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Brennan Sprinkle and Raul Perez Peláez, who both provided support with the numerical and

coding parts of this project. Finally, I wish to acknowledge everyone who offered me advice

these last few years. The list is simply too long to remember without leaving someone out,

but includes those who helped with certain parts of the project, those who gave professional

advice, and those who taught me how to conduct research and manage my time. Yes, that

includes inanimate objects like the swimming pool!

A note on publications

Most of the material in this thesis has already appeared in the following peer-reviewed

publications:

[A] Ondrej Maxian, Alex Mogilner, and Aleksandar Donev. Integral-based spectral method

for inextensible slender fibers in Stokes flow. Physical Review Fluids, 6(1):014102, 2021.
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Abstract

The cell cytoskeleton is at once complex and simple. On the one hand, it is made of small

semiflexible filaments, which are tied together by cross linkers and motors that follow simple

physical laws of motion. On the other hand, extracting any two of these components gives

an in vitro system which can display a complex array of shape and structural dynamics,

and a diverse range of viscoelastic behavior. The picture in vivo is even more interesting, as

the filaments can form protrusions and rings that give the cell its structure and enable it to

move and divide. Because cytoskeletal systems are at their core made of simple constituents,

our approach to understanding them is to break the system into each individual component,

model that component with fidelity to the true dynamics, and observe what happens in

simulations.

Three questions immediately arise when constructing a model of such filaments. First,

what equations do we use to describe the evolution of the fibers in a viscous fluid? Second,

how do we discretize these equations in space and time to enable simulation of large-scale

cytoskeletal systems? And third, what do the simulations tell us about how the microscopic

dynamics enables large-scale pattern formation? This dissertation is divided into three parts,

corresponding to each of these three questions.

In part one, we discuss the equations we use to simulate filament hydrodynamics. We

consider inextensible filaments which resist both twist and bend while immersed in a viscous

fluid. We use a model of the fiber as a series of infinitely many regularized singularities,

which we show is asymptotically equivalent to the more-commonly used slender body theory

as the fiber slenderness ϵ → 0. After formulating the filament hydrodynamics, we discuss

the model equations for fiber mechanics, choosing to track twist via a scalar angle along the

fiber centerline, and not an orthonormal triad.

In part two, we give our numerical discretization of these equations. Our main advance

here is to use spectral discretizations, which in deterministic contexts are known to give high
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accuracy. We begin by considering the full equations for twist and bend, and show that twist

elasticity is negligible for free fibers. After this, we give a more specialized discretization

for free bent filaments, which is well-suited for nonsmooth (fluctuating) problems. We show

that the spectral method, though designed for deterministic problems (and indeed quite

successful in that context), can also reduce the number of degrees of freedom required to

simulate fluctuating fibers. The increase in lengthscale leads to increases in the time step

size of two to three orders of magnitude, which enables large-scale simulations of suspensions

of slender fluctuating fibers.

In part three, we apply our numerical methods to simulate the rheology and morphology

of cross-linked actin networks. We model cross linkers as transient springs which form be-

tween the filaments, and simulate their attachment and detachment using the kinetic Monte

Carlo method and the next reaction method. We show that, unabated by another process,

thermal ratcheting by the cross linkers gives bundles of actin filaments, whose formation is

accelerated by Brownian fluctuations (and semiflexible fluctuations when the fiber persis-

tence length is small enough). We conclude by studying how the morphology of the fiber

suspension affects its viscoelastic behavior, finding three fundamental timescales in a system

of deterministic filaments. We show that hydrodynamic interactions reduce stress in systems

of bundled filaments, but have little impact otherwise.
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Introduction and program

Interactions of long, thin, inextensible filaments with a viscous fluid abound in biology,

engineering, physics, and medicine. In biology, the swimming mechanisms of flagellated

organisms have been of interest for decades, with an initial cluster of studies on how force

and torque balances lead to swimming [1–4], and a more recent focus on flagellar bundling

and propulsion [5–7]. In physics and engineering, suspensions of high-aspect-ratio fibers have

been observed to display non-Newtonian, viscoelastic behavior both experimentally [8] and

computationally [9, 10].

Our particular area of interest is the simulation of semi-flexible filaments that make up

the cell cytoskeleton. These inextensible filaments, which include microtubules and actin

filaments, maintain the cell’s structure, control the mechanics of the cell division process,

and have aspect ratios from 102 to 104 [11]. In vivo, actin filaments are generally bound

together into networks by cross-linking proteins, the properties of which determine the vis-

coelastic behavior of the cytoskeleton [12–14]. While there has been much work recently on

microtubule systems [15–17], there has yet to be, to our knowledge, a systematic study of

the influence of hydrodynamic interactions on the mechanics and rheology of cross-linked

actin networks.

This dissertation is the result of a systematic program to perform such a study using a

new computational framework. It is divided into three parts, corresponding to (I) theoretical

advances in our understanding of slender filament hydrodynamics, (II) numerical method

development, and (III) practical application to the simulation of cross-linked actin networks.

We separate the first two parts into three sections, corresponding to the internal mechanics

of actin filaments, as follows:

1. The resistance of the filaments to bending and straining. Because biological filaments

are nearly inextensible, to avoid numerical stiffness it is best to treat inextensibility as

a constraint.
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2. The resistance of the filaments to twisting. While negligible in some applications, the

twist elasticity of individual actin filaments may be important in developing macro-

scopic chirality in cells.

3. Thermal fluctuations of the filaments. This includes both rigid body diffusion and

semiflexible bending fluctuations.

Our goal in particular is to develop spectral numerical methods that successfully resolve the

hydrodynamic interactions in all three of these cases, while reducing the number of degrees

of freedom required for simulations.
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Part I

Hydrodynamics of fibers in flow:

theory
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Chapter 1

Introduction

This part of the thesis is concerned with our theoretical understanding of how slender fila-

ments behave when immersed in a viscous fluid. The first issue we treat is the hydrodynamic

mobility: given a force and torque acting on the filament surface, how does the filament move

in a Stokes fluid? We then move on to discussing fiber mechanics, in which we address the ten-

dency of the filament to resist bending, stretching, and twisting. Because biological filaments

are nearly inextensible [18], we treat inextensibility as a constraint, thereby formulating a

set of constrained PDEs which govern the dynamics of the filament centerlines.

In this introduction, we review the literature on these topics. We begin by reviewing

slender body theory (SBT) as formulated in the 1970s [19–21] to study the resistance problem

of computing the forces and torques on a slender fiber bending and twisting in a viscous fluid.

In our review, we highlight the issues involved when trying to invert these SBTs and apply

them to the mobility problem, which computes the translational and angular velocities given

a set of forces and torques. This sets us up for Chapter 2, in which we propose a new SBT

based on positioning regularized singularities along the fiber centerline. The second part

of the introduction sets us up for Chapter 3, where we study the mechanics of filaments

immersed in fluid. Our main contribution here is to formulate inextensibility without the

direct use of a line tension function [22], and to harmonize two competing approaches in
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the literature for how twist elasticity is handled. We discuss these two approaches in this

introduction.

1.1 The mobility equations

Given the vital role of slender filaments in biology, it is not surprising that their interaction

with their surrounding fluid medium has been a subject of intense study in physics and

applied mathematics. Because most of the applications of interest involve small lengthscales,

the relevant fluid equations are the Stokes equations, which are linear and therefore possible

to solve analytically through the use of the Stokes Green’s function. However, because the

body geometry is slender, it is expensive and often intractable to solve the Stokes equations

on the surface of the slender filament. This intractability led Batchelor to develop the first

so-called “slender body theory” (SBT) [23], in which the body is approximated via a one-

dimensional line of Stokeslet singularities. Subsequent work by Keller and Rubinow and

Johnson in the 1970s [19–21] placed Batchelor’s work on more rigorous asymptotic footing.

A recent resurgence in theoretical analysis has placed these singularity methods back in the

context of three-dimensional well-posed partial differential equations (PDEs) [24–27]. In

particular, it has been shown that the SBT solution is an O(ϵ) approximation to a Stokes

PDE with mixed Dirichlet-Neumann boundary data and a boundary condition that the fiber

maintain the integrity of its cross section [24–26]. It has also been shown [27, 28] that SBT

can be derived from a three-dimensional boundary integral equation. We note a second

class of recent work on SBTs for different geometries, including ribbons [29] and bodies with

non-circular cross section [30], but such works are beyond the scope of this thesis.

Our particular focus in this introduction is solving the mobility problem: given a force

and torque on the fiber cross section, what is the resulting velocity? To answer this question,

we will survey a few SBTs, which give a well-defined solution for the velocity when the fiber

translates, but suffer from asymptotic inconsistencies for fiber rotation. This section is not
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meant to be a comprehensive list of previous SBTs (see [31] for a such a review), but rather a

focus on two different techniques and the challenges involved in applying them to a rotating

filament.

To establish some notation, we let X(s) be the fiber centerline, where s ∈ [0, L] is an

arclength parameterization of the curve, and thus τ (s) = ∂sX(s) is the unit-length tangent

vector. The fiber surface X̂ is then defined as

X̂(s, θ) = X(s) + aρ(s) (en(s) cos θ + eb(s) sin θ) := X(s) + aρ(s)r̂(s, θ), (1.1)

where aρ(s), 0 ≤ ρ(s) ≤ 1, is the radius of the (circular) cross section at s, en(s) =

∂2sX(s)/υ(s) is the fiber normal, υ(s) is the centerline curvature at s, and eb = τ × en

is the binormal. The maximum fiber radius is a, which gives an aspect ratio ϵ := a/L.

Unless otherwise specified, we will assume that we are working in a region of the fiber where

ρ(s) ≡ 1; thus aρ = a.

We will assume that the fiber centerline is translating with velocity U(s) while its cross

section rigidly rotates with angular velocity Ψ∥(s) around the tangent vector τ (s), so that

the velocity on the surface of the fiber is given by

Û(s, θ) = U(s) + aΨ∥(s) (τ (s)× r̂(s, θ)) (1.2)

The goal of our analysis is to find an equation relating this motion to the total force density

f(s) and parallel torque density n∥(s) on the fiber cross section. We assume here that the

no-slip condition applies to the fluid velocity u(x), so that

u
(
X̂(s, θ)

)
= Û(s, θ). (1.3)

In the case of a resistance problem, U and Ψ∥ are known quantities, and the goal is to solve
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for f and n∥ asymptotically in ϵ. In simulations, however, we typically have a model of

the force and parallel torque from the internal fiber mechanics (see Chapter 3). Therefore,

we think of f and n∥ as fixed, and the goal is to compute a consistent translational and

rotational velocity at point s. We will see that this is quite difficult to do because of the

coupling between rotation and translation for curved fibers.

1.1.1 Singularity representations

We first try to apply an older SBT approach to the spinning filament problem: the singularity

approach of Johnson [20], and later Götz [32].1 The approach of Johnson is to look for a

series of singularities along the fiber centerline to represent the flow field globally (everywhere

outside the fiber). The singularities are chosen so that the boundary condition (1.3) is

satisfied with an error O(ϵ).

Using superposition, we can break the boundary velocity (1.2) into a velocity with U = 0

and another with Ψ∥ = 0. For Ψ∥ = 0, Johnson shows that the boundary condition (1.3)

can be satisfied to O(ϵ) by setting the global flow outside of the fiber to be an integral of

Stokeslets and doublets,

u(u)(x) =
1

8πµ

∫ L

0

(
S (x,X(s)) +

(aρ(s))2

2
D (x,X(s))

)
f(s) ds (1.4)

where S (x,X(s)) =
(
I

r
+

rrT

r3

)
, D (x,X(s)) =

(
I

r3
− 3

rrT

r5

)
,

µ is the background fluid viscosity, and r = x−X(s) with r = ∥r∥. The doublet strength is

necessary to cancel the O(1) angular-dependent flow induced by the Stokeslet on a filament

cross section. Since the doublet has strength O(ϵ2), it makes a negligible contribution to

the outer expansion, but corrects the Stokeslet flow in the inner expansion. The resulting

1The approach of Keller and Rubinow [19] is technically distinct from that of Johnson, since the former
only use the singularity representation in the outer expansion, but the end result is the same, and so we
discuss both in this section.
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asymptotic evaluation of u(u) on the filament cross section X̂(s, θ) is independent of θ to

O(ϵ), and is given by

8πµu(u)
(
X̂(s, θ)

)
= U

(LD)
f (s) +U

(FP)
f +O(ϵ), (1.5)

U
(LD)
f (s) = ln

(
4s(L− s)

a2

)
(I + τ (s)τ (s))f(s) + (I − 3τ (s)τ (s))f(s) (1.6)

U
(FP)
f (s) =

∫ L

0

(
S (X(s),X(t))f(t)−

(
I + τ (s)τ (s)

|t− s|

)
f(s)

)
dt (1.7)

where the doublet contributes the (I − 3ττ ) term [20, Eqs. (10–12)], and the term U
(FP)
f is

a finite part integral which is only well-defined as a difference of two terms (the outer and

inner expansions). The expression (1.5) has an error on the cross section of order ϵ, which

means there will be a nonzero O(1) rotational velocity of the cross section. To zero out

the rotational velocity, Johnson shows that it is necessary to introduce a rotlet, a source,

two stresslets, and two quadrupoles, with strengths given as a function of the O(ϵ) velocity

generated by the surface flow (1.5). While these singularities zero out the O(ϵ) term, they

do not impart any additional translational velocity on the cross section, meaning that (1.5)

gives the translational velocity on the cross section to order ϵ2 log ϵ.

Let us now consider how the fluid flow outside the fiber relates to its angular velocity.

Johnson first sets

n∥ = 4πµa2Ψ∥, (1.8)

which is the result for an infinite, straight cylinder [33, Eq. (62)]. The singularity represen-

tation Johnson uses to match the angular velocity everywhere is then given by a line integral

of rotlets,

8πµu(Ψ) (x) =

∫ L

0

R (x,X(s))n∥(s) ds, R (x,X(s)) =
τ (s)× r

r3
(1.9)
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Asymptotically, this velocity is equal to

8πµu(Ψ)
(
X̂ (s, θ)

)
≈ 2n∥

a
(τ × r̂) +

n∥

2

(
ln

(
4s(L− s)

a2

)
− 2

)
(τ × ∂sτ ) +U (FP)

n (1.10)

+n∥υ cos θ (τ × r̂) +O (ϵ log ϵ) ,

where U (FP)
n (s) =

∫ L

0

(
R (X(s),X(t))n∥(t)− 1

2

(
τ (s)× ∂sτ (s)

|t− s|

)
n∥(s)

)
(1.11)

on the fiber surface. Substituting (1.8) into (1.10), we see that the first term is exactly the

angular velocity of (1.2), while the second and third terms on the first line of (1.10) give an

additional constant velocity on the cross section (the rot-trans coupling term). However, we

still have an angular-dependent term on the second line of (1.10): since τ × r̂ = eb cos θ −

en sin θ, the term in the second line has the angle dependence

n∥υ cos θ (τ × r̂) =
n∥υ

2
(eb + eb cos 2θ − en sin 2θ) . (1.12)

In Johnson’s analysis, which is based on the resistance problem, the angular velocity Ψ∥

and translational velocity U are independent of ϵ, and so the contribution of all subleading

terms in (1.10) to translational velocity on the cross section is still ϵ2 relative to the contri-

bution of forcing. However, if force and torque are of the same order in ϵ (as in the mobility

problem when a fiber is driven by a torque n∥ independent of ϵ), the second line will make

an O(1) contribution to the cross-sectional velocity, violating the boundary condition (1.3).

Thus, there is a O(1) angle dependence coming from the rotlet term which is unresolved.

This dependence is the reason why the final integral equation of Keller and Rubinow [19,

Eq. (28)] for twisting filaments contains terms which depend on the angle θ at which the

inner expansion (of a rotating, translating cylinder) is matched with the outer expansion

(of Stokeslets and rotlets), meaning there is no general solution for the Stokeslet and rotlet

strength which is independent of the matching angle.
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In addition, there is also a lack of symmetry in the final result of Johnson, since torque

makes an O(log ϵ) contribution to U in (1.10), but force does not contribute to Ψ∥ in (1.8). If

the fiber is spun by a motor driven by a constant torque n∥, the angular velocity Ψ∥ ∼ n∥/ϵ2.

Symmetry tells us that the contribution of force to Ψ∥ is O(log ϵ), which means that the

rotational velocity from force is Ψ
∥
f ∼ f log ϵ, which is much smaller than the rotational

velocity from torque Ψ
∥
n ∼ n/ϵ2, if f and n scale similarly with ϵ. In the case when Ψ∥

does not scale with ϵ, however, the torque n∥ is order ϵ2 and therefore makes a negligible

contribution to U , but the force might make a nontrivial contribution to Ψ∥. Thus there

are two main issues when applying singularity representations to twisting filaments: first,

the representation of the rotation in terms of rotlets is insufficient to satisfy the boundary

condition (1.3) to O(ϵ), and, second, there is a lack of symmetry in the rot-trans coupling

terms.

1.1.2 Boundary integral representations

Koens and Lauga [27] showed that the translational SBT of Johnson and Keller and Rubinow

can be obtained from asymptotic expansion of the single layer2 boundary integral equation

[34, Sec. 4.1]

8πµ Û (s, θ) =

∫ 2π

0

∫ L

0

S
(
X̂(s, θ), X̂(s′, θ′)

)
f̂ (s′, θ′) ds′dθ′. (1.13)

Here we assume the fiber is a thin shell filled with fluid, so that f̂(s, θ), which is the jump in

surface traction times the surface area element [34, p. 105], is also equal to the force density

on the fiber surface. Koens and Lauga show that the constant cross-sectional U(s) in (1.2)

2Koens and Lauga begin with the full boundary integral representation, but the single layer representation
is sufficient as long as there is no change in the fiber volume. However, it is important to point out that f̂ in
(1.13) is not in general the force density on the fiber surface. Notable exceptions are a filament undergoing
rigid body motion or a “filament” whose interior is a fluid of viscosity equal to that of the fiber exterior.
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is related to the total force on a cross section,

f(s) =

∫ 2π

0

f̂ (s, θ) dθ (1.14)

by the classical SBT (1.5), and that, for a straight cylinder, the torque-angular velocity

relationship (1.8) is recovered [27, Eq. (4.11)] for the total parallel torque on a cross section,

n∥(s) = τ (s) ·
∫ 2π

0

aρ(s)
(
r̂(s, θ)× f̂(s, θ)

)
dθ. (1.15)

Here we briefly discuss how the approach of Koens and Lauga might be extended to

account for rotation in curved filaments. The main issue is that, if the boundary integral

equation (1.13) is only expanded to leading order (i.e., with an error of O(ϵ)), it is impossible

to make observations about the rotational velocity, since the velocity on the cross section

induced by an angular velocity Ψ∥ is ∼ ϵΨ∥. Thus more terms are necessary in the asymp-

totics. Unfortunately, because the expansions must be conducted around both θ and s in

(1.13), even expanding a single layer formulation to the next order is complex, as can be

seen in the results of slender phoretic theory [35], which completely extends the approach of

Koens and Lauga to next order for the case of a body which swims via a fluid slip along a

self-generated surface chemical concentration gradient.

To get a flavor for the challenges involved, we consider an asymptotic expansion of the

isotropic part of the single-layer potential (c.f. [27, Eq. (5.1)]

U i1(s, θ) :=

∫ 2π

0

∫ L

0

f(s′, θ′)

R
(
X̂(s, θ), X̂(s′, θ′)

) dθ′ ds′, (1.16)

in an inner region where s−s′ = O(a). To expand the isotropic single layer (1.1.2), we begin
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with an inner expansion of the displacement R(s, s′, θ, θ′) = X̂(s, θ)− X̂(s′, θ′),

R(s, s′, θ, θ′) = X̂(s, θ)− X̂(s′, θ′) = X(s)− X(s′) + êρ(s, θ)− êρ(s
′, θ′), (1.17)

where êρ(s, θ) is the unit vector going from X(s) to X̂(s, θ). Since the geometry is more

complicated in this true three-dimensional case, it is helpful to parameterize êρ by an angle

θi(s) satisfying ∂sθi = eb · ∂sen (the curve torsion) [27, Eq. (2.2)]. This gives [27, Sec. 2]

êρ(s, θ) = en cos (θ − θi(s)) + eb sin (θ − θi(s)) (1.18)

∂sêρ(s, θ) = −υ(s) cos (θ − θi)τ (s)

Substituting into (1.17), we can now write the first two terms in the Taylor expansion of R

and 1/R as

R
(
X̂(s, θ), X̂(s′, θ′)

)
≈ a (−ξτ +∆êρ(s, θ, θ

′)) + a2
(
ξ2

2
∂sτ − ξυ cos (θ′ − θi)τ

)

1

R
(
X̂(s, θ), X̂(s′, θ′)

) =
1

a
√
ξ2 +∆êρ ·∆êρ

+
−ξ2υ cos (θ′ − θi) + ξ2/2τ ′ ·∆êρ

2
√
ξ2 +∆êρ ·∆êρ

3 (1.19)

where ∆êρ(s, θ, θ
′) = êρ(s, θ)− êρ(s, θ

′) and ξ = (s′ − s)/a is order 1. Note the appearance

of the centerline curvature (scalar υ and vector ∂sτ ) at this order, which is vital to yield

proper rot-trans coupling. Combining (1.19) with the Taylor series representation f(s′, θ′) =

f(s, θ′) + aξ∂sf(s, θ
′), we have the inner expansion of the integrand in (1.16) as

f(s′, θ′)

R
=

f(s, θ′)

a
√
ξ2 +∆êρ∆êρ

+
ξ∂sf(s, θ

′)√
ξ2 +∆êρ∆êρ

(1.20)

+
−ξ2υ cos (θ′ − θi) + ξ2/2(∂sτ ·∆êρ)

2
√
ξ2 +∆êρ∆êρ

3 f(s, θ′) +O(ϵ).

The second line already makes it clear how rot-trans coupling is going to arise. If f(s, θ′) =
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f(s) (no angular dependence), then there will still be a term in the velocity proportional to

cos θf(s), which is rotational velocity coming from translational force, or rot-trans coupling.

To complete the expansion, we proceed with the integration of (1.20) from ξ = −s/a to

ξ = (L− s)/a. The integration can be done exactly, and then expanded in ϵ to yield simpler

expressions [27, Table 1]. After using (1.18) to determine ∂sτ · ∆êρ = 0, then integrating

what remains, we have

U i1(s, θ) =

∫ 2π

0

(
ln

(
4s(L− s)

a2(∆êρ ·∆êρ)

)
f(s, θ′) + (L− 2s) ∂sf(s, θ) (1.21)

−ϵυ cos (θ
′ − θi(s))f(s, θ

′)

2

(
ln

(
4s(L− s)

a2(∆êρ ·∆êρ)

)
− 2

))
dθ′ +O(ϵ2).

We now let θ̃ = θ − θi(s), and substitute the one-term Fourier series representation

f̂(s, θ̃) =
1

2π
f(s) +

1

2π

(
f c,1(s) cos θ̃ + f s,1(s) sin θ̃

)
, (1.22)

into (1.21). To integrate over θ′, we use ∆êρ ·∆êρ = 2 (1− cos (θ − θ′)). After integrating

over θ′, the final inner expansion for the surface velocity is

U i1(s, θ) = ln

(
4s(L− s)

a2

)
f(s) + (L− 2s)∂sf(s) + f c,1(s) cos θ̃ −

aυ

2

(
f(s) cos θ̃

+

(
1

4
cos 2θ̃ +

1

2

(
ln

(
4s(L− s)

a2

)
− 2

))
f c,1(s)−

1

2
f s,1(s) cos θ̃ sin θ̃

)
+O(ϵ2). (1.23)

We can make three important observations from (1.1.2): first, the term f(s)υ cos θ demon-

strates rot-trans coupling (rotational motion from constant forcing) which results from in-

cluding additional terms in the SBT expansion, or more specifically from accounting for the

curvature of the fiber in the inner expansion. Likewise, the torque (1.15) generated from the

traction scales as af c/s,1, and thus (1.1.2) tells us that torque makes an O(log ϵ) contribution

to U(s), as we expect from the result (1.10) of singularity methods.
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While the result of Koens and Lauga is vital to understanding translational SBT, there are

clearly limitations to extending their approach to rotation. Even for the simplest possible

term in the boundary integral formulation (isotropic part of the single layer), there are

many terms that have to be tracked if we expand to O(ϵ), i.e., to an error of O (ϵ2). More

importantly, it is not even clear if we can solve (1.1.2), since the Fourier modes no longer

decouple as they do for translation.

1.1.3 Regularized classical SBT for translating filaments

In addition to not having a consistent treatment of rotation-translation coupling, there is

a second problem with SBT for translation only. In this case, the results of Keller and

Rubinow [19], Johnson [20, 21], and Koens and Lauga [27] all agree on the equations (1.5)–

(1.7). Looking at (1.6) in particular, we see that the local drag coefficient

c(s) := ln

(
4s(L− s)

a(s)2

)
(1.24)

is singular without proper decay of a(s) at s = 0 and s = L. Clearly, if a(s) decays near the

fiber endpoints as 2ϵ
√
s(L− s), then the leading order coefficient (1.24) is finite at the fiber

endpoints [20]. This fact is the basis for a general assumption across the SBT literature that

the filaments have ellipsoidal shape, so that in most studies c(s) = − ln(ϵ2) is constant for

all s [15, 22, 36].

Actin filaments are best modeled as cylinders with constant radius, so that a(s) = r = ϵL

on s ∈ [0, L]. In this case, the coefficient (1.24) becomes singular at the filament ends, and

some resolution is needed to make the problem well-posed and numerically tractable. In this

thesis, we present two possible alternatives to (1.24). The first, which also gives an SBT

with consistent rot-trans coupling, is based on regularized singularities and is deferred to the

next chapter.
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Figure 1.1: Regularized drag coefficients and effective radius functions. (Left:) The regularized
local drag coefficients c̄(s; δ) for various δ. (Right:) The effective fiber radius ā(s; δ) as defined in
(1.27). We show only one side of the fiber, with the other being the former’s mirror image about
s/L = 0.5.

The second approach is to simply modify the local drag coefficient by effectively tapering

the fiber radius over a distance ∼ δL near the endpoints. Specifically, to regularize c(s), we

set η = 2s/L− 1, so that η ∈ [−1, 1], and compute a weight function

w(s; δ) = tanh

(
η(s) + 1

δ

)
− tanh

(
η(s)− 1

δ

)
− 1, (1.25)

which is 1 near the fiber center (η = 0) and zero at the fiber ends (η = ±1). We then assign

to each s a regularized fiber centerline coordinate by

s̄(s; δ) = w(s; δ)s+
(
1− w(s; δ)2

) δL
2

(1.26)

on 0 ≤ s ≤ L/2, with the corresponding reflection for s > L/2. The regularized coefficient

for a given δ is then given by

c̄(s; δ) := c(s̄(s; δ)) = ln

(
4s̄(L− s̄)

(ϵL)2

)
:= ln

(
4s(L− s)

ā(s; δ)2

)
. (1.27)
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Figure 1.1 shows how the choice of δ impacts the local drag coefficient c̄(s) and effective

radius function ā(s). We see that the fibers are cylindrical (ā(s) = ϵL) for s/L ≳ δ, while

for s/L ≲ δ the effective radius smoothly decays to zero, as it would for an ellipsoidal fiber.

Larger values of δ yield smoother radius functions and smoother local drag coefficients. When

we use this approach, we will use δ = 0.1, unless otherwise stated.

1.2 Coupling fiber mechanics and hydrodynamics

The second broad topic we treat in this part of the thesis is how to couple the internal

fiber mechanics to the hydrodynamics. Actin filaments are nearly inextensible (stretching

stiffness on the order 105 pN/µm [37]), and also resist bending and twisting elasticity. As

such, they are best modeled as inextensible Kirchhoff rods [38, c. 3]. While we will also take

this as our base model, we make two important advances in coupling the elasticity to the

fluid mechanics: first, we offer a novel theoretical treatment of inextensibility which is based

on the principle of virtual work. Second, we reconcile two approaches in the literature for

the coupling of twist elasticity and rotation to the surrounding fluid.

1.2.1 Inextensibility

In the traditional approach to inextensibility, which was introduced by Tornberg and Shelley

[22] and has since been used by a number of others [15, 39, 40], an auxiliary (integro-)

differential equation is derived for the line tension in the filament, which acts as a Lagrange

multiplier to preserve inextensibility. This equation, which involves multiplications of high-

order (as high as four) derivatives of the fiber position function X, is ill-suited for numerical

discretization, especially with spectral methods, where aliasing can become a problem [15].

But more importantly, it is not clear how to adapt the continuum line tension equation to

the discrete nature of the simulation, and so Tornberg and Shelley [22] insert an additional
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penalty term into the line tension equation to reduce the discrete extensibility. For fibers

tugged by cross-linkers or strong extensional flows, this penalty parameter will be large,

introducing artificial stiffness into the problem. And finally, the coupling of the trajectory

of X with an auxiliary equation makes it difficult to write a closed-form equation for the

overall evolution of X. Such an equation is necessary when we try to incorporate thermal

fluctuations (see Chapter 8).

There is therefore a need for a new formulation for inextensible filaments. In our ap-

proach, we make the observation that the constraint τ (s, t) · τ (s, t) = 1 implies that the

velocity of the fiber tangent vector ∂tτ , is orthogonal to itself (∂tτ · τ = 0), which implies

that

∂tτ = Ω× τ , (1.28)

for some rotational velocity Ω(s). In discrete time, the tangent vectors will be updated

via an actual rotation by Ω(s), which keeps them exactly on the constraint. The fiber

positions will then be obtained by integration, which is an approach similar to that of [41],

but unique because we consider the fiber as a continuum, rather than a collection of discrete

line segments. To close our formulation, we treat the force due to tension as a Lagrange

multiplier and enforce the principle that the constraint forces do no work [42]. By imposing

this principle, the constraint forces can be eliminated, and we can obtain a closed form

equation for the evolution of X which is sorely needed when we consider thermal fluctuations.

1.2.2 Coupling to twist elasticity

In addition to being inextensible, biological filaments also resist bend and twist elasticity.

Most studies that couple the fiber to the surrounding fluid use some form of the Kirchhoff

rod model [43] to treat the internal mechanics, in which the inextensible and unshearable rod

resists both bending (along two principal axes) and twisting (along the third axis parallel

to the fiber centerline). As we discuss, there is an ambiguity in the equilibrium equations
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of the Kirchhoff rod in which the torque density perpendicular to the fiber centerline can

be recast into a force density; many studies refer to this parallel-torque-only version as “the

Kirchhoff rod model” [44, Sec. 2.3]. In either case, the Kirchhoff model is a special case of

the Cosserat model [28, 45], which also allows for extensibility and shear of the rod, and has

recently been used to model cytoskeletal fibers without dynamics [46].

A theoretical ambiguity that we consider is how the fiber elasticity couples to the fluid

mechanics when the fiber resists twist. When we consider bending forces only, then the

formulation of slender body theory ensures that the rod moves with the local fluid velocity.

But what about when we need to track twist elasticity – does the cross section also rotate

with the local angular fluid velocity? If it does, then for the rod to be unshearable, the fluid

velocity has to be constrained so that the translational velocity U(s) and angular velocity

Ψ(s) are consistent with each other. Specifically, there are two possible velocities of the

tangent vector: ∂tτ = ∂sU , and ∂tτ = Ψ × τ . If we require that the two match, i.e., if we

impose the constraint ∂sU = Ψ × τ , we get what we refer to as the Kirchhoff model for

historical reasons [41, 47, 48]. To avoid constraints, Lim et al. [49] introduced the generalized

Kirchhoff rod model, in which the cross section is shearable and the fiber is extensible, both

with an associated penalty. This model has been used frequently in the literature on fluid-

fiber coupling [50, 51], but its consistency with the constrained Kirchhoff formulation as all

penalty parameters go to infinity has not yet been established. Of course, imposing the

constraint ∂sU = Ψ × τ requires knowledge of the full rotational and translational fluid

velocity, which so far has not been possible using SBT, since SBT cannot properly account

for rot-trans coupling.

In the second class of fluid coupling methods, the redundancy in the possible motions

is treated not by enforcing a constraint, but by ignoring the rotational fluid velocity in

perpendicular directions. The rod then has only four possible motions: translational velocity

U(s) and rotational velocity Ω∥(s) about its axis. In this model, the tangent vector τ is
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updated by the translational velocity, and then a local triad or some other measure of twist

is rotated around τ by the velocity Ω∥. This decouples solving for the translational and

rotational velocity, simplifying the problem and reducing the size of the linear system to

be solved. This model, which we shall refer to as the Euler model, is presented in the

review article by Powers [33], and has been used in the simulation of both discrete [52–56]

and continuous [57] elastic rods. All of these methods use an SBT-style mobility, in which

nonlocal hydrodynamics is included in the translation-translation (trans-trans) coupling (to

give the translational velocity U), but only local drag is included for rotation-rotation (rot-

rot, to give the parallel rotational velocity Ω∥). Indeed, a perpendicular angular velocity is

not available because no slender body theory exists for translation-rotation (trans-rot) or

rotation-translation (rot-trans) coupling, so only parallel rotational velocity can be used.

To compare the two models of fluid coupling, we use both asymptotic arguments and

numerical tests to show that the Kirchhoff and Euler models give the same translational

velocity U a distance O(1) away from the fiber endpoints as the slenderness ϵ→ 0. The key

idea is that the perpendicular torque in the Kirchhoff model, which enforces the constraint

∂sU = Ψ × τ , can be as small as O (ϵ2) and still generate a total angular velocity Ψ that

is consistent with U . As a result, these Lagrange multipliers have strength of order ϵ2, and

therefore have a minimal impact on ∂sU , so they can be dropped in the Euler model without

changing the resulting centerline velocity U to O (ϵ2). Thus this part of the dissertation

establishes the asymptotic equivalence of the Euler and Kirchhoff models as ϵ → 0. This

sets us up for Part II, where we will design numerical methods around the simpler Euler

model.
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Chapter 2

Rotne-Prager-Yamakawa (RPY)

Mobility

The previous chapter showed that there has yet to be a consistent way to reduce the hydro-

dynamics of a spinning, bending filament from three dimensions to one in the case of the

mobility problem, where the force and torque on the fiber centerline are prescribed and we

seek the translational and rotational velocities. Since one-dimensional SBT fails, it seems

logical to fall back to the three-dimensional boundary integral calculation in Section 1.1.2.

One potential approach for solving the three-dimensional boundary integral equation

is the so-called “tubular body theory” (TBT) of Koens [58], which is designed to exactly

solve for the traction on the fiber surface through a series of Fredholm integral equations

of the second kind. These integral equations are similar to that of SBT, but are instead

forced by a function of the previous order traction. The approach, however, offers little

insight into the local resistance behavior under high rotation, and it is unclear how many

iterations would be required to accurately capture the nonlocal translation-rotation coupling

that is not correctly treated by SBT. For this reason, we seek an alternative approximation

which takes advantage of the fiber slenderness to minimize the number of nonlocal integral

evaluations and allows for dynamic simulations with many fibers. Our idea in particular is to
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use regularized singularities to represent the mobility relationship, then compare the results

we obtain to full three-dimensional boundary integral calculations.

A key contribution of this dissertation is to model the fiber using a line integral of

regularized singularities, in particular Rotne-Prager-Yamakawa (RPY) singularities. Math-

ematically, the approach of the original slender body pioneers [19, 20, 23] was to distribute

singularities along the centerline, then evaluate the flow from these singularities on a fiber

cross section. The flow is nonsingular since it is evaluated a fiber radius away from the

location of the singularities. In regularized singularities, we instead distribute the force and

torque over a “cloud” or “blob” region of characteristic size â ∼ a, which is defined by

some regularized delta function δâ. Throughout this thesis, δâ will be a surface δ function

on a sphere of radius â, but other approaches are also possible. In this case, the velocity

field is nonsingular because the force and torque are distributed over a region of finite size

approximately equal to the fiber radius. We can then convolve the velocity field (or half the

vorticity field) with the regularized delta function again to obtain the velocity (or angular

velocity) of the fiber centerline. In this way, we derive fundamental regularized singularities

for all components of the mobility operator, then perform asymptotics on line integrals of

these regularized singularities. The sum of these components gives a model of the filament

dynamics with the correct physical behavior that can be used in practice without approx-

imating precisely a specific geometry; after all, the geometry of an actin filament [11] or

flagella [59, Fig. 5.3] is not perfectly spheroidal or even tubular, and so one could argue that

the regularized singularity model is just as much of an approximation as SBT.

Representing filaments using regularized singularities is not a novel idea, as it was first

employed for numerical purposes in the immersed boundary (IB) method of the early 1970s

to model the flow patters inside the heart [60]. Later variations, including the force coupling

method [61], method of regularized Stokeslets [62, 63], and Rotne-Prager-Yamakawa (RPY)

tensor [64, 65], focused on choosing the regularized delta function such that the Stokes
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equations are solvable analytically. While not a unique or necessarily superior choice, we

prefer to use the RPY kernel because of its simple far-field analytical form (as a Stokeslet plus

a source doublet), its symmetric positive definite property, and because of its long history

of use in polymer suspensions (e.g., [47, 66–68]). The analysis here could be conducted

for any regularization function where the mobility between two points can be determined

analytically.

Recently, the accuracy of using regularized singularities to approximate slender trans-

lating filaments has come under scrutiny both from a numerical [69] and analytical [70–72]

perspective. Generally speaking, the recent analysis has affirmed [70, 71] that regularization

methods can effectively match the slender body theory centerline and far-field fluid velocity

with a judicious choice of regularization radius â, while others [71] have shown that the

global flow field near the slender body cannot be matched unless very specific conditions on

the regularization function are met [72, Sec. 4]. While the latter restriction is somewhat dis-

appointing, it has little effect in practice: since regularized singularities can match the SBT

filament centerline velocity, the only impact of the flow near the filament being incorrect is

in computing disturbance flows on other nearly touching filaments. These disturbance flows

change sharply over distances of O(ϵ), which makes a one-dimensional SBT approach for

nearly touching fibers quite challenging if not impractical. One of the goals of this paper is

therefore to determine how the centerline motion induced by RPY singularities compares to

that of SBT when rotation is considered. For instance, do they reproduce the relationship

between torque and rotational velocity for a straight cylinder? And what about the feedback

of rotational velocity on translational motion for curved filaments?

2.1 Slender body theory from RPY singularities

The idea of the regularized singularity approach is to model the force and torque on the fiber

centerline with a regularized delta function δâ, where â is the “regularization radius” that is
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chosen to model the three-dimensional problem. Our choice of kernel is the Rotne-Prager-

Yamakawa (RPY) tensor [64, 65], for which δâ(r) = δ(r − â)/(4πâ2), i.e., the regularized

delta function is a surface delta function on a sphere of radius â. This choice is more faithful

to the original cylindrical geometry than delta functions with infinite support [62, 63, 73] or

those whose support is tied to a numerical fluid grid [74]. In particular, since each regularized

singularity is a sphere, it is not hard to imagine this resulting in a cylinder of constant radius

â along a length L, with hemispherical caps at each end. Still, since the regularized delta

function is the same in the axial and radial directions, the spheres are not rings as we would

need to make a proper cylinder. Also, the RPY tensor itself is an approximation to the

dynamics of spheres, since it does not include stresslet terms required to keep the spheres

rigid in flow [75], even though stresslets are of the same multipole order as torques, which are

included. Because of these approximations, the intuitive picture of a cylinder composed of

surface spheres is not quite the correct one, and we will require â > a for our RPY formulas

to match those of SBT.

To obtain the centerline velocity of a filament made of regularized singularities, we first

solve for the fluid velocity u(x) and corresponding pressure π (x) by1 solving the Stokes

equations

∇π(x) = µ∇2u(x) +

∫ L

0

((
f(s) +

∇
2
× n∥(s)τ (s)

)
δâ (x− X(s))

)
ds, (2.1)

and ∇ · u = 0. The translational and parallel rotational velocity of the fiber centerline are

then given by convolving the pointwise velocity u(x) and half vorticity once more with the

1It is important to emphasize again that u(x) and π(x) are expected to be good approximations of the
true fluid velocity and pressure only sufficiently far from the fiber centerline, but not O(ϵ) away from it.

23



regularized delta function,

U (s) =

∫
u(x) δâ (X(s)− x) dx (2.2)

Ψ∥ (s) = τ (s) ·
∫
δâ (X(s)− x)

∇
2

× u (x) dx. (2.3)

This yields a mobility that is guaranteed to be symmetric positive definite [76, Footnote 3].

Here we only consider the parallel component of rotational velocity, since, for unshearable

filaments, the other components can be derived from the translational velocity U(s) (see

Chapter 3).

Using superposition, the translational and rotational velocity of the fiber centerline can

be defined as integrals of the fundamental regularized singularities

U(s) =

∫ L

0

(
Mtt (X(s),X(s′))f(s′) +Mtr (X(s),X(s′))n∥(s′)τ (s′)

)
ds′ (2.4)

= (Mttf) (s) +
(Mtrn

∥τ
)
(s)

Ψ∥(s) = τ (s) ·
∫ L

0

(
Mrt (X(s),X(s′))f(s′) +Mrr (X(s),X(s′))n∥(s′)τ (s′)

)
ds′

= τ (s) ·
(
(Mrtf) (s) +

(Mrrn
∥τ
)
(s)
)

where the fundamental regularized singularities Mtt,Mtr,Mrt, and Mrr are obtained by con-

volving the Stokeslet with δâ, with a half curl taken each time rotation comes in,

Mtt (x,y) =

∫
δâ (x− z)

∫
S (z,w) δâ (w − y) dw dz, (2.5)

Mtr (x,y) =

∫
δâ (x− z)

∫
S (z,w)

∇w

2
× δâ (w − y) dw dz,

Mrt (x,y) =

∫
δâ (x− z)

∇z

2
×
∫

S (z,w) δâ (w − y) dw dz = MT
tr (y,x) ,

Mrr (x,y) =

∫
δâ (x− z)

∇z

2
×
∫

S (z,w)
∇w

2
× δâ (w − y) dw dz.
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Using this approach, the four components of the mobility operator relating force and

torque to angular and rotational velocity can be written separately, giving four different

integrals for the four different pieces of the velocity in (2.4). For the RPY tensor, the

velocity at point x due to a force F or torque N at point y is given by

(8πµ) Mtt (x,y)F =





(
I + R̂R̂

R
+

2â2

3

I − 3R̂R̂

R3

)
F R > 2â

((
4

3â
− 3R

8â2

)
I +

R

8â2
R̂R̂

)
F R ≤ 2â

(2.6)

(8πµ) Mtr (x,y)N =





N × R̂

R2
R > 2â

1

2â2

(
R

â
− 3R2

8â2

)(
N × R̂

)
R ≤ 2â

(2.7)

(8πµ) Mrt (x,y)F =





F × R̂

R2
R > 2â

1

2â2

(
R

â
− 3R2

8â2

)(
F × R̂

)
R ≤ 2â

(2.8)

(8πµ) Mrr (x,y)N =





−1

2

(
I − 3R̂R̂

R3

)
N R > 2â

1

â3

((
1− 27R

32â
+

5R3

64â3

)
I +

(
9R

32â
− 3R3

64â3

)
R̂R̂

)
N R ≤ 2â,

(2.9)

where R = x − y, R = ∥R∥, R̂ = R/ ∥R∥, and R̂R̂ denotes the outer product of R̂ with

itself. Note that the RPY tensor changes form for the case of overlapping spheres (R ≤ 2â),

making them nonsingular and once continuously differentiable at R = 2â. Because the

kernels are still nearly singular, in the limit â/L := ϵ̂ ≪ 1 it is more efficient to evaluate

the integrals (2.4) asymptotically, since some of the singularities can safely be assumed to

only contribute to the “inner” expansion. Indeed, by doing asymptotics on each of the four
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integrals in (2.5) separately, we get an approximation to each term of the mobility to some

order in ϵ. This is in contrast to the SBTs of Chapter 1, where the translational velocity on

the cross section was some combination of contributions from force and torque, and we were

left with trying to determine the order of each term from the desired order of U and Ψ∥ on

the cross section.

In this chapter, we therefore perform asymptotic expansions on the integrals (2.4) to

obtain an SBT for a twisting filament. Our strategy is standard matched asymptotics and

similar to the approaches of Johnson [20] and Gotz [32] for SBT. Because we use regularized

singularities, however, all of the integrals take place on the fiber centerline, and so the

asymptotics are in one dimension, rather than on the fiber cross section (two dimensions).

It therefore becomes much simpler to obtain expressions for the velocity at the endpoints,

where we only have to redefine the domain of integration in the inner expansion. Thus a

physical endpoint regularization, which is an ingredient of any SBT-based numerical method

(see Section 1.1.3, for example), comes with our choice to use regularized singularities as an

approximation to the three-dimensional fiber geometry.

For each integral in (2.4), we first compute an outer expansion by considering the region

where |s − s′| is O(1). Then in the inner expansion, we consider the part of the integrals

where |s− s′| is O(â). In this case, we follow [32] and introduce the rescaled variable

ξ =
s′ − s

â
, (2.10)

so that ξ is O(1) in the inner expansion, and the domain of ξ is [−s/â, (L − s)/â]. With

this definition, it is straightforward to integrate over ξ and obtain an inner expansion, which

is done in two pieces because the RPY tensor changes at s = 2â (the case of overlapping
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spheres).2 Using the rescaled variable ξ defined in (2.10), we write the series expansions

R(s′) = X(s)− X(s′) = −ξâτ (s)− ξ2â2

2
∂sτ (s) +O

(
â3
)

(2.11)

RR = ξ2â2τ (s)τ (s) +O
(
â3
)
,

R2 = R ·R = ξ2â2 +O
(
â3
)
, R = |ξ|â+O

(
â2
)
,

R−1 =
1

|ξ|â +O(1), R−3 =
1

|ξ|3â3 +O
(
â−2
)
, R−5 =

1

|ξ|5â5 +O
(
â−4
)
.

f (s′) = f(s) + ξâ∂sf(s) +O(â2) n∥ (s′) = n∥(s) + ξâ∂sn
∥(s) +O(â2),

which we substitute into the corresponding RPY velocity formulas (2.14), (2.26), (2.37), and

(2.43). What results is two separate integrals over ξ: one for |ξ| > 2 (when the RPY spheres

do not overlap), and another for |ξ| ≤ 2 (when they do). The bounds on the integrals are

∫

|ξ|>2

f(ξ) dξ =





∫ −2

−s/â f(ξ) dξ +
∫ (L−s)/â
2

f(ξ) dξ 2â < s < L− 2â

∫ (L−s)/â
2

f(ξ) dξ s ≤ 2â

∫ −2

−s/â f(ξ) dξ s ≥ L− 2â

(2.12)

∫

|ξ|≤2

f(ξ) dξ =





∫ −2

−2
f(ξ) dξ 2â < s < L− 2â

∫ 2

−s/â f(ξ) dξ s ≤ 2â

∫ (L−s)/â
−2

f(ξ) dξ s ≥ L− 2â

With these integration bounds, the inner velocity can be computed for any s on the filament.

Adding the inner and outer solutions together and subtracting the common part then gives

2The break up of the integral into two pieces is reminiscent of the classic approach of Lighthill [77] (see
also [4, Fig. 6]), who represented the flow due to a translating filament as the sum of an integral of Stokeslets
(at distances greater than some intermediate length q ≫ a) and another integral of Stokeslets and doublets
(at distances smaller than q). The RPY approach is fundamentally different, however, because here the
RPY regularization imposes the splitting of the integral at the distance 2â. For translation-translation, the
doublet term can still make a contribution to the flow field on this lengthscale; its precise O(1) contribution
is computed in (2.17).
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the final matched asymptotic solution. Unless otherwise specified, all expansions will be

carried out to O(ϵ̂), i.e., in this section ≈ denotes equality up to O(ϵ̂), where the regularized

aspect ratio ϵ̂ = â/L is distinguished from the actual physical aspect ratio ϵ = a/L.

2.1.1 Translation from force

We begin by expanding the translational velocity from force, which we define as

U f =

∫ L

0

Mtt (X(s),X(s′))f(s′) ds′. (2.13)

When we substitute the definition of Mtt for RPY singularities from (2.6) into (2.13), we

have the integral

8πµU f (s) =

∫

R>2â

(
S (X(s),X(s′)) +

2â2

3
D (X(s),X(s′))

)
f(s′) ds′ (2.14)

+

∫

R≤2â

((
4

3â
− 3R (s′)

8â2

)
I +

1

8â2R (s′)
(RR) (s′)

)
f (s′) ds′,

where R (s′) = X(s) − X (s′), and R = ∥R∥. The separation of the integrals captures the

change in the RPY tensor when R ≤ 2â. We will assume that s is approximately an arclength

parameterization, so that we can replace the bound R > 2â with |s− s′| > 2â going forward.

This incurs a relative error on the order ϵ̂, which is the same order to which we carry the

asymptotic expansions.

2.1.1.1 Outer expansion

In the outer expansion, we consider the part of the integral (2.14) where |s − s′| is O(1).

In this case, the doublet term in (2.14) is insignificant and we obtain the outer velocity by
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integrating the Stokeslet over the fiber centerline,

8πµU
(outer)
f (s) =

∫

|s−s′|>2â

S (X(s),X(s′))f (s′) ds′. (2.15)

The part of the kernel (2.14) for R ≤ 2â makes no contribution to the outer expansion since

|s− s′| is O(â) there.

2.1.1.2 Inner expansion

Beginning with the trans-trans mobility (2.14), we start with the part of the integral in the

region R > 2â. For this we first need to integrate the inner expansion of the Stokeslet

∫

R>2â

S (X(s),X(s′))f (s′) ds′ ≈
∫

|ξ|>2

(
I + τ (s)τ (s)

|ξ|â

)
f(s)â dξ (2.16)

= (I + τ (s)τ (s))f(s)

∫

|ξ|>2

1

|ξ|dξ.

Unlike the Stokeslet, the doublet term is only included in the inner expansion. Its expansion

is given by

2â2

3

∫

R>2â

D (X(s),X(s′)) ds′ ≈ 2â2

3

∫

|ξ|>2

(
I − 3τ (s)τ (s)

|ξ|3â3
)
f(s)â dξ (2.17)

=
2 (I − 3τ (s)τ (s))f(s)

3

∫

|ξ|>2

1

|ξ|3 dξ.

It still remains to include in the inner expansion the term for R ≤ 2â. For this we have the

inner expansion of the first term

∫

R≤2â

(
4

3â
− 3R (s′)

8â2

)
f (s′) ds′ ≈ f(s)

∫

|ξ|≤2

(
4

3
− 3|ξ|

8

)
dξ. (2.18)
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Likewise the second term for R ≤ 2â has the inner expansion

∫

R≤2â

1

8â2R (s′)
(RR) (s′)f (s′) ds′ ≈ τ (s)τ (s)f (s)

∫

|ξ|≤2

|ξ|
8
dξ. (2.19)

Adding the terms (2.16), (2.17), (2.18), and (2.19), and computing integrals using the bounds

(2.12), we obtain the complete inner expansion

8πµU
(inner)
f (s) =

(
aS(s) + aCLI(s) +

2â2

3
aD(s)

)
f(s) (2.20)

+
(
aS(s) + aCLT(s)− 2â2aD(s)

)
(τ (s)τ (s))f(s)

aS(s) =





ln

(
(L− s)s

4â2

)
2â < s < L− 2â

ln

(
(L− s)

2â

)
s ≤ 2â

ln
( s
2â

)
s ≥ L− 2â

aD(s) =





1

4â2
− 1

2s2
− 1

2(L− s)2
2â < s < L− 2â

1

8â2
− 1

2(L− s)2
s ≤ 2â

1

8â2
− 1

2s2
s ≥ L− 2â

aCLI(s) =





23

6
2â < s < L− 2â

23

12
+

4s

3â
− 3s2

16â2
s ≤ 2â

23

12
+

4(L− s)

3â
− 3(L− s)2

16â2
s ≥ L− 2â

aCLT(s) =





1

2
2â < s < L− 2â

1

4
+

s2

16â2
s ≤ 2â

1

4
+

(L− s)2

16â2
s ≥ L− 2â
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The velocity U
(inner)
f is twice continuously differentiable, since it is the integral of a function

which is once continuously differentiable.

2.1.1.3 Common part and total velocity

The common part is the outer velocity written in terms of the inner variables,

8πµU
(common)
f (s) =

∫

|s−s′|>2â

(
I + τ (s)τ (s)

|s− s′|

)
f(s) ds′. (2.21)

The total velocity is then the sum of the inner and outer expansions, with the common part

subtracted,

U f(s) = U
(inner)
f (s) +U

(outer)
f (s)−U

(common)
f (s). (2.22)

This can be written as

U f(s) = U
(inner)
f (s) +

1

8πµ

∫

|s−s′|>2â

(
S (X(s),X(s′))f (s′)−

(
I + τ (s)τ (s)

|s− s′|

)
f(s)

)
ds′,

(2.23)

where U
(inner)
f is defined in (2.20). The velocity (2.23) has a form similar to that of SBT,

but with different bounds on the integral. Unlike SBT, the integral (2.23) is not a finite part

integral, but a nearly singular integral that makes sense for each term separately. Numerical

evidence suggests that, unlike traditional SBT, our asymptotic formula (2.23) keeps the

eigenvalues of the mobility above zero (see Section 6.3).

To compare with SBT, however, it is advantageous to observe that the integrand in (2.23)

is O(ϵ̂) when R ≤ 2â, and so we can add the excluded part back in without changing the
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asymptotic accuracy. This gives a velocity of the exact same form as SBT,

8πµU f(s) = (I + τ (s)τ (s))f(s) ln

(
(L− s)s

4â2

)
+ 4f(s) (2.24)

+

∫ L

0

(
S (X(s),X(s′))f (s′)−

(
I + τ (s)τ (s)

|s− s′|

)
f(s)

)
ds′,

in the fiber interior, where we have dropped O(â2) terms from (2.20). The comparison of

this formula to translational SBT will be given in Section 2.1.5.

2.1.2 Translation from torque

To complete our formulation for translational velocity, we next consider an asymptotic ex-

pansion of the velocity Un(s) due to a torque density n∥(s) on the fiber centerline,

Un(s) =

∫ L

0

Mtr (X(s),X(s′))n∥(s′)τ (s′) ds′. (2.25)

When we substitute the definition of Mtr for RPY singularities from [65, Eq. (3.16)] into

(2.25), we have the integral

8πµUn(s) =

∫

R>2â

τ (s′)×R(s′)

R(s′)3
n∥(s′) ds′ (2.26)

+
1

2â2

∫

R≤2â

(
1

â
− 3R(s′)

8â2

)
(τ (s′)×R(s′))n∥(s′)ds′,

where R(s′) = X(s)−X(s′). The first term in (2.26) is the Rotlet, while the second term is

the RPY tensor when R ≤ 2â. As before, we will use R ≈ |s− s′| to modify the bounds on

the integrals.
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2.1.2.1 Outer expansion

In the outer expansion, we consider the part of the integral (2.26) where |s′ − s| is O(1). In

this case the correction term is insignificant and we get the outer velocity

8πµU (outer)
n (s) =

∫

|s−s′|>2â

τ (s′)×R(s′)

R(s′)3
n∥(s′) ds′. (2.27)

2.1.2.2 Inner expansion

Beginning with the rotlet term for R > 2â, we write the rotlet in terms of the inner variables

as

τ (s′)×R(s′) ≈ ξ2â2

2
(τ (s)× ∂sτ (s)) (2.28)

∫

R>2â

τ (s′)×R(s′)

R(s′)3
n∥(s′) ds′ ≈

∫

|ξ|>2

(τ (s)× ∂sτ (s))

2|ξ|â n∥(s)â dξ. (2.29)

We next need to account for the term for R ≤ 2â, or the second term in (2.26). Using (2.28),

we have that

1

2â2

∫

R<2â

(
1

â
− 3R

8â2

)
(n(s′)×R(s′)) ds′ ≈ (τ (s)× ∂sτ (s))

4â

∫

|ξ|<2

(
1− 3

8
|ξ|
)
ξ2â dξ.

