ and } k < 4\pi D_{AB} R_{AB}. \]

- If \(r \gg 1 \) (diffusion-limited), then \(k \to 4\pi D_{AB} R_{AB} \), which is the Smoluchowski rate, i.e., particles react upon first touching.

- For \(r \ll 1 \) (reaction-limited), then we get the result expected if the particle positions are uncorrelated, i.e., the system is “uniformly mixed” at microscopic scales:

\[k \approx \frac{4\pi}{3} R_{AB}^3 \lambda \text{ for A+B} \]

\[k \approx \frac{2\pi}{3} R_{AB}^3 \lambda \text{ for A+A} \]
Similarly, for RDME in 3D for $A + B \rightarrow \ldots$, the effective macroscopic rate is related to input (microscopic) rate k_{RDME} via [2, 5]

$$\frac{1}{k} = \frac{1}{k_{\text{RDME}}} + \frac{\beta = 0.25273}{hD},$$

where $D = D_{AB}$ for $A + B$ and $D = D_A$ for $A + A$.

This explains the loss of bimolecular reactions as $h \rightarrow 0$ (more precisely, in 3D, when $h \ll k/D_{AB}$).

Renormalization theory suggests that for $A + A \rightarrow A$ the law of mass action at finite densities is non-analytic [5]

$$\frac{k}{k_0} = 1 + \alpha \left(\frac{k_0}{D_A} \right)^{3/2} n_A^{1/2} = 1 + \beta f^{3/2} \phi^{1/2},$$

where $k_0 = \lim_{\phi \rightarrow 0} k$, $f = k_0 / (4\pi D_A R_{AA})$, $\phi = n_A \cdot (4\pi R_{AA}^3/3)$ for Doi or $\phi = n_A h^3$ for RDME, and for RDME $\alpha = 1/2\pi \sqrt{2}$ [5].
Many-Body Effects (3D): $A + A \rightarrow A$

Coagulation $A + A \rightarrow A$, $0 \rightarrow A$.

Figure: Here $k_0 = 0.634 \cdot (2\pi D_{AA} R_{AA})$ is computed from (2), and
$\phi = n_A \cdot (4\pi R_{AA}^3/3)$ is the packing density.
Many-Body Effects (3D): $A + B \rightarrow B$

We find that (1) holds only for very dilute many-body systems with $A + B \rightarrow B$, $0 \rightarrow A$ (B is conserved).

![Graph showing equilibrium n_B / n_A vs $\phi^{1/2}$ for different Δt.]

Figure: If (1) is correct, then $k = (1/2) \cdot 4\pi D_{AB} R_{AB}$ and $\langle n_A \rangle = n_B$ at equilibrium. Here $R_A = R_B$, $D_A = D_B$, and $\phi = (n_A + n_B) \cdot (4\pi R_{AB}^3/3)$.
Obeys detailed balance: \(k = \pi R_{AB}^2 \lambda \) (2D) independent of kinetics!
There are long-time tails in the ACF \([6]\) \(\approx \frac{5}{216 n \pi D t} \).

Figure: Here \(n_{eq}^{A/B/C} = n \), \(D_{A/B/C} = D \), \(k = 1 \), solid=SRBD, dashed=RDME, \(\Delta x = R_{AB} = R \). Numerical \(D_{eff} = D + 0.13 knR_{AB}^2 \).
BPM Model

- We have studied the Baras-Pearson-Mansour (BPM) reaction network (3 species, 7 reactions):

\[
\begin{align*}
U + W &\rightarrow V + W \\
V + V &\rightleftharpoons W \\
V &\rightleftharpoons 0 \\
U &\rightleftharpoons 0.
\end{align*}
\]

- This system has only binary reactions but can exhibit bimodal states (bistability) and also limit cycles.
- We use parameters giving a limit cycle together with \(D_V = D_W = D_U/10 \) to get a Turing-like pattern.
- We want to understand the role fluctuations play in the formation of the Turing pattern.
- We do simulations in 2D to make them more feasible and to simplify visualization, but the code works in 3D as well.
Turing-like Patterns

Bottom (particle+grid): (Left) S-BD-RME [8]. (Right) SRBD

Periodic 256 × 256 grid in all cases coarsened to 64 × 64

\(R_U = R_V = R_W = h/2 \) for SRBD
Define the **chemical penetration depth**, related to the typical distance a molecule travels between successive reactions,

\[L = \sqrt{\frac{D_{AB}}{kn_{AB}}}, \text{ where } n_{AB} = n_A + n_B. \]

Define also the **packing fraction**

\[\phi = \frac{4\pi}{3} n_{AB} R_{AB}^3 \geq 0.1. \]

If \(\phi \ll 1 \) use FPKMC-style algorithms and *not* SRBD!