(2.30)
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Adding (2.29) and (2.30) and using (2.12) to compute the inner expansion integrals, we

obtain

8πµU (inner)
n (s) =

n∥(s)

2
(τ (s)× ∂sτ (s)) cc(s) (2.31)

cc(s) =





ln

(
(L− s)s

4â2

)
+

7

6
2â < s < L− 2â

ln

(
(L− s)

2â

)
+

7

12
+

s3

6â3
− 3s4

64â4
s ≤ 2â

ln
( s
2â

)
+

7

12
+

(L− s)3

6â3
− 3(L− s)4

64â4
s ≥ L− 2â

which is a twice continuously differentiable function.

2.1.2.3 Common part and total velocity

The common part for trans-rot coupling is the inner expansion written in terms of the outer

variables,

8πµU (common)
n (s) =

∫

|s−s′|>2â

(
τ (s)× ∂sτ (s)

2|s− s′|

)
n∥(s) ds′. (2.32)

To O(ϵ̂), the velocity due to torque n(s) = n∥(s)τ (s) on the fiber centerline is given by

Un(s) = U (inner)
n (s) +U (outer)

n (s)−U (common)
n (s) (2.33)

Un(s) = U (inner)
n (s) +

1

8πµ

∫

R>2â

(
τ (s′)×R(s′)

R(s′)3
n∥(s′)− τ (s)× ∂sτ (s)

2|s− s′| n∥(s)

)
ds′, (2.34)

We can make this velocity (2.34) more SBT-like by changing the bounds on the integral.

Because the outer and common part match to O(ϵ̂) when R ≤ 2â, we can change the limit
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of integration in the integral to obtain a finite part integral, which gives the final result

8πµUn(s) =
1

2
(τ (s)× ∂sτ (s))

(
ln

(
s(L− s)

4â2

)
+

7

6

)
(2.35)

+

∫ L

0

((
τ (s′)×R(s′)

R(s′)3

)
n∥(s′)−

(
τ (s)× ∂sτ (s)

2|s− s′|

)
n∥(s)

)
ds′,

for the velocity in the fiber interior. This is of exactly the same form as the first line of the

singularity representation (1.10), but without the additional angle-dependent terms in the

second line of (1.10).

2.1.3 Rotation from force

We next calculate the parallel rotational velocity Ψ
∥
f (s) due to the force density f(s) on the

fiber centerline,

Ψ
∥
f (s) = τ (s) ·

∫ L

0

Mrt (X(s),X(s′))f(s′) ds′. (2.36)

When we substitute the definition of Mtr from [65, Eq. (3.16)] into (2.36), we have

8πµΨ
∥
f (s) =

∫

R>2â

(f(s′)×R(s′))

R(s′)3
· τ (s) ds′ (2.37)

+
1

2â2

∫

R<2â

(
1

â
− 3R(s′)

8â2

)
(f(s′)×R(s′)) · τ (s) ds′.

After using the triple cross product identity to rewrite (f(s′)×R(s′))·τ (s) = (R(s′)× τ (s))·

f(s′), the symmetry of the kernels Mrt and Mtr makes the asymptotics in the inner, outer,
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and common expansions much the same as the previous section. The final result is that

8πµΨ
∥
f (s) = Ψ

∥,inner
f (s) + Ψ

(FP)
f (s) (2.38)

Ψ
∥,inner
f (s) =

1

2
cc(s) (τ (s)× ∂sτ (s)) · f(s) (2.39)

Ψ
(FP)
f (s) =

∫ L

0

(
R(s′)× τ (s)

R(s′)3
· f(s′)− τ (s)× ∂sτ (s)

2|s− s′| · f(s)
)
ds′. (2.40)

where cc(s) is defined in (2.31).

It is straightforward to show the symmetry (self-adjointness in L2) of the mobility oper-

ator, ∫ L

0

Ψ
∥
f (s)n

∥(s) ds =

∫ L

0

Un(s) · f(s) ds. (2.41)

The only nontrivial part of this calculation is the rotlet term in the finite part integrals, in

which the order of integration in s and s′ must be swapped.

2.1.4 Rotation from torque

The final asymptotic expansion we need is the rotational velocity Ψ(s) due to the torque

n∥(s). Because the doublet singularity has already been expanded in the translational case

in (2.17), it will be convenient to work with a full vector rotational velocity and torque

Ψn(s) =

∫ L

0

Mrr (X(s),X(s′))n(s′) ds′, (2.42)

and specialize to the case of parallel velocity and torque later. We substitute the definition

of Mrr from [65, Eq. (3.14)] into (2.42) to obtain the vector rotational velocity,

8πµΨn(s) = −1

2

∫

R>2â

D (X(s),X(s′))n(s′) ds′ (2.43)

+
1

â3

∫

R≤2â

((
1− 27R(s′)

32â
+

5R(s′)3

64â3

)
I +

(
9

32âR(s′)
− 3R(s′)

64â3

)
(RR) (s′)

)
n(s′) ds′.
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The first term in (2.43) is the doublet, while the second term is the RPY tensor for R ≤ 2â.

2.1.4.1 Outer expansion

In the outer expansion, we consider the part of the integral (2.43) where |s′ − s| is O(1),

8πµΨ(outer)
n (s) = −1

2

∫

|s−s′|>2â

D (X(s),X(s′))n(s′) ds′. (2.44)

Importantly, the outer expansion (and the common expansion) is O(1). The inner expansion

will be O (ϵ̂−2), so we will wind up dropping the entire outer expansion.

2.1.4.2 Inner expansion and total velocity

The inner expansion for (2.43) contains two parts: the doublet, and terms for R ≤ 2â. We

have already seen the expansion of the doublet in (2.17). Multiplying the result in (2.17) by

the appropriate prefactors, we obtain

−1

2

∫

R>2â

(
n(s′)

R(s′)3
− 3

R(s′) (R(s′) · n(s′))
R(s′)5

)
ds′ ≈ −(I − 3τ (s)τ (s))f(s)

2â2

∫

|ξ|>2

1

|ξ|3 dξ,

(2.45)

which which is accurate to O (ϵ̂−1), although in the fiber interior that term actually cancels,

leaving an O (log ϵ̂−1) dependence.

In a similar way, the inner expansions of the R ≤ 2â terms in the fiber interior are

1

â3

∫

R<2â

(
1− 27R(s′)

32â
+

5R(s′)3

64â3

)
n(s′) ds′ ≈ n(s)

â2

∫

|ξ|≤2

(
1− 27

32
|ξ|+ 5

64
|ξ|3
)
dξ (2.46)

1

â3

∫

R<2â

((
9

32aR(s′)
− 3R(s′)

64â3

)
(RR) (s′)

)
n(s′) ds′

≈ τ (s) (τ (s) · n(s))
â2

∫

|ξ|≤2

(
18− 3|ξ|2

64

)
|ξ| dξ

with an error of O(ln ϵ̂) in the fiber interior and O(ϵ̂−1) at the endpoints.
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Using the integral bounds (2.12) to integrate and sum (2.45) and (2.46), the complete

inner expansion for Ψn is given by

8πµΨ(inner)
n (s) = (pI(s)I + pτ (s)τ (s)τ (s))n(s), where (2.47)

pI(s) =
1

â2





9

8
+
â2

4

(
1

s2
+

1

(L− s)2

)
2â < s < L− 2â

9

16
+
s

â
− 27s2

64â2
+

5s4

256â4
+

â2

4(L− s)2
s ≤ 2â

9

16
+
L− s

â
− 27(L− s)2

64â2
+

5(L− s)4

256â4
+

â2

4s2
s ≥ L− 2â

pτ (s) =
1

â2





9

8
− 3â2

4

(
1

s2
+

1

(L− s)2

)
2â < s < L− 2â

9

16
+

9s2

64â2
− 3s4

256â4
− 3â2

4(L− s)2
s ≤ 2â

9

16
+

9(L− s)2

64â2
− 3(L− s)4

256â4
− 3â2

4s2
s ≥ L− 2â

which is twice continuously differentiable.

Because the outer expansion is O(ϵ̂2) smaller than the inner expansion, the total asymp-

totic velocity is just given by the inner expansion,

Ψn = Ψ(inner)
n . (2.48)

Specializing now to the case of parallel angular velocity from parallel torque, n = n∥τ , and

Ψ
∥
n = Ψn · τ , and dropping the negligible terms in the fiber interior from (2.47), we obtain

the simple formula

8πµΨ∥
n(s) =

9n∥(s)

4â2
(2.49)

in the fiber interior.

2.1.5 Comparison to Keller-Rubinow-Johnson
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We recall that the goal of our regularized singularity approach is to find â such that the RPY-

based filament centerline velocity matches that of SBT. With this in mind, let us compare

our RPY-based slender body theory to the more rigorous three-dimensional SBT results we

have from Section 1.1. We first compare the theories when we have a well-defined SBT, i.e.,

for translation-translation and rotation-rotation. Then, we use the form of the translation-

rotation RPY coupling and our results in Section 1.1 to postulate an SBT equation for

trans-rot coupling with a single unknown parameter. We will attempt to determine the

unknown parameter in the next section.

2.1.5.1 Trans-trans and rot-rot

All three-dimensional slender body theories agree that the translational velocity in the case

when Ψ∥ = 0 is given by

8πµU f = ln

(
4s(L− s)

a2

)
(I + ττ )f + (I − 3ττ )f +U

(FP)
f +O(ϵ), (2.50)

while our RPY-based theory (2.24) gives

8πµU f = ln

(
s(L− s)

4â2

)
(I + ττ )f + 4f +U

(FP)
f +O(ϵ). (2.51)

For the case of rotation from parallel torque, all theories of Section 1.1 agree that

8πµΨ∥
n =

2n∥

a2
, (2.52)

while our RPY-based theory gives (2.49).

While we can set â to match the two translational theories or the two rotational theories,

there is no choice of â that will match both. There are thus two possible candidates for â.
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If we take

â = âtt = a
e3/2

4
≈ 1.12a, (2.53)

then the two translational theories match, but for rotation we obtain

8πµΨ∥
n =

9n∥(s)

4â2tt
=

36n∥(s)

e3a2
≈ 1.79

n∥

a2
, (2.54)

which is a 10% error from the known formula for a cylinder (2.48).

On the other hand, if we take

â = ârr =
√
9/8a ≈ 1.06a, (2.55)

the rotational mobilities match, and the resulting RPY translational mobility becomes

8πµU = ln

(
s(L− s)

4â2rr

)
(I + ττ )f + 4f +U

(FP)
f

≈ ln

(
4s(L− s)

a2

)
(I + ττ )f + (1.1I − 2.9ττ )f +U

(FP)
f ,

which gives a small O(1) error relative to translational SBT (2.50). The need to choose a

different regularized singularity radius for the two different mobility components shows that,

despite the intuitive picture of making a cylinder out of spheres, our choice of spherically-

symmetric regularized singularities is insufficient to exactly model a cylinder. It is clear,

however, that the RPY approximation captures the correct form of all the relevant terms,

but with O(1) error in the coefficients.

2.1.5.2 Trans-rot coupling

The more compelling question is whether we can use our findings to gain insights into the

unknown O(1) coefficient in translation-rotation SBT. Our RPY-based result is (rearranging
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(2.35) using properties of logs and rounding the O(1) coefficient to two decimal places)

8πµUn ≈
(
ln

(
4s(L− s)

â2

)
− 1.61

)
(τ × ∂sτ )

n∥

2
+U

(FP)
f , (2.56)

with the corresponding symmetric result for Ψ
∥
f in (2.38). Since Section 2.1.5.1 shows that

the RPY models capture the essential physics of the interaction of the fiber with the fluid,

but with different coefficients, we can postulate that the rotation-translation coupling in a

true tubular geometry is also of the form (2.56), but with different coefficients. Furthermore,

since there is an O(1) error in the boundary condition (1.3) in the result (1.10) of Johnson,

we can expect that any modifications to (1.10) will be O(1) (not log ϵ). Combining these

two assumptions, we postulate a rotation-translation coupling term of the form

8πµUn =

(
ln

(
4s(L− s)

a2

)
− k

)
(τ × ∂sτ )

n∥

2
+U (FP)

n +O(ϵ) (2.57)

for some unknown constant k, with the corresponding symmetric form for Ψ
∥
f . In the next

section, we fit the constant k to three dimensional boundary integral results. This gives

us an empirical three-dimensional SBT for rot-trans coupling to which we can compare the

RPY theory. It is important to note that our work does not rigorously justify (2.57) for a

specific three-dimensional fiber geometry.

2.1.6 Comparing to three-dimensional boundary integral

Our RPY-based analysis leaves one uncertain coefficient, the O(1) coefficient k in the rot-

trans coupling term (2.57), which we now attempt to extract using boundary integral simu-

lations on slender bodies. Because there is only one coefficient to determine, we can fix the

fiber geometry, vary the aspect ratio ϵ, and check that the error in SBT decreases with ϵ.
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It will be convenient3 to fix L = 2 and work on s ∈ [−1, 1] with an ellipsoidally-decaying

radius function

ρ(s) =
√
1− s2. (2.58)

The radius at each point s is aρ(s), where we will vary a to study the limit ϵ = a/L→ 0.

As discussed in Section 1.1.2, under the assumption that the fiber is an infinitely thin

membrane containing fluid of viscosity equal to that of the exterior fluid, the force density

multiplied by the surface area element on the tubular boundary can be obtained by solving

the integral equation

8πµÛ(s, θ) =

∫ 1

−1

∫ 2π

0

S
(
X̂(s, θ), X̂ (s′, θ′)

)
f̂ (s′, θ′) dθ′ds′, (2.59)

for f̂(s, θ), where X̂ and Û are defined in (1.1) and (1.2).

In order to compare the BI output to SBT, we use the following sequence of steps:

1. Given the surface velocity Û(s, θ) = U(s) + aΨ∥(s) (τ (s)× r̂(s, θ)), solve (2.59) using

the numerical method of Malhotra and Barnett [79] to obtain the surface force density

f̂(s, θ).

2. Compute the centerline force f(s) and parallel torque n∥(s) from f̂(s, θ) via (1.14) and

(1.15).

3While the result (2.56) was derived by assuming a constant regularization radius â, it is unchanged to
leading order when considering a spatially-varying radius function â(s), for which the polydisperse RPY
kernel must be used [78]. The choice of an ellipsoidally-decaying radius function removes any singular
behavior of (2.57) near the endpoints and speeds up the convergence of the boundary integral method
(relative to a cylinder with spherical caps, for example).
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3. Compute the SBT velocity induced from the BI force as

8πµUSB = ln
(
ϵ−2
)
(I + ττ )f + (I − 3ττ )f +U

(FP)
f (2.60)

+
(
ln
(
ϵ−2
)
− k
)
(τ × ∂sτ )

n∥

2
+U (FP)

n ,

8πµΨ
∥
SB =

2n∥

a2ρ2
+

1

2

(
ln
(
ϵ−2
)
− k
)
(τ × ∂sτ ) · f +Ψ

(FP)
f , (2.61)

where the finite part integrals are defined in (1.7), (1.11), and (2.40), and we have used

the local drag coefficients for ellipsoidally-decaying radius (2.58).

4. Calculate the L2 norm of the error USB −U and Ψ
∥
SB − Ψ∥, and plot it as a function

of ϵ.

Note that we apply the forward SBT operator, which gives velocity from force/torque, in

(2.60) and (2.61). This avoids inverting the slender body mobility, which is an ill-posed

problem [22, 32]. To evaluate the finite part integrals, we use the singular quadrature scheme

developed in [80] (see Section 6.2.1).

We have verified that the error in USB and Ψ
∥
SB decreases with ϵ in cases when rot-trans

coupling is negligible (i.e., cases when Ψ
∥
SB = 0 or the fiber is straight). Having done this,

our focus will be on the case of curved filaments with parallel rotational velocity Ψ∥ ∼ 1/ϵ2,

so that the magnitude of the parallel torque n∥ is unchanged to leading order as we change ϵ.

In this case, which is the one that exposed the flaws in the SBTs of Section 1.1, the rot-trans

coupling term in (2.60) is important, while the one in (2.61) is negligible. Our goal is to find

a k in (2.60) such that the formulas are accurate to O(ϵ); that is, the relative errors in both

∥USB −U∥ and Ψ
∥
SB −Ψ∥ are O(ϵ).

To extract the unknown coefficient k in the trans-rot coupling term in (2.60), we consider

a helix with L = 1 and an arbitrary number of turns

X(s) =
1√
2

(
1

πnt
cos (πnts),

1

πnt
sin (πsnt), s

)
, (2.62)
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which spins with angular velocity Ψ∥ ≡ 1/a2 and without moving, U = 0 in (1.2). Because

the fiber is not straight, the torque required to generate Ψ∥ will induce a translational velocity,

and a nonzero average force f must cancel this translational velocity to satisfy the boundary

condition (1.3). This means that the translation-rotation coupling term in (2.60) will play a

key role in the accuracy of our SBT. Because of the large torque, the rotational velocity in

(2.61) is dominated by the rotation-rotation mobility, and so to study translation-rotation

coupling we will focus only on the translational velocity (2.60).

In the months leading up to the publication of this dissertation, new progress has been

made in developing boundary integral solvers for flexible slender bodies in Stokes flow. The

work of Malhotra and Barnett [79] in particular, which is based on a combined single-double

layer formulation, allows us to extract the force and torque on the centerline with arbitrary

accuracy.4 Thus the results we obtain using the method of [79] can be trusted with higher

confidence than those of our study [E], which applied a first-order numerical method based

on a singularity subtraction technique previously introduced by Batchelor [82] and used

by Koens [58]. We find in particular that both numerical methods agree on the force for

translation only and the torque for rotation, but discrepancies are produced in the rot-trans

coupling terms. The source of these discrepancies is unclear at this time.

Armed with the novel numerical method of [79], we extract the centerline force and torque

on the spinning helical geometry (2.62) with nt = 1 and nt = 2. The results in Fig. 2.1 show

fairly conclusively that k = 1 gives an error which decays with rate ϵ. These results are not

well-aligned with what we found in our first order numerical method in [E], where we found

k ≈ 2.85 to give the O(ϵ) decay. Thus more work is required to establish definitively that

the “true” rot-trans coupling coefficient in (2.57) is k = 1. A suggested program would be to

repeat this analysis on hundreds of random fiber shapes, using the novel boundary integral

solver in [79]. If k = 1 is indeed the correct coefficient, then using an RPY radius of â ≈ 0.73a

4For rigid fibers, the method of Keaveny and Shelley [81], which is based on using a double layer repre-
sentation plus a completion flow, is another option.

44



Figure 2.1: Error in the rot-trans SBT relative to the boundary integral calculation for various ϵ
and k for the nt turn helix (2.62). For each fiber, we prescribe a rotational velocity Ψ∥ ≡ 1/a2 with
translational velocity U = 0. We then solve the boundary integral equation (2.59) for the surface
traction (using the numerical method of [79]), use (1.14) and (1.15) to obtain the centerline force
density and parallel torque density, and then (2.60) to obtain an SBT velocity USB from these
densities. We plot the L2 norm of USB (which should be zero) for several different values of k. For
k ̸= 1, nt = 1, and the error is clearly O(1) with respect to ϵ. For k = 1, the error decreases with ϵ
at a rate of roughly ϵ1 (dashed black line), independent of the coefficient nt in (2.62).

in (2.56) gives the formula (2.57) with k = 1. This value of the RPY radius is comparable,

but fairly smaller than, what we obtained by matching the trans-trans (âtt ≈ 1.12a) and

rot-rot (ârr ≈ 1.06a) mobilities in Section 2.1.5.

2.2 Extension to multiple filaments

It remains to include in the fiber centerline velocity (2.4) the perturbed flow due to other

filaments, i.e., to account for hydrodynamic interactions between fibers. For translation,

the simplest approach for including hydrodynamic interactions in SBT is the one taken

by Tornberg and Shelley [22], in which the fluid velocity due to one fiber (1.4) is simply

evaluated on the centerline of the other fibers. This approach presents a contradiction: the

contribution of the doublet term is O(ϵ2) if the fibers are O(1) apart, but the same term
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makes an O(1) if the fibers are O(ϵ) apart. In the latter case, the flow field due to fiber i will

not be constant on the cross section of fiber j, and it becomes totally unclear how to assign

the centerline velocity on fiber j due to fiber i. Recognizing that the disturbance velocity

field only makes sense O(1) away from the fiber centerline, Nazockdast et al. dropped the

doublet term completely and included only the Stokeslet term [15].

An important advantage to our regularized singularity approach is that the velocity (2.4)

is well-defined for both a single fiber and multiple fibers. Indexing the ith fiber by the

superscript X(i), the full velocity at coordinate s on fiber i can be written as

U (i)(s) = u0

(
X(i)(s)

)
+

F∑

j=1

∫ L

0

(
Mtt

(
X(i)(s),X(j)(s′)

)
f (j)(s′) (2.63)

+Mtr

(
X(i)(s),X(j)(s′)

)
n
(j)
∥ (s′)τ (j)(s′)

)
ds′

Ψ
(i)
∥ (s) = Ψ

∥
0

(
X(i)(s)

)
+ τ (i)(s) ·

F∑

j=1

∫ L

0

(
Mrt

(
X(i)(s),X(j)(s′)

)
f (j)(s′) (2.64)

+Mrr

(
X(i)(s),X(j)(s′)

)
n
(j)
∥ (s′)τ (j)(s′)

)
ds′,

where F is the number of fibers, and u0 and Ψ
∥
0 represent background flows and rotational

velocities. Simply put (2.63) and (2.64) say that the fiber velocity of fiber i is the integral of

the RPY kernel over itself plus the same integral over all the other fibers. When the fibers are

well-separated, the self integral will be nearly-singular (special quadrature required), while

the integrals over the other fibers will be relatively smooth (direct quadrature acceptable).

We will compactly write the velocities (2.63) and (2.64) for the entire collection of fibers

as

U − u0 (X) = Mtt [X]f +Mtr [X]n∥ (2.65)

Ψ∥ −Ψ
∥
0 = Mrt [X]f +Mrr [X]n∥ (2.66)
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This mobility equation can be closed by defining a constitutive equation for the fiber force

densities f and torque densities n∥. This is covered in Chapter 3.
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Chapter 3

Fiber mechanics

In the last chapter, we looked at how to model the motion of a slender fiber in a viscous

fluid when the force f and torque n∥ on the centerline are prescribed functions of arclength

s. In practice, these quantities come from the internal fiber mechanics, which is the focus

of this chapter. We will restrict our focus to a single fiber, as the generalization to multiple

fibers is straightforward.

At every instant in time, the fiber resists bending with force density (per unit length)

f (κ) and twisting with torque density n(γ). When a fiber is not straight, there is also a force

density associated with twist elasticity, which we refer to as f (γ). Inextensibility can be

enforced by introducing Lagrange multiplier force densities λ. Thus the PDE that we need

to solve on every fiber to obtain the translational velocity is given by (using the abstract

notation of (2.65)),

∂tX− u0 (X, t) = Mtt [X]
(
f (κ) [X] + f (γ) [X] + λ

)
+Mtr [X]n(γ) [X] (3.1)

where the mobility operator M is defined in (2.65) and the background flow function u0

can in general vary in time. The fibers are also constrained to be inextensible, so that for
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every fiber

τ (s, t) · τ (s, t) = 1, (3.2)

for all s and t. We still need to specify boundary conditions for the evolution equation (3.1)

and additional conditions on λ to make the solution unique, as we explain in Section 3.1. In

addition, there is a question of how to track and evolve the twist density of the fiber. Should

we fix an orthonormal triad to the fiber centerline [47, 49, 50] to track twist? Intuitively, it

seems that a simpler metric would be a scalar angle by which the fiber is twisted relative to

a twist-free frame. In Section 3.2, we discuss the compatibility of these two choices and give

the equations governing the latter.

3.1 Inextensibility

The focus of this section is on a new formulation for inextensible filaments. In our approach,

the fibers are evolved via a rotation of the tangent vector on the unit sphere, and the fiber

positions are then obtained by integration. This approach is similar to that of [41], but

unique because we consider the fiber as a continuum, rather than a collection of discrete line

segments. In this way, we maintain strict inextensibility of the fibers without introducing a

penalty parameter. To close our formulation, we treat the force due to tension as a Lagrange

multiplier and enforce the principle that the constraint forces do no work [42]. This section

presents two possibilities for the virtual work constraint which are equivalent in continuum:

one is a “strong” formulation based on enforcing the virtual work constraint pointwise, while

another is a “weak” formulation which enforces the virtual work constraint via integrals

against a set of basis functions. The former is better suited for numerical calculations, and

it is what we use for our discretization in Part II.
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3.1.1 Tension-based formulation

Prior to deriving our new formulation of inextensibility, we review the formulation tradition-

ally used in the literature, around which many previous numerical methods [15, 22, 39, 40]

are designed. In this “tension-based” formulation [22, 82, 83], the inextensibility constraint

(3.2) is differentiated with respect to time. Then, s and t derivatives are interchanged to

yield

∂s (∂tX) · τ = 0. (3.3)

The system is closed by substituting the mobility equation (3.1) into the differentiated in-

extensibility constraint (3.3) and assuming that λ = ∂s (Tτ ), where T (s, t) is an unknown

scalar tension [22]. This results in the line tension equation,

∂s

(
u0 (X) +Mtt [X]

(
f (κ) [X] + f (γ) [X] + ∂s (Tτ )

)
+Mtr [X]n(γ) [X]

)
· τ = 0. (3.4)

which is a second-order linear BVP in T . Despite being linear in T , (3.4) is still highly

nonlinear in X, since the bending force density f (κ) involves fourth derivatives of X. Even in

the absence of any nonlocal hydrodynamic interactions and zero background flow (u0 = 0),

the line tension equation still has terms of the form ∂3sX·∂3sX (see [22, Eq. (13)]), which lead to

aliasing errors in spectral numerical methods. In addition, solving the line tension equation

leaves unclear exactly how the mobility matrix Mtt is modified when the inextensibility

constraint is considered, which makes it difficult to design schemes for fluctuating filaments

which preserve flucutation-dissipation balance. Because of these complications, we seek an

alternative route where we dispense with the scalar T and solve directly for λ, while at

the same time obtaining a closed-form form mobility ∂tX = Nf in the case of inextensible

filaments.
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3.1.2 Kinematic formulation

In our approach, we evolve the tangent vector τ (s, t), rather than X(s, t), which can be

obtained from τ via integration (plus a constant which also needs to be tracked). Considering

the evolution of τ (s, t), the differentiated inextensibility constraint (3.3) implies that, for

every fiber,

∂tτ (s, t) = Ω(s, t)× τ (s, t), (3.5)

i.e., that the fiber evolution can be thought of as rotations of τ on the unit sphere. The

constrained motion (3.5) implies a corresponding constrained motion for X,

∂tX(s, t) = UMP +

∫ s

L/2

∂tτ (s
′, t) dt := (Kα) (s), (3.6)

where UMP is the velocity of the midpoint, at which we have chosen to center the kinematic

operator to preserve symmetry. In this section, we present two possible definitions of K
which differ in their dimension, depending on whether we remove the null space of (3.5)

explicitly. The first of these is the most straightforward for numerical calculations, while the

second is subject to aliasing in spectral methods. The second might still be useful from a

theoretical point of view, so we present it here.

3.1.2.1 A rank-deficient kinematic operator

In the first approach, we define α = {UMP,Ω} and set

(Kα) (s) = UMP +

∫ s

L/2

Ω(s′)× τ (s′) ds′, (3.7)

where here we allow Ω to have a parallel component. Thus the null-space of K is non-empty.
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3.1.2.2 Modifications for clamped ends

While our default is to consider filaments with two free ends, in some parts of this dissertation

we will also consider filaments with a clamped end at s = 0 and a free end at s = L. For

these filaments, the K operator has to be modified to account for motion at s = 0 being

prohibited. For a clamped end, it is more logical to center the dynamics around s = 0 instead

of s = L/2, and therefore define the kinematic operator K ≡ Kc by

Kcα := KcΩ =

∫ s

0

Ω(s′)× τ (s′) ds′. (3.8)

While it is also possible to build the clamped condition τ (0) ≡ τ 0 into Kc by restricting

Ω⊥(s = 0) = 0, doing this causes tension to be ill-defined at s = 0. We choose not to

enforce Ω⊥(0) = 0 kinematically, but rather mechanically through the bending force. The

ambiguity in enforcing Ω⊥(0) = 0 kinematically and/or mechanically has a physical origin

in the nonzero length of a clamp. If we consider s = 0 to be “inside” the clamp, then

Ω⊥(0) = 0, but if s = 0 is “outside” the clamp, then Ω⊥(0) is free.

3.1.2.3 Removing the null space

We now present a formulation which explicitly removes the null space from K by parame-

terizing Ω(s) using an orthonormal triad (τ (s),n1(s),n2(s)) at each point. To do so, we

represent the unit tangent vector τ (s, t) using spherical angles θ(s, t) and ϕ(s, t) as

τ (s, t) =




cos θ cosϕ

sin θ cosϕ

sinϕ



, (3.9)
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where we define θ to be single-valued at ϕ = π/2 by setting θ (ϕ = ±π/2) = 0. A choice of

normal vectors that are always orthonormal to τ on the unit sphere is

n1 =




− sin θ

cos θ

0



, n2 =




− cos θ sinϕ

− sin θ sinϕ

cosϕ



. (3.10)

Because n1 and n2 can be determined uniquely from τ , we denote them henceforth with

nj (τ (s, t)), for j = 1, 2. Since θ is single-valued at ϕ = π/2, each component of the

orthonormal coordinate system (τ ,n1,n2) is a smooth function of X when τ is smooth.

If we separate the rotation of the centerline about itself from inextensible translational

motions, Ω(s, t) can be restricted to linear combinations of n1 and n2. We let

Ω(s, t) := Ω (τ (s, t), g(s, t)) := g1(s, t)n2 (τ (s, t))− g2(s, t)n1 (τ (s, t)) , (3.11)

where g1(s, t) and g2(s, t) are two specific unknown functions and g = {g1, g2}. Equation

(3.11) implies that, by the right-handedness of the coordinate system (τ ,n1,n2),

∂tτ = Ω× τ = g1n1 + g2n2. (3.12)

Any inextensible velocity of the fiber centerline can now be written in the form

U(s, t) = ∂tX(s, t) = UMP(t) +

∫ s

L/2

2∑

j=1

gj(s
′, t)nj (τ (s

′, t)) ds′. (3.13)

To derive a “weak” formulation of inextensibility, we expand the functions g1(s) and g2(s)

in some basis as

gj(s) =
∑

k

αjkTk(s), for j = 1, 2, (3.14)

53



where Tk(s) are sufficiently smooth scalar-valued basis functions for L2 : [0, L]. Substituting

the basis function expansion (3.14) into the inextensible velocity (3.13), we obtain

U (s) = ∂tX(s) = UMP +

∫ s

L/2

2∑

j=1

∑

k

αjkTk (s
′)nj (τ (s

′)) ds′ := (Kα)(s). (3.15)

where we have used α =
(
αjk,U

)
to parameterize the space of inextensible fiber motions.

3.1.3 Principle of virtual work

The kinematic formulation of Section 3.1.2 can still be used to solve for the line tensions

and fiber velocities. In particular, by substituting the inextensible velocity (3.6) into the

left hand side of the evolution equation (3.1) and setting λ = (Tτ )s, a PDE results with

unknowns α and T . We choose to close our formulation differently, in the process eliminating

the need to solve for tension explicitly.

On every fiber, the principle of virtual work states that the constraint forces λ do no

work for any choice of α [42]. To impose the principle of virtual work, we use the L2 inner

product to compute the total power dissipated in the fluid from λ

P = ⟨Kα,λ⟩ =
∫ L

0

(Kα) (s′) · λ(s′) ds′.
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3.1.3.1 Rank-deficient formulation

In the case when K is given by (3.7), the calculation of the work done by λ proceeds as

⟨Kα,λ⟩ =
∫ L

0

(
UMP +

∫ s

L/2

(Ω(s′)× τ (s′)) ds′
)
· λ(s) ds (3.16)

⟨Kα,λ⟩ =
∫ L

0

(
U(s = 0) +

∫ s

0

(Ω(s′)× τ (s′)) ds′
)
· λ(s) ds (3.17)

= U 0 ·
∫ L

0

λ(s′) ds′ +

∫ L

0

Ω(s) ·
(
τ (s)× ·

∫ L

s

λ(s′) ds′
)
ds (3.18)

: = ⟨α,K∗λ⟩ = 0,

which holds for all α and defines K∗ as the L2 adjoint of K. The third equality, which comes

from changing the order of integration in the first, immediately gives the constraints

K∗λ :=




∫ L
0
λ(s) ds

τ (s)×
∫ L
s
λ(s′) ds′


 =



0

0


 , (3.19)

where the second line holds for all s. The second constraint in (3.19) implies λ = ∂s (Tτ ),

with the first constraint giving the boundary conditions T (s = 0, L) = 0 on tension.1 For

clamped fibers, the corresponding virtual work constraint K∗
cλ = 0 is obtained from (3.19)

by dropping the first row, since the fiber is no longer force-free.

3.1.3.2 L2 weak formulation

We can now use the same ideas on the normal vector formulation of K in Section 3.1.2.3 to

derive the principle of virtual work in that case. Substituting the representation (3.15) into

1In the case when the fiber tangent vector is constant τ (s) ≡ τ , then the first equation in (3.19) gives only
T (0) = T (L). This is consistent with the corresponding line tension equation (3.4), where T only appears
differentiated, since for constant τ we have λ = τ∂sT .
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the general inner product (3.1.3), we arrive at the power equation

P = U(0) ·
∫ L

0

λ(s) ds+

∫ L

0

(∫ s

0

2∑

j=1

∑

k

αjkTk (s
′)nj (τ (s′)) ds′

)
· λ (s) ds = 0. (3.20)

Since the power from the constraint forces must be zero for any inextensible motion (any α),

each term of the constraint (3.20) must be zero. This gives the set of constraints on every

fiber

K∗[X]λ :=




∫ L
0

(∫ s
0
Tk(s

′)n1 (τ (s
′)) ds′

)
· λ(s) ds

∫ L
0

(∫ s
0
Tk(s

′)n2 (τ (s
′)) ds′

)
· λ(s) ds

∫ L
0
λ(s) ds




=




0

0

0



, (3.21)

where the first two constraints hold for all k and the last constraint holds for each of the

three Cartesian directions. Equation (3.21) has the flavor of a Galerkin method: for every Tk

we ask that the forcing λ perform no work against the inextensible motion
∫
Tknj. For this

reason, we refer to (3.21) as a “weak” formulation of the constraint K∗λ = 0, in contrast to

the “strong” pointwise formulation of (3.19). Moving forward, we will use only the strong

formulation, but the weak formulation might be an interesting object for future analysis.

3.2 Bend and twist elasticity

Having looked at inextensibility, we are now ready to examine the coupling of inextensibility

to twist and bend elasticity, and the fluid that surrounds the elastic filament. Our presen-

tation is much the same as in the previous section: we first present an approach which is

common in the literature but which we do not use (which we call the Kirchhoff model), and

then present our approach (which we call the Euler model). The distinction between the

two, as discussed in Chapter 1, is whether the fiber cross section rotates with the local fluid

angular velocity, or whether we need to track perpendicular components of the angular fluid

velocity at all. As for inextensibility, we establish that the two approaches are equivalent,
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but in this case the equivalence is only in the limit when the slenderness ϵ→ 0.

3.2.1 Fiber geometry: the material frame and twist angle

Once we start to track the twist of the fiber centerline, we need to introduce additional

degrees of freedom beyond just the positions X(s). In previous immersed-boundary formu-

lations where twist elasticity is coupled with fluid mechanics [49, 50], the rod is defined by

an orthonormal material frame
(
D(1)(s),D(2)(s),D(3)(s)

)
. In the standard model for slen-

der fibers, it is assumed that the fibers are unshearable, so that cross sections of the fiber

maintain their shape (e.g., circular) and remain perpendicular to the tangent vector. This

implies the constraint

D(3) = τ . (3.22)

The fiber cross sections are allowed to twist relative to the tangent vector. The twist density

ψ(s) is defined as

ψ := D(2) · ∂sD(1) (3.23)

with boundary conditions

ψ(0) = ψ(L) = 0 (3.24)

for a free filament [33]. The use of the material frame is somewhat cumbersome, however,

since it requires us to keep track of three separate axes throughout the course of a simulation.

We will instead use a formulation based on the twist-free Bishop frame [84], in which the

state variables are the tangent vector τ (s) and a degree of twist θ(s) relative to the Bishop

frame. The Bishop frame is an orthonormal frame
(
b(1)(s), b(2)(s), τ (s)

)
which satisfies

b(2) · ∂sb(1) = −b(1) · ∂sb(2) = 0, (3.25)

making it twist free. The Bishop frame along the entire fiber can be constructed by choosing
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b(1)(0) and b(2)(0) such that
(
b(1)(0), b(2)(0), τ (0)

)
is an orthonormal frame, and then solving

the ordinary differential equation (ODE) [84]

∂sb
(1) = (τ × ∂sτ )× b(1), (3.26)

for b(1)(s), with b(2) = τ (s)× b(1). The material frame and Bishop frame are related by [84]

D(1) = b(1) cos θ + b(2) sin θ, D(2) = −b(1) sin θ + b(2) cos θ, D(3) = τ , (3.27)

so that θ(s) is the angle of rotation of the material frame relative to the Bishop frame. Solving

(3.26) is also called “parallel transporting” the vector b(1), since its tangential component is

kept at zero by performing rotations about the binormal [84]. Using (3.27), it can be shown

that the twist (3.23) simplifies to [84]

ψ = ∂sθ. (3.28)

If θ is a constant, the material frame is just a constant rotation of the twist-free Bishop

frame, so the twist density ψ = ∂sθ = 0 as well.

3.2.1.1 Evolution of the material frame and twist angle

Let us now consider what the inextensibility and unshearability constraint imply for the

motion of the material frame, and consequently the evolution of the twist density (3.28).

Because the material frame is orthonormal and stays orthonormal for all time, its velocity

is constrained to satisfy

∂tD
(i) = Ω×D(i), (3.29)

for some Ω(s). In the particular case of i = 3, we have the evolution equation (3.5), which

is the bedrock of our formulation of inextensibility.
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Let us now derive an evolution equation for the twist ψ. While the result we give is well-

known [33], this derivation uses straightforward calculus, rather than a variational approach,

and it is hence worth repeating. Because the material frame
(
D(1)(s),D(2)(s),D(3)(s)

)
is

orthonormal, it evolves by the parallel transport equation

∂sD
(i) = ω ×D(i), (3.30)

along the arclength of the filament. Substituting the definition of twist from (3.23), we

obtain

ψ = ∂sD
(1) ·D(2)

=
(
ω ×D(1)

)
·D(2) =

(
D(1) ×D(2)

)
· ω = τ · ω (3.31)

So ω∥ = ψ. Likewise, setting i = 3 in (3.30) and using the constraint τ = D(3) from (3.22)

gives ∂sτ = ω × τ . Crossing both sides with τ , we obtain the total representation of ω as

[84]

ω = τ × ∂sτ + τψ (3.32)

We now equate the t derivative of (3.30) with the s derivative of (3.29),

∂t

(
ω ×D(i)

)
= ∂s

(
Ω×D(i)

)

∂tω ×D(i) + ω × ∂tD
(i) = ∂sΩ×D(i) +Ω× ∂sD

(i)

∂tω ×D(i) = ∂sΩ×D(i) +Ω×
(
ω ×D(i)

)
− ω ×

(
Ω×D(i)

)
. (3.33)

The last equality used the evolution equations (3.30) and (3.29) for D(i). Using the triple
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cross product identity a× (b× c) + c× (a× b) + b× (c× a) = 0, we can write (3.33) as

∂tω ×D(i) = ∂sΩ×D(i) + (Ω× ω)×D(i), (3.34)

which must hold for all i. This gives [33, Eq. (54)]

∂tω = ∂sΩ+ (Ω× ω) . (3.35)

To derive the evolution equation for the twist angle, we take the τ component of (3.35) and

use (3.29)

∂t (ω · τ )− ω · ∂tτ = ∂s (Ω · τ )−Ω · ∂sτ + (Ω× ω) · τ (3.36)

∂t (ω · τ ) = ω · (Ω× τ ) + ∂s (Ω · τ )−Ω · ∂sτ + (Ω× ω) · τ .

The triple products cancel, and using (3.31), we get the twist evolution equation

∂tψ = ∂sΩ
∥ − (Ω · ∂sτ ) . (3.37)

3.2.2 The Kirchhoff model

The distinguishing feature of what we refer to as the Kirchhoff model is that the rotational

velocity of the tangent vector must be exactly equal to the local angular fluid velocity (2.3),

Ω = Ψ ∂tτ = Ψ× τ . (3.38)

However, because ∂tτ = ∂sU , the assumption (3.38) implies a local constraint that relates

the translational and rotational velocity of the rod

∂sU = Ψ× τ . (3.39)

60



Thus the fluid velocity is (locally) constrained so that the integrity of the rod cross section

is preserved, i.e., that the rod is unshearable [33], and inextensible, since (3.39) implies the

inextensibility constraint (3.2).

In the Kirchhoff model as presented in [47, 49, 50], the total force density f(s) and torque

density n(s) exerted by the fiber on the fluid are given by the force and torque balances [47]

f = ∂sF , n = ∂sN + τ × F . (3.40)

Here the torque density ∂sN (s) comes from the internal moments on the rod N (s), which

are given in terms of the bending modulus κ and twist modulus γ, both of which we assume

to be constant along the cylindrical rod. The internal moment N (s) can be written in terms

of the material frame as [47, 49, 50] (see also [38, c. 3] for a more mechanics-based discussion)

N = κ
(
−D(2) · ∂sτ

)
D(1) + κ

(
∂sτ ·D(1)

)
D(2) + γψτ (3.41)

= κ
((

D(1) ×D(2)
)
× ∂sτ

)
+ γψτ

= κ (τ × ∂sτ ) + γψτ ,

subject to the free fiber boundary conditions [33]

N (s = 0, L) = 0 ∂sτ (s = 0, L) = 0, (3.42)

and twist boundary conditions (3.24). The torque density ∂sN (s) in (3.40) is

∂sN = κ
(
τ × ∂2sτ

)
+ γ (τ∂sψ + ψ∂sτ ) , (3.43)

with the remaining torque density coming from the force F (s), which is subject to the free
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fiber boundary conditions

F (s = 0, L) = 0. (3.44)

As discussed in [47, p. 5], the force F is a Lagrange multiplier to enforce the position-

based constraint ∂sX = τ . It turns out, however, that the final solution for F depends

on the internal torque (3.43), since the perpendicular torque from F must eliminate the

perpendicular torque coming from ∂sN for the constraint (3.39) to hold. This is because

perpendicular angular velocity Ψ⊥
n ∼ ϵ̂−2n⊥, while translational velocity Un ∼ n⊥ log ϵ̂ (see

the local drag estimates in Section 2.1). Thus, it is impossible for (3.39) to hold if there is

a O(1) perpendicular torque on the fluid, so F must cancel the O(1) perpendicular torque

in ∂sN .

We now write an explicit formula for F that yields a torque density n which is only

in the parallel direction, plus a Lagrange multiplier torque in the perpendicular direction.

Because this formula eliminates perpendicular torque from the constitutive model, it also

eliminates the dependency of torque on the bending modulus κ, and leaves only parallel

torque depending on the twist modulus γ. The main step is to introduce the forces from

bending F (κ)(s) and twisting F (γ)(s), such that when we take their cross product with τ

and add it to ∂sN in (3.48), the perpendicular components of torque will be eliminated

F (κ) = −κ∂2sτ , F (γ) = γψ (τ × ∂sτ ) . (3.45)

We then redefine the force F in the Kirchhoff model as

F = F (κ) + F (γ) +Λ, (3.46)

where now Λ(s) is the Lagrange multiplier that enforces the velocity-based constraint (3.39).

For free fibers, the force F must vanish at the endpoints (see (3.44)), which, combined with
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(3.42), leads to the free fiber boundary conditions

∂sτ (s = 0, L) = 0, ∂2sτ (s = 0, L) = 0, Λ(s = 0, L) = 0, and ψ(s = 0, L) = 0.

(3.47)

Substituting the new form of F in (3.46) into (3.40), we have the torque density applied to

the fluid as

n = ∂sN + τ ×
(
F (κ) + F (γ) +Λ

)
(3.48)

= (γ∂sψ) τ + τ ×Λ = n∥τ + τ ×Λ⊥, (3.49)

where we defined the parallel torque coming from twist as [33]

n∥ = γ∂sψ. (3.50)

Throughout this section, we have assumed that the filament is intrinsically straight and

untwisted; expressions for n∥ and F in the case of an intrinsically bent and twisted rod are

given in Section 3.2.3.1.

Note that only the (two) perpendicular components of Λ enter in the torque (3.49). The

third Lagrange multiplier required to enforce (3.39) is the parallel component of Λ, which

enters in the force density applied to the fluid as λ(s),

f = ∂s

(
F (κ) + F (γ) +Λ

)
= f (κ) + f (γ) + λ, where (3.51)

f (κ) = −κ∂3sτ , f (γ) = γ∂s (ψ (τ × ∂sτ )) , and λ = ∂sΛ.

In our reformulation of the Kirchhoff model, the force density on the fluid is given by (3.51)

and the torque is given by (3.49). This makes it obvious that the only perpendicular torque

acting on the fluid comes from the Lagrange multipliers Λ⊥, while the parallel torque comes
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from twist elasticity.

3.2.2.1 Linear system for Λ

To derive a linear system for Λ, we first write the constraint (3.39) in terms of the total

force density f(s) and torque density n(s) applied by the rod to the fluid using the mobility

operators defined in (2.4),

∂s (Mttf +Mtrn) = (Mrtf +Mrrn)× τ . (3.52)

We then substitute the representations for f and n from (3.51) and (3.49), and define a

linear operator C such that (Cx) (s) = τ (s) × x(s). This yields the second-order nonlocal

boundary value problem (BVP)

[∂s (Mtt∂s +MtrC) + C (Mrt∂s +MrrC)]Λ = (3.53)

−∂s
(
Mtt

(
f (κ) + f (γ)

)
+Mtr

(
n∥τ

))
− C

(
Mrt

(
f (κ) + f (γ)

)
+Mrr

(
n∥τ

))

which can be solved for the Lagrange multipliers Λ(s). Using the force f in (3.51) and

torque in (3.49) then gives the resulting velocities in the Kirchhoff model,

U = Mtt

(
f (κ) + f (γ) + λ

)
+Mtr

(
n∥τ + τ ×Λ

)
, (3.54)

Ω = Ψ = Mrt

(
f (κ) + f (γ) + λ

)
+Mrr

(
n∥τ + τ ×Λ

)
. (3.55)

3.2.3 The Euler model

The main difference between the Kirchhoff model and what we refer to as the Euler model

is how the rotation rate of the cross section (equivalently, of the tangent vector) is obtained.

In the Kirchhoff model, it does not matter whether we use ∂sU or Ψ × τ to update the

tangent vector, since by (3.39) they must be the same. In the Euler model, by contrast, we
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do not set Ω to be equal to Ψ as in (3.38), and consequently do not enforce the constraint

(3.39) that follows from (3.38). Instead, we relate Ω⊥(s) to the translational velocity via

Ω⊥ = τ × ∂sU , and ∂tτ = ∂sU = Ω⊥ × τ , (3.56)

where Ω⊥
E(s)·τ = 0, and, unlike the Kirchhoff model, Ω⊥ is not necessarily equal toΨ⊥. The

evolution of the fiber can now be obtained by solving for U(s) and specifying Ω∥(s) = Ψ∥(s).

In the Euler model, there is only one constraint, the inextensibility constraint (3.2).

This means that the Lagrange multiplier to enforce this constraint should have only one

independent component, as opposed to the three independent components for the Lagrange

multiplier in the Kirchhoff model. Specifically, the Lagrange multiplier Λ(s) reduces to a

scalar line tension T (s),

Λ = Tτ , (3.57)

with the free-fiber boundary condition (3.47) implying that

T (s = 0, L) = 0. (3.58)

SinceΛ is tangential, the torque on the fluid in (3.49) reduces to n = n∥τ , where n∥ is defined

in (3.50). The force is still given by (3.51), but now with Λ having only one independent

component. Put another way, the equations now reduce to an inextensible rod plus an

additional force and parallel torque due to twisting, so that we can justify the assumption

in Chapter 2 that the centerline torque is only in the parallel direction.

To be more precise, the translational velocity U(s) in the Euler model is obtained by

solving a constrained system which includes only the parallel torque density. This constrained

system is derived by substituting (3.57) into the Kirchhoff velocity (3.54), and then using the

parameterization of the inextensible motions (3.6) (and resulting virtual work constraint) to
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obtain the system

Kα = Mtt

(
f (κ) + f (γ) + λ

)
+Mtr

(
n∥τ

)
(3.59)

K∗λ = 0.

The evolution of the twist angle in (3.37) requires the rotation rate Ω∥(s), which is

computed in a post-processing step as the parallel component of the angular velocity in the

Kirchhoff model (3.55),

Ω∥ =
(
Mrt

(
f (κ) + f (γ) + λ

)
+Mrr

(
n∥τ

))
· τ . (3.60)

The Euler model does not enforce the constraint (3.39), since only the translational velocity

U and parallel rotational velocity Ω∥ are tracked. In the next setion, we study the effect of

this on the velocity of the fiber centerline.

We emphasize that our choice to name the model of this section the Euler model and

that of the previous section the Kirchhoff model is historical and arbitrary. The reason we

choose the naming we do is because the Kirchhoff model as formulated in Section 3.2.2 is

what has been used before in the dynamics of rods with twist [47, 49, 50], while the Euler

model is the one is closest to what has been done before without twist [15, 22], and is in our

opinion easier to extend to include twist.

3.2.3.1 The Euler model with intrinsic curvatures

In (3.51) and (3.59), we derived the Euler model from the Kirchhoff model by first setting

F = F (κ)+F (γ)+Λ in (3.46), where F (κ) and F (γ) are defined to eliminate the perpendicular

torque in ∂sN , then setting Λ = Tτ , which eliminates the perpendicular torque Lagrange

multipliers that are the distinguishing feature of the Kirchhoff rod model. These two steps

eliminate all perpendicular torques from the formulation, which leads to the Euler model.

66



In this section, we repeat this procedure on a fiber with intrinsic curvature and twist

(e.g., a flagellum [85]) to derive the corresponding Euler model. In this case, we have the

moment [50]

N = κ
((
∂sD

(2) ·D(3) − κ1

)
D(1) +

(
∂sD

(3) ·D(1) − κ2

)
D(2)

)

+ γ
(
∂sD

(1) ·D(2) − ϕ
)
D(3)

= κ
(
τ × ∂sτ − κ1D

(1) − κ2D
(2)
)
+ γ (ψ − ϕ) τ , (3.61)

where κ1 and κ2 are the preferred curvatures, and ϕ is the preferred twist angle.

We illustrate the key steps here assuming constant κ1, κ2, and ϕ. Taking the s derivative

of N and separating the result into tangential and perpendicular parts, we have

∂sN = κ
(
τ × ∂2sτ − κ1∂sD

(1) − κ∂sD
(2)
)
+ γ ((∂sψ) τ + (ψ − ϕ)∂sτ ) (3.62)

= τ ×
(
κ
(
∂2sτ + κ1

(
τ × ∂sD

(1)
)
+ κ2

(
τ × ∂sD

(2)
))

− γ (ψ − ϕ) (τ × ∂sτ )
)

+
(
κ
(
−κ1

(
∂sD

(1) · τ
)
− κ2

(
∂sD

(2) · τ
))

+ γ∂sψ
)
τ (3.63)

To derive an Euler model, we now amend (3.45) and (3.46) to

F (κ) = −κ
(
∂2sτ − κ1ψD

(1) − κ2ψD
(2)
)
, F (γ) = γ (ψ − ϕ) (τ × ∂sτ ) , (3.64)

F = F (κ) + F (γ) + Tτ .

Just like in the case of intrinsically straight and untwisted fibers, substituting this represen-

tation into (3.40) gives the force and torque density applied to the fluid as

f = ∂sF , n = n∥τ , n∥ = κ
(
κ1

(
D(1) · ∂sτ

)
+ κ2

(
D(2) · ∂sτ

))
+ γ∂sψ. (3.65)

Free fiber boundary conditions are modified in the case of intrinsic curvature and twist.
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As before, we require N = 0 and F = 0 at the free end, which implies that

ψ = ϕ, ∂sτ = κ2D
(1) − κ1D

(2), ∂2sτ = κ1ϕD
(1) + κ2ϕD

(2), and T = 0 (3.66)

at a free end. The equation for ∂sτ is derived by using (3.61) and subsitutingD(1) = D(2)×τ

and D(2) = τ ×D(1).

3.2.4 Comparing the Kirchhoff and Euler formulations

In this section, we analyze the difference between the Kirchhoff model of Section 3.2.2 and

the Euler model of Section 3.2.3 for fibers without intrinsic curvature and twist. Because

the Kirchhoff model accounts for the angular fluid velocity and has more degrees of free-

dom, we refer to the translational velocity obtained from (3.54) as the “exact” velocity U ,

with corresponding tangent vector evolution ∂tτ = ∂sU = Ψ × τ = Ω × τ . We refer to

the translational velocity from the Euler model (3.59) as UE and the parallel rotational

velocity from the Euler model (3.60) as Ω
∥
E. Since the rotation of the tangent vector in the

Euler model is obtained from ∂sUE, the parallel rotational velocity Ω
∥
E represents the only

remaining degree of freedom. To examine the difference between the models, we substitute

the definitions (3.54), (3.59), (3.55), and (3.60) to define

∆U = U −UE = Mtt (λ− λE) +Mtr (τ ×∆Λ) , (3.67)

∆Ψ∥ = Ω∥ − Ω
∥
E = (Mrt (λ− λE) +Mrr (τ ×∆Λ)) · τ := ∆Ψ · τ (3.68)

The differences in velocity (3.67) and (3.68) depend on the difference in the constraint force

∆Λ := Λ−ΛE, (3.69)
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and its derivative, the force density λ − λE, where ΛE = Tτ and λE = ∂s (Tτ ) are the

constraint force and force density from the Euler model.

To obtain ∆U and ∆Ψ∥, we solve for the perturbation of the total velocity from the

Euler velocity by solving the “mismatch” problem

∂s∆U + τ ×∆Ψ = −m (3.70)

m = ∂s
(Mtt (∂sF E) +Mtr(n

∥τ )
)
+ τ ×

(Mrt (∂sF E) +Mrr

(
n∥τ

))
, (3.71)

where F E = F (κ) + F (γ) +ΛE, (3.72)

is the total force in the Euler model. This problem, which we obtain by substituting (3.69)

into the Kirchhoff model (3.53), gives a second order nonlocal BVP for ∆Λ as a function

of the inconsistency in the evolution of the tangent vector in the Euler formulation m(s).

Because the Euler formulation does not enforce (3.39), the mismatchm is nonzero in general.

We therefore need the Lagrange multiplier ∆Λ to correct for it and make the total Kirchhoff

velocities U = UE + ∆U and Ω = Ψ = ΨE + ∆Ψ consistent with (3.39). This Lagrange

multiplier can be split into two components: a perpendicular part ∆Λ⊥ that contributes

to the torque τ × ∆Λ, and a parallel part ∆Λ∥ which preserves the inextensibility of the

velocity ∆U . Because the constraint force ΛE = Tτ in the Euler model is tangential, we

have ∆Λ⊥ = Λ⊥ and ∆Λ∥ = Λ∥ − Tτ , where T (s) is the tension in the Euler model.

In this section, we use asymptotic estimates and numerical calculations to affirm that

∥∂s∆U∥ / ∥∂sUE∥ ∼ ϵ2 log ϵ≪ 1, (3.73)

∥∥∆Ω∥∥∥ /
∥∥∥Ω∥

E

∥∥∥ ∼





ϵ4 (log ϵ)2 γ > 0

ϵ2 log ϵ γ = 0

(3.74)

away from the endpoints, so that the difference between the Kirchhoff and Euler translational

and rotational velocities is very small for sufficiently slender fibers.
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3.2.4.1 Asymptotic estimates

To estimate the strength of ∆Λ, we use the local drag estimates of Chapter 2, repeated here

for clarity

Mtt ∼ log ϵ, Mtr ∼ log ϵ, Mrt ∼ log ϵ, Mrr ∼ ϵ−2, (3.75)

Beginning with the perpendicular Lagrange multipliers ∆Λ⊥ = Λ⊥, we first observe that the

mismatch m in (3.71) is O(log ϵ) at most, since we don’t expect F E as defined in (3.72) to

change with ϵ. So ∆Λ⊥ cannot exceed O(ϵ2 log ϵ), since otherwise the angular velocity from

Mrr would be too large to be consistent with the O(log ϵ) mismatch. If ∆Λ⊥ ∼ ϵ2 log ϵ,

then the rotational velocity ∆Ψ is O(log ϵ), and therefore of the correct order to cancel the

mismatch m, while the translational velocity ∆U = Mtt (∂s∆Λ) + Mtr (τ ×∆Λ), is of

the order ∆U ∼ ϵ2 (log ϵ)2 (if we assume that ∆Λ and its derivative are of the same order,

which should be true away from the endpoints).2 This implies that in the fiber interior

∂s∆U ∼ ϵ2 (log ϵ)2, which gives (3.73).

The difference in parallel angular velocity ∆Ω∥ is given asymptotically by

∆Ω∥ = τ ·∆Ψ = τ · (Mrt (∂s∆Λ) +Mrr (τ ×∆Λ)) ≈ τ · (Mrt (∂s∆Λ)) , (3.76)

where the last approximate equality is because Mrr (τ ×∆Λ) is orthogonal to τ to leading

order by (2.47). In fact, in the fiber interior Mrr (τ ×∆Λ) · τ ∼ log ϵ ∥∆Λ∥ ∼ ϵ2 (log ϵ)2.

Adding the rot-trans contribution, since ∆Λ ∼ ϵ2 log ϵ and Mrt ∼ log ϵ, we get ∆Ω∥ ∼

ϵ2 (log ϵ)2. To non-dimensionalize this, we need to estimate the parallel rotational velocity

Ω
∥
E defined in (3.60). When there is no twist, there is no parallel torque, so Ω

∥
E = τ ·

(Mrt∂sF E) ∼ log ϵ, and the relative difference should be
∥∥∆Ω∥

∥∥ /
∥∥∥Ω∥

E

∥∥∥ ∼ ϵ2 log ϵ. When

2Recall that ∆Λ∥ is a Lagrange multiplier that makes the perturbation velocity ∆U inextensible. Since
the interior velocity is at worst ∆U ∼ ϵ2 (log ϵ)

2
and the translational mobility is O(log ϵ), the Lagrange

multiplier ∆Λ∥ ∼ ϵ2 log ϵ at worst, just like ∆Λ⊥.
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there is twist, the disparity is even larger, since Ω
∥
E ∼ ϵ−2, which explains the two different

cases in (3.74).

Summarizing, the mismatch m in (3.70) is compensated for by ∆Ψ⊥, which grows as

ϵ → 0, even as ∆Λ decays. These are the components of the velocity that are discarded

in the Euler model, so it does not matter if they differ from those of the Kirchhoff model.

That said, because ∆Λ must be zero at the endpoints by the boundary conditions (3.44),

the perpendicular torques cannot generate angular velocity there, and the term ∆Ψ⊥ cannot

compensate for the mismatch m at the endpoints. Instead, the mismatch there has to be

compensated for by terms involving ∂s∆Λ, meaning that the derivative of ∆Λ must be

large near the boundaries, as we see in Fig 3.1, where we solve it numerically. Because of

the nonsmoothness of the mismatch problem, we will use a simple second-order numerical

method to solve it, as described next. Once we switch to the Euler model, we can use more

efficient spectral methods, as discussed in Chapter 6.

3.2.4.2 Solving numerically: method

We now solve the mismatch problem (3.70) numerically to establish that our asymptotic

estimates do indeed hold. Following the method outlined in [47], we introduce a number of

links N and set ∆s = L/N . The discretization of the fiber is staggered : the “nodes” are

located at sj = j∆s, where j = 0, . . . N , so that there are actually N +1 nodes. The “links”

are centered on sj+1/2 = (j + 1/2)∆s, where j = 0, . . . , N − 1, so that there are N links.

Euler model. In our second-order discretization of the Euler model (3.59), we define λ,

f (κ), and f (γ) at link centers (j + 1/2)∆s, for j = 0, . . . N − 1. All mobility operators in

(2.4) are then replaced with the obvious discretizations of the integrals which sum over the

links with weight ∆s. For example,

(Mttf) (si+1/2) ≈
N−1∑

j=0

Mtt

(
Xi+1/2,Xj+1/2

)
f j+1/2∆s := (M ttf)i+1/2 . (3.77)
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Note that this discretization does not correspond to a more common discretization of an

inextensible bead-link polymer chain, which would place forces on N +1 blobs connected by

N inextensible links, e.g., [52]. We use the staggered discretization instead for a more direct

comparison to the Kirchhoff model.

To complete the second-order discretization of (3.59), we have to define the matrices K

and K∗. In the second-order case, these matrices are exact transposes of each other, so we

only have to define one of them. The matrix K is a midpoint discretization of the continuum

operator (3.7), with action given by

(Kα)j+1/2 =U +

j−1∑

k=0

∆s
(
α1,k+1/2n1,k+1/2 + α2,k+1/2n2,k+1/2

)
(3.78)

+
∆s

2

(
α1,j+1/2n1,j+1/2 + α2,j+1/2n2,j+1/2

)
.

The midpoint quadrature assigns a weight of ∆s to all prior nodes 1/2, 3/2, . . . j − 1/2, and

then a weight of ∆s/2 to the current node j + 1/2. The matrix K∗ is the transpose of K.

Finally, the parallel angular velocity (3.60) is obtained at the link centers by dotting

the full angular velocity, Mrtf +Mrr

(
n∥τ

)
(computed at the link centers using the forces

computed at the link centers), with the tangent vectors τ , which are also defined at the link

centers.

Kirchhoff model. The discretization of the Kirchhoff model, which we take from [47], is

more complicated because the forces Λ are defined at the nodes, and not the link centers.

To communicate between the nodes and links, we let Dlb be the N × (N +1) differentiation

matrix, which gives derivates at the links from values at the nodes. We also define Dbl as

the (N − 1) × N differentiation matrix, which gives derivates at interior nodes from values

at the link centers. Likewise the N × (N + 1) averaging matrix Alb gives averages at links

from nodes, and the (N − 1)×N averaging matrix Abl gives averages at interior nodes from
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links. This gives the (N − 1)× (N + 1) system of equations discretizing (3.70)

[Dbl (M ttDlb +M trCAlb) +AblC (M rtDlb +M rrCAlb)]∆Λ = −m (3.79)

= − (DblM tt +AblCM rt)
(
f (κ) + f (γ) + λE

)
− (DblM tr +AblCM rr)

(
n∥τ

)
(3.80)

which we solve for ∆Λ at the N − 1 interior blobs away from the fiber boundaries. Because

Λ is defined at N + 1 points, the other two equations are the BCs ∆Λj = 0 for j = 0, N ,

see (3.44). The matrix C represents cross products with τ j+1/2 = τ ((j + 1/2)∆s), where

in the second-order method τ = ∂sX is evaluated analytically at the links and (Cx)j+1/2 =

τ j+1/2 × xj+1/2. Notice that the calculation of the mismatch (3.80) requires calculation of

the Euler quantities f (κ) and f (γ) and λE at the N links, which we first obtain by solving

the Euler problem to second order accuracy.

3.2.4.3 Numerical results

To numerically compare the Euler and Kirchhoff constitutive models, we will apply the

second-order methods to a curved fiber with L = 2 and tangent vector

τ (s) =
1√
2

(
cos
(
s3(s− L)3

)
, sin

(
s3(s− L)3

)
, 1
)
, (3.81)

(see Fig. 6.8 for a visual). This fiber is chosen to satisfy the free fiber boundary conditions

(3.47). We will also assume an instantaneous twist

ψ = sin (2πs), (3.82)

so that all of the free fiber boundary conditions (3.47) are satisfied. Because X satisfies the

free-fiber BCs, we can compute the elastic force to spectral accuracy simply by differentiating

τ three times analytically, and then setting f (κ) = −κ∂3sτ . For this section, we will compute
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all geometric quantities, for example ∂sτ , ∂
2
sτ and ∂sψ, analytically. We will use a viscosity

of µ = 1 and aspect ratios ϵ̂ = â/L that are a function of the regularized singularity radius

â; the corresponding value of the true fiber radius a ≈ â/1.12 (see (2.53)).

Bending but no twisting. We first solve the mismatch problem (3.70) with bending

modulus κ = 1 and twist modulus γ = 0 using our second-order method with N = 1/ϵ̂

points. In Fig. 3.1, we plot m, ∆Λ, ∆U , τ × ∆Ψ, and ∂s∆U in the basis of the local

triad for ϵ̂ = â/L = 0.005. We observe several features: first, the mismatch m is smooth

until it reaches the endpoints, after which it jumps to a large value at the boundaries.

In the fiber interior, the function ∆Λ is approximately a constant multiple of m, but at

the endpoints it transitions to zero (as required by the boundary condition). Away from the

fiber boundaries, the mismatch m is almost entirely compensated for by the angular velocity

perturbation τ ×∆Ψ, and ∂s∆U is small in the fiber interior, validating (3.73).

Figure 3.1 also shows that τ × ∆Ψ by itself does not compensate for the mismatch m

near the boundaries, since the dominant contribution from torque ∆Λ must be zero there.

The mismatch m near the boundaries must therefore be compensated for by ∂s∆U , which

means that ∆U is highly nonsmooth at the boundaries. Since ∆U comes from ∆Λ, it is

not surprising that ∆Λ is also not smooth at the boundaries, as it takes on its largest values

near the endpoints, only to have to fall back to zero as required by the boundary conditions.

We will focus on the equivalence of the Euler and Kirchhoff models in the fiber interior,

or points O(1) from the fiber endpoints. We therefore define an interior “norm” for all

functions which is simply the L2 norm on 0.05 ≤ s/L ≤ 0.95. In Fig. 3.2(a), we plot the

relative difference in the velocity and forces using this interior norm. We observe convergence

of order ϵ̂2 for all quantities. This verifies, and in fact exceeds, the predictions of (3.73) and

(3.74) of ϵ̂2 log ϵ̂. The reason is that the mismatch is actually dominated by O(1) terms for

the values of ϵ̂ we are interested in, and so our estimates are off by a factor of log ϵ̂.

Twisting but no bending. We now proceed to the case of finite twist modulus, γ = 1,
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Figure 3.1: Solving the mismatch problem (3.70) with bending stiffness κ = 1, twist modulus
γ = 0, and slenderness ϵ̂ = â/L = 0.005. All quantities are shown in the basis of the local triad,
with the τ component in blue and the D(1/2) component in red/yellow. In the top row, from left to
right, we show ∂sUE (the τ component of this is zero because the fiber is inextensible), (negative)
mismatch −m, and the corresponding ∆Λ. Notice how the shapes of ∆Λ and m match, which
implies that ∆Λ(s) ≈ c(ϵ̂)m(s) away from the fiber boundaries. In the bottom row, from left to
right, we show the resulting velocity perturbations ∆Ω∥, ∂s∆U , and τ ×∆Ψ. In the fiber interior,
τ ×∆Ψ ≈ −m, and ∂s∆U(s) ≈ 0. At the endpoints, ∂s∆U reaches values as negative as −10, so
we truncate the y axis to show the behavior in the fiber interior.
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Figure 3.2: Decay of (normalized) magnitude of ∆Λ (yellow), ∂s∆U (blue), and ∆Ω∥ (red) as
slenderness ϵ̂ → 0 for: (a) γ = 0 and κ = 1 with N = 1/ϵ̂+1 grid points; and, (b) γ = 1 and κ = 0
and N = 4/ϵ̂ + 1 grid points. We use an interior “norm” (L2 norm on 0.05 ≤ s/L ≤ 0.95). All
quantities scale like ϵ̂2 when properly normalized, with the exception of ∆Ψ∥ = ∆Ω∥ when there is
twist, which scales faster than ϵ̂3. This establishes (3.73) and (3.74) numerically.

with zero bend modulus. We first plot the quantities related to the mismatch problem (3.70)

in Fig. 3.3. We see similar behavior to the case without twist and with bending force. The

velocity difference ∂s∆U is again small, since most of the mismatch is compensated for by

τ ×∆Ψ. A major difference from the non-twisted case is that ∆Λ and ∆U are smoother at

the boundaries, since the force when κ = 0, given in (3.51), is zero at the fiber boundaries

because of the free fiber boundary conditions (3.47). Because the force decays to zero there,

the mismatch is much smaller at the boundaries (but is still not zero). This means that

τ × ∆Ψ can almost compensate for the entire mismatch everywhere. At the boundaries,

whatever small mismatch there is must be compensated for by ∂s∆U , and so as ϵ̂ becomes

smaller we do see some localized peaks in ∂s∆U near the endpoints.

In Figure 3.2(b), we plot the convergence of the velocities and forces for γ = 1 and

κ = 0. For ∆Λ and ∆U , we observe a similar rate of convergence (approximately ϵ̂2) to

Fig. 3.2(a). In accordance with (3.74), the parallel angular velocity Ω
∥
E is larger when there

is twist, and so as a result the relative rate at which ∆Ω∥ approaches zero is faster. In
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Figure 3.3: Solutions of the mismatch problem (3.70) with twist modulus γ = 1, bending modulus
κ = 0, and slenderness ratio ϵ̂ = â/L = 0.005. The behavior is qualitatively the same as the
mismatch problem without twist, with the perturbations in ∆Ω∥ and ∂s∆U being small relative to
the values obtained from the Euler method. Because the twist force f (γ) is zero at the endpoints,
the mismatch there is small, and ∂s∆U is smoother than seen in Fig. 3.1.
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(3.74) we estimated ϵ̂4 (log ϵ̂)2; in Fig. 3.2(b) we simply show it is faster than ϵ̂3, but the line

isn’t straight, which indicates some kind of log correction. This verifies (3.73) and (3.74)

numerically for finite twist modulus. Combining with our asymptotic estimates in Section

3.2.4.1, we can conclude that the Euler and Kirchhoff models are indeed equivalent to roughly

O (ϵ2) in the fiber interior. Our choice will be to use the Euler model going forward, as it

displays smooth behavior at the endpoints and is consequently easier to design a (spectral)

numerical method around.
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Chapter 4

Conclusions and governing equations

This part of the dissertation was devoted to developing the governing equations that we will

solve numerically in the next part. All of the content in this part was to some extent driven by

the following question: how do we model the hydrodynamics of rotating inextensible slender

fibers? The emphasis here is on rotation, as this drove the development of our RPY-based

slender body theory in Chapter 2 and our comparison of the Kirchhoff and Euler models in

Chapter 3.

In Chapter 1, we examined the deficiencies of existing slender body theories (SBTs) for

rotating filaments. We showed that the singularity-based SBTs of Keller+Rubinow and

Johnson [19, 20], which were designed with the resistance problem in mind, both suffer

from the same issues for rotation-translation coupling in the mobility problem: when the

fiber is driven by an applied torque at its base, their theories imply that torque induces

an O(1) angular-dependent translational velocity on the fiber cross section, which violates

the SBT boundary condition that the fiber only translates and rotates. Indeed, the recent

work of Walker et al. [86] justifies Johnson’s neglect of rot-trans coupling, but only when

the translational velocity is O(ϵ) times the rotational velocity, which is not an assumption

we want to restrict ourselves to. As we show in Chapter 6, neglecting rotation-translation

coupling can lead to overestimation of the torque required to induce large-scale filament
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deformations. It is therefore important to derive an SBT which properly treats rotation-

translation coupling.

In Chapter 2, we used a different definition of a filament as a line of infinitely many Rotne-

Prager-Yamakawa (RPY) regularized singularities, similar to what has been done previously

for translation by Cortez and Nicholas using regularized Stokeslets [70]. We then defined

each component of the 2× 2 mobility operator (translation-translation, rotation-translation,

etc.) as a line integral of the corresponding fundamental regularized singularity given in

(2.5). Because these regularized singularities, which define the mobility for a pair of “blobs,”

give a symmetric 2 × 2 mobility, our mobility for fibers is automatically symmetric, which

alleviates one of the two major problems with previous SBTs. The other issue, the O(1)

angular dependence of the translational velocity on a cross section, is sidestepped because we

use an isotropic regularized singularity function (a delta function on a sphere). This comes

at a price: by using a series of spheres to represent the fiber centerline, we lose fidelity to the

true three-dimensional geometry and the fluid flows near the fiilament surface. While this is

not ideal, it gives a mobility which is physical and simple to compute, since all that results

is a local drag term plus a finite part integral for the trans-trans, rot-trans, and trans-rot

terms, for which special quadrature schemes have already been developed [80].

Using matched asymptotics on the RPY kernels, we found a 2× 2 mobility relationship,

which we then compared to SBT for a three-dimensional tubular fiber. For translation-

translation and rotation-rotation, we found that the two mobilities take the same form,

but with an O(1) difference in the constants. The discrepancy in the constants can be

removed via a judicious choice of regularized singularity radius, which is different for each

component of the mobility; â ≈ 1.06a gives a perfect match in the rot-rot mobilities, while

â ≈ 1.12a matches the trans-trans mobilities. We used the correspondence between RPY

asymptotics and SBT to posit the relationship (2.57) for the off-diagonal rotation-translation

components in SBT. The relationship has a single unknown coefficient k, which we tried to
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obtain in Section 2.1.6 from boundary integral calculations. Our results showed the value of

the coefficient requires an extremely accurate numerical method the more-recently developed

quadrature schemes of [79] (which gave k = 1) produced different results than the first-order

numerical method we presented in [E] (k ≈ 2.85). Because of this, more work (testing on

hundreds or thousands of additional shapes) is required to definitively establish that (2.57)

holds with the same value of k = 1 for a variety of filament shapes.

Using the RPY kernels for the mobility simplified a number of potential issues that arise

for more rigorous models of the three-dimensional fiber geometry. First, we were able to

easily derive mobility formulas near the fiber endpoints simply by modifying the domain of

integration in the inner expansion. This is in contrast to the more rigorous three-dimensional

case, where a nonsingular endpoint flow is obtained by assuming an ellipsoidally-decaying

radius function and distributing the centerline singularities only between the generalized

foci of the body [20]. Furthermore, the RPY mobility immediately generalizes to multiple

filaments (see Section 2.2), since the flow induced on filament j can also be computed by

an integral of the RPY kernel over filament i. In SBT, while the pointwise velocity induced

by singularities might be constant on a cross section of fiber i, the same might not be true

on a nearby fiber j, which leads to an ambiguity in how the induced flow on the centerline

of fiber j is assigned. This is especially relevant when fibers are in near contact, and shows

why only three-dimensional boundary integral approaches are precise when fibers are O(ϵ)

apart; such calculations are however very complex and expensive for suspensions of many

fibers [87].

In Chapter 3, we looked at how the mechanical properties of the filament coupled to

those of the fluid. We derived a new formulation of inextensibility based on rotating tangent

vectors, which we coupled with the principle that constraint forces do no work to yield

a saddle point system in two unknowns (the tangent vector rotation rates and constraint

forces). We examined two different models of fluid-fiber coupling for twist elasticity, finding
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that the dynamics of the “Kirchhoff” model, which constrains the perpendicular rotational

fluid velocity on the fiber surface to be equal to that obtained from translational dynamics,

are identical to those of the “Euler” model, which considers only parallel rotational dynamics

and translational velocity, in the limit ϵ → 0. We choose to utilize the Euler model in the

remainder of this dissertation, since the extra degree of rotational freedom (parallel torque

and parallel rotational velocity) can be easily incorporated into the formulation without

twist. To compute the additional force and parallel torque due to twist, we use the Bishop

(twist-free) frame and evolved the angle of twist relative to that frame [84].

4.1 Summary of equations

We now summarize the equations we will solve in Part II of the dissertation. We recall that

inextensible motions of the fiber centerline are parameterized by

(Kα) (s) = UMP +

∫ s

L/2

Ω(s′)× τ (s′) ds′. (4.1)

Letting α = (Ω,UMP), the dynamics of the fiber centerline(s) are obtained by solving the

saddle point system



−Mtt K
K∗ 0






λ

α


 =



Mtt

(
f (κ) + f (γ)

)
+Mtr

(
n∥τ

)
+ u0 (X)

0


 , (4.2)

f (κ) = −κ∂4sX, f (γ) = γ∂s
(
ψ
(
∂sX× ∂2sX

))
, n∥ = γ∂sψ,

K∗λ :=




∫ L
0
λ(s) ds

τ (s)×
∫ L
s
λ(s′) ds′


 ,
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subject to the free fiber BCs (3.47). Solving the saddle-point system (4.2) in the least squares

sense yields the constraint forces λ = ∂s (Tτ ) and translational velocity

∂tX(s) = (Kα) (s) =
(
K (K∗M−1

tt K
)−1K∗

)
M−1

tt UEx := KNK∗M−1
tt UEx, (4.3)

where UEx denotes the right hand side in the saddle point system (4.2) and the projected

mobility operator N is self-adjoint with respect to the L2 inner product, N = N ∗. The

saddle point system (4.2) as written can apply to one fiber or multiple fibers, in which

case the operators K and K∗ are block-diagonal operators with the diagonal having the

corresponding operator for each individual fiber.

Because Ω = Ω∥τ is in the null space of K, it is not determined by (4.2), and is instead

obtained from the post-processing step (3.60),

Ω∥ =
(Mrtf +Mrr

(
n∥τ

))
· τ , (4.4)

where each component of the mobility in the foregoing equations is defined via a line integral

of the RPY regularized singularity in (2.4). The evolution of the twist ψ = ∂sθ is given by

(3.37)

∂tψ = ∂sΩ
∥ − (Ω · ∂sτ ) = ∂sΩ

∥ −
(
Ω⊥ · ∂sτ

)
(4.5)

where in the second equality we have used the formula τ · ∂sτ = 0, which means that the

parallel part of Ω makes no contribution to the dot product Ω · ∂sτ .

If needed (e.g., for visualization or intrinsic curvature), the material frame vectorsD(1)(s)

and D(2)(s) can be obtained by computing the Bishop frame from (3.26), then twisting it by

the angle θ. The Bishop frame has to be chosen at one point on the fiber, and the angle θ

is only determined up to a constant. Our choice is to keep track of the material vector D(1)
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at the fiber midpoint by explicitly evolving it via rotation by Ω(L/2),

∂tD
(1)(L/2) =

(
Ω⊥(L/2) + Ω∥(L/2)τ (L/2)

)
×D(1)(L/2). (4.6)

We then assign θ(L/2) = 0, i.e., require that the Bishop frame be the same as the material

frame at L/2

b(1)(L/2) = D(1)(L/2), (4.7)

which provides a boundary condition for the Bishop ODE (3.26).

4.2 Future directions

Our work here is by no means the final say on SBT for twisting filaments, but is rather

intended as a starting point to provoke future research in three main directions. First, there

is the possibility of developing a singularity representation for the flow around a twisting

filament that properly matches the velocity on the fiber cross section when the rotational

velocity is much faster than the translational velocity. For an ellipsoidal filament, the velocity

on a cross section due to a rotlet (1.10) can be expanded using (1.12) as

8πµu(Ψ)
(
X̂ (s, θ)

)
=

2n∥

a
(τ × r̂) +

n∥

2

(
ln
(
ϵ−2
)
− 3
)
(τ × ∂sτ ) +U (FP)

n (4.8)

+
n∥κ

2
(eb cos 2θ − en sin 2θ) +O (ϵ) .

Thus, the task is to find another singularity (or set of singularities) that can eliminate the

O(1) dependence on 2θ in the second line, thereby making the cross-sectional velocity a

pure rotation (the τ × r̂ term) plus a pure translation (the next two terms in the first line).

Based on our empirical SBT (2.57), we expect such a singularity, if it exists, to eliminate

the angular dependence while introducing a small correction to the O(1) term multiplying

τ × ∂sτ .
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There is also an opportunity to analyze what Stokes-related partial differential equation

such a slender body theory is the solution of. For the case of translation, Mori, Ohm,

and others [24–26] have shown that slender body theory is an O(ϵ) approximation to a

Stokes partial differential equation where the velocity on the fiber surface is required to be

independent of cross sectional angle. Repeating this analysis for twist, where the velocity

could be a strong function of angle, but only as a rigid body rotation, might offer insights

into why it is so difficult to obtain a singularity solution.
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Part II

Spectral methods for fiber dynamics
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Chapter 5

Introduction

This part of the thesis is concerned with the numerical methods required to efficiently1 simu-

late the dynamics of many filaments in viscous flow. While the equations we wrote in Section

4.1 apply to the deterministic bending and twisting dynamics of many filaments interacting

hydrodynamically, in this part of the thesis we will only consider twisting dynamics for a

single filament. That is, we will develop numerical methods for the following problems:

1. Filaments which resist bending and twist elasticity, but with mobility operators Mtr,

Mrt, and Mrr that only apply on one filament at a time (Chapter 6).

2. Filaments with free ends which resist bending, but not twisting, and interact hydro-

dynamically through the viscous medium (Chapter 7).

3. Filaments which exhibit thermal bending (but not twisting) fluctuations and interact

hydrodynamically through the viscous medium (Chapter 8). This is an extension of

#2 to fluctuating fibers, which were not discussed in our theoretical treatment of the

problem. As we will see, the reason for this is that we first need to discretize the

filaments in space prior to adding thermal bending fluctuations.

1We ask the reader to forgive our use of this word, which is probably the most overused in all of the
numerical analysis literature. Indeed, what do you call the method which is the worst out of all those labeled
“efficient?” Hopefully the answer is not “the one described here!”
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The key bridge from Chapter 6 to Chapter 7 is the demonstration in Section 6.5.1 that twist

elasticity contributes negligibly to the dynamics of free-ended filaments. Building on this,

in Chapter 7, we specialize our spatio-temporal discretizations to the case of free-ended fila-

ments which only resist bending and interacing hydrodynamically. We then use this spatio-

temporal discretization in Chapter 8 to construct a Langevin equation and corresponding

temporal integrator for thermal fluctuations. This introduction discusses the literature for

each of these chapters in order.

5.1 Single fiber hydrodynamics

Once we specify the model of the fiber mechanics, as we did in Chapter 3, a common

numerical choice is to represent the fiber by a discrete set of regularized singularities or

“blobs,” where each blob exerts a regularized force (coming from internal mechanics) on

the fluid, and the blob velocity is obtained by interpolating the fluid velocity back onto the

blob center, as described in Section 2.1. The regularized delta function we use to spread

the force to the fluid and interpolate the velocity back onto the blobs makes the method: in

this dissertation, we always use the RPY kernel, for which the regularized delta function is a

surface delta function on a sphere. Still, other choices are possible, including the immersed

boundary method [60, 74, 76], the method of regularized Stokeslets [62, 63], and the force

coupling method [61, 73, 88].

No matter the method chosen, blob-based methods suffer from the same fundamental

problem when trying to represent slender tubular bodies. If we want the fluid to see a tubular

body rather than a series of disconnected blobs, then the fluid force and fiber velocity ought

to be obtained from integrals of the regularized singularities (just as SBT is obtained from

integrals of singularities), as we do in Chapter 2. Thus, in blob-based methods, the fluid

will see a tubular body if there are sufficiently many points for the sum over the blobs to

be indistinguishable from the integral. It has been shown [69, 76, 89] that this requires 1/ϵ
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blobs, which means that blob based methods do not scale well in the slender limit. While

this limitation can be partially overcome with adaptive mesh refinement [90], grid coarsening

with local velocity correction [91–93], and kernel-independent fast multipole methods (to

accelerate many-body sums) [94], the fact remains that to achieve controlled accuracy for

dilute suspensions of many fibers, discretizing the fiber by a collection of marker points is

much less efficient than treating it as a continuum. This is especially true for semi-flexible

or stiff fibers, where the smooth fiber shapes are well represented in a spectral basis with

rapidly decaying coefficients.

In order to circumvent this problem, we use the formulation of Chapter 2 to define the

velocity as an integral of the RPY singularities over the continuum curve X(s), which we

already showed is asymptotically equivalent to the more common Keller-Rubinow slender

body theory [19], if the RPY regularization radius â = ae3/2/4 ≈ 1.12a. The question then

becomes how to numerically track the curve X(s). Since the fiber shapes are smooth, we

choose to use a set of Chebyshev tracking points X, which define a Chebyshev interpolant

of the fiber centerline X(s). This gives us all the tools we need to define the hydrodynamic

mobility.

A more difficult task is to evaluate the mobility efficiently in a manner independent of

the fiber slenderness. One possibility is to use the asymptotic formulas of Chapter 2, which

remove the â lengthscale by evaluating those integrals asymptotically, and leave an O(1)

finite part integral to be evaluated, just as in SBT. The finite part integral poses a serious

challenge for numerical methods for two reasons: first, its integrand is singular, so it cannot

be done with traditional direct quadrature schemes. Second, it turns out that the eigenvalues

of the SBT continuum operator Mtt become negative for high-frequency modes [25]. This

unphysical behavior occurs when the finite part integral dominates over the positive definite

local drag term in the mobility. For ellipsoidal fibers, the local drag term is even more

dominant than for the cylindrical fibers we consider here, and Tornberg and Shelley [22,
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Sec. B.1] showed that only 33 modes have positive eigenvalues when ϵ = 10−2. As the fibers

become more cylindrical, the discrete asymptotic mobility M tt becomes very ill-conditioned

even for a moderate number of points (see Fig. 6.9), and the constraint force λ fails to

converge as the number of points increases, even in the weak sense.

There have been several attempts to date [22, 25, 95] to remedy this problem and keep

the eigenvalues of the translational mobility away from zero. There are, broadly speaking,

two classes of these methods: methods which regularize the original slender body equations,

and methods which change the integral kernel used to evaluate the fiber velocity. In the first

class, Tornberg and Shelley [22] regularized only the finite part integral by adding a function

δ(s, ϵ) in the denominator of each term. They showed that a proper choice of δ ∼ ϵ does not

change the overall asymptotic accuracy of SBT. Mori and Ohm [25] justified this approach

theoretically by analyzing the error obtained with respect to a more faithful model of the

true three-dimensional dynamics, which they term the “slender body PDE.” They showed

that both the Tornberg and Shelley regularization and spectral truncation (only including

a finite number of modes) both preserve the asymptotic accuracy of SBT while keeping

the eigenvalues of M tt positive (provided that, in the latter case, the number of modes is

sufficiently small).

Recently, Andersson et al. recognized that another choice of regularization is to change

the original integral kernel, which in slender body theory is the linear combination of a

Stokeslet and a doublet. They postulated that expanding the SBT kernel a distance a away

from the fiber centerline, then eliminating all angular-dependent terms, gives an integral

kernel that eliminates the high wave number instabilities observed in the original slender

body equations [95, Fig. 1]. They did not, however, develop an efficient quadrature scheme

for their integral kernel, since the number of points required for a given accuracy still scales

as 1/ϵ [95, Fig. 3].

It is clear then, that while asymptotic evaluation of the RPY mobility gives a formula that
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compares well with SBT, this is something which is not useful in practice, since SBT itself is

not well-suited to numerical computations. Seeing as the original integral of the RPY kernel

(2.63) is well-suited to numerical computations, in this chapter we will develop numerical

methods which compute this integral to numerical, rather than asymptotic, accuracy. These

methods turn out to be based on schemes previously designed for the SBT finite part integral

[80]. Thus our schemes, which are described in Section 6.2, will immediately generalize to

SBT integrals. These schemes form the numerical treatment of the mobility on a single fiber.

For inextensibility, we have already discussed (see Section 1.2.1) the line-tension based

method of Tornberg and Shelley [22] in continuum. The discrete version of this method has

since been used in applications with flexible (and sometimes fluctuating) filaments [96, 97],

and was also extended to simulate falling rigid fibers, the novelty there being that many of

the SBT-related integrals can be done analytically [98]. But in discrete simulations, all of

these methods add a discrete penalty parameter to the line tension equation, which can set

the temporal stiffness. The filament is then no longer discretely inextensible, which makes

it similar to immersed boundary approaches with penalty terms [49, 50]. To our knowledge,

only the recent approaches of Schoeller et al. [47] and Jabbarzadeh and Fu [41] enforce

inextensibility rigorously with Lagrange multipliers. In the case of [41], the fiber is broken

up into segments of regularized point forces, and each segment is updated via a rotation that

preserves inextensibility exactly. Yet both [47] and [41] suffer from the same pitfall as all

regularization methods already mentioned–the scaling of the number of required points with

ϵ. There is therefore a need for a numerical method which enforces inextensibility rigorously

and has a cost independent of the fiber slenderness. This is the method we will develop in

Chapter 6.

Because SBT only reliably gives the trans-trans and rot-rot terms of the mobility (see

Chapter 1), a disconnect has emerged in the numerical analysis literature in which immersed

boundary methods [49], regularized Stokeslets [41, 50], and the force coupling method [47],
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have accounted for the full hydrodynamics (including rot-trans and trans-rot coupling) of

twisting fibers, while methods that use SBT [33, 52, 54] have ignored rot-trans coupling.

Because our RPY-integral formulation in (2.63) includes fully nonlocal hydrodynamics, and

our quadrature schemes allow us to compute the integrals with cost independent of ϵ, we can

for the first time look at the error in excluding rot-trans coupling. To do this, we introduce

a (constrained) backward Euler temporal integration scheme to solve dynamic problems

involving twist. We apply this numerical method to two problems involving twisting fibers:

a relaxing bent fiber, where we explore the feedback of twist on the fiber dynamics, and a

twirling fiber, where we look at the critical frequency at which the fiber starts to whirl and

then transitions to a stable “overwhirling” state [54, 99–101]. For fiber relaxation, we show

that the assumption of twist being in quasi-equilibrium [57, 84] is satisfied for materials in

which the twist and bending moduli are comparable, as is the case in most materials (for

inextensible isotropic elastic cylinders, the ratio is 2/3 [52]). For a twirling fiber, we show

how the systematic neglect of rot-trans coupling in prior studies based on the Euler model

[54, 99] leads to an overestimation in the critical frequency of 20%. Our results explain

half of the deviation between prior theoretical/computational studies and what is observed

experimentally [102].

5.2 Nonlocal hydrodynamics

When we consider the dynamics of the fiber centerline, the disturbance flow from the other

filaments can essentially be treated as a background flow. There is then an iterative process

whereby we update the background flow, and then solve a local problem for the constraint

forces, continuing this until we get convergence. The question becomes how to evaluate the

nonlocal flows efficiently. We will only consider the trans-trans mobility Mtt for this part.

In the original approach of Tornberg and Shelley [22], the nonlocal integrals are treated

by quadratic brute-force summation, which makes the method ill-suited to scale to many
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fibers. Thus Nazockdast et al. modified the approach by replacing the second-order spatial

discretization of Tornberg and Shelley with a spectral spatial discretization and utilizing

a kernel-independent FMM to accelerate sums. In doing this, they developed a parallel

algorithm that makes it possible to simulate O(1000) fibers in linear time [15]. Our approach

is ultimately similar to theirs: we too use a spectral discretization of the fiber centerline, but

we treat the sums on a triply-periodic domain using fast Ewald summation [103, 104].

This summation ultimately boils down to discretizing each fiber by some number of

(potentially oversampled) Chebyshev points, then performing a many-body RPY blob sum

on those point-force pairs. This means that every nonlocal integral in (2.63) is discretized

with the same number of points, implying either a loss of accuracy for nearly touching fibers,

or a waste of computational power for well-separated ones. In Chapter 7, we explore the

accuracy of direct quadrature and introduce a hybrid scheme whereby the RPY integrals for

nearly-touching fibers are evaluated with a special quadrature method, while the others are

treated with direct quadrature and Ewald splitting. There is then a computational trade-

off where less direct quadrature points makes the Ewald step cheaper, but the “correction”

(special quadrature) step more expensive. In our implementation, we found that doing the

Ewald step on a GPU using the UAMMD library [105] is sufficiently fast for the optimal

set-up to be upsampling for all pairs of fibers, with the special quadrature step skipped

entirely. The upsampling factor is set in practice by using the minimum number such that

results do not change when double the number of points is used.

For temporal integration, in deterministic methods we have the freedom to separate the

local parts of the mobility, which are easy to invert, from the nonlocal parts, which are not.

What we will do in practice is to write the (trans-trans) mobility as M = ML + MNL,

where the matrix ML is block-diagonal and represents the hydrodynamics of a single fiber,

while the matrix MNL represents the contribution from all other fibers. We will then time-

lag the nonlocal part, so that the number of nonlocal evaluations per time step is one, if
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the suspension is sufficiently dilute to be dominated by local drag. When the suspension is

more concentrated, the matrix ML becomes an efficient preconditioner for the full nonlocal

system, which we solve with a few GMRES iterations, as discussed in Section 7.3.

5.3 Thermal fluctuations

So far, we have only introduced the numerical methods for simulating deterministic fibers in

fluid. But what about Brownian fibers? There is already a large body of literature on this

topic, which can be analyzed by asking the following two questions: is the chain extensible

(with a penalty for stretching) or constrained to be exactly inextensible? And, is the chain

being simulated discrete or continuous? That is, is the discrete chain considered the truth

itself, or is it simply a discretization of a continuum equation which converges in the limit as

the grid spacing goes to zero? This second question is quite difficult, so we begin our review

of the literature with discrete chains.

Discrete extensible chains (known in the literature as bead-spring models) are the most

commonly-used models for fluctuating filaments because of their simplicity [106–110]. In this

case, the chain is represented by a series of beads or blobs connected by springs which penalize

but do not prohibit extensibility and bending. There are therefore no constraints, and it

is relatively straightforward to simulate the overdamped Langevin dynamics using standard

algorithms [111, Sec. 3]. Actin filaments, which are nearly inextensible and therefore require a

high stretching modulus to accurately simulate, push the boundaries of bead-spring models,

as the high stretching and bending moduli restrict the maximum possible time step size,

making long simulations of actin filament systems prohibitive [112].

It is therefore attractive to constrain the distance between each bead, which leads to a

second class of methods known as bead-link or blob-link models [111, Sec. 4] (we will use

the lesser-used “blob-link” terminology because of the coupling with “blob-based” hydro-

dynamics [113]). This approach, which in theory enables larger time step sizes and longer
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simulations, is difficult in practice because it requires the formulation of an overdamped

Langevin equation with the constraint that the chain is inextensible. In previous work, this

has been done by defining a constrained Langevin equation for the positions of the blobs

which has complicated stochastic drift terms and requires highly specialized algorithms to

simulate [114, 115]. An alternative view, which is one we adopt here, is to view the degrees

of freedom as the link orientations, as well as the position of the fiber center. For an inex-

tensible chain, this reduces the problem to a series of connected rigid rods, for which we can

make use of previous work by some of us on Langevin equations for rigid bodies [116].

As we have already discussed at length, however, the blob-link model breaks down in the

limit of very slender fibers, such as actin filaments, which have a radius of a = 4 nm [117] and

can have lengths L of a few microns in vivo and tens of microns in vitro [118, 119]. This set

of parameters gives aspect ratios on the order of ϵ = a/L = 10−3, making the hydrodynamics

multiscale in nature. Using a blob-link model with blobs spaced a lengthscale a apart often

requires us to temporally resolve the fluctuations on that lengthscale; i.e., the time step

size is constrained by the smallest lengthscale in the system. Thus, for slender filaments a

blob-link discretization is prohibitively expensive in both the spatial and temporal variables

using existing methods.

Since the hydrodynamics forces such a large number of degrees of freedom per fiber, our

continuum framework, where the positions X of the nodes become a function X(s) of a

continuous variable s which describes the arclength of a curve, is an attractive choice [120,

121]. The problem with taking the continuum limit in the presence of thermal fluctuations is

that it leads to ill-posed constrained Langevin partial-differential equations when dynamics

are taken into account. From equilibrium statistical mechanics, it is known that for a free

inextensible worm-like fiber the tangent vector τ (s) performs Brownian motion in s on the

unit sphere with diffusion coefficient ℓ−1
p , where the persistence length ℓp = κ/kBT is defined

as the ratio of the bending stiffness κ to the thermal energy kBT . On the other hand, we
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(discrete)
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Blob-link

Figure 5.1: Conceptual picture of our filament model. We begin with a blob-link chain at left, for
which we need a large number of beads (second from left) to resolve the hydrodynamic interactions.
A sensible model then becomes a continuum filament (second from right), shown as a solid curve,
which we then replace by a fully discrete model based on Chebyshev collocation points (the gold
nodes at right show 16 such points). In our approach, the model on the right is a coarse-grained
approximation of the fully-resolved blob-link (second-from-left) model with the continuum model
(second-from-right) used only in elasticity and hydrodynamic calculations. Figure 6.1 has a more
detailed look at this discretization.
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show in Chapter 8 that the overdamped Ito Langevin equation for a blob-link model with

dynamics has stochastic drift terms which are required to obtain the correct equilibrium

statistics (see Fig. 8.6, where we simulate the Langevin equation with and without the drift

terms). These drift terms, which are a consequence of both the inextensibility constraint

and the hydrodynamics, are only well-defined with respect to the discrete orientations of the

tangent vectors, and do not converge in the continuum limit. This issue has been ignored

in previous continuum methods for filament Brownian dynamics [39, 40], or been partially

sidestepped by making the filament extensible through a penalty force [122, 123]. The latter

approach, which has characterized a number of finite element methods for biopolymers [124–

127] takes us back to an extensible chain (and its aforementioned temporal stiffness), and

leaves unclear how to make sense of the continuum limit for constrained fluctuating filaments.

And if there is no continuum limit, how is a spectral discretization possible?

While the continuum limit is an interesting object from the standpoint of applied stochas-

tic analysis, for the purposes of simulation it has little relevance, since it requires an infinite

number of degrees of freedom. The object that we simulate, like any other statistical me-

chanics model, must ultimately be discrete, and so we will propose a fully discrete or coarse-

grained model of a fluctuating fiber based on a spectral representation of the chain (see Fig.

5.1). The important conceptual leap is then to think of the “continuum limit” only as a way

to efficiently approximate the “true” hydrodynamics of 1/ϵ blobs without actually needing

to track that many degrees of freedom. As such, for a given value of â and L we define

our reference result to be a discrete blob-link chain with blobs spaced â apart (L/â = 1/ϵ̂

blobs). Our hope is then to approximate, to reasonable (≈ 10%) accuracy, the equilibrium

statistical mechanics and dynamics of the blob-link chain using a coarse-grained Chebyshev

discretization with as few nodes as possible. The goal of this, which we show is achieved

at least in part, is to extract the advantages of the blob-link and continuum discretizations

into a single numerical method: by proposing a fully discrete “spectral” chain, we can write
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a well-defined overdamped Langevin equation which samples from a well-defined discrete

equilibrium Gibbs-Boltzmann distribution. But by using the mobility (2.63) to define the

velocity at each point on the fiber, we avoid having to scale the number of collocation points

with the fiber aspect ratio. In Chapter 8, we show that this approach does indeed give an

effective way to simulate the Brownian hydrodynamics of a fluctuating filament, with a cost

independent of the fiber aspect ratio.
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Chapter 6

Numerics for a single filament

This chapter discusses our discretization of the hydrodynamics of a single bent, twisted

fiber. This is a discrete version of the continuum theory we presented in Chapter 3, using

the mobility (2.63) composed of integrals of the RPY kernel. In some sense, this chapter

is meant to set the record straight. Like a politician who changes his opinion to match the

winds of the age, our discretizations of the mobility M, kinematic operators K, and elastic

force (density) f (κ) have changed repeatedly over a few years of publications, as the problems

we worked on became progressively more difficult. The reason for the multiple discretizations

is that spectral methods, which help us achieve costs independent of slenderness, can be very

fragile, as nonlinearities have to be handled carefully due to aliasing. In numerical methods

with fluctuations, we cannot hide behind the assumption of filament smoothness, and so this

chapter is the result of several years of trial and error in proper handling of nonlinearities.

6.1 Spectral spatial discretization

We will use a collocation discretization to discretize all quantities in the fluctuating filament

problem. Because we use a collocation discretization, the fiber positions and tangent vectors

are discretized on Chebyshev grids of nodes sp, where p = 1, . . . , N for the tangent vectors
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and p = 1, . . . , Nx for the positions. The Bishop and material frames (see Section 3.2.1) are

then most logically defined on a grid of size N (they share the same collocation points as

the tangent vectors). The twist angle ψ is defined on a grid of size Nψ.

Our notation will shift slightly here to reflect the change from continuous to discrete. We

use X to refer to the Nx× 3 matrix of fiber positions at the collocation points. The pth row

of this matrix will be denoted by X{p} = X(sp), while the pth entry of the corresponding

3Nx× 1 row-stacked vector will be denoted at Xp. Likewise, τ refers to the N × 3 matrix of

tangent vectors at the collocation points with τ {p} = τ (sp). We will not try to distinguish

between the unknown “true” fiber shape (which could have more than N Chebyshev modes)

and its Chebyshev approximation X(s).

The tools we use for differentiation and integration are standard [128]. For differenti-

ation, we use the Chebyshev differentiation matrix DNx . By DNxX, we mean the linear

operation that takes X, computes the Nx − 1 degree Chebyshev polynomial representation

X(s), differentiates it, and returns X′(s) on the same collocation grid. We also define D†,

the pseudo-inverse of the Chebyshev differentiation matrix, which gives the values of the

indefinite integral of a function f(s) modulo an unknown constant,

(
D†f

)
p
≈
∫ sp

0

f(s′) ds′ + C. (6.1)

Importantly, on a grid of size N , this integration is exact when applied to polynomials

of degree N − 2 or less (the result must be a polynomial of degree N − 1 or less). For

definite integration, we use Clenshaw-Curtis quadrature with weight wp associated with

each collocation point, ∫ L

0

f(s′) ds′ ≈ wTf :=
N∑

p=1

fpwp. (6.2)
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Figure 6.1: Transferring the fiber discretization for the blob-link model (bottom) to a spectral
grid (top). We show the tangent vector locations as magenta vectors visible through the “x-ray”
inset – for the blob-link discretization these are the points exactly between the beads, while for the
spectral discretization they are defined on a type 1 Chebyshev grid with N points (N = 12 here).
The positions, which can be obtained from τ and XMP (red sphere), are shown as yellow spheres –
for the blob-link discretization these are evenly spaced points, while for the spectral discretization
they are defined on a type 2 Chebyshev grid with Nx = N + 1 points. Note the clustering of both
τ and X near the fiber endpoints in the spectral model, which is a characteristic of the Chebyshev
grid. This means that the tangent vectors no longer connect individual beads, as they do for the
blob-link discretization.
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6.1.1 Inextensibility constraint

To properly track all of the modes of the fiber dynamics, we discretize an inextensible fila-

ment by transferring the more common blob-link discretization concept onto a non-uniform

Chebyshev grid (see Fig. 6.1). We begin with a collection of N unit-length tangent vectors

τ = {τ {p}}Np=1, with τ {p} · τ {p} = 1 for p = 1, . . . N , on a type 1 Chebyshev grid (i.e., a

Chebyshev grid that does not include the endpoints). To obtain the fiber position, we over-

sample τ to a (type 2, endpoints-included) Chebyshev grid of size N+1 using the evaluation

matrix EN→N+1, then integrate the result exactly using the Chebyshev integration matrix

D†
N+1 (pseudo-inverse of the differentiation matrix DN+1). This can be written as

X =

(
D†

N+1EN→N+1 B

)



τ

XMP


 := X τ̄ . (6.3)

The matrix B is such that the midpoint of X on the grid of size N + 1 is XMP (when

N is even, XMP is an actual point on the N + 1 size Chebyshev grid, but N could also

be odd, for which the midpoint is obtained via interpolation). Thus, the nodal points that

track the fiber position X are defined on a grid of size N + 1, whereas τ is defined on a

grid of size N , just as in the blob-link discretization. To go in the reverse direction, we

apply the inverse of X , which is done by differentiating X on the N +1 point grid and then

downsampling to the grid of size N via the matrix EN+1→N . The midpoint is determined

from the N +1 nodes via sampling the N +1-term interpolating polynomial at the midpoint

using the matrix EN+1→MP. Together this gives,

X−1 =



EN+1→NDN+1

EN+1→MP


 , (6.4)

which is the actual inverse of X because we carefully handle the integration of N -term
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Chebyshev polynomials by using a grid of size N + 1. We contrast this with handling

everything on a grid of size N , in which case information is lost when converting the unit-

length tangent vectors to the positions X. For the deterministic examples we study here,

the fibers are relatively smooth, and so the lost (high-frequency) information has a negligible

effect. But when we extend to Brownian filaments in Chapter 8, the method here is required

to correctly track the high-frequency modes. It is important to note, however, that this

formulation only applies to open, two-ended, filaments, and not looped filaments, which

require further (continuity) conditions on τ .

While we motivated (6.3) using a spectral discretization, these equations also hold for

the standard blob-link discretization [47]; in that case the map X−1 is defined by taking

finite differences of nodal points to give values at the links, and the product X is defined by

summing the values of the links to obtain values at the nodes. Thus, the equations we write

in this section are general once the linear maps X and X−1 have been specified.

6.1.2 Spectral fibers from blob-link fibers

Throughout this part of the dissertation, and especially in Chapter 8, our goal will always be

for the spectral method to give an inexpensive approximation to the blob-link model, where

the fiber is discretized by a series of blobs spaced ϵ apart. We quantify this by computing

static and dynamic statistics for both models, and checking that they are the same. A

worthwhile question to ask before doing any of this is the following: supposing we have a

blob-link discretization of the fiber, how can we obtain the “best” spectral approximation?

Because the spectral discretization has far fewer degrees of freedom than the blob-link model,

this is fundamentally a coarse-graining (CG) operation. This section contains a few ideas

about how to coarse grain blob-link fibers into spectral ones. Throughout the section, we

denote X(B) as the configuration for the blob-link model, with X continuing to stand for

the positions of the Chebyshev nodes in the spectral model.
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For a given persistence length ℓp = κ/kBT , where κ is the bending stiffness and kBT is

the thermal energy, we have an exact sampler for a blob-link chain, so that we can generate

a blob-link configuration X(B) on a grid with spacing ∆s = â. Our goal is then to construct

a “coarse-grained” spectral discretization, which is (usually) defined by the set of tangent

vectors τ {p} that are of unit length on a type 1 Chebyshev grid with N nodes. To obtain a

set of nodal positions X on a type 2 Chebyshev grid of Nx = N + 1 nodes, we apply the

map X in (6.3). A well-defined operation is then to use the polynomial interpolant X(s)

that is defined by the points X to get an approximation on the blob-link grid. We define

this interpolation via X(SB) = ES→BX. We can then compute the (dimensionless) discrete

L2 norm

1

L

∥∥∥X(SB) −X(B)
∥∥∥
2
=

1

L

√√√√
NB∑

k=1

∥∥∥X(SB)
{p} −X

(B)
{p}

∥∥∥
2 ∆s

L
(6.5)

and use this as a metric for the error between the two discretizations. We now outline a few

different approaches for doing so.

6.1.2.1 Minimization problem

The first CG approach is to solve the constrained minimization problem




τ

XMP


 = argmin

∥∥∥X(SB) −X(B)
∥∥∥
2

2
=

∥∥∥∥∥∥∥
ES→BX




τ

XMP


−X(B)

∥∥∥∥∥∥∥

2

2

(6.6)

τ T{p}τ {p} = 1 for p = 1, . . . , N

for (τ ,XMP), using built-in methods (fmincon) in Matlab. This computes the configuration

with unit-length tangent vectors that minimizes the error (6.5). In this sense, it is the

optimal configuration.
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Figure 6.2: Comparing the minimization problem with the ad-hoc approach for a fiber of persistence
length ℓp/L = 1/2. For each N , the solution of the minimization problem is shown as a solid line,
while the ad-hoc approach is shown as a dotted line. The blob-link fiber X(B) is shown as a solid
black line.

6.1.2.2 Ad-hoc approach

The approach in the previous section is quite expensive, since it requires a constrained

quadratic programming problem at every time step. A more ad hoc approach is to just

sample the blob-link chain at the type-2 Chebyshev node locations using linear interpolation.

Then apply the map X−1 to obtain candidate tangent vectors (which will not have norm

one). We then normalize those tangent vectors, and apply the map X again to obtain X(SB).

Figure 6.2 shows a visual comparison of these two approaches for various N with a fiber of

persistence length ℓp/L = 1/2 (bottom). We can only see a visual difference between the

minimization and ad-hoc approaches when N = 8. Even for N = 8, the ad-hoc approach

generates a reasonable fiber shape.
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6.1.2.3 BVP approach

In the last approach, which is inspired by [129, Eq. (7)], we use a smoothing strategy to

generate X(SB). Beginning with the blob-link configuration X(B), we fit a natural spline

X(spl) through it, which we sample at the Nx Chebyshev points. We use these sampled

locations to solve the BVP

−b2∂2sX+ X = X(spl) (6.7)

by enforcing this equation at nodes 2, . . . Nx − 1 and the BCs X(spl)(0, L) = X(0, L) at the

endpoints. Unlike our previous two approaches, this approach does not enforce ∥∂sX∥ = 1

anywhere, but assumes the tangent vectors will have nearly norm one because they come

from an underlying blob-link discretization.

In Figs. 6.3 and 6.4, we show samples of applying this procedure to fibers with ℓp = L = 1

and ℓp/L = 1/2, respectively. In both plots, the left plot shows fiber samples, while the right

column shows the signed error in the norm of the tangent vectors on the type 1 grid of

size N (where we are used to constraining them). We see that the fiber gets smoother and

smoother as b gets larger, and that smaller N is needed to resolve the shape for larger b. As

b gets smaller, the tangent vectors approach norm 1. We notice that they typically (but not

always) approach 1 from below, so that for finite b the tangent vectors always have norm

less than 1.

6.1.2.4 Choosing the value of b

We want the parameter b to be a proxy for the error (6.5). Thus, to choose b, we first perform

an experiment where we vary b, L, and ℓp, and look at the dimensionless L2 error given in

(6.5). For small b, there isn’t any smoothing at all, and the error is from approximating the

curve by a polynomial of finite degree (we choose N = 36 so that this is small). Large b just

gives a straight fiber, and the error plateaus to the value for a straight filament connecting

the two endpoints. We are interested in the error in the intermediate regime (between “large”
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Figure 6.3: Coarse-graining a blob-link fiber (black) with ℓp/L = 1 using the BVP (6.7). We show
a sample on the left, and the norm of the tangent vectors (∥∂sX∥ − 1) on the type 1 Chebyshev
grid at the right.
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Figure 6.4: Coarse-graining a blob-link fiber (black) with ℓp/L = 1/2 using the BVP (6.7). We
show a sample on the left, and the norm of the tangent vectors (∥∂sX∥−1) on the type 1 Chebyshev
grid at the right.
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Figure 6.5: The L2 error (6.5) when using the BVP procedure of this section with various b, ℓp and
L. Using the rescaling b̄ = b/

√
Lℓp collapses curves with the same ℓp/L (blue and purple, red and

cyan, yellow and green) onto the same curve. There is then a weak dependence on ℓp/L, another
dimensionless parameter.

and “small” b).

Figure 6.5 shows the data for the error as a function of b̄ = b/
√
Lℓp. When we use

this rescaling, the error curves for the same ratio ℓp/L are on top of each other, which tells

us we have removed the dimensions from the problem and have Error = f(b̄, ℓp/L). The

dependence on ℓp/L is quite weak in the area we consider, and we see that the error is

roughly given by Error = 0.5b̄4/3, although the leading constant is subject to some variation

for the different values of ℓp/L.

6.1.2.5 Least squares approximation (b = 0)

If we do not enforce ienxtensibility of the tangent vectors, another obvious approach is to

find the Chebyshev polynomial that gives the best approximation to the blob-link chain.

This is a continuum-style approach to solving (6.7) with b = 0, and amounts to solving

ES→BX −X(B) in the least squares sense. We do this by setting

X =
(
ET
S→BWBES→B

)−1
ET
S→BWBX

(B), (6.8)
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Figure 6.6: Fiber approximations using (6.8) as the least-squares fit. We show the fits and the
error in the tangent vector norms for different ℓp/L.

whereWB = diag (1/2, 1, . . . , 1, 1/2) is the matrix of L2 weights on the blob-link grid. Figure

6.6 shows the results in this case. Comparing to our previous approaches, we notice that the

polynomials, especially N = 8, appear to be better approximations to the blob-link chain.