Let the number of molecules in a penetration volume be \(N_L = n_{AB} L^3 \gg 1 \) (if this were not true then fluctuations would be too large to see a Turing pattern).
Then for SRDB we have

\[
\frac{k}{R_{AB}D_{AB}} = \frac{1}{N_L} \left(\frac{L}{R_{AB}} \right) = \left(\frac{4\pi}{3\phi N_L^2} \right)^{\frac{1}{3}} \ll 1 \quad \Rightarrow
\]

\[
r = \frac{3}{4\pi} \frac{k}{R_{AB}D_{AB}} \ll 1
\]

And for RDME we would have \(k \approx k_{RDME} \) since

\[
\frac{k}{hD_{AB}} \ll \frac{k}{R_{AB}D_{AB}} \ll 1 \text{ for RDME since } h > R_{AB}.
\]
We conclude that we must be in the reaction-limited case, so

\[k \approx \frac{4\pi}{3} R_{AB}^3 \lambda \quad \text{for } A+B \]

\[k \approx \frac{2\pi}{3} R_{AB}^3 \lambda \quad \text{for } A+A \]

has an obvious generalization in 1D and 2D as well and we will use it to determine \(\lambda \) given \(k \) in order to compare different methods.

Note that for our Turing test to see any corrections from diffusion-limited effects we would need grids larger than \(1024 \times 1024 \), so assuming \(r \ll 1 \) is well justified.

We have studied grids \(64^2, 128^2 \) and \(256^2 \), keeping the physical parameters (diffusion, macroscopic reaction rates, domain size) fixed.

For coarser grids, the added diffusion due to reversible reactions in SRBD and S-BD-RME will be non-negligible!
Comparison of methods

- We compare to a deterministic/fluctuating hydrodynamics solver developed with the group of Bell/Garcia at LBNL [1].

- We implement RDME using splitting with multinomial diffusion (Tartakovsky [7]) + SSA for reactions – much simpler and much more efficient than next-reaction method.

- We also implement a particle algorithm that we call Split-Brownian Dynamics-Reaction Master Equation (S-BD-RME) where diffusion is done using a continuum Brownian walk as in SRBD but reactions are done on a grid using SSA (see Tartakovsky [8]).

- Before carrying out SSA in S-BD-RME, we randomly shift the reaction grid to improve Galilean invariance.

- In SRBD we use $R_U = R_V = R_W = h/2$ where h is the grid spacing used in the RME-based methods.

- Time step in all methods is limited by fast diffusion; we set Courant number $D_U \Delta t / h^2 \approx 0.3$.
Figure: For 256^2 resolution, total running time is 4.5h for RDME, 12h for S-BD-RME, and 19h for SRBD. For 512^2 resolution, 54h for S-BD-RME and 48h for SRBD (but 43h for 256^2 reaction grid).
Walk versus Hops (coarse grid)

Figure: Importance of microscopic details of diffusion (hops versus continuum walk) and reactions (especially enhanced diffusion) for under-resolved simulations (cells not uniformly mixed).
Walk versus Hops (finer grid)

Start on limit cycle, 128 x 128 grid

Figure: Importance of microscopic details of diffusion (hops versus continuum walk) and reactions (especially enhanced diffusion) for marginally-resolved simulations (cells not uniformly mixed).
Figure: If the resolution is sufficiently high (resolved) we get matching between the fluctuating methods (including fluctuating hydrodynamics, not shown).
Quantitative Comparison

Figure: Fit \(N_U(t) = (1 - \tanh((t - a_0)/a_2)) (a_1 \sin(a_3x + a_4) + a_5) + a_6. \)
Conclusions

- Our **Split Reactive Brownian Dynamics** (SRBD) introduces a time splitting error but handles diffusion and reaction exactly.
- Efficiency was gained by never computing neighbor lists for particles, instead, **scheduling potential reactions** and only looking for neighbors when a reaction actually happens.
- The algorithm is best at higher densities and slow reactions (otherwise use FPKMC).
- How one handles diffusion (hops vs walk) and reactions (fixed grids, shifting grids, grid-free) microscopically affects the macroscopic behavior strongly if the cells are not sufficiently well-mixed (i.e., much smaller than chemical penetration depth).
- For resolved simulations we were able to match the macroscopic behavior between RDME, S-BD-RME, SRBD and FHD.
- Under what conditions can one use coarse-grained models like RDME/FHD and avoid tracking particles? Do the rates need to be renormalized and how?