However, when we look at the norm of the tangent vectors, we see disastrous effects at the

boundary. This boundary layer comes from the fact that b = 0 is a singular limit of (6.7),

since b = 0 converts (6.7) from a differential equation (with BCs) to an algebraic one. Thus

this approach is not to be used, since the tangent vectors it generates are not smooth and

have large errors near the boundary.
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6.1.3 Discretizing the internal fiber force and torque (density)

Now that we have defined a spectral discretization of the fiber centerline, we can go about

computing a force/torque and force/torque density associated with bending and twisting.

This section will again present two ways of doing so: in the first case, which we use for

free-ended filaments which resist bending, we begin with an energy functional, which we

discretize using the discrete L2 inner product. We then compute the force and force density

from this energy, which enforces the natural free-ended boundary conditions. In the second

case, which can be more generally adapted to different boundary conditions, our approach

is to work with the continuum force density (e.g., f (κ) = −κ∂4sX), which we discretize

using rectangular spectral collocation [130, 131]. The former discretization is essential for

fluctuating filaments; since the force comes from an energy, the correct Gibbs-Boltzmann

distribution is automatically implied (see Chapter 8). But the latter discretization is useful

when we compute twist elasticity and have different boundary conditions, so it is worth

presenting here.

6.1.3.1 A discrete energy-based approach

In continuum, the fiber bending or curvature energy is given by the squared L2 norm of the

fiber curvature vector,

Ebend [X(·)] =
κ

2

∫ L

0

∂2sX(s) · ∂2sX(s) ds. (6.9)

It is useful to discretize the energy functional (6.9) directly, then use the matrix that results

to compute forces, implementing the boundary conditions naturally. On a spectral grid, we

can put the energy functional (6.9) in the form Ebend = 1
2
XTLX, where

L = κ
(
ENx→2NxD

2
)T

W 2Nx

(
ENx→2NxD

2
)
:= κ

(
D2
)T

W̃D2. (6.10)
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is a matrix that takes two derivatives of X on a grid of size Nx, then does an inner product of

those derivatives by upsampling to a 2Nx grid with extension matrix E and Clenshaw-Curtis

weights matrix W 2Nx . The reason for this upsampling is to compute the inner product of the

Chebyshev polynomials representing D2X exactly (this could be done on a slightly smaller

grid because the two derivatives make the polynomial representation D2X have degree at

most Nx− 3). The L2 inner product on the upsampled grid corresponds to an inner product

on RNx with the weights matrix

W̃ = ET
Nx→2NxW 2NxENx→2Nx . (6.11)

Note that an equivalent way to formulate the energy is to use τ̄ as the degrees of freedom,

so that

Ebend (τ̄ ) =
1

2
τ̄ TX TLX τ̄ :=

1

2
τ̄ TLτ τ̄ . (6.12)

The force on the fiber nodes is then obtained by differentiating the discrete energy

F = −∂Ebend
∂X

= −LX = −LX τ̄ . (6.13)

6.1.3.2 The map between force and force density

When we compute the fiber hydrodynamics, we will need to input the force density on the

centerline. We can obtain this at the nodes from the force in (6.13) by

f = W̃
−1
F , (6.14)

and use the Chebyshev interpolant f(s) as a continuum force density. Note that the matrix

W̃ , rather than the diagonal matrix W of weights on the Nx point Chebyshev grid, must

be used for the force density to converge as the spatial discretization is refined. The reason

for this is that the weights matrix (6.11) enters in the discrete L2 inner product, and the
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force density is the representation of the derivative of energy with respect to that inner

product [132, Sec. 6], i.e., the function that satisfies ⟨X,f⟩ = XTF . As a more concrete

justification of this, suppose that the filament satisfied the free fiber boundary conditions

∂2sX(0, L) = ∂3sX(0, L) = 0. Then in continuum we could equivalently write the energy as

U = κ/2
∫ L
0
X(s) · ∂4sX(s) ds, which we would discretize as U = κ/2XTW̃D4X. Taking the

derivative, we have the force F = −κW̃D4X. But we know that force density should be

f = −κD4X, which can only be obtained from F using (6.14)

6.1.3.3 A continuum approach

As an alternative approach that works for other boundary conditions, let us now look at how

we can use rectangular spectral collocation [130, 131] to discretize the bending and twisting

force and torque densities to high accuracy while respecting the boundary conditions (3.47).

In this discretization, it is vital that the matrix X gives the positions of the fiber on an Nx

point type 1 Chebyshev grid that does not include the boundaries. Whenever we use this

discretization of the force, we therefore switch the X nodes to a type 1 grid.

The idea of rectangular spectral collocation as proposed in [130, 131] is to compute

an upsampled representation X̃ of X on a type 2 (including the endpoints) Chebyshev

grid that satisfies the boundary conditions exactly, and gives X when downsampled to the

original (type-1) Chebyshev grid. Since there are four boundary conditions, the upsampled

representation is on a N + 4 point type 2 Chebyshev grid that includes the endpoints. In

this section, we will assume that the s = 0 end is clamped, i.e., the boundary conditions at

s = 0 are

X(s = 0) = X0 τ (s = 0) = τ 0 Ω∥(0) = ω, (6.15)

while at s = L the end is free with boundary conditions

∂2sX(s = 0) = 0 ∂3sX(s = 0) = 0 ψ(L) = 0. (6.16)
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(recall that ψ represents the twist density). These equations will show how to treat one free

end and one clamped end, and are straightforward to modify when we have two free ends.

Beginning with the bending force, the unique configuration X̃ on the Ñ = Nx + 4 point

grid can be obtained by solving



RX

B


 X̃ =:




RX

I(0)

DNx+4(0)

D2
Nx+4(L)

D3
Nx+4(L)




X̃ =




X

X0

τ 0

0

0




:=




X

bX


 , (6.17)

where RX is the downsampling matrix that evaluates the interpolant X̃(s) on the original

Nx point grid, I(0) encodes evaluation at s = 0, and Dn
M(s) represents evaluation of the nth

derivative at the point s on a grid of size M . In (6.17), B is the 4 × (Nx + 4) matrix that

encodes the boundary conditions and bX is the values of the BCs. We now write the affine

transformation from X to X̃ as

X̃ =



RX

B




−1




X

0


+



0

b





 := EXX + βX . (6.18)

Note that βX is independent of time in this case.

We then use the configuration X̃ to compute any quantities with more than one s deriva-

tive in the Euler equations (4.2). Thus the elastic force density is computed on the upsampled

grid as f̃
κ
= −κD4

Nx+4X̃ and is then downsampled to the original Nx point type 1 grid to

give the bending elasticity discretization

fκ (X) = RX f̃
κ
= −κRXD4

N+4 (EXX + βX) := F κX + βκ (6.19)
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In all cases in which derivatives of τ enter in the forcing in (3.59), we compute the

derivatives on the N + x + 4 point grid from the configuration X̃, then downsample them

to evaluate the derivatives on the original N point grid, e.g., we use RXD2
N+4X̃ as the

discretization of ∂sτ . This helps by smoothing the higher order derivatives due to the

imposition of smoothing BCs at the endpoints. Note however that τ̃ = ∂sX̃ is not of unit

length at the collocation points, so we use τ on the original N point grid instead when a

vector of unit length is required (in the kinematic matrix K).

6.1.3.4 A continuum approach for twist

Let us now consider using rectangular spectral collocation to solve for the twist density ψ.

Recall that the degrees of rotation θ(s) are defined on the same grid as the tangent vectors

– that is, a grid of size N . Thus, we compute ψ = ∂sθ on a type 1 Chebyshev grid of size

Nψ = N − 1 (one less point is needed). In exactly the same manner as we did for X, we

define an affine operator which gives an upsampled representation ψ̃ on an Nψ+2 point type

2 Chebyshev grid that satisfies the boundary conditions (6.15) and (6.16),




Rψ

Ω̃
∥
n(0)

I(L)



ψ̃ =




ψ

ω − Ω
∥
f (0)

0




=



ψ

bψ


 , (6.20)

where Ω̃∥
nψ̃ = M rrγDNψ+2ψ̃, (6.21)

is the angular velocity due to torque on the Nψ + 2 point grid (throughout this chapter, the

matrix M rr is a diagonal matrix on the Nψ + 2 point grid). The analogue of (6.18) in this

case is the affine operator that gives ψ̃ from ψ on the Nψ point grid, which we define as

ψ̃ = Eψψ + βψ.

In (6.20), we use the angular velocity at s = 0 as the boundary condition for the clamped
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end. Another possibility is to prescribe the parallel torque at the clamped end,

N (s = 0) · τ (0) = γψ(0) = N0 (6.22)

which gives a boundary condition ψ(0) = N0/γ that is easy to handle; we therefore focus

on the more challenging (6.15). See [52, Sec II(A)] for a discussion of the difference between

the constant torque vs. constant angular velocity boundary conditions.

To calculate the torque on an Nψ point grid, we take derivatives of ψ̃ on the N +2 point

grid, and evaluate the result on the Nψ point grid using Rψ,

n∥(ψ) = γRψDN+2

(
Eψψ + βψ

)
:= Rψ

(
Ñψψ + β̃n

)
, (6.23)

where β̃n is time-dependent in general. The twist force f (γ) as defined in (4.2) is slightly

more complex, given that it is a nonlinear function of X and involves interaction between

X and ψ = ∂sθ. To reduce aliasing on the spectral grid, we use the product rule to separate

f (γ) into two terms, then use a common upsampled grid to compute each term with proper

boundary conditions,

f (γ) (X, ψ) =
(
γ
(
∂sψ̃

(
∂sX̃ × ∂2sX̃

)
+ ψ̃

(
∂sX̃ × ∂3sX̃

)))
(6.24)

We perform the multiplications of ψ and derivatives of X on the upsampled grid, then

downsample the result to the Nx point grid to obtain the final force density f (γ) at the

collocation points. For the upsampling factor, we find Nx + 4 to give identical results to

2Nx, so we will use Nx + 4 for the upsampled grid size, which means we do not need any

upsampling of X̃. Additionally, when we compute the trans-rot velocityM trn
∥, we upsample

n∥ in (6.23) from the Nψ point grid to the grid of size Nx.
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6.1.4 Discretization of kinematics

We now discuss the discretization of the kinematic operatorK. The discretization we present

here, which is the only one that should be used, is based on the “strong form” of K in Section

3.1.2.1. Other discretizations based on the weak form in Section 3.1.2.3 are subject to strong

aliasing errors and consequently should not be used.

Let us first consider the evolution of the fiber tangent vectors. Since, for any p, τ {p} ·

τ {p} = 1 for all time, it follows that the evolution of the tangent vectors can be described

by (3.5), which we denote in matrix form as

∂tτ = Ω× τ := −C [τ ]Ω, (6.25)

where the matrix C [τ ] is such that C [τ ]Ω = τ ×Ω; we will drop the explicit τ dependence

when clear from context. The matrixC satisfies the following properties, which will be useful

when we formulate the overdamped Langevin equation for the fiber evolution in Chapter 8:

Cτ = −CTτ = 0, ∂τ ·CT = 0. (6.26)

The first equation (6.26) follows from the definition of C as a cross product with τ , while

the second, which is a divergence with τ , has jth entry

(
∂τ ·CT

)
j
:=

∂

∂τ k
CT
jk =

∂

∂τ k
Ckj = 0 (6.27)

because the kth row of C has no entries that depend on τ k; here and throughout this

dissertation, repeated indices are summed over using Einstein’s convention. Based on these

two properties, we can conclude that the time evolution of the tangent vector (6.25) is

analogous to the time evolution of the unit quaternion describing a rigid body’s orientation

[116, Eqs. (5–8)], which can be represented as a unit vector on the unit 4 sphere.
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The evolution of the tangent vectors according to (6.25) automatically implies that the

evolution of the positions X is given by

∂tX = X



−C 0

0 I







Ω

UMP


 := X C̄α := Kα. (6.28)

Note the analogy with (6.3), but here we transform velocity instead of position using a square

3(N + 1)× 3(N + 1) non-invertible matrix K. We define a pseudo-inverse of K as

K−1 =



C 0

0 I


X−1 = C̄

TX−1. (6.29)

Note that the matrices K and K−1 have rank 2N +3, since the N tangent vectors τ live in

the null space1 of C. Thus K−1 is not a true inverse of K, but rather

K−1K =



−C2 0

0 I


→ C̄K−1K = C̄, (6.30)

i.e., K−1K acts like the identity when applied to C̄ from the right, since the matrix C2 is

block diagonal with pth block I3 − τ {p}τ {p}, and when multiplied by C the term involving

τ {p} becomes zero. What (6.30) also means in practice is that

K−1Kα = K−1K




Ω

UMP


 =




Ω⊥

UMP


 , (6.31)

where Ω⊥
{p} =

(
I − τ {p}τ {p}

)
Ω{p}. Thus, because the fiber evolves according to (6.25), it

1This is true even for straight fibers. In continuum, the only nontrivial solutions of
(∫ s

L/2
Ω(s′) ds′

)
×

τ + UMP = 0 are those with Ω = Ω∥τ . Our discretization preserves this property; since in our method∫
Ω(s) ds (and, for non-straight fibers

∫
Ω(s) × τ (s) ds) is a polynomial with N + 1 terms (degree N), it

can only be exactly equal to −UMP at N points (and not Nx = N +1). This shows why careful handling of
high-frequency modes (on a grid of size N + 1) is necessary.
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makes no difference whether we use α or K−1Kα for the fiber velocities. That is, the

rotation rate α is the actual rotation rate of the tangent vectors on the N point grid.

To obtain the discretization of K∗, we simply use the discrete L2 inner product. The

virtual work constraint in Section 3.1.3 says that for all α

0 = ⟨Kα,λ⟩L2 = αTKTW̃λ. (6.32)

For this to be zero for any α, it follows that KTW̃λ = 0, which gives a simple discretization

of K∗ as

K∗ = KTW̃ . (6.33)

6.2 Discretization of mobility for a single fiber

Now that we have discretized the kinematic operators and forces, the last ingredient we need

to solve (4.2) is to evaluate the action of the mobility operators Mtt,Mrt,Mtr, and Mrr

at each point on the Chebyshev grid, giving discrete mobility matrices M tt,M rt,M tr, and

M rr. We discuss how to do this in this section.

Our approach is to use the mobility operators given by the RPY integral (2.4). For

translational mobility, if the integral is computed to sufficient accuracy, then the eigenvalues

of the discrete mobility matrix M tt are guaranteed to be positive since the RPY kernel is

SPD [65]. While (2.4) is still a “first kind” integral operator, and therefore has eigenvalues

that cluster around zero, unlike the “second kind” integral operator proposed in [95] to

regularize SBT, we will demonstrate that the ill-conditioning of M tt is not a problem in

practice. Furthermore, unlike [95], we develop a nearly-singular quadrature scheme so that

the RPY integrals for smooth fibers can be evaluated to 3 digits of accuracy with 10 − 40

collocation points, regardless of the slenderness ϵ̂.

Our nearly singular “slender body” quadrature schemes are based on an input position
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function X(s) and input force density f(s) or torque density n∥(s). The goal is to compute the

integrals (2.4) to high accuracy from these inputs. The schemes we present in this section do

not assume inextensible fibers; that is, s does not have to be arclength parameterization for

these schemes to accurately resolve the integrals. We will, however, assume that the curves

are approximately inextensible, so that we can make the approximation R(s, s′) ≈ |s − s′|

when we separate the integral into a piece over R < 2â and R ≥ 2â.

6.2.1 Translational mobility

We define the translational velocity of the fiber centerline due to a force density f(s) using

(2.4),

U f(s) = (Mttf) (s) =

∫ L

0

Mtt (X(s),X(s′))f(s′) ds′ (6.34)

=

∫

D(s)

(
S (X(s),X(s′)) +

2â2

3
D (X(s),X(s′))

)
f (s′) ds′

+
1

8πµ

∫

Dc(s)

((
4

3â
− 3R (X(s),X(s′))

8â2

)
I +

RR̂ (X(s),X(s′))
8â2

)
f(s′) ds′.

Here we have used the definition (2.6) to split the integral into a region D(s) for

R (X(s),X(s′)) > 2â and Dc(s), which uses the RPY kernel for R ≤ 2â. We use the

(approximate) fiber inextensibility to make the approximation R ≈ |s′ − s| when R ≲ 2â, so

that

D(s) =





(0, s− 2â) ∪ (s+ 2â, L) 2â ≤ s ≤ L− 2â

(s+ 2â, L) s < 2â

(0, s− 2â) s > L− 2â

, (6.35)

with the complement Dc(s) = [0, L] \D(s). In making the approximation R ≈ |s′ − s|, we

also assume that the fiber never re-encroaches itself, which can be accomplished in practice

by including steric interactions in simulations (see Chapter 9). We now discuss each of the
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integrals in (6.34) in more detail, separating out the Stokeslet and doublet into two separate

integrals.

6.2.1.1 Stokeslet integral

For the integral of the Stokeslet in (6.34), we use a singularity subtraction technique which

is closely tied with the asymptotics of the Stokeslet. In particular, we subtract from the

integrand the leading order singular behavior and perform that integral separately, which

gives

U
(S)
f =

∫

D(s)

S (X(s),X(s′))f (s′) ds′ (6.36)

=
1

8πµ

∫

D(s)

(
I + ∂̂sX(s)∂̂sX(s)
∥∂sX(s)∥ |s− s′|

)
f(s) ds′

+

∫

D(s)

(
S (X(s),X(s′))f (s′)− 1

8πµ

(
I + ∂̂sX(s)∂̂sX(s)

|s− s′|

)
f(s)

)
ds′

:=U
(inner, S)
f (s) +U

(int, S)
f (s)

where U
(inner,S)
f (s) =

aL(s)

8πµ

(
I + ∂̂sX(s)∂̂sX(s)

)
f(s)

∥∂sX(s)∥
,

where aL(s) is defined in (2.20). This leaves a nearly-singular integral that represents the

Stokeslet minus the leading order singularity,

U
(int, S)
f (s) =

∫

D(s)

(
S (X(s),X(s′))f (s′)− 1

8πµ

(
I + ∂̂sX(s)∂̂sX(s)
∥∂sX(s)∥ |s− s′|

)
f(s)

)
ds′, (6.37)

which has the same integrand as the finite part integral in slender body theory, but with

the different domain of integration D(s). Because of our singularity subtraction scheme, the

second term in the integral (6.37) cancels the leading order 1/|s′ − s| singularity in the first.

The next singularity is sign(s′ − s), which means that the near singular integral (6.37) can
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be written as

U
(int, S)
f (s) =

∫

D(s)

gtt(s, s
′)
s′ − s

|s′ − s| ds
′ =

L

2

∫

D′(η)

gtt(η, η
′)
η′ − η

|η′ − η| dη
′, where (6.38)

gtt(s, s
′) =


S (X(s),X(s′))f (s′) |s′ − s| − 1

8πµ

(
I + ∂̂sX(s)∂̂sX(s)

)
f(s)

∥∂sX(s)∥


 1

s′ − s

is a smooth function, η = −1 + 2s/L is a rescaled arclength coordinate on [−1, 1], and

D′(η) = [0, ηℓ] ∪ [ηh, L] is defined from D(s). The function gtt is nonsingular at s = s′ with

the finite limit

lim
s′→s

gtt(s, s
′) =

1

8πµ

[
1

2 ∥∂sX(s)∥3
(
∂sX(s)∂2sX(s) + ∂2sX(s)∂sX(s) (6.39)

−
(
∂sX(s) · ∂2sX(s)

) (
I + 3∂̂sX(s)∂̂sX(s)

))
f(s) +

(
I + ∂̂sX(s)∂̂sX(s)

∥∂sX(s)∥

)
∂sf(s)

]

Furthermore, gtt is smooth, so we can express it in a truncated Chebyshev series on [−1, 1],

L

2
gtt(η, η

′) ≈
N−1∑

k=0

ck(η)Tk(η
′), (6.40)

where ck is a vector of 3 coefficients for each η. Substituting the Chebyshev expansion (6.40)

into the integrand (6.38), we obtain

U
(int, S)
f (η) =

N−1∑

k=0

ck(η)

∫

D′(η)

Tk (η
′)
η′ − η

|η′ − η| dη
′ =

N−1∑

k=0

ck(η)q
(S)
k (η) = cT (η)q(S)(η),

(6.41)

where q
(S)
k (η) =

∫

D′(η)

Tk(η
′)
η′ − η

|η′ − η| dη
′ = −

∫ ηℓ

−1

Tk(η
′) dη′ +

∫ L

ηh

Tk(η
′) dη′, (6.42)

are integrals that can be precomputed to high accuracy for each η on the Chebyshev col-

location grid. The precomputed integrals in (6.42) can then be used in an adjoint method
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to accelerate the repeated evaluation of (6.41) [80]. Specifically, the coefficients of gtt(η) for

each η can be written as c(η) = V −1gtt(η, η
′), where V is the matrix that maps coefficients

of the basis functions to values on the collocation grid. Then cT (η) = gT (η, η′)V −T , and

U
(int, S)
f (η) = gT (η, η′)V −Tq(S)(η). The matrix vector product V −Tq(S)(η) can then be pre-

computed for each η, and so at each time step all that is needed to compute the integral

(6.37) for each η are the values of gtt(η, η
′) on the collocation grid for η′ being another

collocation point. Evaluating U
(int, S)
f therefore has a cost of O (N2).

We note that our use of Chebyshev polynomials differs from the approach of [80], which

uses a monomial basis for the expansion (6.40). Although the integrals (6.42) with monomials

can be computed analytically, using the adjoint method with monomial coefficients requires

inverting the Vandermonde matrix V , which is too ill-conditioned with N ≳ 40 points

in double precision [133]. The Chebyshev expansion is an improvement in the sense that

computing coefficients from values on the Chebyshev grid is a well-conditioned problem, and

so the technique we use to evaluate finite part integrals does not limit the number of points

on the fiber or require the use of panels (composite quadrature).

6.2.1.2 Modifications to discretize asymptotic mobility

Let us now suppose that instead of numerically integrating the RPY mobility, we want to

use the asymptotic, SBT-style mobility given by (2.24). In this case, we still have a local

drag matrix, and the only nonlocal integral is again given by (6.37), but with D(s) = [0, L].

The calculation then proceeds in exactly the same way. It is possible, however, to compute

the integrals (6.42) analytically using a monomial basis, which gives

q
(S)
k (η) =

∫ 1

−1

(η′)k
η′ − ηp
|η′ − ηp|

dη′ =
1 + (−1)k+1 − 2ηk+1

p

k + 1
. (6.43)

The rest of the calculation for the finite part integral is precisely the same. Notice here that

we do not have any additional nonlocal integrals to compute; thus, using the asymptotic for-
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mulation is indeed simpler and faster than doing the full RPY integral numerically. However,

we will see in Section 6.3 that using the asymptotic mobility produces negative eigenvalues

in the trans-trans mobility matrix M tt, making the Euler problem (4.2) ill-posed.

6.2.1.3 Doublet integral

The next part of the translational mobility (6.34) is the integral of the doublet kernel.

We begin by applying the same singularity subtraction technique we used in (6.36) for the

Stokeslet integral

U
(D)
f (s) =

∫

D(s)

D (X(s),X(s′))f (s′) ds′ (6.44)

=
1

8πµ

∫

D(s)

(
I − 3∂̂sX(s)∂̂sX(s)
∥∂sX(s)∥3 |s− s′|3

)
f(s)

+

∫

D(s)

(
D (X(s),X(s′))f (s′)− 1

8πµ

(
I − 3∂̂sX(s)∂̂sX(s)
∥∂sX(s)∥3 |s− s′|3

)
f(s)

)
ds′

=U
(inner, D)
f (s) +U

(int, D)
f (s).

The term U
(inner, D)
f (s) is given for all s by

U
(inner,D)
f (s) =

(I − 3τ (s)τ (s)) aD(s)f(s)

8πµ ∥∂sX(s)∥3
, (6.45)

where aD(s) is defined in (2.20).

The nearly-singular doublet integral is handled in exactly the same way as the Stokeslet

one, but the singular behavior is different, namely,

U
(int, D)
f (s) =

∫

D(s)

(s′ − s)

|s′ − s|3 gD(s
′, s) ds′, (6.46)

where gD(s
′, s) =

(
D (X(s),X(s′))f (s′)− 1

8πµ

(
I − 3∂̂sX(s)∂̂sX(s)
∥∂sX(s)∥3 |s− s′|3

)
f(s)

)
|s′ − s|3
(s′ − s)
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is a smooth function with the finite limit

lim
s′→s

gD(s
′, s) =

1

8πµ

[
1

2 ∥∂sX(s)∥5
(
− 3

(
∂sX(s)∂2sX(s) + ∂2sX(s)∂sX(s)

)

−
(
∂sX(s) · ∂2sX(s)

) (
3I − 15∂̂sX(s)∂̂sX(s)

))
f(s) +

(
I − 3∂̂sX(s)∂̂sX(s)

∥∂sX(s)∥3

)
∂sf(s)

]
.

If we expand gD in terms of Chebyshev polynomials, the efficient evaluation of (6.44) requires

precomputing integrals of the form

q
(D)
k (η) =

∫

D′(η)

(η′ − η)

|η′ − η|3Tk (η
′) dη′, (6.47)

for all η on the Chebyshev grid. Notice that the integrals (6.47) are not defined if η′ = η is

included in the integration domain, but D′(η) does not contain η.

6.2.1.4 Integral on R < 2â

After discretizing the Stokeslet and doublet integrals, we are left with the integral over Dc(s)

in the third line of (6.34). The integrand is nonsingular, but behaves like |s− s′|, and so for

each s we split the domain Dc into (s−2â, s) and (s, s+2â) (with appropriate modifications

at the endpoints), and use N2/2 Gauss-Legendre quadrature points to sample the fiber and

force density (i.e., sample the Chebyshev interpolant of each) and evaluate the integral on

each of the two subdomains. We use N2/2 points for each of these integrals so that there

are a total of N2 additional (local) quadrature nodes per collocation point.
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6.2.2 Rot-trans mobility

For the rotational velocity from force, we have the RPY integrals

Ω
∥
f (s) : = (Mrtf) (s) = ∂sX(s) ·

∫ L

0

Mrt (X(s),X(s′))f(s′) ds′ (6.48)

=
1

8πµ

∫

D(s)

(f(s′)×R (X(s′),X(s))) · ∂sX(s)
R (X(s′),X(s))3

ds′ (6.49)

+
1

8πµ

∫

Dc(s)

1

2â2

(
1

â
− 3R (X(s′),X(s))

8â2

)
(f(s′)×R (X(s′),X(s)) · ∂sX(s)) ds′,

which we evaluate to spectral accuracy using singularity subtraction and slender-body quadra-

ture for the rotlet integral over D(s), and direct Gauss-Legendre quadrature for the integral

over Dc(s) (split into two pieces).

6.2.2.1 Slender body quadrature

The long-range integral for the rot-trans mobility (6.48) is given by an integral of the rotlet

kernel over the domain D(s). Using singularity subtraction, we compute this integral as

Ω
(R)
f (s) =

∫

D(s)

(f(s′)×R(s′)) · ∂sX(s)
R(s′)3

ds′

=

∫

D(s)

(
(∂2sX(s)× f(s)) · ∂sX(s)

2|s− s′| ∥∂sX(s)∥3
)
ds′

+

∫

D(s)

(
(f(s′)×R(s′)) · τ (s)

R(s′)3
− (∂sτ (s)× f(s)) · τ (s)

2|s− s′| ∥∂sX(s)∥3
)
ds′

:=Ω
(inner, R)
f (s) + Ω

(int, R)
f (s), (6.50)

where R(s′) = X(s)−X(s′) and R = ∥R∥. Since the leading order singularity in Ω
(inner, R)
f

of 1/|s− s′| is the same as that of the Stokeslet,

Ω
(inner, R)
f (s) = aL(s)

(
(∂2sX(s)× f(s)) · ∂sX(s)

2 ∥∂sX(s)∥3
)
, (6.51)
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where aL(s) is defined in (2.20). The nearly singular integral Ω
(int, R)
f (s) in (6.50) can then

be put in the form (6.38) (with scalar grt(s, s
′)) by setting

grt(s, s
′) =

( |s− s′|
R(s′)3

(R(s′)× ∂sX(s)) · f(s′)−
(∂sX(s)× ∂2sX(s)) · f(s)

2 ∥∂sX(s)∥3
)

1

s′ − s
, (6.52)

which has the finite limit

lim
s′→s

grt(s, s
′) = − 1

2 ∥∂sX(s)∥3
(
∂sf(s) ·

(
∂2sX(s)× ∂sX(s)

)
+

1

3
f(s) ·

(
∂3sX(s)× ∂sX(s)

))

− 3

4 ∥∂sX(s)∥5
(
∂sX(s) · ∂2sX(s)

) (
∂sX(s)× ∂2sX(s)

)
· f(s) (6.53)

Now the scalar function grt(s, s
′) can be expanded in a Chebyshev series as in (6.41), and

the precomputed integrals q
(S)
k (η) in (6.42) used once again to evaluate the second integral

in (6.50).

6.2.3 Trans-rot mobility

The trans-rot mobility is the adjoint of the rot-trans mobility,

Un(s) : =
(Mtrn

∥) (s) =
∫ L

0

Mrt (X(s),X(s′)) τ (s′)n∥(s′) ds′ (6.54)

=
1

8πµ

∫

D(s)

(τ (s′)×R (X(s′),X(s)))n∥(s′)

R (X(s′),X(s))3
ds′ (6.55)

+
1

8πµ

∫

Dc(s)

1

2â2

(
1

â
− 3R (X(s′),X(s))

8â2

)(
τ (s′)×R (X(s′),X(s))n∥(s′)

)
ds′.

As in the rot-trans mobility, we compute the first (rotlet) integral using slender-body quadra-

ture, and the second using direct Gauss-Legendre quadrature.

127



6.2.3.1 Slender body quadrature

For the trans-rot mobility (6.54), the singularity subtraction approach is to set

U (R)
n (s) =

∫

D(s)

(∂sX(s′)×R(s′))n∥(s′)

R(s′)3
ds′

=

∫

D(s)

(
(∂sX(s)× ∂2sX(s))n∥(s)

2|s− s′| ∥∂sX(s)∥3
)
ds′

+

∫

D(s)

(
(∂sX(s′)×R(s′))n∥(s′)

R(s′)3
− (∂sX(s)× ∂2sX(s))n∥(s)

2|s− s′| ∥∂sX(s)∥3
)
ds′

:=U (inner, R)
n (s) +U (int, R)

n (s) (6.56)

U (inner, R)
n (s) = aL(s)

(
(∂sX(s)× ∂2sX(s)) · n(s)

2 ∥∂sX(s)∥3
)
, (6.57)

where aL(s) is defined in (2.20). The nearly singular integral U (int, R)
n (s) can then be put in

the form (6.38) by setting

gtr(s, s
′) =

( |s− s′|
R(s′)3

(τ (s′)×R(s′))n∥(s′)−
(
τ (s)× ∂sτ (s)

2 ∥∂sX(s)∥3
)
n∥(s)

)
1

s′ − s
, (6.58)

lim
s′→s

gtr(s, s
′) = − ∂sn

∥(s)

2 ∥∂sX(s)∥3
(
∂2sX(s)× ∂sX(s)

)
− n∥(s)

3 ∥∂sX(s)∥3
(
∂3sX(s)× ∂sX(s)

)

− 3

4 ∥∂sX(s)∥5
(
∂sX(s) · ∂2sX(s)

) (
∂sX(s)× ∂2sX(s)

)
n∥(s) (6.59)

6.2.4 Rot-rot mobility

We now consider the rot-rot mobility. Substituting the tensorMrr from (2.9) into the integral

(2.4) and using the approximation ∥X(s)− X(s′)∥ ≈ s− s′ when s− s′ = O(â), the mobility

is given by

8πµΨn(s) = −1

2

∫

D(s)

D (X(s),X(s′))n(s′) ds′ (6.60)

+
1

â3

∫

Dc(s)

((
1− 27R(s′)

32â
+

5R(s′)3

64â3

)
I +

(
9

32âR(s′)
− 3R(s′)

64â3

)
(RR) (s′)

)
n(s′) ds′.
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For the rot-rot mobility, we will use always use the asymptotic result (2.47). In the fiber

interior when ∥∂sX(s)∥ = 1, this reduces to (2.49),

Ω∥
n(s) =

(Mrrn
∥) (s) = 1

8πµ

9n∥(s)

4â2
. (6.61)

We use the asymptotic result here because the 1/â2 term is so dominant as to render calcu-

lation of the full integral, which involves the rapidly-decaying doublet kernel, unnecessary.

More importantly, the local operator Mrr (and the diagonal discrete matrix M rr) are pos-

itive definite and well-behaved up to the end points. In our implementation, we derive

corresponding expressions for (2.47) when ∥∂sX(s)∥ ≠ 1 in a straightforward way by substi-

tuting Rp ≈ |s− s′|p ∥∂sX(s)∥p into the expansions of Section 2.1.4.

6.2.4.1 Slender body quadrature (if desired)

Although we use asymptotic evaluation for the rot-rot mobility, it is straightforward to

derive a nearly singular quadrature scheme to evaluate the RPY integral for Mrr. The first

of the integrals (6.60) can be evaluated to high accuracy using the doublet scheme of Section

6.2.1.3, while the second integral can be computed using direct Gauss-Legendre quadrature

on Dc(s) (split into two pieces). The parallel angular velocity Ψ
∥
n can then be obtained by

taking the inner product of Ψn with τ .

6.2.5 Convergence of quadratures

We next test the accuracy of the (action of the) mobility matrices M tt, M tr, M rt, and

M rr by comparing against upsampled direct quadrature. To illustrate that our quadrature
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Figure 6.7: Convergence of the nearly singular quadrature schemes. We use the fiber and

force/torque density in (6.62) and compute the velocities U f, Un, Ω
∥
f , and Ω

∥
n on the colloca-

tion grid by applying the discrete mobility matrices. In all cases, we compute a reference solution
by upsampled direct quadrature and report the relative L2 errors in the velocity.
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scheme does not depend on the fiber being inextensible, we apply it to a fiber with

X(s) = (cos 3s, sin 3s, cos s) , (6.62)

f(s) =
(
cos 2s3, s2, sin 2s

)
(6.63)

n(s) = cos
(
4s2
)

(6.64)

In each case, we compute the error relative to upsampling the integrals with a large number

of Clenshaw-Curtis quadrature nodes. Here by “the integrals,” we mean the corresponding

integral after dividing the domain into D(s) and Dc(s), so that we are testing the quadrature

scheme and not our assumption that R ≈ |s − s′|. The relative error is normalized by the

L2 norm of the reference solution.

Figure 6.7 shows the results for the trans-trans mobility (6.34) and trans-rot mobility

(6.54) (top row), and rot-trans mobility (6.48) and rot-rot mobility (6.61) (bottom row) for

two different values of ϵ̂, and various values of N and N2. In the case of the trans-trans, rot-

trans, and trans-rot mobilities, we obtain spectral convergence, with an error that saturates

when N2 is too small. Increasing N2 gives spectral convergence to machine precision, at a

rate and saturated error that is independent of ϵ̂.

In Fig. 6.7, we also show the accuracy of the rot-rot mobility as defined in (6.61) relative

to the actual RPY integral of doublets as defined in (2.9). We do this in two ways: we

again perform special quadrature on the integral (2.37) of doublets, finding an accuracy that

depends on N and (most especially) N2 and is essentially independent of ϵ̂. The strong

dependence on N2 tells us that the value of the integral is controlled by resolution of scales

R ∼ â. As such, we compare the numerical results to the asymptotic local mobility (6.61)

as dotted lines. There we see that for ϵ̂ = 10−2, we get about one digit of accuracy, while

for ϵ̂ = 10−3 we obtain about three digits. The error decrease reflects the fact that the full

asymptotic formula for the rot-rot mobility (2.47) is O(ϵ̂2) in the fiber interior (2â ≤ s ≤
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L − 2â) and O(ϵ̂) at the fiber endpoints. This is sufficient for our purposes, so we use the

asymptotic mobility going forward.

6.3 Well-posedness/convergence of the static problem

In this section, we study the convergence of our numerical method for the case of a static

filament (solving for velocity at t = 0) in two steps. First, we show that our discrete mobility

matrix M tt is indeed positive definite for larger ϵ̂, in contrast to M tt in the asymptotic

formula (2.24), which has negative eigenvalues for as few as 15 collocations points on the

fiber centerline when ϵ̂ = 10−2. Next, we solve for the velocityU and constraint force λ in the

Euler model equations (4.2) and examine their convergence. This is where our method hits

a snag: if we maintain a cylindrical fiber shape, there is a physical singularity that develops

at the fiber endpoints, where the force required to produce a uniform motion becomes very

oscillatory [134, Sec. 4.3.2]. This means that λ fails to converge pointwise, which calls into

question the convergence of U as well. Nevertheless, we show empirically that the spectral

method does give a convergent velocity and a weakly-convergent constraint force λ (i.e., the

moments of λ converge). Furthermore, the accuracy we obtain in the spectral method with

just 16 − 30 points on the fiber centerline is better than with 1/ϵ̂ points in a second-order

method.

Throughout this section, we will consider free fibers with tangent vectors of the form

τ (s) =
1√
2

(
cos
(
qs3(s− L)3

)
, sin

(
qs3(s− L)3

)
, 1
)
, (6.65)

where we set L = 2, and q is a parameter that determines the number of helical turns and

fiber curvature and smoothness. Fibers with q = 1 and q = 7 are shown in blue and red,

respectively, in Fig. 6.8.
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Figure 6.8: Fibers we use for the static convergence study, shown from two different views. Here
L = 2 and the fiber tangent vector is given by (6.65), with q = 1 for the blue curve and q = 7 for
the red curve. The dotted yellow curve shows the q = 7 fiber after t = 0.01 seconds of relaxation
(when ϵ̂ = 10−2, µ = 1, κ = 1 and γ = 0; see Section 6.5.1).

6.3.1 Eigenvalues of M tt

To illustrate that the RPY mobility (6.34) alleviates the problem of negative eigenvalues

that plagues SBT, we compute the eigenvalues of the translation-translation matrix M tt

numerically. We use q = 7 in the free fiber (6.65), although the mobility does not change

substantially with the fiber shape (specifically, a straight fiber and four-turn helix give similar

results).

There are two parameters associated with the quadrature for (6.34): the number of

collocation points N that we use for the fiber centerline, which we also use for the Stokeslet

and doublet integrals, and the total number of additional points N2 that we use for the

integrals in the region |s−s′| ≤ 2â (recall that we use N2/2 Gauss-Legendre points on either

side of s′ = s for these integrals). In Fig. 6.9, we report the eigenvalues of the mobility matrix

for ϵ̂ = 10−2 as a function of N (left plot) and N2 (right plot). In the left plot, we also show

the eigenvalues of M tt when we use the asymptotic SBT of (2.24) for translation. We see

that the eigenvalues with SBT quadrature become negative even using N = 15 collocation
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Figure 6.9: Absolute value of the eigenvalues of the discrete mobility matrix M tt for ϵ̂ = 10−2 with
slender-body quadrature for the RPY integrals (positive eigenvalues shown using a solid line and
negative using circles), as well as the RPY-based slender body theory (SBT) of (2.24) (positive
eigenvalues shown using a dotted line and negative using squares). Left: the eigenvalues as a
function of the number of collocation points N with N2 = 6 fixed. A result for the RPY integrals
(6.34) computed with oversampled quadrature is shown as a black line for N = 60. There are a few
small negative eigenvalues (yellow circles) for N = 45 due to numerical errors. Right: eigenvalues
for k ≥ 90 for fixed N = 45 and changing N2 (eigenvalues for k < 90 are visually indistinguishable
for the lines plotted). Using N2 = 4 and N2 = 6 still gives some negative eigenvalues (circles),
while N2 = 8 gives all positive eigenvalues that accurately approximate the true eigenvalues (solid
black line).
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points, while the eigenvalues with the RPY slender-body quadrature remain positive up to

N ≈ 35. When we increase N2 from 6 to 8 (right plot), we match the true eigenvalues of the

RPY mobility almost perfectly, and all eigenvalues remain positive. We emphasize that the

negative eigenvalues for the RPY quadrature are the result of numerical quadrature errors,

while for SBT negative eigenvalues are inherent to the continuum operators. The discrepancy

gets better as ϵ̂ decreases; for ϵ̂ = 10−3 there is close agreement in the eigenvalues between

SBT and RPY for N ≲ 50, and, even for N2 = 2, there are no negative eigenvalues until

N ≳ 60 for SBT quadrature and N ≳ 80 for RPY quadrature (results not shown).

6.3.2 Strong convergence of velocity

Before considering time-dependent problems, we examine the convergence of the solution

to the static problem (4.2). The main object of study here is the constraint force density

λ(s). Even though our discrete translational mobility M tt (with sufficiently large N2) does

not have negative eigenvalues (see Fig. 6.9), it still has very small positive eigenvalues and

the resulting λ changes rapidly near the endpoints. Therefore, we cannot expect pointwise

spectral convergence for the constraint force λ.

The key result of this section is that, while the constraint force λ is not smooth, the veloc-

ity for ϵ̂ = 10−3 to 10−2 is sufficiently smooth to be resolved by the spectral method. Further-

more, while the constraint force does not converge pointwise at the fiber endpoints, moments

of it, which are the physical observables in the problem (e.g., stress ∼
∫
λ(s)X(s) ds), do

converge, and can be captured by the spectral method to reasonably high accuracy.

To define a reference solution, we utilize the second-order blob-link discretization de-

scribed in Section 3.2.4.2. This discretization is more robust because the values of functions

at the fiber endpoints do not affect derivatives at the fiber interior, which ensures that λ does

not contain spurious oscillations in the fiber interior. Since the mobility in the second-order

method converges to the integrals we compute in Section 6.2 as the number of blobs goes to
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infinity, we will utilize Richardson extrapolation to form a reference solution and compute

error with respect to that solution. Then, to compare the accuracy of our method with

that of the second-order method, we also compute a solution using 1/ϵ̂ points. According

to [76], this is (approximately) the minimum required resolution such that the filament is

treated hydrodynamically as a solid cylinder, rather than a series of disconnected blobs.2 In

the second-order method we compute the forces and torques due to bending and twisting

analytically, thus focusing our investigation on the saddle point solve (4.2), and not the

accuracy of computing the right hand side.

Let us begin by examining the function λ(s) in the solution of (4.2). For this test, we

begin with the fiber (6.65) with q = 1, which is a smoother problem for which we could

get high accuracy with on the order of 10 points (and enter the asymptotic regime of the

second-order method). We perform Richardson extrapolation on the second-order solutions,

and in Fig. 6.10 compare the result to the spectral method with N = 40 points. We consider

two different values of N2 in both cases. For ϵ̂ = 10−2, we start with N2 = 6, for which we

observe uncontrolled oscillations in λ that grow near the fiber endpoints. This is consistent

with our observation in Fig. 6.9 that negative eigenvalues exist when N2 is too small. When

we increase to N2 = 8, we again see oscillations at the endpoints, but the magnitude of these

is closer to that of the reference constraint forces we obtain from the second-order method.

Quite surprisingly, despite the misbehavior of λ, the translational velocity U and parallel

rotational velocity Ω∥ appear to converge pointwise, albeit with rapidly-changing behavior

at the fiber endpoints (see Fig. 3.1, top left plot for an example). To quantify the errors

in U and Ω∥, we perform a self-convergence study, in which the errors are computed by

successive refinements, then confirm that the converged spectral solution is close to that of

the second-order method (see Fig. 6.11 caption). The error as a function of N is shown in

2It might be possible to reduce the required resolution of the second-order method by designing second-
order quadrature schemes for the integrals in the RPY mobility instead of evaluating direct sums of the RPY
kernel. However, since our slender-body quadrature is based on global interpolants of the fiber centerline, it
is not straightforward to extend these to second-order discretizations.

136



Figure 6.10: Comparison of the pointwise values (left) and moments (right) of λ in the spectral and
second-order methods using the fiber (6.65) with q = 1 and slenderness (top) ϵ̂ = 10−2 and (bottom)
ϵ̂ = 10−3. In the panels on the left, we show the x component, which is the least smooth, for N = 40
and various N2, and compare to the reference solution obtained by Richardson extrapolation of the
second-order discretization. In the panels on the right, we show the magnitude of the moments
of λ(x)(s) against the Chebyshev polynomials Tk(s) with N2 = 8 for ϵ̂ = 10−2 and N2 = 4 for
ϵ̂ = 10−3. The spectral method with N ≈ 16 gives errors in the moments of λ that are smaller
than or comparable to the second-order method with 1/ϵ̂ points for both values of ϵ̂.
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Figure 6.11: Convergence of the translational and (parallel) rotational velocities for the static
Euler model equations (4.2) with ϵ̂ = 10−2 (N2 = 8 and N2 = 12, blue) and ϵ̂ = 10−3 (N2 = 4,
red). For each ϵ̂, the solid lines (and circles) show the self-convergence of the spectral method
(error is the relative L2 difference between the solution with N points and the solution with N +8
points). The dotted (for ϵ̂ = 10−2) and dashed (for ϵ̂ = 10−3) show the error in the second-order
method using 1/ϵ̂ points, relative to Richardson extrapolation. For U , the difference between the
Richardson-extrapolated solutions and spectral solutions with N = 40 is 6.6 × 10−4 for ϵ̂ = 10−2

and 0.002 for ϵ̂ = 10−3. For Ω∥, the Richardson-extrapolated solution differs from the spectral
solution with N = 40 by 0.02 for ϵ̂ = 10−2 and 0.01 for ϵ̂ = 10−3. Here Ω∥ is computed on an N
point grid by applying Rψ to (6.21).
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Fig. 6.11 for both ϵ̂ = 10−2 and ϵ̂ = 10−3. We obtain about 3 digits of accuracy in both

velocities when N = 32 and ϵ̂ = 10−2. When we increase to N = 40, the endpoints become

more resolved, and the error in the translational velocity using N2 = 8 points stagnates. By

increasing to N2 = 12, we obtain a smaller error when N = 40 (dashed-dotted squares in

Fig. 6.11). In theory, this tells us that N2 should increase with N , especially for large ϵ̂,

which is when the contributions from the integrals on |s− s′| < 2â are nontrivial. However,

for ϵ̂ = 10−2, using N ≳ 50 makes the number of degrees of freedom in the spectral method

comparable to the second-order one with 1/ϵ̂ = 100 points, and in that case we might as

well use the more robust low-order method.

When we decrease the slenderness to ϵ̂ = 10−3, Fig. 6.11 shows that we obtain between

2−3 digits in both U and Ω∥ when N = 40 (the errors saturate at N ≈ 64). The error in this

case is larger than for ϵ̂ = 10−2 since the problem is less smooth at the fiber endpoints. While

the convergence is slow due to this lack of smoothness, our spectral method still represents

a great improvement over the lower-order discretization with 1/ϵ̂ points, as we show in Fig.

6.11 with dashed-dotted lines. Thus, if we define the limit of infinitely many blobs as the

reference solution, the spectral method provides a cheap, efficient way to approximate that

result. In particular, we can obtain the same accuracy with 20 Chebyshev points on the

fiber as we do with 1/ϵ̂ blobs. Unsurprisingly, increasing the fiber shape to q = 7 in (6.65)

makes the required number of Chebyshev points larger; in that case we find that 40 points is

sufficient to give a translational velocity with lower error than 1/ϵ̂ blobs, while about 24 points

is sufficient for angular velocity (not shown). The translational, but not angular velocity,

requires more points as curvature increases because Mtt is the most nonlocal operator.

That said, it is still clear from the left panel in Fig. 6.10 that λ at the endpoints is not

converging pointwise. Indeed, even the second-order method shows large jumps in λ near

the endpoints, which suggests the problem is with the model physics, and not the spectral

numerical method. Nevertheless, we see from Fig. 6.10(b) that there is still a surprisingly
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good match between the spectral and second-order solutions for λ at the endpoints for

ϵ̂ = 10−3, despite the lack of smoothness in λ. We also wish to emphasize that, while λ is

not smooth at the endpoints, when multiplied byM tt it gives smooth enough (to resolve with

a spectral method to 2–3 digits) contributions to the translational and rotational velocities,

which are the important quantities for the evolution of the fiber centerline. The smooth

velocity maintains the smooth fiber shape, which makes our spectral method viable.

6.3.3 Weak convergence of λ

Given that λ is not smooth at the endpoints, we do not expect pointwise convergence of λ,

and we cannot a priori expect spectral accuracy from the Chebyshev collocation discretiza-

tion. We can, however, hope for weak convergence of λ, which we study by computing the

moments
∫ L
0
λ(s)Tk(s) ds for increasing k.

We study this in the following way: for each N , we solve for λ and compute the integral

against the Chebyshev polynomial Tk(s) for each k on a fine, upsampled grid. We do the

same in the second-order method, except we compute the integral directly on the second-

order grid without any upsampling. We use Richardson extrapolation of the second-order

solutions to get a reference solution for the moments, then compare to the spectral moments

in Fig. 6.10. The goal for our spectral discretization is then to obtain the first N moments

of λ with greater accuracy than the second-order method with 1/ϵ̂ points.

If we define the extrapolated moments from the second-order moments as the “true”

moments of λ, we see that the spectral method performs better than the second-order method

with 1/ϵ̂ points in approximating those moments, especially for ϵ̂ = 10−2. For ϵ̂ = 10−2, we

obtain about 2 − 3 digits of accuracy in the first 20 moments using N ≥ 24, whereas the

second-order discretization with 100 points gives only 1 − 2 digits in each moment, which

is comparable (but worse) than the accuracy of the spectral method with only 16 points.

For ϵ̂ = 10−3, the error in the moments is comparable for N ≥ 16 in the spectral method
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and the second-order code with 1/ϵ̂ = 103 points. For both values of ϵ̂, the moments of the

spectral approximation to λ start to increase for larger N when k ≳ 24. This comes from the

non-smoothness at the endpoints, but has little effect in practice on the accuracy of physical

quantities of interest like stress.

6.4 Temporal discretization

We now develop a temporal integrator for the Euler model (4.2)−(4.5) on a single fiber

(Chapter 7 will cover integrators for multiple filaments). Our temporal integrator is based

on a linearly-implicit, first-order, backward Euler discretization of the equations. While

using higher-order schemes is certainly possible [135, 136], this is complicated by the fact

that any scheme we use must be L-stable since twist equilibrates on a much faster timescale

than bending, and the higher-order bending modes also equilibrate on a fast timescale.

Since M tt is a nonlinear function of X, linearizing the mobility as in [136, Eq. (25)] does

not guarantee stability, which is why prior studies [47] have used nonlinearly implicit BDF

formulas to obtain higher-order accuracy. Designing a temporal integrator for twist suitable

for dense suspensions of fibers is a question we leave open for future work; here we only

consider a single fiber to first order in time.

At the kth time step, we solve the linear system

Kkαk = M k
tt

(
f (κ)

(
Xk+1,∗)+ f (γ)

(
Xk, ψk

)
+ λk

)
+M k

rtn
∥ (ψk

)
, (6.66)

(K∗)k λk = 0,

where Kk = K
(
Xk
)
, and likewise for all other matrices. Here Xk+1,∗ = Xk +∆tKkαk is

a linear approximation to the position at the next time step (the actual position is obtained

by rotating the tangent vectors; see Section 6.4.1). The elastic and twist forces are obtained

using (6.19) and (6.24), respectively, and the parallel torque is calculated from ψ using
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(6.23). Substituting the formula for Xk+1,∗ and the discretization of f (κ) from (6.19) into

(6.66) gives the saddle point system



−M k

tt Kk −∆tM k
ttF κK

k

(K∗)k 0






λk

αk


 (6.67)

=



M k

tt

(
f (κ)

(
Xk
)
+ f (γ)

(
Xk, ψk

))
+M k

rtn
∥ (ψk

)

0




which we solve for αk and λk using dense pseudoinverses via the Schur complement.

Solving (6.67) using the psuedo-inverse gives the perpendicular rate of rotation Ω⊥,k due

to the forcing and torque. The parallel rate of rotation from the force can then be computed

via (4.4),

Ω
∥,k
f = RNx→NψM

k
rt

(
f (κ)

(
Xk+1,∗)+ f (γ)

(
Xk, ψk

)
+ λk

)
. (6.68)

The parallel rate of rotation due to torque is then treated implicitly via a backward Euler

discretization of (4.5), so that the evolution equation for the twist density ψ = ∂sθ is given

by

ψk+1 = ψk +∆t
(
−RN→Nψ

(
Ω⊥,k ·DNτ

k
)
+DNψΩ

∥,k
f + ∂sΩ

∥
n

(
ψk+1

))
(6.69)

To compute ∂sΩ
∥
n, we differentiate (6.21) on the Nψ + 2 point grid, then downsample by

applying Rψ. This converts (6.69) into the linear system

(
I −∆tRψDNψ+2M rrÑψ

)
ψk+1 (6.70)

= ψk +∆t
(
−RN→Nψ

(
Ω⊥,k ·DNτ

k
)
+DNψΩ

∥,k
f +RψDNψ+2M rrβ̃n

)
,

where Ñψ and Rψ are defined in (6.20) and (6.23).
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6.4.1 Updating τ and X

While the evolution (6.25) describes how the tangent vectors evolve in continuous time, in

discrete time the update τ k+1 = τ k −∆tCΩ does not preserve the unit-length constraint.

Thus, in order to keep the dynamics on the constraint in discrete time, we will use Ωk from

the solution of (6.67) (recall that α = (Ω,UMP)), then evolve each tangent vector τ k{p} by

rotating by Ωk
{p},

τ k+1
{p} = rotate

(
τ k{p},Ω

k
{p}∆t

)
, (6.71)

the explicit formula for this rotation is the Rodrigues rotation formula [137]

τ k+1
p = τ kp cos

(
Ωk
p∆t

)
+
(
Ω̂
k

p × τ kp

)
sin
(
Ωk
p∆t

)
+ (6.72)

Ω̂
k

p

(
Ω̂
k

p · τ kp
) (

1− cos
(
Ωk
p∆t

))
,

where Ω = ∥Ω∥ and Ω̂ = Ω/Ω. We then update the midpoint XMP via Xn+1
MP = Xn

MP +

∆tUn
MP, and compute Xn+1 from τ n+1 and Xn+1

MP by applying the mapping X defined in

(6.3). Rotating the tangent vectors in this way keeps the dynamics on the constraint without

needing to introduce penalty parameters [22] that lead to additional stiffness in temporal

integration.

6.4.2 Updating the Bishop frame

In the case of intrinsic curvature and twist, the material frame is involved in the forces and

torques, and so it must be computed from the Bishop frame and θ using (3.27). Computing

the Bishop frame requires the solution of the Bishop ODE (3.26), which is subject to the
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condition (4.7),

∂sb
(1) = (τ × ∂sτ )× b(1) (6.73)

b(1) (L/2) = D(1) (L/2) .

Thus in our temporal integration scheme, we will obtain τ k+1 via (6.72), and ψk+1 via (6.70).

We then integrate ψk+1 to obtain θk+1, setting θ(L/2) = 0. With θk+1 and
(
D(1) (L/2)

)k+1

=

rotate

((
D(1) (L/2)

)k
,∆t

(
Ω⊥(L/2) + Ω∥(L/2)τ

)k
)
, we can then solve (6.73) numerically

as follows.

To discretize the Bishop ODE (6.73), we first integrate both sides of (6.73) to obtain an

integral equation for b(1). Since each fiber has at most 40 points on its centerline, we will

use dense linear algebra to solve for b(1) at all of the collocation points. The discrete integral

form of (6.73) is

b(1) + c = D†
N (τ × ∂sτ )× b(1). (6.74)

where c is an unknown integration constant and D†
N is the pseudo-inverse of the Chebyshev

differentiation matrix on the grid of size N (tangent vector grid). Combining with the

boundary condition in (6.73), and denoting with I(s) evaluation at s, we get the system



I −D† ((τ × ∂sτ )×) I

I(L/2) 0






b(1)

c


 =




0

D(1)(L/2)


 , (6.75)

which we solve for b(1).

In Fig. 6.12, we plot the errors in b(1)(s) as a function of the grid size for the fiber (6.65)

with q = 7 that satisfies the free fiber BCs (the refined solution is generated with N = 100, in

which all vectors have unit length to tolerance 10−13). We see that the errors in the parallel

and perpendicular direction are the same, which means that choosing to renormalize b(1)

will not increase the overall error (in Fig. 6.12 we do not renormalize b(1)).
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Figure 6.12: The L2 function errors in the Bishop vector b(1)(s). We use the fiber (6.65) with q = 7
and generate a reference solution using 100 collocation points (these vectors have unit length to
13 digits). We then solve (6.75) using N points and measure the L2 function error in b(1)(s) on a
common grid. We separate the total error (blue circles) into a component parallel to b(1)(s) (red
squares) and a component perpendicular to b(1)(s) (yellow diamonds).

6.5 Results

We now run our temporal integrator on two examples. In the first example, a relaxing bent

fiber, twist elasticity contributes minimally to the dynamics. In the second, a clamped spin-

ning fiber, twist elasticity is essential to generate the correct “overwhirling” [100] dynamics.

6.5.1 Role of twist in the relaxation of a bent filament

The first example we consider is a relaxing fiber that is initially bent. Previous works

[15, 84], have neglected the twist elasticity of free filaments, with the justification that twist

equilibrates much faster than bend, and therefore is always in a quasi-equilibrium state as

the filament deforms. Our goal here is to test this assumption by simulating the relaxation

of a filament with and without twist elasticity.

The fiber has length L = 2 and the initial tangent vector is given by (6.65) with q = 7.

We start the fiber with no twist, ψ(s, t = 0) = 0, and simulate until t = 0.01 with µ = 1,
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Figure 6.13: L2 error in the final position of a relaxing bent filament when we do not consider twist
elasticity. We measure the error as a function of γ and consider ϵ̂ = 10−2 (blue circles), ϵ̂ = 10−2

without rot-trans coupling (red squares), and ϵ̂ = 10−3 (yellow diamonds).

κ = 1, and γ = 0. This is long enough for the fiber to make a non-negligible shape change,

as shown in Fig. 6.8. We then repeat the same simulations using a varying twist modulus

γ and in Fig. 6.13 report the L2 error in the fiber position when twist elasticity is ignored

(equivalently, γ = 0). We report results using N = 36 and ∆t = 10−4 for ϵ̂ = 10−2 and

N = 40 and ∆t = 1.25× 10−5 for ϵ̂ = 10−3, having verified that increasing N and decreasing

∆t makes little difference in the error curves shown in Fig. 6.13.

Figure 6.13 shows how the position of the filament changes when we add twist elasticity.

We recall that the timescale of twist equilibration is 1/γ, and the forcing that results from

twist is proportional to γ. Thus, when γ is small, the timescale of twist equilibration is larger

than that considered here, and there is an O(γ) correction to the position of the fiber. As

γ increases, the 1/γ timescale goes to zero, but the contribution of f (γ) ∝ γ goes to infinity,

so in total there is a constant difference in the position which scales as ϵ̂2 in the limit as

γ → ∞ (in which twist is always in quasi-equilibrium).

The scaling of the curves with ϵ̂ suggests that the rot-rot mobility controls the equili-

bration of twist, which feeds back to the fiber shape through the force f (γ) (see (4.2)) and

146



trans-trans mobility. Indeed, as shown in Fig. 6.13, dropping all rot-trans coupling from the

dynamics, so that the only coupling between the position and twist angle comes through the

term M ttf
(γ) in (4.2), gives the same behavior for ϵ̂ = 0.01. Thus, in the case of a relaxing

fiber, the rot-trans coupling is negligible. Furthermore, in most materials, γ/κ ≈ 1 [33],

which according to Fig. 6.13 falls within the plateau regime of equilibrated twist, especially

for ϵ̂ ≲ 10−3.

6.5.2 Twirling to whirling instability

Having considered an example for which twist elasticity is negligible, we now consider an

example in which it is vital: the instability in a twirling fiber [54, 99, 100, 102]. In this case,

the instability results when the torque due to twist becomes larger than the filament buckling

torque, and the filament transitions from a straight twirling state to a curved whirling state

[99].

To initialize a small perturbation of a straight fiber, we set

τ (s) =
1√

1 + δ2




cos (tan−1(δ)) − sin (tan−1(δ)) 0

sin (tan−1(δ)) cos (tan−1(δ)) 0

0 0 1







δ cos (s(s− L)3)

1

δ sin (s(s− L)3)




(6.76)

at t = 0. Integrating (6.76) numerically (with the pseudo-inverse of the Chebyshev differ-

entiation matrix) and setting X(0) = 0 then gives a filament that satisfies free boundary

conditions at s = L and the clamped boundary conditions X(0) = 0 and τ (0) = (0, 1, 0).

At the clamped end, there is a delta-like singularity in the perpendicular component of λ(s),

which enforces the clamped boundary condition. As a result of this, the velocity has a bound-

ary layer that requires more collocation points to resolve for smaller ϵ. We will therefore use

ϵ̂ = 10−2 throughout this section, in addition to δ = 0.01, L = 2, µ = 1, κ = 1, and γ = 1.

To trigger the instability, we prescribe the rate of twist at the s = 0 end as Ω∥(0) = ω
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(see Section 6.1.3.3). Note that we could also simulate with the constant torque BC (6.22),

in which case the applied torque N0 is equal to the torque required to spin a straight fiber

at rate ω,

N0 := −
∫ L

0

ω

mrr(s)
ds, (6.77)

where mrr is the local rot-rot mobility mobility coefficient, Ω
∥
n(s) = mrr(s)n

∥(s). The results

in this section are unchanged regardless of the BC we use.

We start the twist profile in a state that satisfies the boundary conditions with no rot-

trans coupling, ψ(s) = ω/γ
∫ s
L
m−1

rr (s
′) ds′. In the case of an ellipsoidally-tapered filament

we use mrr(s) ≡ 9/ (32πµâ2), and the steady state twist profile reduces to ψ(s) = ω(s −

L)/(ψmrr) [99]. When the fiber is cylindrical, we use the formulas in (2.47) to obtain mrr(s).

In the case of an ellipsoidal fiber with local drag and no rot-trans coupling, Wolgemuth

et. al [99] performed a linear stability analysis to show that the spinning of the fiber about

its axis is unstable at critical frequency [33, Eq. (74)]

ω(ELD)
c ≈ 8.9

mrrκ

L2
= 8.9

9κ

32πµL2â2
(6.78)

with the centerline oscillating at a significantly smaller frequency [33, Eq. (75)]

χ(ELD)
c ≈ 22.9

m⊥
ttκ

L4
= 22.9

κ (log (ϵ̂−2/16) + 4)

8πµL4
. (6.79)

Here m⊥
tt is the mobility coefficient for force perpendicular to the fiber centerline for an

ellipsoidally-tapered filament. We will therefore report frequency in units ω̄ = ω/ω
(ELD)
c and

time in units t̄ = tχ
(ELD)
c /(2π).

Since the publication of [99], there have been a number of studies on the whirling insta-

bility that leave a few questions open. A study by Lim and Peskin, for instance [100], found
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a critical frequency of ω̄c = 0.3, while recent experimental work [102] has put the critical

frequency at about ω̄c = 0.6. The discrepancy in Lim and Peskin’s work [100] could be due

to a number of factors, including their use of nonlinear fluid equations, a periodic domain,

and a larger initial deflection. It is not, however, due to nonlocal trans-trans interactions,

as Wada and Netz [54] included those and obtained ω̄c = 1. Wada and Netz also showed,

however, that the frequency required to induce the overwhirling state drops as the initital

perturbation increases (and the nonlinear regime is entered). It could be possible, therefore,

that the simulations of [100] fall in this nonlinear regime. This observation was used in [102]

to explain the deviations from the theory as well.

An alternative explanation for the different values of ωc is the influence of rot-trans

coupling. This is neglected in computational studies which use the RPY tensor or SBT

[54, 99], but is included by necessity in simulations that use the IB method [100], and of

course in experimental systems [102]. Here we will study the role of rot-trans coupling to

see if we can understand the discrepancies in the literature. We will approach the problem

in two steps. First, we will confirm the relationships (6.78) and (6.79) hold for an ellipsoidal

filament with local drag and a cylindrical filament with all hydrodynamic terms included

except rot-trans. Then, we will examine the influence of the rot-trans coupling in the linear

regime.

6.5.2.1 Critical frequency as a function of hydrodynamic model

Figure 6.14 shows our study of the behavior close to the critical frequency ωc. In the

top panel, we simulate at ω̄ = 1 with four different hydrodynamic models: local drag with

ellipsoidal fibers (no rot-trans coupling), local drag with cylindrical fibers (endpoint formulas

in (2.20), no rot-trans coupling), and the RPY integral mobility with and without rot-trans

coupling. We see that using ellipsoidal local drag gives a trajectory which neither grows

nor decays over five periods, and the period is exactly equal to that predicted from (6.79).
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Figure 6.14: Simulating the whirling instability in the linear regime, δ = 0.01 in (6.76). We show

the x coordinate of the s = L endpoint as a function of dimensionless time t∗ = tχ
(ELD)
c /(2π) for

ϵ̂ = 10−2 (results for ϵ̂ = 10−3 are very similar, but require larger N to capture the changes in
velocity near the endpoints, and are not shown). We consider ellipsoidal (blue) and cylindrical
(dashed red) fibers with local drag, and cylindrical fibers (dashed-dotted yellow), where in all three
of these cases we neglect rot-trans and trans-rot coupling. We then add rot-trans and trans-rot
coupling and show the results as dotted purple lines. At the top, we show the endpoint x coordinate

at ω = ω
(ELD)
c using 1000 time steps per period 2π/χ

(ELD)
c , N = 16 for ellipsoidal fibers, and N = 32

for all other fibers. At bottom, we tune ω̄ = ω/ω
(ELD)
c to be as close at possible to the frequency

at which the perturbation neither grows nor decays (each line represents the same mobility as the
top plot), and use 2000 time steps per period with N = 40 for all fibers.
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When we switch to the cylindrical local drag formulas, the mobility at the fiber endpoints

decreases, and so the period Tc ∼ χ−1
c ∼ m−1

tt increases (see (6.79)). Likewise, the rot-rot

mobility mrr at the fiber endpoints is also smaller when we use cylindrical fibers, and so

the critical frequency ωc ought to be smaller (see (6.78)). As shown in Fig. 6.14(b), this is

indeed the case, with the critical frequency for cylindrical filaments coming in lower than

that for elliposidal filaments, but with a small difference of only 2%. The same can be said

for the RPY mobility without rot-trans coupling, since in this case the difference in the

critical frequencies is at most 4%. Thus, nonlocal trans-trans hydrodynamics, as well as the

shape of the fiber radius function, make little difference for the critical frequency, and cannot

explain the previously-observed large deviations from ω
(ELD)
c .

It is only when we account for rot-trans coupling that we see a substantial difference in

the critical frequency. Indeed, as shown in Fig. 6.14, including trans-rot dynamics gives a

large growth rate of the oscillations in the fiber endpoints, which eventually leads to the

“overwhirling” behavior that has been documented previously [33, 100] (see Fig. 6.15, but

note that the same overwhirling behavior can be obtained without rot-trans and trans-rot

dynamics for ω > ωc [54]). Figure 6.14 shows that the critical frequency with rot-trans

coupling is about ω̄c = 0.8, which explains about half of the observed experimental value

of 0.6. The critical frequency of ω̄c = 0.8 is also unchanged within 2% when we place the

clamped end 2â = 0.04 above a bottom wall and use the wall-corrected RPY mobility derived

in [138], which we discretize using oversampled integrals at every collocation point. Thus,

confinement, at least in the direction perpendicular to the centerline, is not the cause of the

other 20%, since the wall corrections decay too fast away from the wall to have a noticeable

effect (the total effect is O(ϵ̂) [139, Sec. 2.3–4]).

The rest of the deviation could be due to the initial fiber shape, as is suggested in [102];

however, our observations are the same up to a deflection of δ ≈ 0.2 in (6.76), and Wada and

Netz showed that starting the filament in a circular configuration gives about 25% reduction
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Figure 6.15: Nonlinear overwhirling dynamics: Fiber trajectory when ω = ω
(ELD)
c = 497 rad/s

≈ 1.25ωc and we include rot-trans coupling in the RPY mobility (dotted purple curve in Fig. 6.14).
The fiber endpoint drops below y = 0 and begins periodic crankshafting motion around t̄ ≈ 2.5.

in ωc [54, Fig. 1(g)]. Seeing as the initial fiber shapes in [102] are far more straight than

circular, it seems unlikely than a reduction as large as 20% comes from the fiber shape.

It is possible that the confinement inside a PVC pipe could reduce the critical frequency,

although the authors of [102] say that the flow is fully developed around the filament. Other

possibilities include the experimental set-up; for instance, the supplementary videos of [102]

show that the shaft also slightly translates the fiber endpoint in addition to spinning it. This

provides additional perturbations that could lower the critical frequency.

6.5.2.2 Nonlinear overwhirling dynamics

As ω increases, the twisting torque overcomes the bending moment of the filament, and

the filament dynamics eventually reach a steady state in which the fiber takes the shape

of a shepherd’s crook and spins in a steady motion, as illustrated in Fig. 6.15. These

dynamics, which are called “overwhirling” [100], have been studied in more detail in [54, 101].

In particular, it was shown in [101] that there is a subcritical Hopf bifurcation: if ω is
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increased from below, the overwhirling frequency is ω = ωc, but if ω is decreased once

the fiber is already in the overwhirling state, overwhirling is maintained for ω < ωc. In

addition to determining the boundaries of the bistable region, in this section we also study

the amplitude and frequency of the periodic overwhirling motion as a function of the motor

twirling frequency ω.

To study the stability and behavior of overwhirling at various frequencies, we begin by

getting the fiber to the steady overwhirling state using ω = 1.1ωc (by steady, we mean the

crankshafting frequency is unchanged to 0.2% over the last 5 periods). Following this, we

use this steady state configuration to initialize another simulation with ω = 1.2ωc, then

use that steady state to initialize ω = 1.3ωc, and so forth. We do the same for decreasing

frequency: starting from ω = 1.1ωc, we decrease the frequency until the fiber comes out

of the overwhirling state. As discussed in [101], this happens at a lower frequency than

ωc, which we find to be somewhere between 0.8ωc (stable overwhirling) and 0.72ωc (stable

twirling). Thus, the bistable region in the bifurcation diagram is between ω/ωc = 0.8 and

ω/ωc = 1, which is (approximately) consistent with the results of [101, Fig. 5], where the

lower boundary appears to be 0.85− 0.9ωc.

The overwhirling steady state dynamics are analyzed in Fig. 6.16. In Fig. 6.16(a), we

show the trajectory of the s = L endpoint when we use ω/ωc = 1.1 and initialize the

fiber to be nearly straight using (6.76). As depicted in Fig. 6.15, the endpoint dips below

y = 0, and the whole fiber begins a steady crankshafting rigid rotation around the y axis,

such that Y (s) and
√
X(s)2 + Z(s)2 are constant for all s. In Fig. 6.16, we show how the

amplitude R =
√
X(L)2 + Z(L)2 (Fig. 6.16(b)) and frequency χ (inset of Fig. 6.16(a)) of the

crankshafting motion depend on the driving motor frequency. For ω/ωc ≲ 1.6, the amplitude

contracts rapidly to about 5% of the fiber length, while the crankshafting frequency is roughly

constant at 1 − 2% of the motor frequency. On ω/ωc ≳ 1.6, however, the fiber amplitude

function is roughly constant; indeed, Fig. 6.16(c) shows that the steady state overwhirling
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(a) Dynamics of fiber endpoint

(b) Steady state amplitude (c) Steady state shapes

Figure 6.16: Steady state overwhirling dynamics. (a) Transition to the overwhirling state for
ω = 1.1ωc; see Fig. 6.15 for a 3D illustration for a different ω/ωc = 1.25. The fiber endpoint dips
below y = 0 and begins crankshafting motion with frequency χ(ω). The top inset zooms in on the
black box, while the bottom inset shows χ(ω). (b) Steady state amplitudes for varying ω/ωc. The
left axis and black line shows the amplitude R =

√
X(s)2 + Z(s)2, while the right axis and red line

show the steady state y coordinate. (c) Steady state overwhirling configurations for given ω/ωc.
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shapes approach a fiber that is essentially twirling upside down in this case. Instead of

bringing the endpoint closer to the y axis, the extra work done by the motor is used to

increase the frequency of the crankshafting motion at a higher rate, so that it transitions to

about 10% of the motor frequency. The mean χ/ω of about 0.05 is similar to what Wada

and Netz found for a thermally fluctuating fiber [54, Fig. 1(c)]. Our frequency results are

also similar to those presented previously in [101, Fig. 6(a)], where nonlinear behavior is

observed for ω/ωc ≳ 1.6.

Interestingly, while we find that the overwhirling state can be stable for frequencies as

large as 3ωc, we also find that the ability to reach it depends on the initial fiber configuration.

For instance, when ω/ωc is as small as 2.1, the fiber intersects itself on its way to the

overwhirling state. This suggests a mechanism for the formation of plectonemes that were

observed at high ω in [102], and that the full nonlinear dynamics are likely more complex

than previously thought.
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Chapter 7

Free fibers with nonlocal

hydrodynamics

The numerical tests in the previous chapter (in particular Section 6.5.1) showed that twist

elasticity makes a negligible contribution to the dynamics of slender filaments with two free

ends. Since these are precisely the type of filaments we are interested in moving forward, we

will neglect twist elasticity in the rest of this dissertation. That is, the schemes we develop in

this chapter solve the Euler model equations (4.2) with γ = 0 and only the Mtt component

of the mobility. While this is certainly a simpler problem than the full twist-bend elasticity

problem, we make it more challenging by introducing multiple filaments into the system. In

this case, we need fast (linear-scaling) and robust methods to compute the hydrodynamic

interactions between filaments. That is the focus of this chapter.

We begin this chapter in Section 7.1 by reformulating the equations (4.2) in terms of

the discrete force (not force density) on the fiber centerline, so that the mapping between

fiber forces and velocities is symmetric positive definite. The question then becomes how

to discretize it. Thus, in Section 7.2 we discuss how we can apply Mtt in linear time

using Ewald splitting [103]. Following this, we develop temporal integrators that reduce

the number of nonlocal velocity evaluations, then test those integrators on three examples
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of fiber suspensions. The main idea behind the temporal integrators, which only works in

the deterministic context, is to time-lag the nonlocal parts of the mobility, so that only the

local parts of the mobility need to be inverted. This saves on costly nonlocal hydrodynamic

evaluations.

7.1 Reformulation in terms of force

If we no longer consider twist elasticity and restrict ourselves to clamped boundary con-

ditions, then it becomes useful to formulate the equations in terms of forces, so that the

mobility matrix M̃ mapping forces to velocities is symmetric positive definite (this will aid

us in the next chapter when we introduce Brownian fluctuations). The force due to bending

elasticity is given in (6.13), and can be written as F = −LX

Let us now consider how the matrix M̃ is related to the matrix M which maps force

densities to forces. The work dissipated in the fluid, which is always positive, is given by

P =

∫ L

0

f(s) ·U(s) ds = fTW̃U = fTW̃Mf = F TMW̃
−1
F , (7.1)

P = F TU = F TM̃F .

The first line gives the work using the L2 inner product on force density, and subsequent

conversion via (6.14). The second line uses the definition of force ⟨f ,U⟩L2 = F TU . Thus,

we have that the SPD matrix M̃ is given in terms of M by

M̃ = MW̃
−1
. (7.2)

Then, in a deterministic method, the rotation rates and midpoint velocities α = (Ω,UMP)
T

are given by the solution of the saddle point system (4.2), which we reformulate in terms of
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Chebyshev
interpolation

Special 
quadrature

fW�1

X

fMF

Ebend [X(·)]
X(s)

X{k=1,...N+1}

�
⌧ {k=1,...N}, XMP

�

M [X(·)]

F bend (X) fbend (X)

Figure 7.1: Summary of how we use the fiber configuration to compute the forces F and mobility
M̃ . Given (τ ,XMP), we apply the map X from (6.3) to obtain the Chebyshev polynomial X(s),
which we then use to compute the bending energy Ebend in (6.9), force F in (6.13), and force density

f in (6.14). The velocity M̃F is computed by applying special quadrature to the force density f

(because the quadrature matrix might have negative eigenvalues, we form M̃ explicitly to compute
and truncate its eigenvalues).

force using (6.13) and (6.33)

Kα = M̃ (−LX +Λ) (7.3)

KTΛ = 0,

where K, M̃ , L and KT are all matrices of size 3Nx = 3(N + 1), and Λ = W̃λ is the

constraint force. Figure 7.1 summarizes the procedure we use to calculate forces and apply

the mobility matrix M̃ .

7.1.1 Saddle point system as gradient descent dynamics

We now show that the deterministic dynamics (7.3) take the form of a constrained gradient

descent. Let us consider a backward Euler integrator for (7.3) and the Lagrangian (see (8.8)
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for the Lagrangian with random forcing)

L [X,α,λ] =
1

2
XTLX +

1

2∆t
(X −Xn)T

(
M̃

n
)−1

(X −Xn) (7.4)

+λTW̃

(
Knα− 1

∆t
(X −Xn)

)
.

Here the matrices K and M̃ are evaluated at time n, and consequently are constant with

respect to X. In (7.4), the second term is ∆t/2 times the rate of dissipation in the fluid

(velocity × force), and λ represents a force density, which is a Lagrange multiplier for the

inextensibility constraint. We formulate that constraint as an L2 inner product using the

discrete weights matrix W̃ , since this gives the work done by the constraint force density on

the fluid.

We now differentiate the Lagrangian with respect to the three inputs to arrive at our

equations of motion

δL
δX

= 0 → −LX + W̃λ =
1

∆t

(
M̃

n
)−1

(X −Xn) (7.5)

δL
δλ

= 0 → Knα =
1

∆t
(X −Xn) (7.6)

δL
δα

= 0 → (Kn)T W̃λ = 0 (7.7)

Combining (7.5) and (7.6) and taking ∆t → 0, we arrive at the deterministic saddle point

system (7.3), where we set the force Λ = W̃λ, which represents another instance of the

conversion between force and force density defined in (6.14). In this case it is easy to see

how this conversion arises from the L2 inner product. The second equation in (7.3) is the

principle of virtual work introduced in Section 3.1.3.
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7.1.1.1 Proximal gradient descent and boundary conditions

In continuum (in the spatial variable s), we can see why gradient descent on the Lagrangian

(7.4) preserves the natural free fiber boundary conditions. In this regard, let us consider the

simpler Lagrangian

L [X(·)] = 1

2

〈
∂2sX, ∂2sX

〉
+

1

2∆t
⟨X− Xn,X− Xn⟩ , (7.8)

where the inner product is in L2. To differentiate this Lagrangian in continuum, we compute

δL
δX

(
X̃
)
=

d

dε
L
[
X+ εX̃

] ∣∣∣∣∣
ε=0

=
〈
∂2s X̃, ∂2sX

〉
+

1

∆t

〈
X̃,X− Xn

〉

=
(
∂sX̃ · ∂2sX− X̃ · ∂3sX

) ∣∣∣∣∣

L

0

+
〈
X̃, ∂4sX

〉
+

1

∆t

〈
X̃,X− Xn

〉
= 0 (7.9)

which must hold for all X̃. This implies the backward Euler evolution X−Xn = −∆t∂4sX, plus

the free fiber boundary conditions ∂2sX(0, L) = 0 and ∂3sX(0, L) = 0. Thus, in continuum,

proximal gradient descent automatically enforces the free fiber boundary conditions.

7.2 Hydrodynamic interactions in linear time

Now that we have a formulation of the equations in terms of force, the question is how

to apply the mobility matrix M̃ = MW̃
−1
. The application of this matrix ultimately

reduces to discretizing integrals of the RPY kernel (2.63) along the fiber centerlines, so here

by M̃ we mean the matrix which maps all the fiber forces to all the fiber velocities. The

most straightforward definition of these integrals is to use oversampled quadrature on an

upsampled grid. When we do this, we obtain a mobility M̃ which is guaranteed to be SPD,

and for which we can write the Cholesky factor immediately. In particular, upsampling to a
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fine grid gives us a reference SPD mobility

M̃ ref = W̃
−1
ET
uW uM̃RPY,uW uEuW̃

−1
, (7.10)

where the subscript u denotes a matrix on the fine grid. Walking through the steps of this

calculation, we first convert force to force density by applying W̃
−1
. We then extend the

force density to the upsampled grid (multiplying by Eu) and integrate it against the RPY

kernel there (the matrix M̃RPY,u describes the pairwise RPY kernel on the upsampled grid,

and W u gives the integration weights). The first three matrices, which follow from the

symmetry of M̃ ref, downsample the velocity Uu on the upsampled grid to the Nx point grid

by minimizing the L2 difference between EuUNx and Uu. If we want to apply the matrix

M̃ ref in linear time, we need a fast summation method for the RPY matrix M̃RPY,u. We

will treat this in Section 7.2.3.

The mobility (7.10) can also be justified in terms of a Galerkin formulation, where we let

V be a matrix mapping coefficients of basis functions ϕi to values on the collocation grid,

thus setting f = V f̂ and U = V Û . In this approach the mobility operator and matrix

discretization we use to discretize the continuum equation Û = Mgf̂ is

(Mg)ij =

∫ L

0

∫ L

0

ϕi(s)MRPY(s, s
′)ϕj(s

′) ds ds′ (7.11)

M g = V TET
uW uM̃RPY,uW uEuV .

A vital point in (7.11) is that, because we are getting the ij component of Mg by taking

inner products with ϕi(s) and ϕj(s), we are implicitly assuming the orthonormality of the

basis functions in L2, i.e., the stiffness matrix is the identity,

S = V TW̃V = I → V −1 = V TW̃ . (7.12)
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Substituting into (7.11), we get a new expression of the Galerkin matrix which involves the

matrix M̃ from (7.10),

M g = V −1W̃
−1
ET
uW uMRPYW uEuW̃

−1

= V −1M̃ refV
−T . (7.13)

Here the V −T = W̃V matrix maps the Galerkin coefficients of the force density to the

values of the forces on the collocation grid, the matrix M̃ ref gives values of velocity on the

collocation grid, and V −1 maps to coefficients of velocity. Thus (7.10) could have been

obtained using this Galerkin approach.

We want to emphasize that, for the rest of this dissertation, the goal of our numerical

methods will be to capture the mobility (7.10). When there are thermal fluctuations with

multiple filaments, further work is required to use a mobility other than (7.10). However,

when there is only a single filament, or when we do not need to compute M̃
1/2

(deterministic

methods), we have some freedom in making an approximation to (7.10) which is not as

expensive. We will focus on the diagonal (self) terms of M̃ ref, which in theory require large

oversampling to get correct when ϵ→ 0. It is here that our special quadrature scheme helps

us.

7.2.1 Treating the self term differently

In some cases, it might be useful to use special quadrature for the self term while using

upsampling for the other RPY integrals. Indeed, in the case when the same oversampling

factor is used in (7.10) for all fibers, the accuracy is controlled by the single fiber, which sets

the required number of points to scale as 1/ϵ. We can avoid this by subtracting the self term

from (7.10), then using a special quadrature scheme to obtain the correct result.

When we use our efficient quadrature scheme of Section 6.2 to approximateM on a single
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fiber, the matrix that results is M̃ = MW̃
−1
, which is not guaranteed to be symmetric

positive definite. Indeed, in Section 6.3.1, we showed that the mobility matrix M obtained

from quadrature can have negative eigenvalues due to numerical errors, especially for larger

N and ϵ̂. The negative eigenvalues for large N and ϵ̂ are not altogether surprising; we know

that lengthscales in the forcing on the order ϵ̂ will be filtered by our RPY regularization,

resulting in eigenvalues close to zero. Putting more Chebyshev points, which are clustered

together near the boundary, brings these lengthscales into play. Combining this with the

imperfect accuracy of our quadrature scheme, which is designed for smooth forces, it is not

hard to understand why negative eigenvalues result.

To work around this problem, we can replace the diagonal parts of the mobility (7.10)

with the symmetric matrix

M̃SQS =
1

2

(
MW̃

−1
+ W̃

−1
MT

)
. (7.14)

Then, we compute an eigenvalue decomposition of this matrix and set all eigenvalues less

than a threshold σ to be equal to σ. The choice of σ for a given discretization comes from

the smallest eigenvalue of the reference mobility (7.10). This is a precomputation done by

the code, where the input is a straight fiber (the smallest eigenvalue is not sensitive to the

fiber shape; it changes by at most 10% when we change the shape), and the oversampling

for the precomputation is done with 1/ϵ points. This gives us a first option for the mobility,

where the nonlocal parts are given by the upsampling (7.10) and the local parts are given

by the special quadrature matrix (7.14),

M̃ = M̃ ref − BDiag
{
M̃ ref

}
+ BDiag

{
M̃SQS

}
, (7.15)

where BDiag stands for the diagonal blocks (self interaction terms) of the matrix M̃ .
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7.2.2 A hybrid approach: near fiber quadrature

If we are able to reduce the number of oversampled points by treating the self term with

special quadrature, then the question remains: what about nearly touching fibers? If we

want to obtain an accuracy guarantee for the integrals (2.63), then the oversampling in

(7.10) will be controlled by the number of nearly touching fibers. In this section, we outline

a scheme that can remove this restriction by treating nearly touching fibers with special

quadrature. Our goal is to accurately compute the velocity

v (x) =
1

8πµ

∫ L

0

(
S (x,X(s)) +

2â2

3
D (x,X(s))

)
ds (7.16)

where x is a target point and X(s) is the Chebyshev interpolant of the centerline of a

fiber. Here we have restricted ourselves to the case ∥x− X(s)∥ > 2â, so that we only

need to consider the Stokeslet and doublet combination of the RPY kernel (2.6). There are

several components in our scheme to compute the interaction velocities v (x) to a guaranteed

tolerance regardless of how close the target point x is to the centerline of fiber X(s). We

need to:

1. Understand how far x can be from X(s) for direct quadrature on (7.16) to remain

sufficiently accurate.

2. Obtain a reliable metric to compute or bound the minimum distance between the target

x and fiber X(s),

d := min
s

∥x− X(s)∥ . (7.17)

Our procedure to compute d will be different for d/L = O(1), when fibers are far

apart and minimizing over a discrete set of nodes is sufficiently accurate, than for

d/L = O(ϵ), where it is more efficient to actually solve the continuous minimization

problem.
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3. Use a special quadrature scheme to compute the integral for d = O(ϵ). The scheme we

use here is taken directly from [140] and is based on extending the ideas used for the

self integral in Section 6.2 to near-singular quadrature.

To begin, we define an acceptable tolerance for the integrals. Since slender body theory

itself is only accurate to O(ϵ), it does not make sense to set a tolerance less than ϵ. For actin

filaments ϵ ≈ 10−3, so we define the tolerance as 10−3 and set ϵ = 10−3 in our accuracy tests.

That is, our goal is to compute the interaction velocities v (x) to three digits of accuracy

regardless of the distance between a target x and fiber X(s). While this method cannot

guarantee 3 digits of accuracy, it does so for most target-fiber pairs of interest to us; see Fig.

7.3 for numerical results.

7.2.2.1 Distance where direct quadrature breaks down

Our first goal is to determine when direct quadrature breaks down. To do this, we simply

measure the accuracy of direct quadrature on (7.16) with N = 16 and N = 32 Cheby-

shev nodes for randomly-generated pairs of fibers and targets. Specifically, we generate 100

inextensible fibers with 16 nonzero Chebyshev coefficients decaying exponentially (in expec-

tation) by four orders of magnitude. We place 100 targets around each fiber a distance d in

the normal direction and compute the integrals (7.16) using direct quadrature. Measuring

error with respect to a refined direct quadrature, we show in Fig. 7.2 that N = 16 gives 3

digits of accuracy for all test cases when the non-dimensional distance d/L ≥ 0.15. Likewise,

direct quadrature with N = 32 points gives 3 digits of accuracy when d/L ≥ 0.06.

7.2.2.2 Estimating d for d/L = O(1)

Since direct quadrature breaks down for d/L < 0.15 when N = 16, we need to determine

whether a target x is indeed a distance less than d/L = 0.15 from the fiber centerline X(s)

(the analogous statement holds for d/L = 0.06, N = 32). To do this quickly, we resample
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Figure 7.2: Relative errors using direct quadrature for the RPY kernel of (7.16). We consider
(top) N = 16 and (bottom) N = 32 points and vary the distance d/L of the targets from the fiber.
We see that we can get 3 digits of accuracy using N = 16 when d/L ≥ 0.15. For N = 32, the 3
digit threshold occurs around d/L = 0.06.
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the fiber centerline at Nu = 16 uniformly spaced points (in the arclength coordinate s) and

perform a discrete minimization over the uniform fiber points to estimate the distance d.

We denote this approximation by d̃. Using the same random set of fibers and targets as in

Section 7.2.2.1, we found the estimate of d by d̃ has a relative error in the distance |d̃− d|/d

of at most 5% for d/L = 0.15 and 20% for d/L = 0.06. Since direct quadrature breaks

down at d/L = 0.15 for N = 16, after accounting for the error in estimating d, we have

that if d̃/L ≥ 0.15 × 1.05, direct quadrature with N = 16 gives the integral to 3 digits. If

d̃/L < 0.15×1.05, we either need to use more direct quadrature points or special quadrature,

which is described next.

7.2.2.3 Special quadrature.

The special quadrature routine is taken directly from [140], and is used to correct integrals

where direct quadrature is insufficient. As in Section 6.2, the underlying idea is to find

the near singularity in the integrand, factor it out, expand what remains in a monomial

basis, and compute integrals with the singularity and monomials analytically. This time,

however, the integrand is not actually singular on the fiber centerline. By expanding the

fiber representation to the complex plane, the nearby singularity can be found in the complex

plane and the entire procedure of Section 6.2 can be repeated.

In more detail, the interaction velocity integral (7.16) can be written so that the numer-

ator is smooth as x approaches the centerline of X(s). Starting from

v (x) =
1

8πµ

∫ L

0


f(s)

∥R∥ +

(
(RR) + 2â2

3
I
)
f(s)

∥R∥3
− 2â2

(RR)f(s)

∥R∥5


 ds, (7.18)

where R = x−X(s), we rescale s by η = −1+ 2s/L. Then each of the terms in the integral
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(7.18) can be written in the form

∫ 1

−1

hm (x, η)

∥x−X(η)∥m dη, (7.19)

where m = 1, 3, 5. For each m, hm (x, η) is a density that depends on the target point x

and varies smoothly along the fiber j arclength coordinate η.

Now, the idea of [140] is to extend the representation of X(η) from η ∈ [−1, 1] ⊂ R to the

complex plane C and compute the complex root of ∥x− X(η)∥ = 0. Because the centerline

representation X(η) is available as a Chebyshev series, it is simple to solve for the root via

Newton iteration. We denote this root by η∗, i.e., ∥x− X(η∗)∥ = 0 with η∗ ∈ C.

Once the root is known, the algorithm of [140] finds the radius of the Bernstein ellipse

associated with η∗. This radius then bounds the direct quadrature error for the integral

(7.18). If the upper bound on the direct quadrature error with the number of oversampled

points used is less than 10−3, we proceed with direct quadrature. Otherwise, we use the spe-

cial quadrature scheme of [140], which is the same as in the finite part integration in Section

6.2. The complex singularity is factored out of the integrand, leaving a “smooth” function

which can be expanded in a monomial basis. Integrals involving monomials multipled by

the singularity are computed analytically, and an inner product of the monomial coefficients

with the analytical integrands yields the approximation to v (x).

The only difference from Section 6.2 is that the location of the singularity (complex root

η∗) now depends on the fiber position X. This means that the roots and monomial coeffi-

cients must be computed at every time step using an LU factorization of the Vandermonde

matrix. Since the Vandermone matrix is a function of the nodes sp on the fiber, its LU

factorization is the same for all fibers and can be precomputed once at the start of a dy-

namic simulation. We refer the reader to [140, Section 3] for more details on this quadrature

scheme.

While error bounds exist for direct quadrature, the special quadrature scheme of [140]
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does not provide error bounds or a method for selecting the fiber discretization (number of

panels, points per panel, etc.). Because of this, we performed an empirical study on the

same set of 100 fibers and targets as in Section 7.2.2.1. The randomized testing described

in Section 7.2.2.5 showed that, for most fiber configurations of interest to us, 1 panel of 32

points is sufficient to compute the integral to 3 digits using special quadrature as long as the

non-dimensional distance between the target and fiber is d/(ϵL) > 8. Otherwise, 2 panels

of 32 points are required. Fibers with high curvature typically give the largest errors for a

given discretization.

7.2.2.4 Estimating d for d/L = O(ϵ)

We still require a robust numerical procedure to determine when the the target point is

too close to the cross section of the fiber. Our idea is to use the real part of the root η∗

as the closest arclength coordinate on the fiber to the target. We know the root η∗ solves

∥x− X(η∗)∥ = 0. It seems sensible, therefore, for the real part of the root to approximately

minimize (over real η) ∥x− X(η)∥ when the root is close to the real line. We therefore define

s∗, the closest point on the fiber to the target, from the complex root η∗ by removing the

imaginary part of the root and rescaling,

s∗ =





L
2
(Re(η∗) + 1) −1 ≤ Re(η∗) ≤ 1

0 Re(η∗) < −1

L Re(η∗) > 1

. (7.20)

The shortest distance from x to the fiber can then be estimated as

d̂ := ∥x− X(s∗)∥ , (7.21)
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where the position X(s∗) is computed by evaluating the Chebyshev interpolant at s∗. Our

randomized tests showed that this estimate gives an error of at most 10% for d/(ϵL) ≤ 8,

which is sufficiently accurate for our purpose. Because we use a point s∗ on the fiber centerline

to estimate d̂, this 10% error is always an overestimation. For this reason we use 2 panels

for special quadrature when d̂/(ϵL) ≤ 8.8.

7.2.2.5 Near fiber accuracy

We now test the accuracy of our algorithm for computing the slender body interaction

integrals (7.16). We generate 100 smooth inextensible fibers by initializing an unnormalized

tangent vector that is an exact Chebyshev series with 15 exponentially decaying terms. More

precisely, the kth coefficient of the series is a Gaussian random variable with mean 0 and

standard deviation e−10k/N , where k = 0, . . . 15. We then normalize this tangent vector to

obtain τ and integrate to obtain the fiber positions X(s). To make sure the resulting fiber

is smooth after tangent vector normalization, we compute the Chebyshev series of the fiber

position X(s). Denoting the coefficients of the position Chebyshev series by âk, we only

accept fibers with Chebyshev series coefficients |âk| ≤ e−0.61k for k = 2, . . . 15 (the constant

and linear modes play no role in the fiber smoothness). This means that the last coefficient

â15 has value at most 10−4.

We consider fibers with L = 2 and ϵ = 10−3 in a fluid of viscosity µ = 1/8π. Our goal is

to evaluate the velocity (7.16) due to a fiber X(s) at a target x. To measure the accuracy

of our quadrature in doing so, we place 100 targets a distance d away in a random normal

direction from each fiber’s centerline. To get a reference answer, we compute the integral

(7.16) directly by upsampling the fiber to 6000 type 1 Chebyshev points. We then compute

the integral using our algorithm. We show the maximum relative error, Ei/ ∥v(x)∥∞, where

the maximum is over the direction i = 1, 2, 3 and E is the absolute difference between the

approximate and reference values of the velocity (7.16).
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Figure 7.3: Errors in algorithm for near singular quadratures. We show a histogram of the number
of digits obtained in the velocity v(x), given in (7.16), for 100 different fibers and 100 targets
per fiber. Here d is the distance from the target point to the fiber centerline and we show his-
tograms of the number of digits obtained in the integral v(x). The number of digits is computed
as −log10 (maxiEi/ ∥v(x)∥∞), where the maximum is over the direction i = 1, 2, 3 and E is the
absolute difference between the approximate and reference values of the velocity (7.16). (a) Errors
from short distances 2 ≤ d/(ϵL) ≤ 10. We see that we are over-working in most cases, since most
of the time we obtain many more than 3 digits of accuracy, but there are some cases when we only
obtain 3 digits. (b) Long distances 0.04 < d/L < 0.20, where we obtain 4-7 digits most of the time.

We separate our results into short distances, 2ϵL < d < 10ϵL, and long distances,

0.01L < d < 0.2L (there is overlap between the two regions since 10ϵL = 0.01L = 0.02

with our parameters). Fig. 7.3(a) shows the errors for short distances, where we see that

we obtain many more digits than necessary in most cases. There are, however, a few cases

where we obtain 3 digits. Since d will rarely be O(â), it is acceptable to expend extra

computational effort to guarantee accuracy. In Fig. 7.3(b), we show the errors for long

distances. In particular, we see that we obtain 4-5 digits most of the time, and that ≈ 5%

of the time we obtain exactly 3 digits of accuracy.

7.2.3 Fast direct summation

The oversampled mobility definition (7.10) shows that we need an algorithm to sum the

RPY kernel over many point force pairs. In (7.10), the pairs are obtained by upsampling
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the fiber position function to Nu points and then multiplying by the Chebyshev weight on

the upsampled grid to obtain the force there. The focus of this section is on how to apply

the matrix M̃RPY,u fast on the upsampled grid. We will restrict ourselves to triply periodic

boundary conditions, for which we can use fast Ewald summation [103, 104, 141, 142] to split

the RPY kernel into a near field part (nonsmooth in Fourier space, but rapidly decaying in

real space) and a far field part (smooth in Fourier space). When we perform rheology

experiments, the directions of periodicity change with time; thus we begin this section by

introducing the domain we want to solve the equations on, and how this affects the resulting

Ewald splitting algorithm.

7.2.3.1 Sheared coordinate system

In order to implement a shear flow in periodic boundary conditions, a strained coordinate

system is necessary. The spectral Ewald method was extended to sheared cells in [75], but

here we give a more detailed description for completeness. We assume (without loss of

generality) that x is the flow direction, y is the gradient direction, and z is the vorticity

direction. Let the total nondimensional strain be g(t). In Fig. 7.4 we define a strained

coordinate system with axes

ex′ = ex, ey′ = ey + g(t)ex, ez′ = ez, (7.22)

and strained wave numbers

k′x = kx, k′y = ky + g(t)kx, k′z = kz. (7.23)

Here kx, ky, and kz are the wave numbers when the periodicity is over the x, y, and z

directions, while k′x, k
′
y, and k

′
z are the wave numbers when the periodicity is over the x′, y′,

and z′ directions.
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Figure 7.4: The sheared/parallelepiped periodic simulation cell. We denote the dimensionless shear
by g. The green area shows the periodic cell (2D projection) when g = 0, and the blue area is the
periodic cell for nonzero g.

The transformation between the two coordinate systems is given by

x′ :=




x′

y′

z′




=




1 −g(t) 0

0 1 0

0 0 1







x

y

z




:= Lx. (7.24)

In the unsheared to sheared transformation (7.24), the sheared coordinates x′, y′, and z′ are

all periodic on [0, L]3 (the blue simulation cell in Fig. 7.4).

Now we use the transformation (7.24) to transform the derivative operators in the un-

sheared coordinate system to the sheared one,

∂

∂x
=

∂

∂x′
∂

∂y
=

∂

∂y′
− g(t)

∂

∂x′
∂

∂z
=

∂

∂z′
. (7.25)

We therefore have the Laplacian in the transformed space as [143]

∆ =

(
∂2

∂x′2
+

(
∂

∂y′
− g(t)

∂

∂x′

)2

+
∂2

∂z′2

)
. (7.26)

In Fourier space, ∆̂ = k′ · k′, where

k′ = (k′x, k
′
y − g(t)k′x, k

′
z), (7.27)

173



Using the sheared to unsheared transformation in (7.23), it is easy to see that k′ :=

∥k′∥ = ∥(kx, ky, kz)∥ := k. It follows that we can simply replace k in any isotropic Fourier

calculations by k′ to use a Fourier method in the sheared coordinate system [143, 144].

7.2.3.2 Ewald splitting for direct quadratures

We use the Ewald splitting of [75, 103] to accelerate the computation of the many-body sum

in M̃RPY,u in (7.10) on a periodic domain. The idea of Ewald splitting or Ewald summation

is to split the RPY kernel into a smooth long-ranged part and a remaining short-ranged part.

The smooth “far field” part has an exponential decay in Fourier space and can be done by

standard Fourier methods (namely the non-uniform FFT), and the “near field” part decays

exponentially in real space and can be truncated so that it is nonzero for O(1) neighboring

points (sources) per target.

Let x′ and y′ be the coordinates of the points x and y in the sheared domain using the

coordinate transformation (7.24). The periodic RPY tensor for a sphere with radius â can

then be written on the sheared domain as

S
(P )
RPY (x′,y′; â) =

1

V µ

∑

k′ ̸=0

eik
′·(x′−y′) 1

k′2

(
I − k̂′k̂′T

)
sinc2 (k′â) , (7.28)

where V is the domain volume and k′ = 2πm/Ld, where m is a vector of three integers and

Ld is the periodic domain length. Using the screening function of Hasimoto [145],

H(k′, ξ) =

(
1 +

k′2

4ξ2

)
e−k

′2/4ξ2 , (7.29)

we split the periodic kernel S
(P )
RPY into a far field and near field component, S

(P )
RPY = S

(FF)
RPY +

S
(NF)
RPY, where the far field is given in Fourier space by

S
(FF)
RPY (x′,y′; â) =

1

V µ

∑

k′ ̸=0

eik
′·(x′−y′) 1

k′2

(
I − k̂′k̂′T

)
sinc2 (k′â)H(k′, ξ). (7.30)
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Here ξ is a splitting parameter that controls the decay of the far field kernel in Fourier space

and of the near field kernel in real space, and is chosen to optimize performance. The total

far field sum is obtained by summing the far field kernel (7.30) over all points y′, with the

k′ = 0 mode set to zero since in continuum the total force on the system is zero. We use an

NUFFT to compute these sums at all points x′ in log-linear time in the number of points

(see [75, 103] for more details).

Assuming that the near field decays rapidly enough that Fourier series can be replaced

by Fourier integrals, the near field mobility can be computed in real space by inverse trans-

forming its Fourier space representation,

S
(NF)
RPY (x,y; â) = F (r, ξ, â)

(
I − r̂r̂T

)
+G(r, ξ, â)r̂r̂T , (7.31)

where r = (x− y)∗, r = ∥r∥, and the ∗ denotes the nearest periodic image in the sheared

domain (blue in Fig. 7.4). The exact forms of F and G are given in [103, Appendix A].

The total near field sum is computed at x by summing the near field kernel (7.31) over

neighboring points whose minimum image distance from x is less than a precomputed value

r∗. We choose r∗ so that the velocities are computed to a relative tolerance of 10−3, and set

ξ such that r∗ is small enough that only the nearest periodic image contributes to the near

field sum for each pair of points.

While the nearest image for near field calculations is over the sheared domain, r and r

are computed using the Euclidean metric. We search for pairs of points closer than r∗ apart

in log-linear time using a multithreaded linked-list algorithm for a rectangular periodic cell.

To adjust for the fact that the x′ coordinates are given on a non-orthogonal coordinate

system, we bound the Euclidean distance between points in the unsheared coordinates by
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their “distance” in sheared coordinates,

∥r∥ =
√
rTr =

√
(r′)

T
L−TL−1r′ ≥

(
1 +

1

2

(
g2 +

√
g2(g2 + 4)

))−1

∥r′∥ :=
1

ψ
∥r′∥ ,

(7.32)

where we have used the maximum eigenvalue of L−TL−1 to bound the norm [75]. The factor

ψ defined in (7.32) can be thought of as a “safety factor” in the sense that points that are

ψr∗ apart using the Euclidean metric in primed coordinates are at least r∗ apart in physical

space.

7.2.3.3 Verification for sheared unit cell

To test our implementation of sheared periodic boundary conditions, we consider a packing

of points that is hexagonal in the xy plane. As shown in Fig. 7.5, the points are positioned

on a (green) periodic slanted cell at (0, 0, 0) (red blob), (1, 0, 0) (black), (0.5, 1, 0) (orange),

and (1.5, 1, 0) (sky blue). To form a periodic hexagonal packing in the xy plane, we set

g = 0.5 with periodic domain length Lx = Ly = Lz = 2. Using a coloring scheme (see Fig.

7.5), it is easy to see that this arrangement is equivalent to the same set of points on a (gray)

rectangular unit cell, with additional points at (1, 2, 0), (0, 2, 0), (1.5, 3, 0), (0.5, 3, 0), with

the ordering of forces in the second set of points being the same as the first, and periodic

length Ly = 4. We place a force of strength +1 in each direction (including z) on the first

(red) pair of points, −1 in each direction on the second (black) pair, +2 on the third (orange),

and −2 on the fourth (sky blue). Note that the z direction is also periodic in all cases with

length Lz = 2, so that we are actually considering a set of stacked copies of Fig. 7.5.

We solve for the RPY velocities induced by the forces at each point using the Ewald

splitting technique described in Section 7.2.3. We set ξ = 5, sphere radius â = 10−2, and

fluid viscosity µ = 3. The maximum relative 2-norm error in the velocity of the four points

is less than 10−5 for all values of the NUFFT tolerance less than 10−2, with decay to 10−11

when the tolerance is 10−8. We conclude that our modified Ewald splitting scheme of Section
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Figure 7.5: The lattice for the sheared unit cell test. The points are positioned on a lattice with a
1-particle (primitive) unit cell (shaded green) at (0, 0, 0) (red), (1, 0, 0) (black), (0.5, 1, 0) (orange),
and (1.5, 1, 0) (blue). The lattice can also be viewed as periodic on the larger 2-particle rectangular
unit cell shaded in gray. Colors indicate the magnitude of the force placed on each set of points:
+1 in all three directions on the red points, −1 in each direction on the black points, +2 on the
orange points, and −2 on the blue points.

7.2.3 properly treats the strain in the periodic coordinate system.

7.2.4 The choice of mobility

A trade-off now ensues between the upsampling factor in (7.10) and the resulting amount of

effort that has to be put into the special quadrature in Section 7.2.2. Indeed, if we consider

a small number of upsampled points, then we will need to correct a lot of nearby fibers

for which the direct quadrature fails. Conversely, if we take the limit of infinitely many

upsampled points, we won’t need the special quadrature scheme at all! Our choice is for the

latter, based on the following considerations:

1. In triply periodic systems, the mobility (7.10) with large Nu can be applied fast on a

GPU using the UAMMD library [105]. As such, for the actin filaments we consider

with ϵ ≥ 10−3 it turns out that it is always faster to use oversampled quadrature on

the GPU.

2. The special quadrature scheme in Section 7.2.2 does not account for the change in

the RPY kernel when R < 2â. Indeed, because the RPY kernel changes on R < 2â,
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we would need a separate procedure for fiber-target pairs which are separated by a

distance less than 2â. So far, we have not developed such a procedure because it is

faster to use oversampling.

3. Computing the mobility via (7.10) without modifications guarantees an SPD mobility

matrix, and gives us a formula for M̃
1/2

. This will be necessary when we introduce

thermal fluctuations in Chapter 8.

For the reasons listed here, we will always use the mobility matrix given by (7.10), allowing

for the possibility that the self term be treated differently as in (7.15). In practice, we will

choose a number of oversampling points, then make sure that the quantities we are interested

in don’t change when we double the number of points.

Summarizing then, the nonlocal mobility is always computed by the off-diagonal parts of

(7.10). We allow for the local mobility to be computed with special quadrature (Section 6.2).

When we describe a mobility calculation, then, there are two questions which completely

define the calculation

1. What kind of mobility was used for the local integrals? Special quadrature or over-

sampled direct quadrature?

2. How many points were used in the upsampling for the RPY integrals in the mobility

(7.10)?

7.3 Temporal integration

We now discuss how we split up the mobility in the temporal integrator to produce a min-

imum number of inter-fiber hydrodynamic evaluations per time step. We will introduce a

first order and second order temporal integrator for this purpose. In the second order case,

we avoid nonlinear solves by using extrapolated values as arguments to nonlinear functions.
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For example, we define M̃
n+1/2,∗

= M̃
(
Xn+1/2,∗

)
, with

Xn+1/2,∗ =
3

2
Xn − 1

2
Xn−1, (7.33)

where we have used the notation Xn to denote the fiber positions X at the nth time step.

We will also consider a backward Euler temporal integrator, for which no extrapolations are

necessary. This discretization is only first-order accurate, but is more robust and useful in

biological applications.

To discretize the saddle point system (7.3) in time, we split the mobility matrix a local

and nonlocal part,

M̃ = M̃L + M̃NL (7.34)

= BDiag
{
M̃
}
+
(
M̃ − BDiag

{
M̃
})

. (7.35)

While other options are possible, including making M̃L itself diagonal, here we will restrict

to the case of (7.35), where the local mobility on fiber i is just the ith diagonal block of the

matrix M̃ . We will analyze the differences between the case where the mobility is given by

(7.10) (oversampled RPY for all fibers) and the case where special quadrature is used for

the self terms (7.15).
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7.3.1 Second-order discretization

The second-order temporal discretization of the evolution equation (7.3) begins by solving

the saddle-point system

M̃
n+1/2,∗
L

(
Λn+1/2 − 1

2
L
(
Xn +Xn+1,∗)+ F

n+1/2,∗
ext

)
(7.36)

+M̃
n+1/2,∗
NL

(
Λn+1/2,∗ −LXn+1/2,∗ + F

n+1/2,∗
ext

)
+ u0

(
Xn+1/2,∗

)
= Kn+1/2,∗αn+1/2,

(
Kn+1/2,∗

)T
λn+1/2 = 0

for λn+1/2 and αn+1/2, where F ext (X) is an external force. To obtain a second-order block-

diagonal system, we extrapolate previous Λ values to the midpoint of the next time step,

Λn+1/2,∗ = 2Λn−1/2 −Λn−3/2. (7.37)

We also introduce the approximation

Xn+1,∗ = Xn +∆tKn+1/2,∗αn+1/2 (7.38)

to make (7.36) a linear system in αn+1/2 and λn+1/2.

By substituting the approximation Xn+1,∗ in (7.38) into saddle-point system (7.36), we

obtain the following saddle-point linear system to solve at every time step,



−M̃L K + ∆t

2 M̃LLK

KT 0




n+1/2,∗

Λn+1/2

αn+1/2


 = (7.39)



M̃

n+1/2,∗
L

(
−LXn + F

n+1/2,∗
ext

)
+ M̃

n+1/2,∗
NL

(
Λn+1/2,∗ −LXn+1/2,∗ + F

n+1/2,∗
ext

)
+ u0

(
Xn+1/2,∗

)

0


 .

This system can be solved fiber by fiber, since the matrix M̃L on the left hand side of
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(7.39) is block diagonal (the matrix K here is a shorthand for a block diagonal matrix whose

diagonal entries are the K for each filament).

In the case when the fibers are packed densely enough to make the temporal discretization

(7.39) unstable, we treat the bending force in the nonlocal hydrodynamics implicitly and use

GMRES to solve for Λn+1/2 and αn+1/2. The new linear system of equations is

(
M̃

n+1/2,∗
L + M̃

n+1/2,∗
NL

)(
Λn+1/2 − 1

2
L
(
Xn +Xn+1,∗)+ F

n+1/2,∗
ext

)
(7.40)

= Kn+1/2,∗αn+1/2 − u0

(
Xn+1/2,∗

)
,

(
Kn+1/2,∗

)T
Λn+1/2 = 0.

Now, let us denote the solutions of the block diagonal system (7.39) by Λ̃
n+1/2

and α̃n+1/2.

By subtracting the fully implicit system (7.40) from the locally implicit system (7.36), we

obtain the residual form of the saddle-point system



−
(
M̃L + M̃NL

)
K + ∆t

2

(
M̃L + M̃NL

)
LK

KT 0



n+1/2,∗



∆Λn+1/2

∆αn+1/2


 = (7.41)



M̃

n+1/2,∗
NL

(
−L

(
Xn + ∆t

2
Kn+1/2,∗α̃n+1/2 −Xn+1/2,∗

)
+ Λ̃

n+1/2 −Λn+1/2,∗
)

0




to be solved using GMRES for the perturbations

∆Λn+1/2 = Λn+1/2 − Λ̃
n+1/2

and (7.42)

∆αn+1/2 = αn+1/2 − α̃n+1/2.

At t = 0 and t = ∆t, we solve the system (7.40) with a tolerance of 10−6 to initialize Λ1,

α1, Λ2, and α2.
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7.3.2 First-order discretization

The equations for the first order temporal discretization are simpler than those of the previous

section. The initial saddle-point system to be solved is

M̃
n

L

(
Λn+1 −LXn+1,∗ + F n

ext

)
+ M̃

n

NL (Λ
n −LXn + F n

ext) + u0 (X
n) = Knαn+1, (7.43)

(Kn)T Λn+1 = 0

for Λn+1 and αn+1. We again introduce the approximation

Xn+1,∗ = Xn +∆tKnαn+1 (7.44)

to make (7.43) a linear system in αn+1 and λn+1,



−M̃L K +∆tM̃LLK

KT 0



n



Λn+1

αn+1


 = (7.45)



M̃

n

L (−LXn + F n
ext) + M̃

n

NL (Λ
n −LXn + F n

ext) + u0 (X
n)

0


 .

In the case when the fibers are packed densely enough to make the temporal discretization

(7.45) unstable, we treat the bending force in the nonlocal hydrodynamics implicitly and use

GMRES to solve for Λn+1 and αn+1. The new linear system of equations is

(
M̃

n

L + M̃
n

NL

) (
Λn+1 −LXn+1,∗ + F n

ext

)
+ u0 (X

n) = Knαn+1,

(Kn)T Λn+1 = 0. (7.46)

Now, let us denote the solutions of the block diagonal system (7.45) by Λ̃
n+1

and α̃n+1.

By subtracting the fully implicit system (7.46) from the locally implicit system (7.43), we
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obtain the residual form of the saddle-point system



−
(
M̃L + M̃NL

)
K +∆t

(
M̃L + M̃NL

)
LK

KT 0



n



∆Λn+1

∆αn+1


 = (7.47)



M̃

n

NL

(
−L

(
∆tKnα̃n+1

)
+ Λ̃

n+1 −Λn
)

0




to be solved using GMRES for the perturbations

∆Λn+1 = Λn+1 − Λ̃
n+1

and (7.48)

∆αn+1 = αn+1 − α̃n+1.

At t = 0, we solve the system (7.46) with a tolerance of 10−6 to initialize λ1 and α1.

7.3.3 Preconditioning

To solve systems (7.41) and (7.47) rapidly with GMRES, we replace the full mobility with

just the local part to get a “block diagonal” preconditioner

P =



−M̃L K +∆tcM̃LLK

KT 0


 , (7.49)

where c = 1 for backward Euler and c = 1/2 for Crank Nicolson. This amounts to removing

the M̃NL terms from the left hand sides of (7.41) and (7.47). This preconditioner ought to

be effective since M̃L typically dominates M̃NL for slender filaments.
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7.4 Suspensions of bent filaments

In this section, we examine the accuracy and stability of our method for deterministic sus-

pensions of flexible filaments. We study spatio-temporal accuracy in Sections 7.4.1 and 7.4.2

with simple examples of four falling fibers in free space and three fibers in periodic shear flow.

Section 7.4.3 gives our most important result for computational complexity: the number of

hydrodynamic evaluations per time step required to stably evolve the dynamics of a fiber

suspension is at most five. By varying the fiber number density and bending modulus, we

show that one block diagonal solve (7.45) combined with at most three iterations of GMRES

per time step are needed to maintain stability (the extra hydrodynamic evaluation to give a

total of five comes in the conversion to residual form (7.41)).

In general, we will use an L2 function norm to compute the differences between configu-

rations throughout this section. Given two fiber configurations, we evaluate the Chebyshev

interpolant of each on a 1000 point type 2 Chebyshev grid and calculate the discrete L2

error using Clenshaw-Curtis quadrature. Whenever there are multiple fibers, we compute

the error on the first fiber X(1) unless otherwise specified.

Since fibers in shear flow are our primary interest, some of our examples will use shear

flows. The general form of a time-oscillatory shear flow is given by

u0(x, t) = γ̇0 cos (ωt)(y, 0, 0). (7.50)

The corresponding strain is given by g(t) = (γ̇0/ω) sin (ωt) for ω > 0 and g(t) = γ̇0t for

ω = 0.

7.4.1 Spatio-temporal accuracy: comparing to strong formulation

We first verify our method for fibers in gravity by comparing the results to those obtained

using the line-tension-based method prescribed in [15] and in the process show improved
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2nd

order

1st

Figure 7.6: Four fibers in gravity. (a) Initial (filled orange) and final (light blue) configurations
of the fibers. There are Nx = 16 points on each fiber. (b) Spatio-temporal convergence of our
weak formulation (circles for backward Euler, squares for Crank-Nicolson) compared to the strong
formulation of [15] (squares). In both cases, the exact solution is a trajectory with Nx = 24,
∆t = 5× 10−4. For small ∆t, the spatial error dominates and the spatio-temporal error saturates.

robustness and temporal accuracy. We consider four fibers centered around a circle of radius

d = 0.2. The fibers have initial tangent vector τ (t = 0) = (0, 0, 1) (they are aligned in

the z direction) and positions X(1)(t = 0) = (d, 0, s − 1), X(2)(t = 0) = (0, d, s − 1),

X(3)(t = 0) = (−d, 0, s − 1), and X(4)(t = 0) = (0,−d, s − 1), where 0 ≤ s ≤ L = 2. For

simplicity, we set µ = κ = 1, and ϵ = 10−3. For this test only, we use fibers with ellipsodial

cross sections and set the local drag coefficient c(s) = − ln (ϵ2) in (1.24). We simulate until

t = 0.25.

Each fiber has a uniform gravitational force density f g = (0, 0,−5) placed on it. In the

absence of nonlocal interactions, the fibers fall straight downward. When the interactions

between fibers are included, however, the fibers influence each other and have an x and

y direction to their motion. Figure 7.6 (left panel) shows the initial and final (t = 0.25)

configurations of the fibers in this test.

Our goal here is to verify our results by comparing to results obtained using the method
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of [15]. Because the method of [15] uses regularization for the finite part integral (and we

do not), we drop the finite part integral in this calculation and only include local drag and

cross fiber interactions in the mobility. The fibers are sufficiently far from each other that

the dipole term in the RPY kernel, which has coefficient of 0 in [15], has a very small effect

on the result (two orders of magnitude less than our smallest spatio-temporal error). We use

free space boundary conditions (no periodicity) and compute all nonlocal integrals by direct

quadrature, without any upsampling. We use the block diagonal solves (7.39) for temporal

integration and do not perform any GMRES iterations.

We first verify that our results match those of the strong formulation [15] when the spatial

and temporal discretizations are well-refined. Considering Nx = 24 and ∆t = 5 × 10−4 in

both algorithms, we obtain a maximal L2 difference of 1.8× 10−4 in the position of the first

fiber, which, as we show in Fig. 7.6, is on the order of magnitude of the discretization error.

It is instructive to compare the spatio-temporal error between the two algorithms. We

define the “exact” solution for both algorithms to be a trajectory with N = 24 and ∆t =

5 × 10−4. Figure 7.6 (right panel) shows the maximum L2 errors over the time interval

[0, 0.25] for both algorithms with different spatial and temporal discretizations. For small

∆t, the spatial error dominates and the spatio-temporal error saturates. We observe that our

weak formulation outperforms the strong formulation of [15] in two ways. First, for coarse

discretizations (e.g. N = 12, red lines in Fig. 7.6), our saturated spatial error is more than

an order of magnitude lower than the saturated spatial error of [15]. This is likely because

the line tension equation of [15] has larger aliasing errors for coarser spatial discretizations,

and because of our improved treatment of the free fiber boundary conditions. Secondly,

when we use the second-order Crank Nicolson discretization (dashed-dotted lines) our errors

saturate at a much larger time step size than those of [15]. For example, when N = 16

our error saturates for ∆t = 5 × 10−3, whereas the error from [15] does not saturate until

∆t = 1×10−3. This occurs because the Crank-Nicolson is second-order accurate; indeed, we
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see that the corresponding errors for Backward Euler (solid lines) saturate at the same value

as those from [15], which is sensible since both use a backward Euler discretization. While

there are limitations to this simple example, it does show the improved spatial accuracy of

our new formulation over the tension-based one, and the improved accuracy of our second-

order temporal discretization, even in the absence of GMRES iterations. In the next section,

we will see that the applicability of this temporal integrator is limited, however, and so we

should ultimately be comparing the backward Euler discretization to that developed in [15].

7.4.2 Spatio-temporal convergence: sheared fibers

We further study the spatio-temporal convergence of our algorithm for periodic sheared

domains by choosing an example where interactions between the fibers contribute signifi-

cantly to the dynamics. We consider three fibers in shear flow with L = 2 and X(1)(s) =

(s − 1,−0.6,−0.04), X(2)(s) = (0, s − 1, 0), and X(3)(s) = (s − 1, 0.6, 0.06). As shown in

Figure 7.7, this corresponds to an “I” shaped initial configuration of the fibers, with the

fibers stacked in the z direction.

We set the periodic domain length Ld = 2.4, the Ewald parameter ξ = 4, and set µ = 1

and κ = 0.01. We use a constant shear flow (7.50) with γ0 = 1 and ω = 0. Because of

the small bending rigidity, the fibers deform from their straight configurations in a shear

flow. In this example, two of the fibers are initially aligned with the x direction. Without

nonlocal hydrodynamics, they would stay aligned with the x direction and simply translate.

When nonlocal interactions are included, the flows generated by the middle fiber X(2) induce

deformations of the top and bottom fibers. This is evident in Fig. 7.7, which shows the final

fiber positions at t = 2.4 for ϵ = 10−3.

187



-2 -1 0 1 2

-1

-0.5

0

0.5

1

-2 -1 0 1 2

Figure 7.7: Fiber configurations at t = 0 and t = 2.4 for three fibers in shear flow with ϵ = 10−3.

7.4.2.1 Spatio-temporal convergence under self-refinement

We begin in Fig. 7.8 by looking at the spatio-temporal convergence of the fiber trajectories

when the diagonal parts of the mobility M̃L are the RPY special quadrature matrices, and

the off-diagonal parts are given by (7.10) with Nu = 40 upsampling points. We consider

two different temporal integrators: backward Euler and Crank Nicolson, and show the errors

relative to a reference solution with N = 32 and ∆t = 0.00125 (and 9 additional GMRES

iterations to remove any extrapolation errors). For ϵ = 10−3, the behavior is excellent:

the Crank-Nicolson trajectories rapidly converge at a second order rate until the error is

saturated by spatial error, which occurs around ∆t = 0.05. Backward Euler has a slower

(first order) rate of convergence, but we still obtain good accuracy (2 digits) with ∆t = 0.05.

When ϵ = 10−3, adding GMRES iterations makes little difference in the spatio-temporal

errors, so it is not prudent to do any of these.

It is when we switch to ϵ = 10−2 that we start to see problems with our algorithm and

interesting dynamics. With Crank-Nicolson, we cannot generate stable trajectories without

GMRES iterations, but we can rapidly saturate the spatial errors by applying 2 additional

GMRES iterations per time step (again at ∆t = 0.05). The alternative is to use backward

Euler, where we can obtain stable, convergent dynamics by solving the block diagonal system

(7.45). Now, these time steps are four times cheaper than their Crank-Nicolson counterparts
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Figure 7.8: Spatio-temporal convergence for three sheared fibers with RPY special quadrature. The
local mobility M̃L is given by the RPY special quadrature matrix. The nonlocal mobility M̃NL is
given by upsampling the integrals via (7.10) with Nu = 40 points. In each case, a reference solution
is obtained using N = 32, ∆t = 0.00125, and 10 GMRES iterations to remove any extrapolation
error (this time step is small enough for the Crank-Nicolson and backward Euler integrators to
generate the same reference solution with a difference smaller than those observed here). Legend
entries “2G” denote two additional GMRES iterations for the residual system (7.41)/ (7.47).
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Figure 7.9: Error in the fiber trajectories using the special quadrature mobility (7.15), relative
to a reference result obtained using oversampled RPY quadrature (7.10) with 1/ϵ points. For a
given N , we converge the trajectories in time and plot the spatial error using (7.15) as a solid blue
line. We compare these results to the errors made in using oversampled RPY quadrature with a
smaller number of points (red lines show 0.5/ϵ points, yellow lines show 0.25/ϵ). We also consider

the special quadrature mobility (7.15), but with twice the eigenvalue truncation level for M̃SQS in
(7.14) (purple diamonds). We use Nu = 40 points for the nonlocal parts of the mobility in (7.15).

(2 GMRES iterations + 1 BD solve + 1 conversion to residual form), and so we need

to compare backward Euler with time step size ∆t to the Crank-Nicolson with GMRES

iterations with time step size 4∆t. Doing this, we observe that the errors are roughly the

same. And so it makes no real difference what integrator we use for these suspensions. Going

forward, we will use the more robust backward Euler scheme for testing.

7.4.2.2 Spatio-temporal error relative to oversampling

Now that we have studied the error with respect to self-refinement, the spatial error we

really want to study is the error relative to oversampled RPY quadrature on all fibers. To

obtain a reference solution, we use the oversampled RPY mobility (7.10) with 1/ϵ points

and converge the trajectory in time for N = 8, 16, and 24. We then repeat the same runs

using the oversampled mobility (7.10) with 0.5/ϵ points and 0.25/ϵ points. The idea is that

sampling at fewer points provides a potential alternative to the special quadrature mobility
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(7.15), which we also simulate with the same values of N .

Figure 7.9 shows the errors relative to oversampled RPY quadrature with 1/ϵ points for

these three mobility alternatives. We consider both ϵ = 10−3 and ϵ = 10−2, finding a similar

result in both cases: the oversampled mobility (7.10) with 0.25/ϵ points has a spatial error

that is roughly 5 times as large as the oversampled mobility with 0.5/ϵ points. The latter

provides competition for special quadrature, giving similar errors for the values of N we

consider. However, unlike oversampling with fewer points, the special quadrature approxi-

mation has an error which decreases with increasing N ; as N increases special quadrature

approaches oversampled RPY with 1/ϵ points. The same is not true with oversampling at

fewer points, where the errors are roughly constant when N changes. Given that special

quadrature is considerably cheaper than oversampling the RPY kernel at 0.5/ϵ points (at

least for ϵ = 10−3), we can clearly say that the mobility (7.15) has significant advantages in

deterministic simulations of slender filaments.

It will also behoove us, as we show in the next section, to consider bumping up the level

at which we truncate the eigenvalues of the special quadrature matrix M̃SQS. We recall

the procedure for constructing the special quadrature matrix, where we form M̃SQS, then

symmetrize in (7.14), and then truncate the eigenvalues to a threshold σ which is equal

to the smallest eigenvalue of the reference mobility (7.10) for a straight fiber (see Section

7.2.1). In Fig. 7.9, we also consider trajectories where we truncate the eigenvalues at 2σ

instead. The errors, shown in purple, behave similarly to the special quadrature errors in

blue, in that they decrease with increasing N . For small N , the error is significantly higher

(roughly doubled) when we truncate the eigenvalues at the higher level, which means that the

truncated eigenvalues are contributing to the dynamics. For large N , the errors are smaller,

and for ϵ = 10−2 the error is the same regardless of if we truncate at σ or 2σ. Thus the

main takeaway is that bumping up the eigenvalue threshold has less of an effect on accuracy

for larger N and ϵ. This will help us in Section 7.4.3.1, where we will need to bump up the
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eigenvalue threshold to get robust convergence of GMRES for the nonlocal problem (7.47).

7.4.3 Stability

To examine stability in more detail, we consider a suspension of F fibers of length L = 2

and vary the density of fibers by changing F and the periodic domain length Ld. If f =

F/L3
d is the number density of fibers and L is the length of a fiber, a dimensionless density

fL3 < 1 is considered a dilute fiber suspension, while a semi-dilute suspension is one with

afL2 = ϵfL3 ≪ 1, and a semi-concentrated one has ϵfL3 = O(1) [10]. Here we explore

the semi-dilute and semi-concentrated regimes and derive empirical bounds on how many

GMRES iterations are required to maintain stability for a variety of bending moduli. Our

conclusion is that at most five nonlocal hydrodynamic evaluations are sufficient to maintain

stability, even for semi-concentrated suspensions.

We simulate F initially straight fibers. In the oscillatory shear flow (7.50), we set ω = 2π

and γ̇0 = ω/10, so that the maximum strain is g = 0.1 and the time for one cycle is 1. We

expect to need at least 20 time steps per cycle to obtain reasonable accuracy, so we set ∆t =

0.05, although in reality we find that smaller time step sizes are needed to accurately resolve

the dynamics of dense suspensions. To obtain interesting results, we want a suspension in the

semi-dilute or semi-concentrated regime where at least a few GMRES iterations are required

for stability. Consequently, we use a domain size of Ld = 2.4 when ϵ = 10−3, for which we

consider F = 200 fibers and F = 1000 fibers. This translates to fL3 ≈ 120 → ϵfL3 ≈ 0.12

and fL3 ≈ 600 → ϵfL3 ≈ 0.6, respectively, placing these suspensions in the semi-dilute and

semi-concentrated regimes. (The corresponding mesh sizes ℓm =
√
L3
d/(FL) are 0.19 and

0.08, respectively). For the more difficult case of ϵ = 10−2, we consider one suspension with

F = 200 and Ld = 5, which gives fL3 = 12 → ϵfL3 = 0.12 (semi-dilute, mesh size 0.56) and

another with F = 1000 and Ld = 3, which gives fL3 ≈ 300 → ϵfL3 = 3 (semi-concentrated,

mesh size 0.12).
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7.4.3.1 Convergence of GMRES at t = 0

We first look at the convergence of GMRES at t = 0 in Fig. 7.10, where here the fibers

have stiffness κ = 0.01 (the number for larger κ is slightly larger, but the overall behavior

is the same). We consider two options for the mobility: oversampled quadrature with 1/ϵ

points (solid lines), and special quadrature for the intra-fiber (self interaction) term with

oversampling at Nu = 128 points for the nonlocal integrals (dashed-dotted lines). While the

number of oversampled points (128) is slightly large for ϵ = 10−2, the results are similar

when we drop to Nu = 40 points for the nonlocal integrals, so we stick with Nu = 128 in Fig.

7.10. In both cases, the local mobility M̃L is the block diagonal part of the overall mobility

M̃ , and the preconditioner is given by (7.49).

Our first takeaway from Fig. 7.10 is the robustness of oversampled RPY quadrature: it

always converges to 6 digits in some 30 iterations, and the convergence does not depend too

strongly on N or ϵ (the number of iterations is a strong function of density, however, which

is expected). Given this, for ϵ = 10−2 we can say that oversampled quadrature is a viable

option for the mobility. But for ϵ = 10−3, it is simply too expensive to be a worthwhile

choice.

Fortunately our special quadrature scheme can reduce the cost while not significantly

affecting the convergence of GMRES. In the semi-dilute regime, which is the top row of

Fig. 7.10, we observe that special quadrature (dashed-dotted lines) has the exact same con-

vergence properties as oversampled quadrature (solid lines), with the exception of N = 32

and ϵ = 10−2, where we see some hiccups in the convergence. These problems likely have

to do with changes in the smallest eigenvalues for this large N and ϵ (where our slender

body quadrature is expected to lead to more spurious negative eigenvalues). The issues are

magnified when we consider semi-concentrated suspensions, shown in the bottom row of Fig.

7.10. For slender fibers (ϵ = 10−3) and especially for small N , we see that our slender body

quadrature scheme can still yield convergence, but for larger values of N and larger ϵ the
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Figure 7.10: Convergence of GMRES at t = 0 for the two different mobility options (7.10) (over-
sampled RPY, solid lines) and (7.15) (special quadrature for block diagonal terms, dashed-dotted
lines). The top row shows semi-dilute suspensions (ϵfL3 ≪ 1), while the bottom row shows semi-
concentrated suspensions (ϵfL3 ∼ 1). When we use special quadrature, the off-diagonal parts of
the mobility are given by (7.10) with Nu = 128 points. For both mobilities, the preconditioner is

given by (7.49) with M̃L = BDiag
{
M̃
}
. The dotted lines show the special quadrature mobility

with a new eigenvalue truncation level; see Section 7.4.3.2 for details on this.
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Figure 7.11: Convergence of GMRES at t = 0 for the semi-dilute suspension with N = 32 points
and ϵ = 10−2 (red lines in top right of Fig. 7.10). We show again the oversampled mobility as a
solid line, and the special quadrature mobility as a dashed-dotted line (these are the same as in Fig.
7.10). We then look at mixing and matching preconditioners: the yellow line shows convergence

when the mobility is the oversampled mobility (7.10), but M̃L in the preconditioner (7.49) is the
special quadrature mobility. The purple line shows the opposite case (special quadrature mobility
(7.15), oversampled RPY for the preconditioner). The dotted red line shows the special quadrature
mobility (7.15), but with twice the eigenvalue truncation threshold.

convergence stalls. Thus the semi-concentrated suspensions are at the limit of the validity

of the numerical approximation (7.15), where we used special quadrature in the diagonal

blocks and oversampled RPY in the off-diagonal ones.

7.4.3.2 Modifying the special quadrature matrix for robust convergence

Let us focus more closely on the problems with the special quadrature mobility for large N

and ϵ. We consider in particular the top right of Fig. 7.10, where we run a semi-dilute sus-

pension with N = 32 points per fiber and ϵ = 10−2. (While this is pushing the limits of where

special quadrature is necessary, it is still important to understand what the problems are

with special quadrature and how to fix them. In practice for ϵ = 10−2 it seems pretty clear

that oversampled quadrature for all fibers is the best choice of mobility). To diagnose the
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Figure 7.12: Eigenvalues of the full nonlocal mobility for various levels of special quadrature trun-
cation, and the resulting GMRES convergence. We consider F = 25 fibers with ϵ = 10−2 and
N = 32 points, so that we can form the full matrix M̃ (size 3NxF = 3(33)(25) = 2475) explicitly
and compute its eigenvalues. We show the oversampled mobility as a solid blue line, and the special
quadrature mobility with various eigenvalue truncation levels using lines of other colors. The left
panel shows the eigenvalues, with the inset showing the full spectrum and the main plot showing
only the last 10%. The right panel shows the GMRES convergence that results (the preconditioner
is the block diagonal part of the mobility in all cases). The results show that GMRES convergence

is clearly tied to the eigenvalues of the matrix M̃ .

convergence problems, in Fig. 7.11 we vary the mobilities and preconditioners and see how

the convergence changes. The solid blue and dashed-dotted red lines are the same as in Fig.

7.10, and show the oversampled and special quadrature mobilities, respectively, with precon-

ditioners equal to the block diagonal parts of the mobility. We then consider two alternative

cases: the solid yellow line shows the case when the mobility is computed using oversampled

quadrature, but with the special quadrature preconditioner, and the dashed-dotted purple

line shows the special quadrature mobility, but with an oversampled quadrature precondi-

tioner. It is clear that, regardless of the preconditioner, taking the mobility to be the special

quadrature matrix leads to stalls in the convergence of GMRES. Thus the issue is with the

special quadrature mobility (7.14) itself, not with the preconditioner.

To understand the problem more, we reduce the number of fibers in the suspension
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to F = 25, keeping ϵ = 10−2 and N = 32. We can now form the full matrix M̃ (size

3NxF = 3(33)(25) = 2475) explicitly and compute its eigenvalues, as we do in Fig. 7.12. At

first glance (inset), the full spectra of the two matrices are indistinguishable, but a zoom in

on the last 10% of the eigenvalues shows that there are indeed discrepancies. We see that

the oversampled quadrature matrix (7.10) has step-like eigenvalues, which cutoff smoothly

at 0.2, while the special quadrature matrices (7.15) have eigenvalues which seem to plateau

at the correct value (here σ = 0.18, so the red line ought to plateau at 0.18), but then have

a dip at the end. When the truncation threshold is too small (e.g., 1σ in this case), the

eigenvalues get close to or drop below zero, which results in poor convergence of GMRES.

To work around this problem, we propose a simple increase in the eigenvalue truncation

level to make the matrix more SPD. In our previous example of three sheared fibers (Fig.

7.9), we found that increasing the truncation level to 2σ has a negligible impact on the

dynamics for larger N . By contrast, Figures 7.11 and 7.12 show that its impact on the

convergence of GMRES is quite significant, as simply doubling the eigenvalue threshold

yields roughly the same convergence as the oversampled RPY matrix, and eigenvalues that

are bumped up away from zero. Using this fact, we return to Fig. 7.10, where in each case

that the convergence stalls we demonstrate that using the truncation level of 2σ restores

rapid GMRES convergence (the notable exception is the semi-concentrated suspension with

N = 32 and ϵ = 10−2, which requires a slightly higher level of 5σ). The new truncation levels

are needed primarily for large N and ϵ, which is precisely the regime where Fig. 7.10 shows

that the eigenvalue truncation level has little effect on accuracy. Thus, when GMRES stalls,

we can simply increase the truncation level without affecting the accuracy of our solution.

7.4.3.3 Stability in dynamic simulations

We now consider how many iterations are required to obtain stability in dynamic simulations.

Since we find that changing the frequency ω has a negligible impact on the results, we non-
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ϵ N SD/SC ∆tκ = 10−5 ∆tκ = 10−4 ∆tκ = 10−3 ∆tκ = 10−2 ∆tκ = 10−1

10−3 16 SD 1 1 3 3 3
10−3 16 SC 3 3 3 4 4
10−3 16 SC∗ 3 3 3 4 4
10−3 32 SD 1 1 3 3 3
10−3 32 SC 3 3 3 4 4
10−3 32 SC∗ 3 3 3 4 4
10−2 16 SD 1 1 1 1 1
10−2 16 SC 3 3 3 4 4
10−2 16 SC∗ 3 3 3 4 4
10−2 32 SD 1 1 1 1 1
10−2 32 SC 5 5 4 4 4
10−3 32 SC∗ 3 3 3 4 4

Table 7.1: Number of hydrodynamic evaluations needed for stability in semi-dilute (SD) and semi-
concentrated (SC) deterministic fiber suspensions. The number of GMRES iterations for (7.47)
is two less than the numbers in this table (except when the number is 1, for which no GMRES
iterations are required). We report ∆t in units of ∆tκ = ∆t/(1.72τ), where the elastic timescale
τ = 8πµL4/

(
ln
(
ϵ−2
)
κ
)
is varied by changing κ and ∆t = 0.05 is fixed. Simulations marked with

a ∗ use 2σ as the eigenvalue truncation cutoff for M̃SQS in (7.15).

dimensionalize ∆t by the bending timescale τ = 8πµL4/ (ln (ϵ−2)κ), where here we use µ = 1.

We simulate 5 cycles of motion, until t = 5, and check if the simulation has gone “unstable”

by examining the maximum position (absolute value of the Chebyshev point coordinates X).

For Ld ≥ 4, we stop the simulation when the maximum position exceeds 2Ld. For Ld = 3,

we consider unstable to be a position of 7 or higher, and for Ld = 2.4, unstable means a

position of 6 or higher.

In Table 7.1, we look at the number of hydrodynamic evaluations (one for the block

diagonal system (7.45), one for the conversion to residual form (7.47), and one for each

subsequent GMRES iteration) required for stability as a function of the number of fiber

points N and slenderness ϵ. In this table, the mobility is always given by (7.15), with special

quadrature for the self term (with truncation at the default value of 1σ), plus oversampling

for the off-diagonal terms with Nu = 128 points (the preconditioner is always the block

diagonal components of the mobility). We consider five different vales of ∆tκ = ∆t/(1.72τ),

where the elastic timescale τ = 8πµL4/ (ln (ϵ−2)) is varied by changing κ and ∆t = 0.05 is
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fixed.

In the semi-dilute suspensions (top row of Fig. 7.10), the block diagonal solves (7.45) are

sufficient to give stability except for ϵ = 10−3 and ∆tκ ≥ 10−3, for which one additional GM-

RES iteration is required for both N = 16 and N = 32. For semi-concentrated suspensions,

the number of additional hydrodynamic evaluations is generally small (at most 4 additional

evaluations) and independent of the number of collocation points N and slenderness ϵ. The

one exception is N = 32 and ϵ = 10−2, which we were previously (Fig. 7.10) unable to con-

verge at t = 0 without modifying the eigenvalue truncation cutoff for M̃SQS in (7.15). Thus,

in Table 7.1, we obtain the iteration count for semi-concentrated suspensions in the case

when we truncate the eigenvalues at level 2σ (starred rows). Increasing the truncation level

reduces the iteration count only when ϵ = 10−2 and N = 32, which was most problematic to

converge at t = 0 when the truncation level was 1σ.1 Even when the truncation level is 1σ,

however, we still get stability for all semi-concentrated suspensions, despite the fact that we

never were able to converge the full implicit system at t = 0 (Fig. 7.10). This is unsurprising

because stability is a weaker restriction than accuracy.

7.4.4 Bundled systems

We now look at how the number of required iterations for the two different mobility options

changes when we introduce bundling into the system. The model system we consider is 200

filaments of length L = 1 in a box of size Ld = 2, with N = 12, ϵ = 4× 10−3, and all of the

other parameters that we use in Part III (see there and Table 11.1 for more details on the

bundling dynamics). Here we set the persistence length ℓp = 17 µm to be equal to that of

an actin filament. The precise definitions of bundling are in Chapter 12; here it suffices for

the reader to know that more bundles means fibers are closer together, so that the mobility

is dominated less and less by intra-fiber hydrodynamics as the bundle density increases. See

1Increasing the eigenvalue truncation level to 2σ is a substantially better strategy than dropping the time
step, as decreasing to ∆t = 0.01 has no effect on the numbers in Table 7.1 for ϵ = 10−2 and N = 32.
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Figure 7.13: Stability and accuracy of nonlocal hydrodynamic mobility in bundled systems. We
show over time the bundle density, the number of required iterations to converge (7.47) to a tolerance
10−3, and the mean and maximum fiber displacements (over a time span of 0.02 s), considering
three different mobilities: the oversampled RPY quadrature (7.10) with Nu = 100 oversampling
points (blue), and the special quadrature mobility (for the diagonal parts) (7.15), with cutoffs 1σ
(red) and 2σ (yellow). Black lines are the intra-fiber mobility only (no inter-fiber interactions), and
are shown for reference.
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Figs. 12.1 and 12.2 for how the system looks at a certain “bundle density.”

In order to look at the behavior of the mobility in time, at each time step we converge

the residual system (7.47) to a tolerance of 10−3. We consider three different choices for

the mobility: the oversampled RPY quadrature (7.10) with Nu = 100 oversampling points,

and the special quadrature mobility (for the diagonal parts) (7.15), with cutoffs 1σ and 2σ.

Figure 7.13 shows how the trajectory of the bundling process plays out in these cases: we

see that stable dynamics are only obtained at late times when we use a truncation level of

2σ in the special quadrature matrix (7.14). This tells us that the behavior of the overall

mobility (7.15) (with special quadrature on the diagonal) can be sensitive to the amount of

bundling in the system.

We examine the convergence of GMRES further in Fig. 7.14, where we converge GMRES

at times 0, 5, 10, and 15 s to a tolerance of 10−6. At t = 0, when the fibers are isotropically

and uniformly distributed in the domain, the convergence is essentially the same regardless

of the mobility. As bundling increases, however, the convergence of the special quadrature

mobility with truncation level 1σ stalls, and eventually we see instabilities and no convergence

at all. This same pattern might be starting to happen for truncation level 2σ as well, as at

t = 15 we do see some strange convergence behavior.
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Figure 7.14: GMRES convergence at various times in deterministic bundled systems. We show the
convergence of GMRES to tolerance 10−6 at times t = 0, 5, 10, and 15 (see Fig. 7.13 for system
statistics at these times), considering three different mobilities: the oversampled RPY quadrature
(7.10) with Nu = 100 oversampling points (blue), and the special quadrature mobility (for the
diagonal parts) (7.15), with cutoffs 1σ (red) and 2σ (yellow).
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Chapter 8

Spectral discretization for Brownian

fluctuations

In Chapter 7, we developed a discretization for free-ended filaments. Our focus in particular

in Sections 7.1 and 7.2 was on reformulating the deterministic dynamics so the velocity ∂tX

takes the form ∂tX = −M̃LX, where M̃ is an SPD matrix and L is the matrix discretizing

the bending energy. This included making the special quadrature matrix M̃SQS in (7.14)

SPD by symmetrizing and truncating the eigenvalues, and defining a reference mobility

(7.10) that applies to multiple fibers. Thus we have a discretization where M̃ is guaranteed

to be SPD, which allows us to develop a temporal integrator which takes into account

the Brownian fluctuations of the filament. This integrator satisfies fluctuation-dissipation

balance with respect to the constrained inextensible Gibbs-Boltzmann distribution, which is

the first thing we introduce here.

Seeing that this is, to our knowledge, the first work to consider a spectral discretization

of constrained Brownian hydrodynamics, our program is very much experimental, in part

because our premise is counterintuitive. The conventional wisdom, as taught in a first

semester of numerical analysis, is that spectral methods perform well for smooth problems

(with exponentially-decaying spectra), while for nonsmooth ones (power law spectra) a sparse
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finite difference method is a better choice. While it is certainly true that Brownian motion

induces a power law spectrum in the fiber positions, our hope is that restricting to semiflexible

fibers (with ℓp/L ≳ 1) will make a spectral discretization tractable by reducing the number

of modes required for accurate simulation. In other words, as long as the Chebyshev grid

resolves the fiber persistence length (as opposed to the fiber radius), many quantities should

be approximated well since lengthscales smaller than ℓp will not contribute. We demonstrate

that this is indeed the case through examples, but it should be noted that this is just a first

step, with Chapter 10 laying out much of the work that remains.

8.1 Langevin equation for semiflexible filaments

The previous chapters (in particular Sections 6.1.1 and 7.1) established our discrete fiber

model. From this, we can write the Gibbs-Boltzmann probability distribution for the fiber

energy. The overdamped Langevin equation then follows from this and the deterministic

dynamics (7.3).

8.1.1 Gibbs-Boltzmann distribution

Once we define a discretization, we can postulate the constrained Gibbs-Boltzmann distri-

bution in terms of the tangent vectors τ . This distribution depends on the fiber elastic

energy Ebend, which we discretize using the method of Section 6.1.3.1. Following the nota-

tion there, we let Ebend (τ̄ ) denote the discrete bending energy of the fiber, and take the

Gibbs-Boltzmann distribution to be

dPeq (τ̄ ) = Z−1 exp (−Ebend(τ̄ )/kBT )dµ0 (τ̄ ) (8.1)

Peq (τ̄ ) = Z−1 exp (−Ebend(τ̄ )/kBT )
N∏

p=1

δ
(
τ T{p}τ {p} − 1

)
.
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What we mean by the product of δ functions is really that the base measure dµ0 (τ̄ ) in the

Gibbs-Boltzmann distribution (8.1) corresponds to the tangent vectors τ {p} being indepen-

dently uniformly distributed on the unit sphere for p = 1, . . . N . For blob-link chains, the

tangent vectors τ {p} are uniformly spaced, as shown in Fig. 6.1, and this distribution follows

naturally from their inextensibility and statistical independence in a freely-jointed chain, in

which case (8.1) defines the standard worm-like chain model.

In our spectral discretization, the tangent vectors τ {p} are defined on a Chebyshev grid,

and this model lacks the physical motivation that characterizes the blob-link model (see Fig.

6.1). In fact, the base measure dµ0 on a uniform (blob-link) grid has no continuum limit,

since a freely-jointed continuum chain would require the tangent vector τ (s) to perform

infinitely fast Brownian motion in s on the unit sphere; thus only (8.1) with the Gibbs-

Boltzmann weight makes sense in continuum. Furthermore, a Chebyshev polynomial cannot

represent an inextensible curve everywhere (since the number of zeros in τ · τ − 1 is limited

by the polynomial degree), and therefore it is not obvious how to uniquely define a discrete

equilibrium distribution for a spectral grid that is a good approximation to the continuum

worm-like chain (when the Chebyshev grid resolves the persistence length)1. In the first

step toward a more mathematically-justified approach, we posulate (8.1) as a reasonable

guess, but do not claim any precise sense of convergence of (8.1) for a spectral grid to the

equilibrium distribution of a continuum worm-like chain. We do show (in Sections 8.4.1

and 8.3) that for a sufficient number of Chebyshev nodes over the persistence length, the

equilibrium distribution for a spectral chain approximates well the equilibrium distribution

for the blob-link chain, in the sense that samples from the two distributions give the same

large-scale statistical properties of the chain, e.g., its end-to-end distance.

1Of course, we could also take dµ0 as the base measure and put additional “entropic” or “metric” factors
in Ebend. Here, however, we take Ebend to be the standard elastic bending energy of a semiflexible chain.
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8.1.2 Overdampled Langevin dynamics

To formulate the overdamped Langevin equation, we convert the saddle point system (7.3)

into an equation for X and τ̄ . This can be done by eliminating the Lagrange multipliers Λ

from (7.3) to yield

∂tX = Kα = −
(
KNKT

)
LX, (8.2)

where N =
(
KTM̃

−1
K
)†

(8.3)

is the mobility matrix projected onto the space of inextensible motions (the discrete form of

the continuum operator N defined in (4.3)). We can transform this equation to obtain the

evolution of τ̄ by substituting X = X τ̄ and K = X C̄ into (8.2) to obtain

∂tτ̄ = X−1
(
KNKT

)
LX τ̄ =

(
C̄NC̄

T
)
X TLX τ̄ =

(
C̄NC̄

T
)
Lτ τ̄ , (8.4)

where Lτ is defined in (6.12). We note that these equations apply for continuous time. In

discrete time, we will solve the saddle point system (7.3) for α = (Ω,UMP), then update

the tangent vectors on the unit sphere by Ω∆t using the nonlinear rotation (6.71).

8.1.2.1 Overdamped Langevin equation in τ̄

The deterministic equation (8.4) takes the same form as that for rigid bodies, and in the

blob-link picture it can be seen as describing the motion of a series of N connected rigid

rods. Following the same process used to derive the overdamped Ito Langevin equation [116,

Eq. (12)] in the rigid body case, we have the overdamped Ito Langevin equation

∂tτ̄ = −
(
C̄NC̄

T
)
Lττ + kBT∂τ̄ ·

(
C̄NC̄

T
)
+
√
2kBT C̄N 1/2W (8.5)
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describing the evolution of τ̄ . Here W(t) is a collection of white noise processes (the formal

derivative of Brownian motions), the divergence with respect to τ̄ is defined in (6.27), and

N 1/2 satisfies the fluctuation-dissipation relation

N 1/2
(
N 1/2

)T
= N . (8.6)

The arguments in [116, Sec. II.B.2] can be used to show that (8.5) is time-reversible with

respect to the Gibbs-Bolztmann equilibrium distribution (8.1). As described there, because

we formulate (8.5) with respect to τ and not X, there are no additional drift terms arising

from metric/entropic forces.

An important point in practice is that N 1/2, which is not unique and only needs to satisfy

(8.6), can be applied by adding Brownian noise with covariance M̃ to the right-hand side of

saddle point system (7.3). In an Euler-Maruyama discretization, this corresponds to solving

the saddle point system

Kα = M̃ (−LX +Λ) +

√
2kBT

∆t
M̃

1/2
η (8.7)

KTΛ = 0,

where η is an i.i.d. vector of standard normal random variables. As with the deterministic

saddle point system (7.3), a variational technique can be used to derive the saddle point

system (8.7) by adding the work done (entropy dissipated) by the random force F stoch

(
X −Xn

∆t

)T
F stoch∆t =

(
X −Xn

∆t

)T √
2kBT

∆t

(
M̃

n
)−1/2

ηn∆t, (8.8)

to the Lagrangian (7.5). This does not account for additional stochastic drift terms, which

are required to ensure time-reversibility (detailed balance). So far, we have not been able to

produce those terms via a variational argument.
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As discussed at length in [146, Sec. II(B)], solving the saddle point system (8.7) gives

∂tX = Kα = −
(
KNKT

)
LX +

√
2kBT

∆t

(
KNKT

)
M̃

−1/2
η

= −
(
KNKT

)
LX +

√
2kBT

∆t
KN 1/2η, (8.9)

giving N 1/2 = NKTM̃
−1/2

. Thus, generating noise of the form N 1/2η reduces to the

simpler process of solving a saddle point system with right hand side M̃
1/2

η. For hydro-

dynamics which is localized to each fiber, we do this using the eigenvalue decomposition of

M̃ , which already must be computed for the purposes of eigenvalue truncation (see Section

7.2.1). Given that N 1/2 can also be computed via dense linear algebra, the real savings in

the saddle point solve come when we need to generate N 1/2 with nonlocal hydrodynamics

(between the many fibers), where dense linear algebra is infeasible, but the action of M̃
1/2

can be computed via the Lanczos algorithm [147] or the positively-split Ewald method [103]

(which uses a closed-form Cholesky factor for the square root of the far field part and Lanc-

zos iterations for the square root of the near field). The latter is how we form M̃
1/2

when

we add nonlocal hydrodynamics in Section 8.6.

8.1.2.2 Overdamped Langevin equation in X

We now use (8.5) to derive an overdamped Langevin equation in terms of X. If we multiply

(8.5) on the left by X and expand Lτ = X TLX , we obtain

∂tX = −
(
KNKT

)
LX + kBT∂τ̄ ·

(
KNC̄

T
)
+
√

2kBTKN 1/2W . (8.10)

Using the chain rule to write differentiation with respect to X as

∂f

∂Xk

=
∂f

∂τ̄ p

∂τ̄ p
∂Xk

=
∂f

∂τ̄ p
X−1

pk
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We now rewrite the divergence in (8.10) as

∂

∂τ̄ j

(
KNC̄

T
)
ij
=

∂

∂Xk

(
KNC̄

T
)
ij

∂Xk

∂τ̄ j
=

∂

∂Xk

(
KNC̄

T
)
ij
X kj =

∂

∂Xk

(
KNKT

)
ik

(8.11)

so that the Ito equation (8.5) could equivalently be formulated in terms of X as might be

expected from the deterministic equation (8.2),

∂tX = −
(
KNKT

)
LX + kBT∂X ·

(
KNKT

)
+
√

2kBTKN 1/2W (8.12)

d
= −N̂LX +

√
2kBTN̂ ◦ N̂−1/2W , (8.13)

where N̂ = KNKT and the second equality denotes that paths of (8.12) and (8.13) have

the same probability distribution. Equation (8.13) is the Langevin equation written in a split

Stratonovich-Ito [116] or kinetic [148] form, where the terms before the ◦ are evaluated at

the midpoint of a given time step, while the terms after are evaluated at the beginning of the

time step (c.f. [116, Eq. (26)]). When we develop our numerical methods, we will do so with

the equation for X in mind, since ultimately we will evolve and track the fiber positions.

That said, it will be simpler when analyzing the Langevin equation to work with the equation

(8.5) for τ̄ , knowing that the one in X can be obtained by this simple transformation. Note

that (8.12) is much simpler than the overdamped equations derived previously for bead-link

models [114, 115].

8.2 Temporal integration

In this section, we discuss our temporal integrator for the overdamped Langevin equation

(8.5). The scheme, which is in the spirit of the Fixman method [149] and similar to that of

Westwood et. al for rigid bodies [150], is able to integrate the overdamped Langevin equation

using one saddle-point solve per time step. The key idea is to first move to the midpoint
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to compute the mobility, then solve a saddle point system using the midpoint values, which

generates the required drift term in expectation.

Before introducing our numerical scheme, it is helpful to simplify the drift term in (8.5).

We first separate it into three terms,

∂

∂τ̄ j

(
C̄NC̄

T
)
ij
=
(
∂jC̄ik

)
N kpC̄

T
pj + C̄ik (∂jN kp) C̄

T
pj + C̄ikN kp

(
∂jC̄

T
pj

)
, (8.14)

where ∂j is shorthand for ∂/∂τ̄ j. As shown in [116, Sec. III(A)], rotating the tangent vectors

at every time step n using the Euler-Maruyama method

τ n+1 = rotate
(
τ n,
√
2kBT∆t (N

n)1/2 ηn +O(∆t)
)

(8.15)

where ηn is a vector of i.i.d. standard normal random variables, is sufficient to capture the

first drift term. The third term in (8.14) is zero by (6.27). Therefore, our schemes simply

need to generate the additional drift term

(kBT ) C̄ik (∂jN kp) C̄
T
pj∆t i.e., (kBT ) C̄

(
∇τ̄N .. C̄

T
)
∆t (8.16)

This term corresponds to O (∆t2) to a rotate procedure by an angle ∆t (kBT )∇τ̄N .. C̄
T
.

Thus our task will be to design numerical methods to produce the stochastic drift term in Ω

Drift = ∇τ̄N .. C̄
T

i.e., Driftk = (∂jN kp) C̄jp (8.17)

in expectation, which will give (8.16) after rotation.
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8.2.1 Implicit methods

We first motivate our temporal discretization of (8.5) by considering the discretization of

the unconstrained linearized SDE

∂tX = −M̃ [X0]L∆X +UB, (8.18)

where X0 is an equilibrium position, ∆X = X −X0, the matrix L discretizes the energy

Ebend = 1
2
∆XTL∆X, and UB is the Brownian velocity given by fluctuation-dissipation

balance as
√
2kBT

(
M̃ [X0]

)1/2
W(t). Because this SDE is unconstrained, the equilibrium

covariance of ∆X is known from statistical mechanics,

E
[
∆X∆XT

]
= kBTL

−1 (8.19)

In our case, the bending force resulting from the matrix L is very stiff (fourth derivative),

and so we need to discretize it implicitly. Our goal is to design numerical methods that

preserve the covariance (8.19) for arbitrary ∆t when applied to (8.18). To do this, we follow

the analysis of [151, Sec. III(B)] to derive the steady state covariance for a given temporal

integrator.

We consider an implicit-explicit method for (8.18) of the form

Xn+1 = Xn +∆t
(
−M̃L

(
cXn+1 + (1− c)Xn

)
+Un

B

)
,

which can be rearranged to yield

(
I + c∆tM̃L

)
Xn+1 =

[(
I − (1− c)∆tM̃L

)
Xn +∆tUn

B

]
.

We now take an outer product of the two sides of the equation, then substitute the desired
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covariance from (8.19), which at steady state is independent of the time step n, to obtain

the matrix equation

2kBT∆tM̃ + kBT (2c− 1)∆t2M̃LM̃ = ∆t2E
[
UBU

T
B

]
.

To obtain the exact covariance for c = 1 (backward Euler), we therefore set

UB =

√
2kBT

∆t

(
M̃

1/2
η +

√
∆t

2
M̃L1/2η̃

)
, (8.20)

where η̃ is another standard normal random vector. Another option is to use Crank-Nicolson

(c = 1/2), which gives the exact covariance for arbitrary ∆t with the usual Brownian velocity
√

2kBT/∆tM̃
1/2

η. While this choice has been preferred for other applications [151], we find

it to be less accurate than our “modified” backward Euler scheme for the higher order

modes, which take too long to equilibrate using c = 1/2. As such, we will use c = 1 and

the Brownian velocity (8.20) throughout this paper, where we can precompute L1/2 via

Cholesky or eigenvalue (dense matrix) decomposition (since L is a block diagonal matrix for

a suspension of fibers). When we have constraints and nonlinear updates, the velocity does

not generate the exact covariance for arbitrary ∆t, but it gives a covariance which converges

more rapidly to the correct answer.

8.2.2 RFD scheme

We first present an RFD scheme which explicitly tells us what drift terms are being included,

so that we can exclude them to demonstrate that (8.5) without the correct drift terms does

not give the correct equilibrium statistical mechanics. This scheme begins by solving the
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system of equations

M̃
n (

L
(
cXn+1,∗ + (1− c)Xn

)
+Λ

)
+Un

B = Knα (8.21)

(Kn)T Λ = 0,

where Xn+1,∗ = Xn +∆tKnα (8.22)

is the linearized position at the next time step that we use in the implicit method determined

by the coefficient c. Substituting (8.22) into (8.21), we begin by solving the saddle point

system



−M̃

(
I + c∆tM̃L

)
K

KT 0




n

Λ

α




n

=



−M̃LXn +Un

B

0


 , (8.23)

where all time-dependent quantities are evaluated at time n, the Brownian velocity UB is

defined in (8.20), and α = (Ω,UMP). Using the Schur complement to eliminate Λ, we obtain

the solution

αn =

(
−NKTLX +

√
2kBT

∆t
N 1/2η

)n

+O(∆t)

=

(
−NC̄

T
Lτ τ̄ +

√
2kBT

∆t
N 1/2η

)n

+O(∆t) (8.24)

where the terms of order ∆t come from using an implicit method. Comparing (8.24) with

the SDE (8.5), we see that we still need to capture the drift term (8.17). To do this, we add
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a random finite difference term [116, Sec. IIIC] by setting

τ̄ n,RFD =




rotate
(
τ n, δηn,RFD

{1:3N}

)

XMP + δLηn,RFD
{3N+1:3N+3}


 (8.25)

αn,RFD =
kBT

δ
(N (τ̄ nRFD)−N (τ̄ n))




ηn,RFD
{1:3N}

L−1ηn,RFD
{3N+1:3N+3}


 (8.26)

where δ ≪ 1 is a dimensionless small parameter and ηn,RFD is generated independent of

ηn. The procedure (8.25) corresponds to first rotating the tangent vectors around a random

axis by a random small angle, which we follow in (8.26) by solving two saddle point systems

with the same random numbers on the right hand side. The Taylor expansion of the average

α(RFD) is (dropping the time superscript)

E
[
αRFD

]
= (kBT ) ∂j (N ik)E

[
η
(RFD)
k

(
τ̄ (RFD) − τ̄

)
j

]
+O (δ)

= (kBT ) ∂j (N ik)E
[
η
(RFD)
k η(RFD)

m

]
C̄jm +O (δ)

= (kBT ) ∂j (N ik) C̄jk.

which is exactly the drift term in (8.17). In the second equality, we use the fact that

the update (8.25) is C̄η to first order in δ. Thus the RFD term αRFD captures (8.17) in

expectation, and the fiber update

τ n+1 = rotate
(
τ n,∆t

(
Ωn +Ωn,RFD

)
,
)

(8.27)

Xn+1
MP = Xn

MP +∆t
(
Un

MP +Un,RFD
MP

)

is a weakly first-order accurate temporal integrator for (8.5).
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8.2.3 Midpoint scheme

We can now present our “midpoint” method which can produce the drift term (8.17) in

expectation with only one saddle-point solve per time step. Given that an inextensible chain

can be viewed as a collection of interacting rigid rods (tangent vectors), our method is similar

in spirit to that of Westwood et al. [150] for rigid body suspensions, but differs in the ways

we detail in Section 8.2.3.3.

At each time step n, we perform the following steps

1. Compute a rotation rate for the tangent vectors based on the Brownian velocity

M̃
1/2

ηn

αn,∗ =

√
2kBT

∆t
(Kn)−1

(
M̃

n
)1/2

ηn =




Ωn,∗

Un,∗
MP


 (8.28)

where K−1 is defined in (6.29).

2. Rotate the tangent vectors by Ωn,∗∆t/2 to generate a new configuration

τ̄ n+1/2,∗ =



rotate (τ n, (∆t/2)Ωn,∗)

Xn
MP + (∆t/2)Un,∗

MP


 (8.29)

=

√
kBT∆t

2
C̄
n
(Kn)−1

(
M̃

n
)1/2

ηn +O(∆t3/2) (8.30)

3. Evaluate the mobility M̃
n+1/2,∗

and use it to compute the additional drift velocity

using the random finite difference (RFD) [152] with δ ∼
√
∆t,

Un
MD =

√
2kBT

∆t

(
M̃

n+1/2,∗ − M̃
n
)((

M̃
n
)−1/2

)T
ηn. (8.31)

This term might be impractical for large systems because it is based on solving a

resistance problem to obtain
(
M̃

−1/2
)T

. An alternative way of obtaining the same drift
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term (8.31), in which M̃ only has to be applied rather than inverted, is via an RFD,

which avoids potentially expensive resistance problems. The alternative expression for

UMD in this case is

µ(RFD) = K−1η(RFD) τ (RFD) = rotate
(
τ , δLµ(RFD)

)
≈ τ p − δLCK−1η(RFD)

UMD =
kBT

δL

(
M̃
(
τ (RFD)

)
− M̃ (τ )

)
η(RFD), (8.32)

Numerical tests show that using the expression (8.31), rather than (8.32), gives a closer

approximation to the equilibrium distribution for larger time step sizes, whereas for

smaller time step sizes the two expressions perform similarly. Thus when the mobility

is localized to a single fiber, we use (8.31), but when we treat nonlocal hydrodynamics

we use (8.32).

4. To obtain the tangent vector rotation rates, solve the saddle point system



−M̃

(
I + c∆tM̃L

)
K

KT 0




n+1/2,∗

Λ

α




n+1/2

(8.33)

=



−M̃

n+1/2,∗
LXn +Un

B +Un
MD

0




for Λn+1/2 and αn+1/2 =
(
Ωn+1/2,U

n+1/2
MP

)
. The Brownian velocity UB is defined in

(8.20), and the first part of it is used in (8.28) to generate the midpoint configuration,

i.e., the same η is used in steps 1, 3, and 4.

5. Update the fiber via (6.71),

τ̄ n+1 =



rotate

(
τ n,∆tΩn+1/2

)

Xn
MP +∆tU

n+1/2
MP


 . (8.34)
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Solving (8.33) yields (to leading order in ∆t)

αn+1/2 =
(
NKTM̃

−1
)n+1/2,∗ (

−M̃
n+1/2,∗

LX +Un
B +Un

MD

)
(8.35)

In Section 8.2.3.1, we show that using this value of α in the nonlinear update (8.35) generates

the drift term (8.17) in expectation. Thus, after the rotation, we obtain dynamics consistent

with (8.5).

In this chapter, we consider both single filament hydrodynamics and the dynamics of

multiple filaments. When we only consider one filament, we use direct solvers for the saddle

point system (8.33), and in this case we can vary the mobility matrix because we can always

symmetrize and truncate the eigenvalues (see Section 7.2.1). When multiple filaments are

involved, it is not possible to form the matrix M̃ explicitly, and we instead solve (8.33)

iteratively. We recall that the mobility matrix for nonlocal hydrodynamics is the oversampled

RPY kernel (7.10). In Chapter 7, we spoke at length about replacing the diagonal parts of

this matrix with the RPY special quadrature method in order to reduce the number of

oversampled points on the fiber centerline. When we do this, it removes the guarantee that

the overall matrix M̃ is SPD, and it makes it difficult to apply M̃
1/2

. Because of this, when

we consider nonlocal dynamics we will only use the mobility (7.10), with a preconditioner

M̃L that is just the oversampled mobility on each fiber. While this method does not scale

well in the limit ϵ → 0, in Section 8.5.1.1 we show that roughly 0.4/ϵ̂ points are required

to achieve convergence. Thus when ϵ̂ = 10−3, we need 400 oversampling points, which is

feasible.

8.2.3.1 Drift terms in midpoint scheme

We now show that the tangent vector update (8.35) generates the drift term (8.17) in ex-

pectation. To simplify the notation, in this appendix we will assume that all time/position-

dependent matrices and vectors are evaluated at time n, unless otherwise indicated. Substi-
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tuting for UB and UMD, we expand (8.35) to read

αn+1/2,∗ = −
(
NKT

)n+1/2,∗
LX (8.36)

+

√
2kBT

∆t

(
NKTM̃

−1
)n+1/2,∗

M̃
1/2

η

+

√
2kBT

∆t

(
NKTM̃

−1
)n+1/2,∗ (

M̃
n+1/2,∗ − M̃

)(
M̃

−1/2
)T

η.

Here we have used the dense matrix expression (8.31) for UMD, but it is not hard to see the

RFD (8.32) generates the same drift term. We will Taylor expand the second and third line

in succession. Beginning with the second line, we have

√
2kBT

∆t

[(
NKTM̃

−1
)n+1/2,∗

M̃
1/2

η

]

i

=

√
2kBT

∆t

(
NKTM̃

−1/2
η
)
i

+

√
2kBT

∆t
∂j

(
NKTM̃

−1
)
ih

(
τ̄
n+1/2,∗
j − τ̄ j

)
M̃

1/2

hp ηp +O(∆t).

We recognize the first term from (8.9) as N 1/2η, which is the typical term associated with

the Brownian noise. Substituting the expansion of τ n+1/2,∗ in (8.30) into the second line, we

get the average drift

DriftUBi =

√
2kBT

∆t
∂j

(
NKTM̃

−1
)
ih

√
kBT∆t

2
C̄jaK

−1
ab M̃

1/2

bc E
[
ηcηp

]
M̃

1/2

hp

= (kBT ) ∂j

(
NKTM̃

−1
)
ih

(
M̃hbK

−T
ba C̄

T
aj

)
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where in the last equality we used M̃ = M̃
1/2
(
M̃

1/2
)T

. Rearranging this gives

M̃
(
M̃

−1/2
)T

= M̃
1/2

, which alllows us to expand the last line in (8.36) as

DriftUMDi = E

[√
2kBT

∆t

(
NKTM̃

−1
)
ih
∂j

(
M̃hp

)(
τ̄
n+1/2,∗
j − τ̄ j

)
M̃

−1/2

qp ηq

]
+O(∆t)

= (kBT )
(
NKTM̃

−1
)
ih
∂j

(
M̃hp

)
C̄jaK

−1
ab M̃

1/2

bc E
[
ηcηq

]
M̃

−1/2

qp

= (kBT )
(
NKTM̃

−1
)
ih
∂j

(
M̃hp

)
C̄jaK

−1
ap

= (kBT )
(
NKTM̃

−1
)
ih
∂j

(
M̃hpC̄jaK

−1
ap

)
. (8.37)

The last equality makes use of the identity

N ikK
T
kp∂j

(
C̄jrK

−1
rp

)
= 0, (8.38)

which is proven later.

We can now add the two drift terms to obtain the total drift

Drifti = DriftUBi +DriftUMDi

= kBT∂j

((
NKTM̃

−1
)(

M̃K−T C̄
T
))

ij

= kBT∂j

(
N
(
C̄K−1K

)T)
ij
= kBT∂j

(
NC̄

T
)
ij
= kBT∂j (N ik) C̄

T
kj.

In the last line above, we used (6.30) in the second equality, thereby establishing that the

one-solve scheme produces the drift (8.17), as desired.
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8.2.3.2 Proof of (8.38)

We now prove that (8.38) is indeed zero by substituting the definitions of K and K−1 to get

N ikK
T
kp∂j

(
C̄jrK

−1
rp

)
= N ikC̄

T
kyX T

yp∂j

(
C̄jrC̄

T
rb

)
X−1

bp

= N ikC̄
T
ky∂j

(
C̄jrC̄

T
ry

)
.

Now, the matrix
(
C̄jrC̄

T
rb

)
is a 3(N + 1) × 3(N + 1) matrix composed of N + 1 diagonal

blocks. The first N diagonal blocks are I3−τ {p}τ {p}, while the last block is the 3×3 identity.

It follows that the derivative

∂

∂τ̄ j

(
C̄jrC̄

T
ry

)
= −4τ̄ y, (8.39)

for b ≤ 3N , and zero otherwise (for the parts of τ̄ associated with constant motions).

Multiplying by C̄
T
and using (6.26) gives (8.38).

8.2.3.3 Comparison to scheme of Westwood et al. [150]

The midpoint method proposed here applies for any kinematic matrix K (X) and mobility

M (X) and can therefore be used for suspensions of rigid bodies as well. In fact, our scheme

is related to the generalized drift-correcting (gDC) scheme proposed by Westwood et al. [150,

Sec. 4.1] for rigid body suspensions.

For a single rigid body modeled as a rigid-multiblob with blob positions X i (generaliza-

tion to many rigid bodies is straightforward) the authors of [150] define the kinematic matrix

K (X) through its action on a 6× 1 rigid body velocity U = [u,ω], so that

∂tX i = u+ ω × (X i − q) = [K (X)U ]i , (8.40)

where q is an arbitrary tracking point for the rigid structure. Equation (E.5) in [150] gives
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the drift term for rigid bodies as

Drifti = kBT∂jN ij. (8.41)

Similar to the midpoint scheme presented here, the gDC scheme captures the thermal drift

term by splitting it into two parts

Drifti = (kBT ) ∂jN ij (8.42)

= (kBT ) ∂j

(
NKTM−1/2M 1/2K−T

)
ij

= (kBT ) ∂j

(
NKTM−1/2

)
ik

(
M 1/2K−T

)
kj

+ kBT
(
NKTM−1/2

)
ik
∂j

(
M 1/2K−T

)
kj
,

where K−T = K
(
KTK

)−1
is the left pseudoinverse of KT and can be computed very

efficiently. By contrast, the midpoint scheme presented in this work splits the drift term

according to

Drifti = (kBT ) ∂jN ij

= (kBT ) ∂j

(
NKTM−1M 1/2M 1/2K−T

)
ij

= (kBT ) ∂j
(
NKTM−1

)
ik

(
MK−T )

kj
+ kBT

(
NKTM−1

)
ik
∂j
(
MK−T )

kj
. (8.43)

While equations (8.42) and (8.43) appear very similar, the approach used in our midpoint

scheme only requires one application of M 1/2, while the gDC scheme requires four. In some

cases, saving on applications of M 1/2 can significantly reduce the computational cost of the

whole scheme.

To elaborate on why the gDC scheme requires extra applications of M 1/2, we will briefly

summarize how the scheme captures each term in (8.42). The second term is calculated
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efficiently by using an RFD for

νk = ∂j

(
M 1/2K−T

)
kj

(8.44)

since it does not involveN , while the first term is captured using a midpoint time integration

scheme of the form

Xn+1/2,∗ −Xn =

√
kBT∆t

2
K−1M 1/2ηn (8.45)

Ṽ
n+1/2,∗

=

√
2kBT

∆t

(
NKTM−1/2

)n+1/2,∗
ηn, (8.46)

so that

E
[
Ṽ

n+1/2,∗]
= (kBT ) ∂j

(
NKTM−1/2

)
ik
E [ηnkη

n
r ]
(
K−1M 1/2

)
jr

= (kBT ) ∂j

(
NKTM−1/2

)
ik

(
M 1/2K−T

)
kj
.

The gDC scheme combines these parts to compute

Drifti = kBT
(
NKTM−1/2

)
ik
νk + E

[
Ṽ

n+1/2,∗]
= (kBT ) ∂jN ij. (8.47)

Note that calculating Ṽ
n+1/2,∗

according to (8.46) requires two applications of M 1/2 (one

at each time level), and calculating νk using an RFD requires two additional applications of

M 1/2. Hence the gDC scheme requires four total applications of M 1/2 while the midpoint

scheme presented in this work only requires one.
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8.3 Small equilibrium fluctuations of a curved fiber

To start our numerical analysis of our spectral discretization and temporal integrators, it is

logical to study the performance in the context of small fluctuations around an equilibrium

state. The motivation for studying this problem is both physical and numerical: physically,

it is useful to study because we are eventually interested in fibers that are constrained by

cross linkers, which roughly hold them in place while they fluctuate. Numerically, starting

with small fluctuations [83], and a curved, rather than straight, fiber allows us to confirm

that our method correctly handles nonlinearities. We discuss the curved configuration we

choose, and how we keep the dynamics from drifting away from it, in Section 8.3.1.

Because the dynamics are linearized around a particular state, we can compute a theo-

retical covariance matrix and break the dynamics into a set of modes (from the linearized

covariance). In Section 8.3.2, we compute the equilibrium variance of each of these modes

via Markov Chain Monte Carlo (MCMC) calculations using the equilibrium probability dis-

tribution (8.1). By comparing our spectral discretization to a blob-link one, we verify that

our equilibrium distribution (8.1) gives behavior similar to that of the more physical one

with uniformly-spaced links. Following this, we take advantage of the small fluctuations to

linearize the SDE (8.12) around the base state X0, which we then diagonalize in Section

8.3.3.1 to compute relaxation timescales of the fundamental modes. This aids us in Section

8.3.4, where we study the time step size required for our midpoint temporal integrator to

accurately sample from the equilibrium probability distribution (8.1).

8.3.1 Set-up for small fluctuations

For the base state X0, we introduce a curved configuration with L = 2 µm and

τ 0(s) =
1√
2

(
cos (s3(s− L)3), sin (s3(s− L)3), 1

)
(8.48)
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with X0 defined as the integral of this on the N+1 point Chebyshev grid with XMP = 0. To

keep the dynamics near this base state, we introduce an additional energy which penalizes

the discrete squared L2 norm of ∆X = X −X0,

EP =
P

2
∆XTW̃∆X, P = (1.6× 104)

kBT

L3
. (8.49)

This choice of P ensures that the dimensionless discrete L2 norm ∆XTW̃∆X/L3 remains

constant when kBT and L change. While this is the required scaling of P to keep the

relative magnitude of ∆X roughly constant (and small), throughout this section we will fix

kBT = 4.1 × 10−3 pN·µm and L = 2 µm, thus setting P = 8.2 pN/µm2. To modify the

filament’s persistence length, we will modify the bending stiffness κ in the modified bending

energy that keeps the curved X0 as an equilibrium configuration

Ebend =
1

2
κ∆XT

(
D2
)T

W̃D2∆X. (8.50)

In this case, the Ito Langevin equation (8.12) can be viewed as an equation for ∆X rather

than X, and the matrix L becomes

L = PW̃ + κ
(
D2
)T

W̃D2, (8.51)

which is the original definition (6.10) modified to account for the penalty force. Notice that

the first term in the energy (the penalty term) is independent of κ, while the bending term is

proportional to κ. Figure 8.1 shows X0 along with some samples from the Gibbs-Bolztmann

distribution (8.1) with this energy.

We will use the covariance in ∆X to determine the accuracy of our spatial and temporal

discretizations. Because the energy is nonlinearly constrained, we cannot write down the

exact covariance, but it is informative to project the modes onto the covariance we would
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obtain if we replace the nonlinear inextensibility constraint with the linearized version ∆X =

K [X0]α := K0α. The resulting energy 1
2
∆XTL∆X = 1

2
αTKT

0LK0α dictates that α

has covariance

Cα = E
[
ααT

]
= (kBT )

(
KT

0LK0

)†
. (8.52)

Now pre- and post-multiplying by K0, we get the expected covariance for ∆X as

C = E
[
∆X∆XT

]
= (kBT )K0

(
KT

0LK0

)†
KT

0 , (8.53)

which is valid in the limit of small fluctuations.

To check how close the true covariance is to C, we will generate samples of ∆X through

both MCMC sampling and Langevin dynamics, then use the procedure outlined in Section

8.3.1.1 to project the resulting covariance onto the eigenmodes of C. This amounts to

computing the Rayleigh quotient of the eigenmodes using the true covariance and normalizing

with respect to the eigenvalues of C. We focus on the variance in each of the modes (diagonal

entries of the covariance matrix projected onto the eigenmodes), as the off-diagonal entries

for the smallest persistence length we consider (ℓp/L = 1) are zero within the statistical

error of our MCMC calculations.

8.3.1.1 Covariance calculations

To compare the covariance from MCMC to (8.53), we first use a blob-link discretization to

compute the matrix C exactly as defined in (8.53). In order for the eigenmodes of C to be

the same across all discretizations, we need to ensure that they are orthonormal in L2 and

not Rn. This can be accomplished by computing the eigenvalues of W̃
1/2

CW̃
1/2

, which is

a Hermitian matrix and therefore has eigendecomposition

W̃
1/2

CW̃
1/2

= Ṽ ΛṼ
T

Ṽ
T
Ṽ = I (8.54)
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Figure 8.1: Three samples of penalty-bound blob-link chains (with 100 links) for various ℓp/L,
sampled using MCMC. We show the “random” filament shapes X = X0 + ∆X, where ∆X is
sampled from the equilibrium distribution (8.57). The blue line shows X0.

The matrix W̃ is used to compute the L2 inner product, ∥X∥2L2 ≈ XTW̃X. In the case of

the blob-link method, W̃ = ∆s diag (1/2, 1, . . . , 1, 1/2). Now, if we use (8.54), we observe

that

C = W̃
−1/2

Ṽ Λ
(
W̃

−1/2
Ṽ
)T

Thus, if we define V = W̃
−1/2

Ṽ , we have (using the orthonormality of Ṽ in Rn) the desirable

property that

C = V ΛV T V TW̃V = I, (8.55)

which means the columns of V are orthonormal in L2. Then, to compute the covariance, we

can project the modes of ∆X onto the columns of V in L2 as V TW̃∆X, since

E
[
∆X∆XT

]
= C

E
[
V TW̃∆X

(
V TW̃∆X

)T]
= V TW̃CW̃V = Λ,
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using (8.55) in the last equality.

8.3.2 MCMC estimation of reference covariance

To establish a reference result for the variance of each of the modes of C, we use MCMC

to sample from the Gibbs-Boltzmann measure (8.57), but with ∆X = X −X0 taking the

place of X in (8.57) and (8.58).

8.3.2.1 Blob-link MCMC

To establish a benchmark for the spectral code, we perform MCMC on a blob-link chain

with L = 2 and N = 100 links. To do this, we initialize the chain with shape X = X0.

Then, at each Monte Carlo step, we propose a new chain X̃ that is generated by rotating

the tangent vectors by an oriented angle

Ω̂
⊥
= 0.1

√
kBTL

−1/2η, (8.56)

where η is a 3N + 3 vector of i.i.d standard normal random variables, and the constant of

0.1 is added to make the acceptance ratio roughly 40%. Note that this proposal is informed

by the bending energy (unconstrained covariance) matrix because there are many links in

the blob-link chain, and so the multiplication of the Gaussian by L−1/2 effectively projects

the proposal onto the expected (unconstrained) covariance, which reduces the number of

samples required to equilibrate the higher-order modes. When P = 0 (for a free fiber), we

compute the proposal (8.56) using the pseudo-inverse of L, since constant and linear modes

have zero eigenvalues. Note that in this special case it is possible to construct direct (exact)

independent samplers to obtain the chain configurations, though these were not used in this

work.
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8.3.2.2 Acceptance probabilities

Once we generate the proposal, we use the Metropolis-Hastings algorithm to accept/reject

it. Since we are sampling from the energy

dπ (X) ∝ exp

(
−E (X)

kBT

)
dµ0 (X) := π(X) dµ0 (X) , (8.57)

where E (X) = 1
2
∆XTL∆X and the base measure dµ0 (X) is defined in (8.1), the probability

of acceptance is simply the Metropolis factor

pacc = max



π
(
∆X̃

)

π(∆X)
, 1


. (8.58)

8.3.2.3 Results

Figure 8.1 shows some sample 100-link chains with various values of κ, which we quantify

by the dimensionless persistence length ℓp/L = κ/(LkBT ). While the relative mean-square

deviation of the chains from the blue base state is approximately the same (1%) in all cases,

we see more and more “wiggles” in the chain as we decrease ℓp/L.

To compute the variance of each mode and compare it to the expected result (8.53), we

use the MCMC sampler to generate 106 samples of X for ℓp/L = 100, 10, and 1. We then

throw out the first 20% of the samples and compute the covariance of the rest of the samples.

We repeat this ten times to generate error bars, and show the variance in each eigenmode

in Fig. 8.2(a), where we normalize by the corresponding eigenvalue and do the projection

in L2 as discussed in Section 8.3.1.1. In addition to running simulations with 100 links, we

also run with 200 links to confirm that the results are converged in space. We see that,

for ℓp/L ≳ 10, the variance of each mode is exactly that predicted by the theory (8.53).

When we decrease κ so that ℓp/L = 1, some of the intermediate modes (from about 5 to 20)

are damped relative to the theoretical prediction. In this case the bending fluctuations are
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(a) Blob-link (b) Spectral

Figure 8.2: Covariance of linearized modes for various ℓp/L using blob-link and spectral discretiza-
tions, estimated using MCMC sampling. We always project the variance onto the same set of L2

orthonormal modes given by the eigenvectors of the linearized covariance (8.53), as discussed in
Section 8.3.1.1. (a) The covariance for a blob-link discretization with 100 links and 101 blobs (203
modes). Results are shown for 100 links (in blue), and 200 links (in red) to verify convergence. (b)
Comparison of the variance of the first 25 modes using a spectral grid with those of the blob-link
discretization. The black points show the results of MCMC calculations with 100 links, while the
blue, red, and yellow symbols show results with N = 12, 24, and 36 Chebyshev nodes, respectively.
When N = 12 and k ≥ 17, the variance is reduced significantly to about 0.2 and is not shown.
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sufficiently large for nonlinear effects to matter.

8.3.2.4 MCMC for spectral discretization

Let us now perform MCMC on a chain discretized using Chebyshev collocation points, rather

than uniformly-spaced nodes. To do this, we choose a number of Chebyshev collocation

points N and set X = X0. Then, we propose a rotation of the tangent vectors at each of

the Chebyshev nodes2

Ω̃{p} =
0.48

N

√
L

ℓp
η{p} (8.59)

where η{p} is a vector of three i.i.d. standard normal numbers for each node p, and the

constant in front is chosen so that roughly 50% of the samples are accepted if the tangent

vectors are rotated by Ω̃p and the middle of the fiber is held in place.

The second part of the proposal is to update the fiber midpoint. To do this, we propose

a new midpoint via

X̃MP = XMP +
(
7.5× 10−3

)
Lη, (8.60)

where η is a vector of three i.i.d. standard normal numbers. Now, notice that the scaling

of ∆XMP does not depend on N or κ, since the penalty energy is independent of these two

quantities. As such, the constant 7.5×10−3 is chosen so that roughly 50% of the samples are

accepted if the tangent vectors are not updated and the fiber only translates. We combine

the two proposals Ω̃p and X̃MP into a single proposal

X̃ = X



rotate

(
τ , Ω̃

)

X̃MP


 , (8.61)

and compute the energy via 1
2
∆X̃

T
L∆X̃. With this proposal, the Metropolis algorithm in

2Note that multiplication of η by L−1/2 (c.f. (8.56)) is not necessary since in the spectral discretization
the number of Chebyshev nodes is intended to be relatively small.
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Section 8.3.2.2 gives a total acceptance ratio between 20 and 30%.

Repeating our MCMC procedure on the spectral discretization, we look at the variance

of each of the eigenmodes of the linearized covariance (8.53) in Fig. 8.2(b). We show three

different values of N , and observe that the spectral equilibrium distribution for N = 12 has

variance which diverges slightly from the blob-link variance for small mode numbers when

ℓp/L = 1, and for larger mode numbers (k ≥ 17) for all ℓp. Increasing to N = 24 and

N = 36, we see overlap with the variance from the blob-link discretization with 100 links

for all values of ℓp, which shows that the spectral method with a sufficiently large N can

properly reproduce the magnitude of the small equilibrium fluctuations of the blob-link chain

(at least for this example).

8.3.3 Dynamics

Our task now is to see if our temporal integrators can be used to sample from the Gibbs-

Boltzmann distribution (8.1) via Langevin dynamics. Before doing that, we look at the

fundamental timescales governing system dynamics. The largest of these is τfund, which we

use in the rest of this chapter to non-dimensionalize the time step sizes of free filaments.

8.3.3.1 Linearized timescales

One of the benefits of considering dynamics that are only slightly perturbed from the equilib-

rium configuration X0 is that we can linearize the SDE (8.12) and diagonalize the result to

compute the fundamental timescales in the system. Because the linearized mobility matrix

is constant (evaluated at X0), the drift term disappears and the linearized form of the SDE

(8.12) around X = X0 is

d∆X

dt
= −N̂ 0L∆X +

√
2kBTN̂

1/2

0 W , (8.62)
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where N̂ 0 = K0N 0K
T
0 , with N defined in (8.3). Since the null space of N̂ 0 is the N

extensible motions around X = X0, there are 2N + 3 remaining directions, and the SDE

(8.62) diagonalizes when we consider the first 2N +3 generalized eigenvectors of N̂
†
0 and L,

which satisfy

N̂
†
0V = LV Λ, (8.63)

where the 2N + 3 eigenvectors, which make up the (3N + 3) × (2N + 3) matrix V , are

normalized such that

V TLV = I → V TN̂
†
0V = Λ. (8.64)

These equations imply that

N̂
†
0V = LV ΛV TLV → N̂

†
0 = LV ΛV TL → N̂

−1/2

0 = LV Λ1/2, (8.65)

which gives a square root of N̂ 0 as N̂
1/2

0 = N̂ 0N̂
−1/2

0 . Substituting this into the linearized

Langevin equation (8.62) and using the definition of the eigenvalues (8.63), we obtain the

SDE governing the evolution of the eigenmodes X̂ = V −1∆X,

V
dX̂

dt
= −N̂ 0LV X̂ +

√
2kBTN̂ 0LV Λ1/2W

dX̂

dt
= −Λ−1X̂ +

√
2kBTΛ

−1/2W . (8.66)

Thus, each of the 2N +3 inextensible eigenmodes relaxes with characteristic timescale equal

to its eigenvalue, and the modes satisfy the equipartition principle E
[
X̂X̂

T
]
= (kBT ) I.

The average elastic energy is then 1
2
E
[
∆XTL∆X

]
= 1

2
E
[
X̂

T
V TLV X̂

]
= (N + 3/2) kBT .

We first examine the dependence of the timescales on N in the left panel of Fig. 8.3, be-

ginning by plotting the timescales for N = 12 (blue) and N = 24 (red) with the penalty force

included in L. Including the penalty force makes L invertible, which gives finite timescales

for the first six modes (three translation and three rotation) that have zero eigenvalues when
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Figure 8.3: Timescales in the linearized filament problem. In each plot, we give the timescales
(the 2N + 3 nonzero diagonal entries of Λ in (8.63)) made dimensionless by τfund in (8.69) (the
largest timescale for free fibers), then mark with a star the time step size required for the midpoint
temporal integrator to have an error less than 5% in the equilibrium variance when ℓp/L = 10 (see
Section 8.3.4). (Left) Dependence of timescales on N . We show the timescales for two different N
with (blue and red) and without (yellow and purple) the penalty force. (Right) Dependence on the
mobility (aspect ratio ϵ̂) with P = 0. We show ϵ̂ = 10−3 in blue and ϵ̂ = 10−2 in red. Inset: the
first three unique modes for a straight filament (compare to [83, Fig. 2(a)]). The eigenvalue of the
blue mode is the timescale τfund.
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P = 0. After the first few modes, the timescales begin to decay with the expected k−4 scaling

[153] until the spatial discretization error causes shorter timescales than we would obtain in

continuum. We see in particular that for a given N we have about 6 incorrect timescales

from spatial discretization error. Excepting these modes, we see that increasing N only adds

additional small timescales into the problem, since N = 12 is sufficient to correctly give the

timescales of the first 15 or so modes. Since the penalty force contributes a fixed multiple

of the identity to L, the largest eigenvalues are changed very little, and so the effect of the

penalty force on the relaxation timescales is negligible for modes beyond the first 10 or so

(see the left panel of Fig. 8.3).

A slight complication in Fig. 8.3 is that the linearized timescales for two different ϵ̂ do not

collapse onto the same curve when rescaled by the estimate of (8.69). In fact, the expected

log scaling, which comes from slender body theory [19, 20], approximately holds only for

the smoothest modes (k ≲ 10), with the timescales of the high-frequency modes scaling at a

much sharper rate. Indeed, at the shortest scales we expect to see ϵ̂−1 scaling, corresponding

to the timescales on which individual blobs relax (Stokes drag law).

8.3.4 Temporal accuracy

We now use the timescale analysis of the previous section to understand the performance of

our temporal integrator. For each set of parameters, we first compute the relevant timescales

using the method of Section 8.3.3.1. Then, we choose a subset of the modes and run the

Langevin dynamics with ∆t = τk, for each k in the set of modes chosen. To obtain statistics,

we initialize the fiber in its equilibrium state and run until 10τ1, removing the first τ1 as a

burn-in period. We repeat this a total of 20 times to generate a mean, then perform the

20 trials a total of 5 times to generate error bars. The resulting variance of each mode is

shown in Figs. 8.4 and 8.5. Here we follow the pattern of Fig. 8.3 to systematically vary

the parameters N (top of Fig. 8.4), ϵ̂ (bottom), and κ (Fig. 8.5), while keeping the others
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constant.

8.3.4.1 Effect of changing N

Beginning with the top of Fig. 8.4, we see that the number of modes whose dynamics we

need to resolve with ∆t depends on N . For N = 12, where there are a total of 27 modes,

we can use a time step corresponding to the k = 13 mode and obtain an accurate variance

for most modes, while for N = 24, where there are 51 modes, we need a time step which

matches the timescale for the k = 21 mode. Thus the number of modes we need to resolve

increases with N . Since the timescale of the modes scales as k−4, doubling N requires a time

step refinement of at least 10. This is obviously sub-optimal, and tells us that the optimal

way to simulate the dynamics of the first k modes is to choose the minimum N that resolves

those k modes.

8.3.4.2 Effect of changing ϵ̂

We now move on to the variation in ∆t with changing ϵ̂ for N = 24. The bottom row of

Fig. 8.4 shows that, for a fixed relative time step size, ϵ̂ = 10−2 gives results closer to the

equilibrium distribution. The required time step size for a 5% error in the variance is about

∆t = τ17 for ϵ̂ = 10−2 and ∆t = τ21 for ϵ̂ = 10−3. Because the scaling of the timescales for

intermediate modes with ϵ̂ is somewhere between log scaling (factor of 1.5) and ϵ̂−1 scaling

(factor of 10), the net result of this is that the absolute time step size we need decreases

by a factor of six (see the stars in Fig. 8.3(b)). That said, changing aspect ratio cannot be

accommodated by a simple rescaling of time since it scales each mode differently depending

on its smoothness.
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Figure 8.4: Convergence of the equilibrium covariance in our midpoint temporal integrator, with
∆t expressed in terms of relaxation timescales. In each case, we plot convergence to the MCMC
results (see Fig. 8.2) as a function of the time step size, which is chosen from the modes in Fig. 8.3.
(Top) Dependence of timescales on N with fixed ℓp/L = 10 and ϵ̂ = 10−3. (Bottom) Dependence
on the mobility (aspect ratio ϵ̂) with fixed N = 24 and ℓp/L = 10.
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Figure 8.5: Convergence of the equilibrium covariance in our midpoint temporal integrator for
changing κ, with ∆t expressed in terms of relaxation timescales. We fix N = 12 and ϵ̂ = 10−3 and
plot the results for changing κ in terms of ℓp/L.

8.3.4.3 Effect of changing κ

Finally, we consider the variation with ℓp/L in Fig. 8.5, where we observe the expected

behavior: as we increase ℓp/L, we need to resolve the dynamics of fewer modes to get the

correct variance. However, we find that the number of modes required does not scale as 1/κ;

rather, we need ≈ 3 less modes for every factor of 10 increase in κ since the chain becomes

smoother. Because increasing κ causes the timescale of each mode to decrease, the net effect

of this is that the actual time step size we need is roughly constant as κ increases (for the

range of parameters we consider here).

8.3.5 Importance of drift terms

To conclude this section, we look at what happens to the variance when we exclude the drift

terms from the overdamped Langevin equation (8.12). We do this with the RFD scheme

of Section 8.2.2, which allows us to explicitly exclude the drift terms to see what kind of

covariance we obtain in X. To demonstrate that the drift terms are important even when
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Figure 8.6: Results for linearized fluctuations with constant mobility M = I/(8πµ). We fix
N = 12 and ℓp/L = 1 and show the variance of each of the L2-orthonormal modes of the linearized
covariance matrix (8.53) (as described in Section 8.3.1.1) using the simple RFD scheme in Section
8.2.2. We show the results without (left) and with (right) the additional RFD drift term in (8.26)
with δ = 10−5. In all cases, the MCMC results in black are those obtained in Fig. 8.2(b).

the mobility is position-independent, we use the constant mobility M = I/(8πµ) → M̃ =

W̃ /(8πµ), which we apply to a fiber with N = 12 tangent vectors and ℓp/L = 1. In Fig. 8.6,

we show the variance of each of the L2 orthonormal modes with several different values of

∆t, compared to the results from MCMC, which we obtained on the spectral grid in Section

8.3.2.4. In the left panel, we show the results when we simulate the dynamics without adding

the RFD term (8.26). As ∆t → 0, many of the modes (but especially 4 and 7) increase in

variance without a visible bound. When we add the RFD term back in, the right panel shows

that the dynamics converge to the MCMC dynamics as ∆t → 0. This shows that, even if

the mobility is constant, proper handling of the stochastic drift terms that arise from the

inextensibility constraints is necessary to obtain the correct dynamics. We note also that the

RFD scheme appears to require all of the modes (there are 27 for N = 12) to be resolved

to obtain accurate results, which is in contrast to the midpoint scheme which requires less

than half (c.f. Figs. 8.4 and 8.5).
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8.4 Equilibrium statistical mechanics of free fibers

Now that we verified our that our temporal integrator can effectively sample from the equi-

librium distribution (8.1) for small fluctuations, we are ready to consider the full nonlinear

problem of a fluctuating free filament. As for small fluctuations, we focus first on comparing

the Gibbs-Boltzmann distribution (8.1) for blob-link and spectral chains through MCMC cal-

culations, then transition to showing that our midpoint temporal integrator can also sample

from the Gibbs-Boltzmann distribution if the time step size is sufficiently small.

For free fibers, we will use end-to-end distance

r(t) =
1

L
∥X(s = 0, t)− X(s = L, t)∥ . (8.67)

as a metric to compare statistics across different discretizations. When configurations are

sampled from the equilibrium distribution of inextensible filaments, the distribution of r is

approximately [154]

G(r) =
1

Z

∞∑

ℓ=1

1
(
ℓ∗p (1− r)

)3/2 exp
(
−(ℓ− 1/2)2

ℓ∗p(1− r)

)
H2


 ℓ− 1/2√

ℓ∗p (1− r)


 r2, (8.68)

where ℓ∗p = ℓp/L is the dimensionless persistence length, H2(x) = 4x2 − 2 is the second

Hermite polynomial, and we have multiplied by the Jacobian factor r2 to effectively compare

(8.68) to a one-dimensional histogram of distances that we will generate from our data. We

will also look at other distance metrics, including the distance from the fiber end to its

middle, the end to the quarter point, and the distance between the two interior quarter

points (the middle half of the fiber).

239



Figure 8.7: MCMC results for a freely fluctuating spectral fiber with ℓp/L = 1. We compute
distances along the fiber including end-to-end (∆s = L, top left), end-to-middle (∆s = L/2, top
right), quarter-to-quarter (∆s = L/2, bottom left) and the nearest end-to-quarter (∆s = L/4,
bottom right). Note that there are twice as many observations in the right column as the left, since
we measure from both the left and right endpoint. We compare the blob-link data for 100 links
(which is the same with 200 links; the mean end-to-end distance is (0.851± 0.001)L in both cases)
with several spectral discretizations and the theory (8.68). The spectral discretization results are
approaching the 100 link results as N increases (to within error bars), with a more rapid approach
for larger ∆s.
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Figure 8.8: Tangent vector correlation function ⟨τ (s+∆s) · τ (s)⟩, computed from MCMC sam-
pling. We show the data for a blob-link discretization with 100 links in black, and N = 12, 24, and
36 spectral nodes in blue, red, and yellow. The theory e−∆s/ℓp is shown in green.

8.4.1 Quantifying the Gibbs-Boltzmann distribution with MCMC

We first examine if the equilibrium distribution (8.1) for a freely fluctuating spectral filament

approximates well that of a blob-link chain. We use the MCMC procedure described in

Section 8.3.2 to generate 106–107 sample chains, removing the first 20% of the chains as a

burn-in period. Repeating this ten times to generate error bars, we report the distribution

of end-to-end, end-to-middle, quarter-to-quarter, and end-to-quarter distances for both the

spectral and blob-link chains in Fig. 8.7. We show only ℓp/L = 1, as the relative errors for

ℓp/L = 10 are the same as ℓp/L = 1. The spectral discretization has a relatively small error

even when N = 12, and the distributions it generates move towards the blob-link ones as N

increases. This occurs at a faster rate for larger scales (end-to-end) than for smaller scales

(end-to-quarter), as expected.

An additional metric we can use to study the equilibrium distribution of a freely fluc-

tuating chain is the correlation in the tangent vectors ⟨τ (s+∆s) · τ (s)⟩ for ∆s ∈ [0, L].

According to the definition of persistence length, this correlation should decay exponentially

as e−∆s/ℓp . To measure the correlation function in the spectral discretization, we compute
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the correlation for all ∆s on the type 1 Chebyshev grid on which τ is defined (see Fig.

6.1). We then assign these measurements into bins corresponding to 10 (for N = 12) or 20

(for N ≥ 24) uniformly-spaced values of ∆s on [0, L]. Figure 8.8 shows how our spectral

results compare to the theory (and 100 link discretization). While the blob-link chain has

a correlation function which matches the theory exactly, there is an apparent small bias

in our spectral chain at both small and large distances, with the correlation being larger

than expected for small N . This bias is especially noticeable for ℓp/L = 1, but larger er-

ror bars for larger N make it harder to make a definitive statement. Combining this with

our observations in Section 8.3.2 for small filament fluctuations, we can conclude that the

Gibbs-Bolztmann distribution (8.1) for spectral filaments is a good approximation of the

more physical one for blob-link chains.

8.4.2 Sampling with the midpoint temporal integrator

We now discuss how the midpoint integrator of Section 8.2.3 can also give samples from

the Gibbs-Bolztmann distribution (8.1). To make our analysis in this regard universal, we

need to understand how a certain time step size generalizes to a set of arbitrary parameters.

We are once again aided by our example of a filament with small fluctuations, where we

can linearize the SDE (8.12) around a certain state and compute a set of eigenmodes and

associated timescales for the dynamics. The analysis in Section 8.3.3.1 shows that the largest

timescale for free filaments is associated with the first “fundamental” bending mode [83],

which we show in the inset of Fig. 8.3. The timescale associated with this mode is roughly

τfund = 0.003
4πµL4

κ ln (ϵ̂−1)
, (8.69)

and so we will report time in units of τfund.
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8.4.2.1 Required time step for midpoint integrator

To examine the accuracy of the midpoint integrator relative to our MCMC calculations, we

run Langevin dynamics from t = 0 to t = 10τfund on an initially straight filament using the

RPY mobility (2.63) with slenderness ϵ̂ = 10−3. We record a histogram of the end-to-end

distance after the first τfund (burn-in), ignoring the other distance metrics which we have

already seen behave similarly.

Figure 8.9 shows that for sufficiently small ∆t the end-to-end distributions from Langevin

dynamics converge to those of MCMC, validating our temporal integrator. It also gives an

indication of how the required time step sizes change with N and κ (reported in terms of

ℓp/L). Focusing on N first, we see that for a fixed ℓp/L the required time step size decreases

by a factor of about 15 as N doubles from 12 to 24. This is in accordance with our finding in

Section 8.3.4 that we need to resolve roughly twice as many modes when we double N . The

scaling of the timescale of each mode τk ∼ k−4 implies a decrease in the time step size of 16,

which points to the limitations of our temporal integrator for larger N . It seems from Fig.

8.9 that N = 16 might be a happy medium between N = 12 and N = 24, as the required

time step is roughly a factor of 3 ≈ (16/12)4 less than that for N = 12.

Switching our focus to κ, Fig. 8.9 shows that the relative time step size required as we

increase from ℓp/L = 1 to ℓp/L = 10 increases by a factor of roughly 10. As we saw for the

linearized modes (see Section 8.3.4), the relative increase in ∆tf is offset by a factor of 10

decrease in τfund for 10 times larger κ, so that the net effect is no change in the required time

step size.

8.5 Dynamics of relaxation to equilibrium

So far, we have only examined equilibrium statistical mechanics, finding that samples from

the spectral and blob-link Gibbs-Boltzmann distributions generate similar statistics for a
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Figure 8.9: Distribution of end-to-end distance for the midpoint temporal integrator discussed in
Section 8.2.3 with the RPY mobility and ϵ̂ = 10−3. Time step sizes are reported as ∆tf = ∆t/τfund,
where τfund is the slowest system relaxation time, defined in (8.69). For each ℓp/L and N , we show
the MCMC results in black, together with the distributions obtained from the midpoint integrator
with various time step sizes.
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given set of parameters. But what about dynamics, and in particular, resolving the hydro-

dynamic interactions in slender filaments?

The temporal integrator we developed here performs similarly regardless of the spatial

discretization, in the sense that the number of modes we need to resolve scales with N .

Thus, if we want to simulate slender filaments without having to take unreasonably small

time steps, our only hope is to resolve the hydrodynamic interactions with a small number

of collocation points, or a number of collocation points that is independent of ϵ̂. We already

showed (Section 6.3) that we can achieve this goal for deterministic hydrodynamics. In this

section (and Section 8.5.1), we verify that this is also the case for Brownian hydrodynamics.

To do this, we consider the dynamic problem of an initially straight semiflexible chain

relaxing to its equilibrium fluctuations [83, 153, 155, 156]. Our focus here is on the relaxation

of the mean end-to-end distance to its mean value, i.e., to the mean of the distributions shown

in Fig. 8.9. As discussed in [155], the scenario that we simulate is not really physical, since it

is not possible for a fluctuating chain to ever reach an exactly straight configuration. As such,

the more physically-relevant timescales are those that correspond to long-wavelength modes,

where the shorter wavelength modes (which affect the end-to-end distance relatively little)

have already reached their equilibrium state. Thus we will accept errors in the end-to-end

distance on short timescales and concentrate on long-time behavior [156].

On long timescales, numerical results verify that the data for various µ, L, κ, ϵ̂, and kBT

can be (roughly) collapsed onto a single master curve with rescaled time and end-to-end

variables

t∗ =
t

t̄
, t̄ = 0.0008

4πµL4

κ ln (ϵ̂−1)
≈ 0.27τfund, r∗ =

r − r̄

1− r̄
, (8.70)

where r̄ is the mean end-to-end distance computed in Section 8.4.1 and t̄ is the long-time

decay rate, i.e., r∗(t∗ = 1) ≈ e−1 ≈ 0.3. In terms of our modal analysis, the timescale t̄ is

between the longest and second-longest timescales in the system (see Fig. 8.3), meaning that
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Figure 8.10: Two samples of free fibers with ℓp/L = 1 relaxing to their equilibrium fluctuations.
In both cases ϵ̂ = 10−2, but at left we use a blob-link discretization, while at right we use a spectral
discretization with N = 12 nodes (we do not try to match the random forcing between the two
discretizations, so the comparison is only in the qualitative look of the chain). The fibers are
initialized straight (magenta t∗ = 0 lines), and then assume their equilibrium end-to-end length on
the timescale t̄ (defined in (8.70)). In both cases, realizations of the fibers at different times are
artificially staggered along the direction of the arrows for visual clarity.

all of the modes except the first should be relaxed by t̄. Simulating until t̄ thus provides a

set of intermediate times at which we can measure non-equilibrium statistics (see Fig. 8.10

for pictures of the relaxation process).

To compare the spectral method to a blob-link method, we fix ℓp/L = 1 and compare

four different discretizations of the chain: the spectral discretization with N = 12 (which

requires a time step size ∆tf ≈ 0.003 for accurate dynamics; this time step is the same as

that needed for equilibrium statistical mechanics), N = 24 (time step size ∆tf ≈ 2× 10−4),

and N = 36 (∆tf ≈ 7 × 10−5) and the blob-link discretization with 100 blobs (required

time step size ∆t∗ ≈ 10−4). The blob-link discretization is considerably more expensive to

simulate for small ϵ̂ (even with a GPU-accelerated implementation), which requires us to

limit our comparison to ϵ̂ = 10−2.

Figure 8.11 shows how the two discretizations compare with each other for three different

statistics: the average end-to-end distance r∗ = ⟨∥X(0, t)− X(L, t)∥⟩, the mean-square dis-

placement of the center-of-mass r2COM = ⟨∥X(L/2, t)− X(L/2, 0)∥2⟩, and the average square
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(a)

(c) (d)

(b)

Figure 8.11: Comparing the spectral and blob-link trajectories for relaxation of a straight filament
to its equilibrium fluctuations. We set ℓp/L = 1 and ϵ̂ = 10−2 and simulate until t∗ = 1, as defined
in (8.70), comparing spectral discretizations with N = 12 (blue), N = 24 (red), and N = 36
(yellow) to the blob-link discretization (black). (a and b) The end-to-end distance over time. In
(a), we isolate the dynamic error by normalizing each curve by its average r̄ obtained from MCMC
in Section 8.4.1 (for N = 12 this is r̄ = 0.865±0.001, for N = 24 it is r̄ = 0.862±0.005, for N = 36
it is r̄ = 0.859 ± 0.006, and for the blob-link it is r̄ = 0.851 ± 0.001). In (b), we plot δr∥, which
is the change in end-to-end distance in the parallel direction, for the four different discretizations,
observing a 1/3 power law scaling at long times. (c) The squared-norm of the displacement of the
center of mass, normalized by the theoretical value for a rigid fiber (see text for details). (d) The
squared perpendicular displacement at t∗ = 0.1. The inset shows a single sample, where we observe
some high-frequency behavior in the blob-link results that is smoothed by the spectral method.
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perpendicular displacement ⟨∥X⊥(s, t)∥2⟩ at t∗ = 0.1. We normalize the center-of-mass MSD

by the value at t = t̄ for a rigid fiber, which is 2kBT t̄ trace (N tt), where N tt is the 3× 3 ma-

trix relating forces on a rigid fiber to its translational velocity. The normalized displacement

is denoted r̄2COM.

To separate the error in the dynamics from that of equilibrium statistical mechanics, in

Fig. 8.11(a), we normalize r∗ by the average r̄ obtained from MCMC in Section 8.4.1. With

this normalization, there is little difference between the spectral method with N ≥ 24 and

the blob-link method at later times, and the difference between the spectral method with

N = 12 and the blob-link method is small. Combining this with Fig. 8.11(c), which shows

that the diffusion of the center of mass is the same (within error bars) across the different

discretizations, we can conclude that a small number of spectral nodes can indeed resolve

the dynamics at later times, as desired. This is an important statement because the spectral

method with N = 12 (resp. N = 24) uses a time step that is two (resp. one) orders of

magnitude larger than that of the blob-link chains, as well as a number collocation points

that is an order of magnitude fewer.

To compare our results to theory, in Fig. 8.11(b), we plot the shortening of the end-to-end

distance projected onto the initial tangential direction, δr∥(t) = ⟨L−(X(L, t)− X(0, t))·τ (t =

0)⟩. Because we no longer normalize by the equilibrium end-to-end distance, we see a larger

difference between the spectral and blob-link codes. Focusing on long times, we see that

the data approach a 1/3 power law for t∗ ≳ 0.1, with a faster growth for short times,

matching what is observed in [155, Fig. 5(d)]. This 1/3 exponent is predicted to be universal

independent of the way the initial state is prepared; see the second column in [155, Table I].

At early times, we see a more significant difference between the blob-link and spectral

code, which can be explained by the fast relaxation of high-frequency modes. In Fig. 8.11(d)

we examine the perpendicular displacement along the curve at an early time of t∗ = 0.1. In

the inset, we show a single sample of the (squared) perpendicular displacement, and observe
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(a) (b)

Figure 8.12: Fiber relaxation results when ϵ̂ = 10−3. In this case the blob-link method is too
expensive to simulate, so we show the results in the end-to-end distance for the spectral method
only with N = 12 (blue), N = 24 (red), and N = 36 (yellow). These plots are analogous to Fig.
8.11(a) and (b), and the difference between the two discretizations is similar to the ϵ̂ = 10−2 case,
as desired.

the small-length fluctuations in the blob link code which appear at short times. These

fluctuations, which control the early-time relaxation, are smoothed out by the spectral code,

and therefore treated incorrectly. At late times, their contribution is sufficiently small for

the spectral and blob-link codes to match.

While we cannot obtain statistics for the blob-link code when ϵ̂ = 10−3 because of the

expense in resolving hydrodynamics, we can still repeat our fiber relaxation test using ϵ̂ =

10−3 in the spectral method. Figure 8.12 shows the results of this test in end-to-end distance

(compare to Fig. 8.11(a) and (b)). We see that the error between the three different values

of N is roughly the same across the two aspect ratios, which indicates that the number of

points required for a given accuracy is not sensitive to the fiber aspect ratio. In addition, we

continue to observe the 1/3 universal power law scaling for δr∥ at long times [155]. Without

blob-link data, it is difficult to say this for certain how the error in the spectral code scales

with ϵ̂. Still, the data strongly suggest that we can effectively resolve hydrodynamics of

slender fibers with the same number of points, independent of the fiber aspect ratio.
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8.5.1 Comparing special quadrature to other mobilities

To flush out this claim even further, in this part of the section we consider different options

for the matrix M̃ , which maps force to velocity in fluctuating fibers. We consider four

possibilities:

1. RPY special quadrature as discussed in Section 7.2.1, in which we first compute the

matrix M , then symmetrize MW̃
−1

and truncate its negative eigenvalues.

2. RPY oversampled quadrature on a grid of size Nu, which is the SPD matrix (7.10).

The main part of this computation is the action of the matrix M̃RPY,u, which maps

forces to velocities on the upsampled grid.

3. Direct evaluation of the RPY kernel on the spectral grid, i.e., M̃ = M̃RPY, which

is automatically SPD. This makes the action of the mobility the same as that of the

blob-link method, but with uneven spacing of the grid points. While this calculation

does not formally see the Chebyshev weights if we work on forces directly, it can still

be viewed as Clenshaw-Curtis quadrature on force density, with the conversion given

in (6.14).

4. The local drag approximation to the matrix M , which is a block-diagonal matrix with

3× 3 blocks given by

8πµ
(
M̃L

)
{i,i}

=

(
aS(si) + aCLI(si)

∥∂sX(si)∥
+

2â2

3

aD(si)

∥∂sX(si)∥3
)
I (8.71)

+

(
aS(si) + aCLT(si)

∥∂sX(si)∥
− 2â2

aD(si)

∥∂sX(si)∥3
)
τ {i}τ {i}.

As in step 1, we symmetrize the matrix M̃ = MW̃
−1

and truncate its negative

eigenvalues (the matrix is not automatically symmetric) to obtain the force-velocity

mobility matrix. We emphasize that the local drag matrix here is the actual mobility,

and not a preconditioner or approximation of it (as it was in Section 7.4).
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Figure 8.13: End-to-end distance trajectory comparing special quadrature (SQ) with oversampled
quadrature (OS) with various numbers of oversampling points Nu, and a fixed number of N = 12
collocation points. The left plot shows ϵ̂ = 10−2, for which we can use a small number of oversampled
points. The more slender ϵ̂ = 10−3 at right requires many more oversampled points, but eventually
converges to the special quadrature results.

Our strategy here is to first consider only trajectories that are converged in time, thereby

isolating the difference between spatial discretizations. We will then zero in on potential

temporal convergence problems for the mobilities that appear advantageous at first. The

overall picture that emerges is that the special quadrature and local drag mobilities are

the only ones which can simulate the dynamics with a cost independent of ϵ̂. The special

quadrature mobility converges (in time) at a much larger time step size than the local drag

one, which makes it overall the best mobility for fluctuating fibers.

8.5.1.1 Oversampling converges to special quadrature

We can eliminate the ambiguity between special and oversampled quadrature by showing

that trajectories using oversampled quadrature converge to those of symmetrized special

quadrature as Nu increases. Results for this are shown in Fig. 8.13, where we fix N = 12

and show that the number of oversampled points Nu required for the special quadrature
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Figure 8.14: End-to-end distance trajectory comparing special quadrature (SQ) with direct quadra-
ture (CC) with various numbers of collocation points. The left plot shows ϵ̂ = 10−2, for which we
can use a small number of collocation points. The more slender ϵ̂ = 10−3 at right shows the weak-
nesses of direct quadrature (similar to an under-resolved bead link model).

to match oversampled quadrature depends on ϵ̂. We require roughly 0.4/ϵ̂ points to obtain

equivalence of the two trajectories: thus 40 points are acceptable for ϵ̂ = 10−2, which may

make the special quadrature worthless for this value of ϵ̂. Decreasing to ϵ̂ = 10−3, we need

about 400 points for the trajectory to match special quadrature. Considering that the cost of

the quadrature is constant with respect to ϵ̂, this tell us that, for sufficiently slender fibers,

special quadrature will be advantageous, and going forward we will only compare special

quadrature to direct quadrature and local drag.

8.5.1.2 Special vs. direct quadrature

Let’s now move on to comparing special quadrature to direct quadrature on the spectral grid.

With direct quadrature, the spectral mobility becomes analogous to a blob-link mobility, and

so we would expect fewer collocation points to be acceptable for large ϵ̂. Figure 8.14 confirms

this result; there we see that when ϵ̂ = 10−2, the results for direct quadrature and special

quadrature for N ≥ 24 are all essentially the same. When N = 12, we see that the direct
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quadrature is actually more accurate than special quadrature (relative to the blob-link or

self-refined solutions), though this may be accidental (for this specific example).

As in the previous section, the special quadrature scheme shines only when we drop to

ϵ̂ = 10−3. This time (right panel of Fig. 8.14), we see that special quadrature converges

in space (to within statistical error) for N ≥ 24, while direct quadrature fails to give an

accurate trajectory even for N = 36. This is not surprising; for ϵ̂ = 10−3 we would expect

at least several hundred points (not computationally feasible due to the small required time

step size) would be needed to accurately resolve the hydrodynamics via direct quadrature.

Still, it it reassuring that those trajectories move toward the converged special quadrature

ones.

8.5.1.3 Local drag

So far, we have established that special quadrature is only effective in the slender limit, which

is also the regime where we expect local drag to give a correct answer. So what about the

difference between special quadrature and local drag? This is what we study in this section.

We will compare both local drag and special quadrature to special quadrature with N = 36,

which matches the blob-link calculation that is available to us, and gives a reference answer

for smaller ϵ̂.

Figure 8.15 shows how our local drag theory (2.20) compares with special quadrature for

N = 12, 24, and 36 (using special quadrature with N = 36 as a reference). The key takeaway

is that local drag performs better as ϵ̂ decreases, which is not surprising. When ϵ̂ = 10−2

and N = 12, we see that local drag and special quadrature have roughly the same error

at intermediate times, with local drag being more accurate at short times (t∗ < 0.1) and

special quadrature winning out on long times. For N = 24 and ϵ̂ = 10−2, special quadrature

is a clear winner, as the trajectory for local drag, which is unchanged when we increase to

N = 36, gives faster relaxation than the reference solution. Decreasing to ϵ̂ = 10−3, we see
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Figure 8.15: End-to-end distance trajectory comparing special quadrature (SQ) with the local drag
theory (2.20) with various numbers of collocation points. We use special quadrature with N = 36,
which for ϵ̂ = 10−2 gives the same trajectory as the blob-link code, as a reference result in both
cases. The left plot shows ϵ̂ = 10−2, while the right shows ϵ̂ = 10−3.

that local drag performs better: with N = 12 it gives an error identical to special quadrature

with N = 24. This is likely just a coincidence, since with N = 24 and N = 36 the accuracy

of local drag is clearly inferior to that of special quadrature. Still, it certainly provides a

good approximation for ϵ̂ = 10−3.

From a spatial perspective then, we see that local drag can be just as effective as special

quadrature when ϵ̂ is small. We still have not however, considered the temporal convergence

of local drag, which we show in Fig. 8.16 for ϵ̂ = 10−3. In the left panel, we show how well

behaved the special quadrature is: the data are basically converged when ∆tf = 0.001 for

N = 12 (and we could probably use an even larger ∆t) and ∆tf = 10−4 for N = 24. The

time step sizes for local drag are much smaller; the right panel shows that we need a time

step size of ∆tf = 5 × 10−4 for N = 12 and ∆tf = 2 × 10−5 for N = 24. Thus, while the

special quadrature might be more expensive in space, it is ultimately the most efficient, since

local drag requires smaller time step sizes to achieve convergence.
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Figure 8.16: Studying temporal convergence of special quadrature (left) and local drag (right).
Blue colors show N = 12, while red colors show N = 24. This is for ϵ̂ = 10−3, where local drag is
most effective. Time step sizes are reported in terms of ∆tf = ∆t/τfund, where τfund is defined in
(8.69).

8.6 Nonlocal hydrodynamics

We now perform a set of corresponding tests when there are multiple fibers in a suspension,

all interacting hydrodynamically through the fluid. In this case, the mobility is given by

(7.10), since this ensures a symmetric positive definite M̃ by construction, and we solve the

saddle point system (8.33) using the block diagonal preconditioner (7.49) with M̃L = the

diagonal parts of M̃ ref. Unlike in the deterministic case, here the solution of (8.33) is needed

for fluctuation-dissipation balance (accuracy) as well as stability. Therefore we need to solve

(8.33) to a fixed tolerance (see Section 8.6.1.2), rather than the fixed number of iterations

we used in the deterministic case (Section 7.4.3.3). Because we use M̃ ref in (7.10) to do this,

the mobility does not have a cost independent of ϵ̂. An avenue of future work is therefore to

do what we did in deterministic suspensions: replace the diagonal parts of (7.10) with the

special quadrature matrix to achieve a cost independent of ϵ̂. The difficult part of this is to

keep the mobility M̃ SPD and the computation of M̃
1/2

efficient.
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8.6.1 Equilibrium fluctuations

We first test whether the temporal integrator can successfully sample from the end-to-end

distance distribution of free fibers at equilibrium. For this we initialize 100 fibers with aspect

ratio ϵ̂ = 10−2 and N = 12 collocation tangent vectors in a periodic box with length Ld.

We run the overdamped Langevin dynamics over a time 10τfund, and save the end-to-end

distance after t = τfund. Since ϵ̂ = 10−2, we can obtain accurate solutions with a small

number of oversampling points; in this case we use Nu = 64.

8.6.1.1 Comparing to MCMC

In Fig. 8.17, we plot the observed distributions of end-to-end distance for two different

values of Ld (columns; Ld = 8 corresponds to the limit when the inter-fiber hydrodynamics

makes little difference) and ℓp/L (rows). We observe convergence to the expected equilibrium

distribution. The dimensionless time step required is approximately independent of Ld and

is similar to the case without inter-fiber hydrodynamics. Specifically, for ℓp/L = 10 (resp.

1), we see that ∆tf = 0.01 (0.001) gives convergence, while in Section 8.4 we reported

∆tf = 0.03 (0.003). The differences for dilute suspensions can be attributed to the new

way of estimating the drift term via (8.32), which is required for linear scaling but gives

somewhat poorer accuracy than (8.31).

8.6.1.2 Optimizing GMRES and Ewald tolerance

To generate Fig. 8.17, we used a GMRES and Ewald tolerance of 10−6 in the system (8.33).

This makes the simulations more expensive than necessary, as presumably we can still get

good accuracy in the equilibrium distribution with a larger tolerance. With that in mind,

let us fix ∆tf = 0.01 and ℓp/L = 10, and look at how the results change as a function of the

GMRES tolerance. We will fix the positively split Ewald (and Lanczos) tolerance at 10−3

throughout, as this is the base accuracy we want in deterministic simulations.
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(a) ℓp/L = 10

(b) ℓp/L = 1

Figure 8.17: End-to-end distance distribution with nonlocal hydrodynamics. (a) Top row: ℓp/L =
10; (b) bottom row: ℓp/L = 1. We consider 100 fibers in a domain of size Ld = 8 (left) and Ld = 3
(right). In all cases, we see convergence to the distribution from MCMC, but at a slightly smaller
time step size than ∆t = 0.003ℓp/L, which is what we obtained in Section 8.4. The difference can
be attributed to the different way of estimating the drift term via (8.32).
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Figure 8.18: Experimenting with the GMRES tolerance when ℓp/L = 10 and Ld = 3. The blue
line is the reference result from Fig. 8.17.

Figure 8.18 shows what happens when we experiment with the GMRES tolerance used to

solve (8.33). We compare runs with various values of the tolerance with the reference result

from Fig. 8.17, observing that a tolerance of 10−3 is sufficient to give the same end-to-end

distribution. In this plot, we use Ld = 3, since a larger Ld = 8 gives the same distribution re-

gardless of the GMRES tolerance (it is completely dominated by local hydrodynamics). This

begs the question: is the tolerance a function of the concentration, or is there a maximum

tolerance at which the results don’t change regardless of concentration?

To see if the value of 10−3 for the tolerance is indeed universal, we consider a different

set of parameters: ℓp/L = 1 with Ld = 3 and Ld = 2.4. From Fig. 8.17, we expect that

∆tf = 0.001 will be sufficient to obtain the correct end-to-end distance distribution. Figure

8.19 confirms this, where we have again run with a tolerance of 10−3. Thus the required

tolerance appears to be universal. The number of iterations, however, is not, as for Ld = 3

we typically need 6–7 iterations while for Ld = 2.4 we need 7–8 iterations. Considering that

such a minor change in the domain size produces an extra iteration, it is probably best to fix

the GMRES tolerance and vary the number of iterations to get the same accuracy. This is in

258



Figure 8.19: End-to-end distance distribution (left) and number of required GMRES iterations
(right) for fibers interacting hydrodynamically when ℓp/L = 1. We consider domain sizes of Ld = 3
(blue) and Ld = 2.4 (red). The GMRES tolerance is 10−3, and for both values of Ld we use
∆tf = 0.001 (in accordance with the required value from Fig. 8.17).

contrast to what we did for deterministic dynamics in Chapter 7, where we fixed the number

of iterations. The reason for the difference is that in Chapter 7 we were concerned primarily

with stability, while here our main concern is accuracy (specifically, discrete fluctuation-

dissipation balance to 3 digits).

8.6.2 Out of equilibrium dynamics

We now look at how the convergence of the algorithm is affected by out of equilibrium

dynamics, in particular what happens when we introduce bundling into the system. The

model system we consider is 200 filaments of length L = 1 in a box of size Ld = 2, with all

of the same parameters that we use in Part III (see there for more details on the bundling

dynamics). Here we set the persistence length ℓp = 17 µm to be equal to that of an actin

filament. In this case, the characteristic bundling time, or the peak in the bundle density,

occurs around t = 3 to 4 seconds. The precise definitions of bundling are in Chapter 12;

here it suffices for the reader to know that more bundles means fibers are closer together,
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Figure 8.20: GMRES convergence in bundled systems. We consider a system with bundling time
τc ≈ 3 seconds, and look at how the number of iterations depends on the morphology in the regime
0 ≤ t ≤ τc. Left panel: the number of iterations (averaged over 0.1 second intervals) as a function
of time, with tolerance 10−3. We also plot the bundle density on the right y axis. Right panel:
GMRES convergence to 10−6 every second (see the plot at left for how bundle density changes over
time).

so that the mobility is dominated less and less by intra-fiber hydrodynamics as the bundle

density increases.

8.6.2.1 Number of iterations in bundled systems

To avoid super agglomerated networks, we run the system with nonlocal hydrodynamics and

filament fluctuations until t = 3 seconds. At each time step, we converge GMRES in the

midpoint integrator until a tolerance of 10−3. The number of iterations needed over time

is shown in the left panel of Fig. 8.20, where we observe a moderate increase as the bundle

density increases. Indeed, while the bundle density goes from 1 to 5, the number of iterations

increases by only 3, which is a sign that our algorithm and preconditioner is robust in this

regime. The full convergence to tolerance 10−6 is shown in the right panel of Fig. 8.20, where

we see a moderate slow-down as time (and bundle density) increases.

Finally, the preconditioner can be made sparse by only including a finite number of bands

around the diagonal. However, in solving (8.33), we precompute and store the preconditoner
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and its factorization at the first application. Thus subsequent applications are essentially

free. This means the cost of the algorithm is dominated by applying the nonlocal mobility

M̃NL, and so it is a waste of time to optimize the preconditioner.
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Chapter 9

Other nonlocal interactions: cross

linking and sterics

The purpose of this chapter is to outline how we compute the external forces F ext in the

saddle point system. In our framework, these forces are treated explicitly (so that each solve

is fiber-by-fiber), and so all we need to do is evaluate F ext (X) at every time step. We will

deal with two types of external forcing in this chapter: cross linking (which is a dynamic

process where CLs can bind and unbind) and steric interactions, which are intended to keep

the fibers from crossing.

9.1 Cross linking model

This section deals with how we compute the forces due to cross linking. This is a two step

process: first, when the cross linkers are transient, we must update the list of connections

between filaments. Then, given the connectivity list, we can compute forces.
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Fiber turnover
Single end (un)binding Second end (un)binding

ℓ ± 𝑘𝑇/𝐾'

Figure 9.1: Our model of dynamic cross-linking with fiber turnover. We coarse-grain the dynamics
of individual CLs into a rate for each end to bind to a fiber. The first end (purple) can bind to
one fiber at any binding site. Once bound, we account for thermal fluctuations of the CL length
by allowing the second end (red) to bind to any other fiber within a distance ℓ± δℓ of the first end,
where ℓ is the CL rest length. To model actin turnover, we allow each fiber to disassemble with
rate 1/τf and for a new (straight) fiber to assemble in a random place (nascent fiber is shown in
green) at the same time.

9.1.1 Markov chain for transient linkers

To model transient cross linking, we assume that the density of cross-links is sufficiently

high that CLs do not get locally depleted by binding, and that the links diffuse rapidly.

By “rapid” diffusion, we mean that the Brownian motion of the links is fast relative to the

residence time of a single link, which is on the order of one second (see Table 11.1). To

justify this, we consider the translational diffusion of a rod of length ℓ = 50 nm and radius

a = 4 nm. The translational diffusion coefficient of the rigid rod can be approximated by

Broersma’s relations as [157]

Dt =
kT

3πµℓ

(
ζ − 1

2

(
γ∥ + γ⊥

))
(9.1)

where ζ = ln

(
ℓ

a

)
, γ∥ = 1.27− 7.4

(
ζ−1 − 0.34

)2
, γ⊥ = 0.19− 4.2

(
ζ−1 − 0.39

)2

For our parameters in Table 11.1, we obtain ζ = 2.53, γ∥ = 1.25, γ⊥ = 0.19, and Dt = 0.15

µm2/s. This implies a center of mass displacement of ⟨r2⟩ = 6Dtt ≈ 0.9t. Thus the time for

a CL to travel a mesh size of r = 0.2 µm is about 0.04 seconds, which is much faster than the

one second lifetime of each link. These assumptions considerably simplify our simulations,
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as we do not have to keep track of explicit CLs, but only the number of links bound to each

fiber, which can be tuned by setting the ratio of the binding and unbinding rates. A more

theoretical study of this limit of infinitely large diffusion (perfect mixing) has recently been

performed in [158], with limiting equations consistent with the model we summarize next.

There are four reactions in the model (parameters are summarized in Table 11.1):

1. The attachment of one end of a free CL to a fiber, which occurs with rate kon (units

1/(length×time)). Here kon accounts for the rate of diffusion of the CL until one end

gets sufficiently close to a fiber, and then the reaction for the CL to bind to the site.

2. The detachment of a singly-bound CL end to become a free-floating CL, which occurs

with rate koff (1/time). This is the reverse of reaction 1.

3. The attachment of the second end of a singly-bound CL to another (distinct) fiber,

which occurs with rate kon,s (units 1/(length×time)). This necessarily follows after

reaction 1. The rate kon,s accounts for the diffusion of the second end to find a fiber

within a sufficient distance, and then the binding reaction for the end to latch on to the

fiber. We model the thermal fluctuations in the CL length by allowing a singly-bound

CL to bind its free end to another attachment site on a different fiber that is within a

distance interval

(ℓ− δl, ℓ+ δl) , where δℓ =

√
kT

Kc

. (9.2)

Note that this relationship (using a constant kon,s) does not guarantee that the links

are passive. When we consider Brownian fluctuations, it will be important to maintain

detailed balance in the link dynamics, so that they neither consume nor create energy.

The modifications we make in this case are in Section 9.1.2.

4. The detachment of a single end of the doubly-bound CL, so that it becomes singly-

bound, which occurs with rate koff,s (1/time). This is the reverse of reaction 3.
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A schematic of the four reactions is shown in Fig. 9.1.

To simulate these reactions stochastically, we employ a variant of the Stochastic simula-

tion/ Gillespie algorithm [159, 160]. To advance the system by a time step ∆t, we calculate

the rate of each reaction and use the rate to sample an exponentially-distributed time for

each reaction to occur. We choose the minimum of these times, advance the system to that

time, and then recalculate the rates for the reactions that were affected by the previous step.

We organize the event queue efficiently using a heap data structure [161], so that we can

compute the next reaction in O(log n) time.

We break each filament into Ns possible uniformly-spaced binding sites, where each of

the sites represents a binding region of size L/(Ns − 1) = ∆su. To properly resolve the

possible connections between fibers, we require ∆s ≲ δℓ. We then compute the rates of each

reaction in the following way:

1. Single end binding: the rate of a single end binding to one of the Ns attachment

points on one of the F fibers is kon∆su. We implement this as a single event with

rate NsFkon∆su, where the specific site is chosen uniformly at random once the event

is selected. Multiple CLs are allowed to bind to a site, since each site represents a

fiber segment of length ∆su that is typically longer than the minimal possible distance

between two CLs.

2. Single end unbinding: we keep track of the number of bound ends on each of the NsF

sites. If a site has b ends bound to it, we schedule a single end unbinding event from

that site with rate koffb. We do this for each site separately, so that this reaction

contributes NsF events to the event queue.

3. Second end binding: we first construct a neighbor list of all possible pairs of sites (i, j)

that are on distinct fibers and separated by a distance ℓ+ δℓ or less, using a linked list

cell data structure [162]. If site i has b free ends bound to it, we schedule a binding
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event for that pair of sites with rate bkon,s∆su. Notice that this naturally implies a zero

binding rate if there are no free ends bound to site i. We treat the (j, i) connection

separate from the (i, j) one for simplicity at the cost of increasing the number of events

in the queue.

4. Second end unbinding: if a link exists between sites i and j, it can unbind from one

of the sites with rate koff,s. Letting β be the number of links in the system, the total

rate for which bound links unbind from one end is 2βkoff,s. We therefore schedule a

single event with rate 2βkoff,s, and, once it is chosen, select the link and end to unbind

randomly and uniformly.

9.1.2 Keeping the CL dynamics in detailed balance

When we account for thermal translation and rotation of the fibers, we also want to be sure

that the binding and unbinding of the links is consistent with detailed balance, which is

not the case for the constant rates we introduced in the previous section. Let C denote a

configuration of C links (list of fiber pair connections), and x denote the configuration of

fibers (binding site positions). The desired Gibbs-Boltzmann equilibrium distribution is

Peq (C,x) = ζ (C)
∏

k∈C

exp

(
−Kc

2

(ℓk − ℓ)2

kBT

)
, (9.3)

where ℓk is the length of link k, and ζ (C) determines the probability to observe the cross-

linking configuration C. Now consider a transition to/from a state C ′ with one added link

C ′, which has length ℓ′k. Then at equilibrium the transition between the two states must

obey

Peq (C,x) kon,s (ℓ
′
k) = Peq (C

′,x) koff,s (ℓ
′
k) . (9.4)
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Substituting Peq from (9.3) into (9.4), we obtain the constraint of detailed balance

kon,s (ℓ
′
k)

koff,s (ℓ′k)
=
ζ(C ′)

ζ(C)
exp

(
−Kc

2

(ℓ′k − ℓc)
2

kBT

)
. (9.5)

To satisfy (9.6) for every choice of C and C ′ with binding and unbinding rates that only

depend on spring length and not C and C ′, we must have [158, Sec. II(G).1]

kon,s (ℓ
′
k)

koff,s (ℓ′k)
=
k0on,s
k0off,s

exp

(
−Kc

2

(ℓ′k − ℓc)
2

kBT

)
, (9.6)

where k0on,s and k
0
off,s are the transition rates for a link at rest length.

To satisfy (9.6), we maintain a constant koff,s (ℓ
′
k) = k0off,s and set

kon,s (ℓ
′
k) = k0on,s exp

(
−Kc

2

(ℓ′k − ℓc)
2

kBT

)
. (9.7)

Other choices are possible; for example, the rate of unbinding can depend on the stretch [163,

164]. To efficiently search for possible binding pairs, we approximate the set of all binding

combinations by setting the maximum link stretch in (9.2) to be two standard deviations of

the Gaussian (9.7), i.e., δℓ = 2
√
kBT/Kc. This change effectively increases the amount a CL

can stretch when we move from “non-Brownian” dynamics
(
δℓ =

√
kBT/Kc

)
to “Brownian”

dynamics
(
δℓ = 2

√
kBT/Kc

)
. This leads to misleading results when comparing Brownian

and non-Brownian filaments (see Section 12.2 for more discussion).

9.1.3 Computing forces from fiber connectivity

LettingX denote the set of upsampled uniform points (binding sites in this case), the stochas-

tic algorithm gives pairs of two uniform points X
(i)

{p} and X
(j)

{q} between which a CL force is

exerted. We offer two ways of computing a force on the fiber centerline from this connectivity

list. The first way is energy-based, but dangerous because it can lead to nonsmooth forces
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on the Chebyshev grid. The second way is more computationally expensive, but leads to

smoother forces.

In both cases, our model assumes that the CL acts as a linear spring between binding

sites on two distinct fibers, and is an approximation to the true behavior of biological cross

linkers; as shown in [165], the stress-strain relationship for α-actinin, which is the model

CL we consider here, is nonlinear and exhibits hysteresis for loading and unloading. We

follow a number of other modeling studies [166, 167] in approximating α-actinin as a linear

spring, although we do not include an angular stiffness, since recent experimental results

[168] indicate that the dynamics of the α-actinin-actin bond are insensitive to rotation.

9.1.3.1 Energy-based approach

When we resample the fiber X(s) at Nu uniform points to form the vectorX of CL binding

site locations, the Chebyshev points are related by the simple relationship

X = R(u)X ↔X{p} = R
(u)
{p,:}X, (9.8)

where R(u) is the resampling matrix and R
(u)
{p,:} is its pth row.

Denoting the uniform points connected by the CL with X
(i)

{p} and X
(j)

{q}, we have the

displacement

r =X
(i)

{p} −X
(j)

{q} = R
(u)
{p,:}X

(i) −R
(u)
{q,:}X

(j) (9.9)

with r = ∥r∥. Then, let us postulate the CL energy

E(r) = Kc

2
(r − ℓ)2 (9.10)

∂E
∂r

= Kc (r − ℓ) , (9.11)

between the two uniform points, whereKc is the spring constant for the CL (units force/length)
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and ℓ is the rest length. The corresponding force on fibers i and j can then be obtained by

differentiating the energy

F
(i)
{a} = −∂E

∂r

∂r

∂X
(i)
{a}

F
(j)
{b} = −∂E

∂r

∂r

∂X
(j)
{b}

F
(i)
{a} = −∂E

∂r
r̂R

(u)
{p,a} F

(j)
{b} =

∂E
∂r

r̂R
(u)
{q,b} (9.12)

In the special case when the two uniform points are Chebyshev points, we get R
(u)
{p,a} = δap

and R
(u)
{q,b} = δqb, and the resulting force is a delta function between the two points on the

Chebyshev grid, which demonstrates that it can be nonsmooth in nature. By superposition,

an equivalent (though slower) formulation is to compute all forces on the uniform points,

then multiply by the matrix RT to obtain the forces on the Chebyshev points.

9.1.3.2 Smooth forces

It may be desirable to preserve the smoothness of the filaments in time and therefore the

spectral accuracy of our numerical method. In this case, another option is to define the

cross-linking force density between two fibers X(i) and X(j), then convert to force via (6.14).

Suppose that a CL connects two fibers by attaching to arclength coordinate s∗i on fiber i and

s∗j on fiber j. Then a smooth force density on fiber i due to the CL is

f
(i)
ext(s) = −Kc


1− ℓc∥∥∥X(i)

{p} −X
(j)

{q}

∥∥∥


 δh(s− s∗i )

∫ L

0

(
X(i) (s)−X(j)(s′)

)
δh(s

′ − s∗j)ds
′

(9.13)

where s∗i and s∗j are the anchor points on fibers i and j, and δh is a Gaussian density with

standard deviation σ. For the force to be smooth, the Gaussian width σ must be a function

of N . In particular, for N = 16, the width σ/L = 0.1 is sufficient for smoothness. In the

limit σ → 0, the Gaussian density becomes a Dirac delta function, and the force density

(9.13) becomes the expected expression for a linear spring connecting the points X
(i)

{p} and
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X
(j)

{q}.

9.1.4 Fiber turnover

We account for the turnover of actin filaments by removing a filament (and all of its attached

links) from the system and rebirthing a new, straight filament with a random location and

orientation elsewhere in the system (see schematic in Fig. 9.1). Our reasoning for this is two-

fold: first, it is simple to implement, and second, our simplifying assumptions are supported

by experimental data. Experiments have shown that pointed-end depolymerization from one

end of an actin filament is too slow to explain the observed rates of filament turnover in vivo

[169], and that depolymerization actually occurs in bursts as filaments abruptly sever into

smaller pieces [170]. In this sense, our model of depolymerization as an instantaneous event

is supported by the data. For polymerization, the process is normally linear, with monomers

being added at the plus end until it is capped. It has been shown experimentally [171],

however, that the combined time of growth, capping, and disassembly is still significantly

smaller than the time in which the filament is at a finite length, so we assume the former

to be instantaneous relative to the latter. We refer to [15, Sec. 2.5] for a mathematical

treatment of linear polymerization.

Having chosen this model, fiber turnover can be added as another reaction in our stochas-

tic simulation algorithm. Defining the mean turnover time of each fiber as τf , we add a fiber

turnover reaction to our reaction list with rate F/τf . If this reaction is chosen, we select the

fiber to turnover randomly and uniformly. We emphasize that our time steps are at most

10−3 seconds while the turnover times are of the order seconds, so we almost always see zero

or one fiber turnover events per time step.
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9.1.5 Temporal integration

We have three different events to process at each time step: fiber turnover, link turnover,

and fiber movement. We will treat them sequentially using a first order Lie splitting scheme

[172]. For each time step n of duration ∂t, from time n∆t to (n+ 1)∆t, we

1. Turnover filaments to update configuration Xn → Xn,∗.

2. Process binding/unbinding events to evolve Cn → Cn+1, where C represents the state

of the link Markov chain.

3. Evolve the fiber dynamics Xn → Xn+1 using the external forcing F ext

(
Xn;Cn+1

)

9.2 Steric interactions

In addition to cross linking forces, when appropriate the external force F ext in the previous

section can also include steric interactions, designed to keep the fibers from contacting each

other. In this section, we present two models of steric interactions: one based on resampling

the fiber to ∼ 1/ϵ uniform points to find nearly touching regions, and another based on a

combination of straight segment approximations and nonlinear optimization. The former

method is simpler, but performs poorly for small ϵ, while the latter method is complex, but

shines when ϵ is small. Both methods give the same steric forces if sufficiently refined.

The steric interaction energy between fibers i and j can be written as

E (ij) =

∫ L

0

∫ L

0

Ê
(
r
(
s(i), s(j)

))
ds(i) ds(j), (9.14)

r
(
s(i), s(j)

)
=
∥∥X(i)

(
s(i)
)
− X(j)

(
s(j)
)∥∥ ,

where Ê is the potential density function (units energy/area), which we assume is compactly

supported on 0 ≤ r ≤ rmax. For the potential density function, we use an error function so
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that the force will ultimately be a Gaussian with standard deviation δ

Ê(r) = E0
a2

erf
(
r/(δ

√
2)
)

(9.15)

dÊ
dr

=
E0
a2δ

√
2

π
exp

(
−r2/

(
2δ2
))

In this potential density, we have two free parameters: δ, which is the scale on which the

force decays, and E0, which controls the magnitude of the forces (and therefore the temporal

stiffness) has units of energy. We set E0 = 4kBT [173], which leaves δ as the parameter that

controls the decay. If we truncate the Gaussian at four standard deviations, the truncation

distance rmax = 4δ. We set δ = a to make the steric repulsion short ranged.

To determine the forces, we will compute the double integral (9.14) via upsampling the

position to a new Chebyshev grid. If the Chebyshev points used to discretize X(s) are given

by X, then the upsampled points will be denoted by X(u) = EX. The double integral can

then be evaluated and differentiated via

E =
∑

k

∑

j

Ê
(∥∥∥X(u)

{k} −X
(u)
{j}

∥∥∥
)
wkwj (9.16)

=
∑

k

∑

j

Ê
(∥∥EkpX{p} −EjqX{q}

∥∥)wkwj

F
(i)
{a} = − ∂E

∂X
(i)
{a}

= −
∑

k

∑

j

∂Ê
∂r

(rkj) r̂kjEkawkwj. (9.17)

The last equation gives the force at Chebyshev node a on fiber i, and is a function of the

integration weights wk and wj of points k and j on the upsampled grid.

In our algorithm, we will always use (9.17) to compute forces. The freedom we have is

how to choose the oversampled points X(u) (and therefore the matrix entry Eka in (9.17)).

We present two possibilities for doing this: global upsampling (guaranteed to work, but

inefficient in the limit ϵ → 0), as well as a second algorithm based on selective upsampling
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for pieces of the fibers that are nearly in contact. This second algorithm achieves our goal

of a cost independent of ϵ.

9.2.1 Global uniform point resampling

Let us suppose that we resample the fiber X(s) at Nu uniform points to form the vec-

tor X. We will typically use Nu = 1/ϵ = 1/δ, but more upsampling might be neces-

sary to achieve higher accuracy. Thus the points we choose are at arclength coordinates

s = 0,∆su, . . . , L, where ∆su = L/(Nu − 1) is the spacing. The corresponding weights are

w = ∆su/2,∆su, . . .∆su,∆su/2, so that the first and last point have a weight of 1/2, in

accordance with the trapezoid rule. Then a simple algorithm to evaluate (9.17) is as follows:

1. Resample every fiber at Nu points.

2. Perform a (linear-cost) neighbor search to determine pairs of points for which the

potential function ∂Ê/∂r is nonzero to within a certain tolerance, i.e., find pairs of

points a distance rmax or less apart.

3. For each pair of points with
∥∥∥X(u)

{k} −X
(u)
{j}

∥∥∥ < rmax (determined in step 2), compute the

corresponding term in the sum (9.17) and add it to obtain the forces on the Chebyshev

nodes.

This is obviously an extremely simple algorithm, but it can become costly as the fibers get

more slender, since resolving all of the potential contacts requires a large number uniform

points (and the quadratures are only second-order accurate, so there could be accuracy

limitations as well). In the next section, we aim for an algorithm which is independent of ϵ.

9.2.2 Segment-based algorithm

The following algorithm theoretically achieves a cost that is linear in the number of fibers

(at constant density) and independent of δ ∼ a. It is based on dividing the fiber into Nseg
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Figure 9.2: Schematic of segment-based steric interaction algorithm. (a) We divide the fiber into
pieces and use the midpoint of each piece (black circles) to identify possible close segments. (b) We
then approximate each piece using a straight segment (dashed lines), find the minimum distance
between the two segments, and use that as an initial guess for Newton’s method. (c) Newton’s
method finds the local minimizer of the distance on the two fibers, around which we draw quadrature
intervals (thick lines).
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(curved) fiber pieces of length Lseg, then approximating those pieces as straight segments for

the purposes of a cheap distance estimation. If the segments are close enough, we perform a

nonlinear Newton solve to obtain the closest points on the corresponding fibers. The number

of fiber pieces in this algorithm is chosen to minimize computational cost, and should be

independent of ϵ. A schematic of the algorithm is shown in Fig. 9.2, and a more detailed

explanation of the steps is as follows.

1. We first sample each fiber at Nseg points, corresponding to the midpoints of the fiber

pieces (circles in Fig. 9.2(a)). Then, we perform a neighbor search over all the midpoints

using the cutoff distance rcut = Lseg + rmax. This gives a list of potentially interacting

segments.

2. For each pair of fiber pieces, we approximate curved fiber pieces as straight segments

(dashed lines in Fig. 9.2(b)) and solve a quadratic equation to determine the closest

point of interaction between the straight segments. Let us denote this distance d
(ij)
segs,

with the corresponding closest points on the fibers given by s
(i)
seg and s

(j)
seg.

3. We next determine if d
(ij)
segs < rmax +∆h(i) +∆h(j), where ∆h(i) represents the distance

the fiber piece X(i)(s) curves from the straight segment we use to approximate it (see

Section 9.2.2.1). If dsegs ≥ rmax + ∆h(i) + ∆h(j), then exit, as the corresponding fiber

pieces could never be close enough to interact.

4. We now proceed to the case when the fiber pieces could be close enough to interact.

In this case, we solve the minimization problem

(
s(i)∗ , s

(j)
∗
)
= argmin

0 ≤ s(i) ≤ L

0 ≤ s(j) ≤ L

∥∥X(i)
(
s(i)
)
− X(j)

(
s(j)
)∥∥2 , (9.18)

with Newton’s method, with initial guess s(i) = s
(i)
seg and s(j) = s

(j)
seg. This is technically
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a constrained calculation, so we need to give a few details about how we actually

calculate (9.18). Our approach is to first try to find a point where the gradient is zero




2X(i)
(
s(i)
)
· ∂sX(i)

(
s(i)
)
− 2∂sX(i)

(
s(i)
)
· X(j)

(
s(j)
)

2X(j)
(
s(j)
)
· ∂sX(j)

(
s(j)
)
− 2∂sX(j)

(
s(j)
)
· X(i)

(
s(i)
)


 = 0 (9.19)

by running Newton’s method with initial guess s(i) = s
(i)
seg and s(j) = s

(j)
seg. If this

converges to a tolerance 10−3 in 10 or less iterations, we return the interior points s
(i)
∗

and s
(j)
∗ (assuming the point passes the second derivative test for a local minimum).

Otherwise (if Newton’s method does not converge or if one of the minimizers is outside

of [0, L]), we fix s
(i)
∗ = 0 and perform a Newton solve on the second term in (9.19). If

this converges to a point 0 ≤ s
(j)
∗ ≤ L, we add this point to a list of potential minima

(if it passes the second derivative test). Changing the fixed point to s
(i)
∗ = L, then

switching the roles of fibers i and j gives a total of four possible pairs. This list is

then augmented with four additional combinations of the distances between the fiber

endpoints, making for a total of eight possible pairs of points. We return the minimum

of the eight distances, and the corresponding points s
(i)
∗ and s

(j)
∗ .

5. We identify d∗ = X(i)
∗ − X(j)

∗ , where the notation X(i)
∗ means X(i)

(
s
(i)
∗

)
. If the min-

imum distance ∥d∗∥ is less than rmax, we identify the domains on the fibers over

which they could be interacting within distance rmax. We do this by approximat-

ing the fibers via a quadratic interpolant, X(i)(s) ≈ X(i)
(
s
(i)
∗

)
+ ∂sX(i)

(
s
(i)
∗

)
∆s(i) +

∂2sX(i)
(
s
(i)
∗

) (
∆s(i)

)2
/2, so that the distance between the fibers is roughly (dropping
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terms of order ∆s3 or larger),

∆d2
(
s(i), s(j)

)
≈ a

(
∆s(i)

)2
++b

(
∆s(j)

)2
+ 2c∆s(i) + 2d∆s(j) + 2e∆s(i)∆s(j) + f

a =
(
∂sX(i)

∗ · ∂sX(i)
∗
)
+ d∗ · ∂2sX(i)

∗ , b =
(
∂sX(j)

∗ · ∂sX(j)
∗
)
− d∗ · ∂2sX(j)

∗ (9.20)

c = d∗ · ∂sX(i)
∗ , d = −d∗ · ∂sX(j)

∗ , e = −∂sX(i)
∗ · ∂sX(j)

∗ , f = d∗ · d∗ − r2max < 0.

The solution of ∆d2 = 0 for ∆s(i) and ∆s(j) is an ellipse. The curves that bound the

ellipse are given by

∆s
(j)
±

(
∆s(i)

)
=

1

2b

(
−2d− 2e∆s(i) ±

√(
2d+ 2e∆s(i)

)2 − 4
(
a
(
∆s(i)

)2
+ 2c∆s(i) + f

)
b

)

∆s
(i)
±

(
∆s(j)

)
=

1

2a

(
−2c− 2e∆s(j) ±

√(
2c+ 2e∆s(j)

)2 − 4
(
b
(
∆s(j)

)2
+ 2d∆s(j) + f

)
a

)

We are interested in the bounding box that we can draw around the ellipse in
(
∆s(i),∆s(j)

)
space. These points are where the discriminants are zero, and are given

by

(
2d+ 2e∆s(i)

)2 − 4
(
a
(
∆s(i)

)2
+ 2c∆s(i) + f

)
b = 0

∆s
(i)
± =

8cb− 8de±
√
(8de− 8cb)2 − 4(4e2 − 4ab)(4d2 − 4bf)

8e2 − 8ab
(9.21)

(
2c+ 2e∆s(j)

)2 − 4
(
b
(
∆s(j)

)2
+ 2d∆s(j) + f

)
a = 0

∆s
(j)
± =

8ad− 8ce±
√
(8ce− 8ad)2 − 4(4e2 − 4ab)(4c2 − 4af)

8e2 − 8ab

We then set ∆s(i) = max
(
|∆s(i)+ |, |∆s(i)− |

)
, and likewise for ∆s(j), then form an interval

S(i) =
(
max

(
0, s

(i)
∗ −∆s(i)

)
,min

(
L, s

(i)
∗ +∆s(i)

))
, and likewise for S(j). The pieces

of the fiber X(i)
(
S(i)
)
and X(j)

(
S(j)
)
could interact sterically (see Fig. 9.2(c)).

277



6. Because there are multiple segments on each fiber, it is possible that the interval

associated with a particular minimum might overlap with another interval for the

same fiber pair. Because of that, we then assemble a list of fiber pairs i and j and

intervals S(i) and S(j) over which we do the integral (9.17) by taking a union of all

intervals obtained from step 5.

7. Finally, we put a grid of Gauss-Legendre points over each interval. Letting Lint be the

length of an interval, the number of points we use is

NGL =

⌊
Nδ
Lint

δ

⌋
+ 1, (9.22)

where δ is the standard deviation of the Gaussian potential (9.15) and Nδ is a constant

which gives the number of Gauss-Legendre points we use per standard deviation. We

then apply the formula (9.17) over the two Gauss-Legendre grids. To implement this

step efficiently, we precompute a maximum number of Gauss-Legendre points by setting

Lint = Lseg in (9.22). We then pretabulate all possible points and weights on [−1, 1]

for NGL = 1, . . . N
(max)
GL . Then, for a given Lint, we compute NGL using (9.22), and look

up the points and weights in the table, scaling appropriately by Lint.

To make the cost of the algorithm formally independent of ϵ, the neighbor search in

step 1 must be on a number of segments that is independent of ϵ. The cost of step 2 is

then independent of ϵ because we are minimizing segment distances. Steps 3–5 are the most

difficult, but have cost independent of ϵ because we use nonlinear solves to obtain the closest

points. And because rmax ∼ a, the grid in steps 5–7 will have a thickness that scales with ϵ,

so the cost of the quadrature in step 7 is independent of ϵ.

Ultimately, the efficiency of the algorithm (and its favorability over the one presented

in Section 9.2.1) comes down to the expense of the neighbor search vs. root finding and

quadrature. If the root finding is expensive, then it makes sense to just use 1/ϵ fiber pieces
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(which become spheres), and then the algorithm just becomes equivalent to Section 9.2.1.

If the root finding and quadrature are cheaper, then we can use less points in the neighbor

search and this segment-based algorithm might be more efficient than the uniform-point

algorithm.

9.2.2.1 Errors from straight segments

One difficult part of the segment-based algorithm is step 3, where we need to estimate the

curvature of the fibers and use Newton’s method to obtain the closest points on the two

segments. This step is actually strictly necessary to preserve independence from ϵ. If we use

segments (dashed lines in Fig. 9.2(b)), we will have some error in estimating the distance

between curved fiber pieces. Since rmax ∼ a, this error will matter more when ϵ is smaller, and

so there will be more erroneous pairs of fiber pieces as ϵ decreases (assuming the curvature

of the fibers does not change with ϵ). Thus we need to eliminate errors by performing the

nonlinear optimization (9.18).

This section deals with how we estimate the curvature of the fiber segments relative

to their straight backbones. Figure 9.2(b) shows what we mean by this: the pieces of the

fibers X(s) that we are concerned with are shown as solid lines, while the straight segment

approximations are shown as dotted lines. We define a distance ∆h(s) that is simply the

distance between the straight segment and the curved fiber. Our goal is to get an estimate

for the maximum ∆h along the segment. We expect this distance to depend on the number

of segments we put in each persistence length, which is the ratio ℓp/Lseg.

There are two possible ways to do this. First, we can pretabulate, for each ℓp/Lseg, the

expected deviation from straightness, and use that as ∆h. This is a good idea for equilibrium

simulations, but in reality other external forces could bend the fibers, so we should really do

something with the actual fiber shape. The simplest thing we can do is sample the fiber at

the segment midpoint, and then use this to estimate the deviation from straight. For fibers
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Figure 9.3: Error in estimating ∆h using its value at the midpoint of the segment. When there are
at least 2 panels per persistence length the error is typically 5% of the segment length or less.
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sampled from the equilibrium distribution, Fig. 9.3 shows that we can use segments of size

ℓp and still make an error of no more than 10% in doing this. Therefore, we just sample the

segment at the midpoint, compute ∆hmp (at the fiber midpoint), and set ∆h = ∆hmp in

step 3.

9.2.2.2 Examples of failure

The uniform point implementation and segment-based implementation should identify the

same intervals on pairs of fibers, and consequently evaluate the same integrals. Thus, as the

number of uniform points gets larger and Nδ in (9.22) gets larger, we should converge to the

same forces on the Chebyshev points. While we cannot guarantee a certain accuracy in our

segment-based algorithm, we can set a goal for the segment-based algorithm to give the same

accuracy as uniform points spaced 1/ϵ apart for “most” configurations.

To test this assumption, we consider configurations generated from simulations of fiber

bundling with steric interactions (Section 12.6), in particular the bottom row of Fig. 12.13.

For each configuration, we compute steric forces using 8/ϵ uniform points (to obtain a ref-

erence force), then look at the errors with various Nδ and numbers of segments. The L∞

errors in the steric forces are shown in Fig. 9.4.

Figure 9.4 shows that using 1/ϵ uniform points gives 1–2 digits of accuracy in the forces.

Typically, using Nδ = 1 for the Gauss-Legendre intervals gives the same accuracy as 1/ϵ

uniform points, independent of how many segments we use. This is expected because the

average point spacing (ϵL = a = δ) is the same in both cases. Increasing to Nδ = 2 gives an

extra digit of accuracy, but at the cost of more expensive quadratures. There are, however,

two cases where we see large errors in the segment-based implementation, which are indicated

by arrows in Fig. 9.4. At t ≈ 6 (black arrow), we have a case where the quadrature errors

in the segment-based implementation are quite large (since the error is independent of the

number of segments and reduced as we increase Nδ), while at t ≈ 7 we have a case where
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Figure 9.4: L∞ errors in the steric forces, computed using the segment-based algorithm (colored
lines) and the uniform point algorithm with 1/ϵ points (black lines). In all cases, the reference
solution uses 8/ϵ uniform points. For the segments, we consider 10 (blue) and 20 segments (red),
and the dotted lines show Nδ = 1 in (9.22), while the solid lines show Nδ = 2. There are two cases
with high errors (indicated by the arrows).
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Figure 9.5: Analyzing the “problem case” where 10 segments are insufficient to give the correct
steric force. The blue and red lines show the fiber backbones. Circles show local minima obtained
from Newton solves, and the thicker lines show the corresponding intervals of interaction. In the
left panel, we show the interval from uniform points (spheres) using thicker lines of the same color.

using 10 segments causes us to miss some contacts, and the error using 10 segments is much

larger than when we use 20.

We first analyze the case when 10 segments are insufficient to give the correct force (red

arrow in Fig. 9.4. Figure 9.5 shows the pair of fibers that causes the problem here. Over a

small region, the fibers are nearly parallel and curve together. Because each fiber has its own

distinct curvature, there are multiple local minima, and so we need a variety of initial guesses

in the Newton solve to obtain the full interval where the fibers interact. For this reason,

using 10 segments causes some of the interval to be missed (in particular, the top part of the

interval). Using 20 segments gives more initial guesses for Newton, and consequently allows
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Figure 9.6: Analyzing the “problem case” where Nδ = 1 is insufficient. In this case, we have fibers
which overlap at a 90 degree angle. This means the integrand is sharply peaked and requires more
Gauss-Legendre points to resolve. Here the regions where the integrand is nonzero are shown using
the thick lines.

us to find the entire interval of interaction. Note that the requirement for more segments

here happens because of the fiber configuration, and not because of the fiber slenderness.

The last case we deal with is where the quadrature errors are large. This is the case at

t ≈ 6 (black arrow) in Fig. 9.4, where we see that the error is a strong function of Nδ and

independent of the number of segments. The specific fibers that are causing the problem

are isolated in Fig. 9.6, where the regions of overlap (r ≤ rmax) are shown using thick lines.

We see that the fibers intersect each other at a 90 degree angle (distance between the lines

< 10−3 for both intersections), which means that the integrand is sharply peaked and decays

rapidly. This is what causes the inaccuracies in the quadrature, and why we need larger Nδ

to get a more accurate result.
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Chapter 10

Conclusions

This part of the dissertation developed numerical methods to discretize the equations we

derived in the previous part. Based on its length, the reader would be correct in concluding

that our contributions in this area surpass those in the theoretical and biological parts. These

contributions can be centered around one central idea: using spectral methods to reduce the

number of degrees of freedom required in simulations.

For deterministic suspensions of filaments (Chapters 6 and 7), spectral methods reduce

the number of points needed to obtain a given accuracy in the filament trajectories. While

spectral methods have previously been used with SBT to model deterministic cytoskeletal

filaments [15], we made a number of advances in the deterministic context that reduce the

overall cost of simulations. For example, we formulated the inextensibility constraint on a

discrete set of tangent vectors τ , which evolve via rotations on the unit sphere. We introduced

constraint forces Λ and closed the system by requiring that the constraint forces perform

no work. This formulation allowed us to preserve inextensibility discretely without penalty

parameters, while at the same time derive a closed form evolution equation for the nodal

points X. The latter was vital when we formulated the overdamped Langevin equation for

X in Chapter 8.

Using the formulation in Chapter 2, we defined the hydrodynamic mobility operators
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for translation-translation, translation-rotation, rotation-translation, and rotation-rotation

coupling in terms of integrals of the corresponding Rotne-Prager-Yamakawa (RPY) kernels,

then evaluated these integrals numerically using the “slender-body” quadrature schemes

presented in Section 6.2. All of these schemes follow the same pattern: separate the integral

into the part on R > 2â and R ≤ 2â, do the first integral via singularity subtraction (adding

and subtracting the leading order asymptotic representation, which comes from Chapter

2), and the second via direct Gauss-Legendre quadrature (which is possible by resampling

the global interpolant of the fiber centerline X(s) at the Gauss-Legendre points). For the

trans-trans mobility, we showed that our quadrature schemes remove the spurious negative

eigenvalues that result when the trans-trans integral is evaluated asymptotically as in (2.24).

The only remaining uncontrolled approximation in our mobility evaluation is to use local

drag, and not the full RPY integral, for the rot-rot mobility. We did this because the O(ϵ2)

accuracy of this approximation was sufficient for our purposes, and because it makes the

calculation of the rot-rot mobility M rr trivial. Nevertheless, we also developed a slender

body quadrature for the rot-rot mobility that we compared to the asymptotic one in Fig.

6.7.

Our new quadrature schemes allowed us to take a detailed look into how the force and

torque from twisting affect the overall dynamics of slender filaments. The most interesting

example in this regard was a clamped spinning filament, which requires finite twist elasticity

to drive the filament into an unstable trajectory for spinning frequencies ω > ωc. We showed

that our numerical method reproduces exactly the semi-numerical prediction of [99] for ωc

when using ellipsoidally-tapered filaments with local drag, and that the shape of the filament

and the addition of nonlocal trans-trans hydrodynamics modify the critical frequency by at

most 5% [54]. We showed that rot-trans coupling is more significant, lowering the frequency

by another 15% to about 80% of the value predicted for ellipsoidally-tapered local drag,

which explains about half of the deviation observed experimentally [102]. Above the critical
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frequency ωc, the fiber transitions to a steady crankshafting rotation in the shape of a

shepherd’s crook (overwhirling) [100]. While we found this state to be stable up to the

highest frequencies we investigated, getting to that state from an initially straight filament

requires complex dynamics that can lead to self-intersections, suggesting that in practice

plectonemes may be observed instead [102].

While the overwhirling example is certainly more interesting than the relaxing bent fila-

ment we first considered, the result that twist elasticity has a negligible O(ϵ2) effect on the

dynamics of free fibers allowed us to neglect it, and in Chapter 7 we developed specialized

spatial and temporal schemes for deterministic fibers that resist bending and interact hy-

drodynamically through the viscous fluid. We reformulated the equations in terms of force,

thereby deriving the symmetric positive definite matrix M̃ that relates fiber velocity to fiber

forces in terms of the matrix M which relates velocity to force density. The requirement

that M̃ be SPD is important for thermal flucutuations, and as such we filtered the ma-

trix we obtain from our slender body quadrature to symmetrize it and remove any negative

eigenvalues. We use the special quadrature matrix for the self-mobility, while the nonlocal

parts of the mobility (interactions between distinct fibers) are done by upsampling to a grid

of size Nu ∼ 1 (the SPD matrix (7.10)). This leads to an overall mobility which has cost

independent of ϵ. Time-lagging the nonlocal parts of the mobility relative to the local parts

then reduces the number of nonlocal hydrodynamic evaluations per time step to something

that can be counted with the fingers on one hand.

In Chapter 8, we applied our spectral methods to fluctuating inextensible filaments in

Stokes flow. To include fluctuations in the numerical method we already proposed, we

postulated the Gibbs-Boltzmann distribution (8.1) on the spectral grid of N nodes, then

constructed spatially-discrete overdamped Langevin dynamics that is in detailed balance

with respect to that distribution. Unlike deterministic problems, it was not totally clear to us

what to expect, since the fiber shapes are inherently nonsmooth when Brownian fluctuations
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are included. We showed through a series of equilibrium and non-equilibrium tests that

spectral methods can be advantageous in the regime where the fibers are semiflexible ℓp ≳ L

and slender ϵ = a/L≪ 1, which is therefore the regime where the persistence length (smallest

lengthscale on which fluctuations are visible) is much larger than the fiber radius. Since

our primary interest is in relatively stiff (and quite slender) fibers like actin, there is some

promise for spectral methods to give good approximations of blob-link chains by faithfully

modeling the hydrodynamics with fewer degrees of freedom. In this case, the fluctuations

on lengthscales a, which are smoothed out by our spectral method, do not impact the fiber

dynamics (other than on very short timescales) or equilibrium statistics, and so we are able

to approximate both well using a small number of Chebyshev nodes. Our tests on dynamics

showed that the error in the rate of relaxation of a straight chain for N ≥ 24 is small and

dominated by the error from equilibrium statistical mechanics, which means that the main

driver of the difference between the blob-link and spectral methods comes from the difference

between our coarse-grained Gibbs-Boltzmann distribution (8.1) and the GB distribution of

a refined blob-link chain. Nevertheless, for ℓp/L = 1 and ϵ ≈ 10−2, we showed that even

N = 12 provides a reasonable approximation to the relaxation dynamics of a stretched

chain, with a time step size two orders of magnitude larger than the corresponding blob-

link discretization with 100 blobs. This sort of spectral coarse-grained (fully discrete rather

than continuum) representation of semiflexible fibers can allow for large-scale simulations of

networks of fibers over physically relevant timescales, unlike fully or finely resolved blob-link

models.

In Chapter 9, we designed a novel algorithm to treat steric (excluded volume) interac-

tions in filaments discretized with Chebyshev collocation points. The key was to formulate

the energy as a double integral, similar to what was done in [174] for straight cylinders.

However, in [174], a singular energy density is chosen, which allows for analytic integration

over straight segments. Because our simulations include Brownian fluctuations, fibers might
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overlap regardless of the strength of the steric potential, and so we chose an energy density

that is Gaussian (nonsingular and smooth) in nature, and consequently not possible to in-

tegrate analytically. As such, we needed to design efficient quadrature schemes to integrate

the density in the limit ϵ→ 0.

We considered two different quadrature schemes to integrate the steric interaction po-

tential and obtain the steric forces at the Chebyshev collocation points. In the first scheme,

we simply resample the fiber at a set of uniform points, then perform a neighbor search to

find pairs of interactions that contribute to the sum. This scheme, which is similar to how

we treat the cross-linking forces, does not scale well in the limit ϵ → 0, so we developed a

second scheme based on breaking the fibers into O(1) pieces, then finding and progressively

zeroing in on pieces that could be interacting.

10.1 Future directions

While this part of the dissertation was certainly exhaustive, there are still a number of future

improvements awaiting attention for both single and multiple filament hydrodynamics. For

single filaments, for instance, we chose not to regularize the shape of the filament, keeping the

radius constant all the way up to the endpoints. Because we use integrals of the RPY tensor,

the mobility for constant regularized radius â is well-defined at the fiber endpoints, although

its lack of smoothness causes slow convergence in our spectral method. This is in contrast

to SBT, in which the local drag coefficient is not well-defined for cylindrical fibers, and some

kind of ellipsoidally-tapered radius function has to be assumed. Future work could develop

a hybrid approach that uses the RPY kernel for unequally-sized spheres [78] to simulate

fibers with radius functions that decay smoothly to zero at the endpoints. This should

smooth out the mobility, keep the eigenvalues of the trans-trans mobility away from zero,

and make the local drag part of the single fiber mobility a better preconditioner in nonlocal

simulations. The integrals involved are more complex than those for equally sized spheres
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because the integrand includes the radius function â(s). Still, because the singularities

(Stokeslet, doublet, rotlet, etc.) in the polydisperse integral kernels are unchanged, it should

be possible to account for non-constant â(s) using the slender body quadrature schemes

developed here.

Another choice we made for the single filament was to stick with a first kind integral

equation for the force-velocity relationship, i.e., the trans-trans mobility. While this yielded

sufficient accuracy for our purposes, the eigenvalues of the first kind mobility cluster around

zero, leading to ill-defined solutions near the fiber endpoints. Of course, one argument

around this is that both the ill-conditioning and negative eigenvalues of the SBT mobility

occur when N ≳ 1/ϵ̂, which is too large for slender body approaches to be efficient. Still,

a better-conditioned formulation (for trans-trans mobility) would be to use a second-kind

integral equation of the form given in [95, Eq. (4)]. To enable rapid dynamic simulation of

the model in [95], it is necessary to develop slender body quadratures to evaluate integrals

of regularized Stokeslets and doublets along the centerline, as we did for the first kind RPY

mobility in Section 6.2. The nearly-singular quadrature scheme of [140], which is based

on finding the complex value of s′ that makes the regularized Stokeslet Sϵ (X(s)− X(s′))

singular, is perfectly tailored to this application. In fact, if the fiber is inextensible, the dis-

placement ∥X(s)− X(s′)∥ is roughly constant in time when s′ ≈ s, so the complex roots can

be precomputed for each s. If implemented, this would make the scheme of [95] comparable

to the ones we use.

We had to take extreme care in designing the spectral discretization because of aliasing

errors, which manifest themselves most especially in simulations with Brownian fluctua-

tions. An open question is whether this level of scrupulousness, which is also necessary

because Chebyshev polynomials cannot define everywhere inextensible curves, could have

been avoided by using a different (rapidly converging) series representation for the fiber

centerline. Other, non-Chebyshev, representations for (everywhere) inextensible filaments
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like curvature-torsion require higher order derivatives of τ = ∂sX which have non-decaying

spectra, since for Brownian filaments τ is almost everywhere differentiable but its derivative

is white noise. An optimal representation would be in terms of some basis functions whose

contributions to the fiber shape decay fast, especially for large persistence lengths. Such a

representation would ideally nearly diagonalize the bending elasticity operator and be every-

where inextensible, the latter being vital to remove ambiguity in how to represent the fiber

(tangent vectors vs. positions).

One of the reasons we were most impressed with the computational savings in our spec-

tral method for fiber fluctuations is the correlation between the number of nodes in the

spatial discretization and the required time step size. In particular, our midpoint temporal

integrator, which is based on taking a Fixman-like predictor step to the midpoint to capture

the drift term in expectation, can only generate accurate equilibrium statistics and dynam-

ics when the time step is sufficiently small. The required time step size scales roughly as

N−4, which means we must hold the number of modes down if we want to simulate with a

reasonable time step size. An alternative approach would be to try to increase the required

time step size by using an exponential integrator. For rotations on the unit sphere, this

requires Lie integrators like that used by Schoeller et al. in [47]. Stochastic exponential

Lie integrators have not yet been developed (to our knowledge), and so they represent an

interesting avenue of exploration for future work.

For suspensions of multiple filaments, there are two important future directions, one for

deterministic filaments and one for fluctuating ones. For deterministic filaments, a future

extension of this work is to consider the dynamics of multiple filaments in a suspension

with twist. The mobility of Chapter 2 directly generalizes to multiple filaments, since the

same RPY kernel can be used between distinct filaments and a filament and itself. The

challenge lies in efficiently numerically computing the solution. Focusing on the static case

first, we need to develop an efficient numerical method to sum the rot-trans and trans-rot
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hydrodynamic interactions over many bodies, since Chapter 7 already treated the trans-trans

kernel with a combination of the spectral Ewald method [103] (for well-separated fibers)1 and

corrections for nearly-touching fibers [140]. Extending our many-body-summation approach

to twist is straightforward, but arduous. In particular, spectral Ewald methods have been

developed for the rot-trans and trans-rot singularities of Stokes flow [141, 178], and the

nearly-singular quadratures of [140] readily generalize to the other singularities. For rot-rot

coupling, the fast decay of the doublet singularity makes it a good approximation to only

include the flows generated by nearly contacting fibers.

Then there is the question of computing the dynamics of many twisting filaments. For

trans-trans dynamics, we treated terms involving nonlocal hydrodynamic interactions ex-

plicitly, and only treated the local drag terms implicitly. This allowed us to solve essentially

diagonal linear systems, and to evaluate long-ranged hydrodynamics only once or at most

a few times per time step. A challenge for future exploration is how to efficiently handle

pairs of filaments (or pieces of a single filament) in near contact in a semi-implicit temporal

integrator, without expensive GMRES iterations at each time step.

Additionally, the mobility that we ultimately use for multiple fluctuating filaments (Sec-

tion 8.6) does not achieve our goal of being independent of ϵ. Indeed, in this case we were

unable to repeat our trick of separating the intra-fiber mobility from the inter-fiber mobility,

and doing the former by special quadrature and the latter with O(1) points. The reason for

this is because it is unclear how to take the square root of the sum of the two pieces. Future

work should come up with a method for this, so that we can simulate multiple Brownian

filaments interacting hydrodynamically with cost independent of ϵ.

We chose to treat steric forces explicitly in our temporal update. As shown in Section

12.6, this leads to a reduction of a factor of roughly 5 to 10 in the allowable time step

1We chose an Ewald approach because we are interested in triply-periodic systems; in free space a fast
multipole method [175] is likely the best choice, and systems with mixed periodicity are an avenue of active
research [176, 177].
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size, with our original time step leading to unstable simulations when sterics is included.

It is tempting in this case to consider an implicit approach to achieve stability at larger

time step sizes, such as the complementarity formulation used in [87, 179–181], whereby an

optimization problem is solved to obtain a configuration that is contact-free while minimizing

the contact forces between particles. While these methods do indeed increase the time step

size, the method used to solve the optimization problem requires multiple applications of the

hydrodynamic mobility, and as such makes each time step at least 10 times more expensive

than when contacts are not resolved. Thus employing a more complex contact algorithm

would make our simulations just as expensive as treating the steric force explicitly.

Part of the reason we can say this is that our potential is relatively “soft,” in the sense

that we allow some particle overlaps to keep the time step relatively large. If we were to

stiffen up the potential to prevent more overlaps, then we likely would arrive at a point

where contact-based algorithms would be more efficient. It remains unclear, however, how

to extend these algorithms from rigid particles [179–181] to flexible fibers, as the most recent

works of Yan et al. [87, 180] treat flexible fibers via a series of rigid rods, which is not

a model that scales well in the slender limit (in particular, it is not clear how to resolve

hydrodynamics between the rods in the slender limit). Thus a numerical method to prevent

any contacts between flexible Brownian filaments is still an open research direction.
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Part III

Macroscopic behavior of cross-linked

actin gels
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Chapter 11

Introduction

In most cells, as much as 10% of all protein is actin [182]. The majority of actin is the

F-actin cytoskeleton − a gel made of rapidly-turning-over (assembling and disassembling)

actin fibers, which are dynamically cross linked by a vast host of actin binding proteins (cross

linkers or CLs). The actin cytoskeleton is largely responsible for the cell’s shape, movements,

division, and mechanical response to its external environment [11]. Thus, understanding the

mechanical and rheological properties of dynamically cross-linked cytoskeletal networks is

the first step to understanding the mechanical properties of the cell at large.

In this part of the dissertation, we will apply our theoretical and numerical methods

from the previous two parts to examine the role of hydrodynamics and morphology on the

macroscopic mechanical properties of cross-linked actin networks. We will divide our study

into two parts: the dynamics of morphology changes (Chapter 12), and dynamic steady state

rheology (Chapter 13). This introduction reviews the literature in these categories (including

in vitro experiments and simulations), and discusses our program for what follows.
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11.1 Rheology

Several in vitro experimental techniques, including active poking, parallel plate shearing,

and embedded-microbead tracking, have characterized the mechano-rheological behavior of

cross-linked actin gels [182]. Depending on the experimental conditions, these studies report

viscoelastic moduli in a wide range, from 0.1 to hundreds of Pascals [118, 183–185]. The

mixed viscoelastic mechanical response of the densely cross-linked gel is expected: simply

speaking, at short time scales the network of elastic fibers and CLs can be considered per-

manently interconnected and deform elastically, while at long time scales dynamic CLs are

expected to connect fibers only transiently, enabling the brief storage of elastic energy of

deformations. This elastic energy is dissipated after the CLs detach, which causes effective

viscous behavior on long timescales. Often, the measured elastic modulus for actin gels is

about an order of magnitude greater than the viscous one [118, 183, 185]; however, some

studies measure elastic and viscous moduli of similar magnitude [186], and in some cases the

elastic modulus is smaller than the viscous one [187]. Both moduli are increasing functions

of actin and CL concentrations [188, 189]; see especially [189] for master curves over a wide

range of CL and actin concentrations.

To understand the intrinsic timescales in the gel, many experimental studies examine the

dependence of the loss and storage moduli on the frequency of oscillatory shear deformation

ω. All experimental studies agree that the behavior of transiently cross-linked networks on

long timescales (low frequencies) is qualitatively viscous both in vitro [190, 191] and in vivo

[186], with many studies reporting a decay rate of ω1/2 for both moduli at low frequencies

in the absence of actin turnover [190, 192, 193]. As the frequency increases, some studies

report a monotonically-increasing viscous modulus [189], while others display a curious local

maximum and minimum in the viscous modulus data [192, 194, 195]. Proceeding to the high-

frequency limit, there are again contradictions, as some studies report a viscous modulus

that scales as ω0.75 [189] (consistent with the thermal fluctuations of a single semiflexible
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filament [185, 196]), while others observe a viscous-fluid-like scaling of ω1 [197, 198], and still

others yield a scaling of ω1/2 [190, 191, 199], which is characteristic of the Rouse model of

polymer physics (fluctuating beads joined by harmonic springs) [200]. Thus the short and

intermediate timescale behavior, and its dependence on microscopic parameters, is still an

open question, as is the exact meaning of “long” and “short” timescales (i.e., when these

observed scalings begin to dominate).

Part of the reason for the variations in experimental data is that each actin binding

protein produces a unique change in network morphology [201], which in turn uniquely

affects the viscoelastic moduli. For compliant CLs such as filamin, Kasza et al. observe a

strong frequency-dependence of ω0.7 for the viscous modulus and a weak power law scaling

of the elastic modulus, with both taking values in the range 0.1−1 Pa [202]. As the CLs get

shorter and stiffer, the frequency-dependence in the elastic [12, 187, 189, 202] and sometimes

even viscous modulus disappears [202], which suggests a change in the network morphology

with the type of cross-linker. It is shown in [190] that changes in the moduli with chemical

cross linking are only relevant when the cross-linker length is shorter than the mesh size,

because these kind of CLs group the fibers into bundles, thereby changing the macroscopic

structure of the network. Indeed, changes in cell mechanical properties, from more viscous

to more elastic, relate to corresponding cytoskeletal morphology changes, from a weakly

cross-linked network of actin filaments to a network of clustered bundles [203].

Wachsstock et al. [184] study the relationship between mechanical response and mor-

phology using actin filaments with α-actinin cross linkers. Their experiments and modeling

show a transition from elastic, solid-like behavior to viscous, fluid-like behavior as the α-

actinin and actin concentrations increase, which corresponds to the formation of bundles

within the network. These bundles are no longer entangled in a complex network and are

free to slide past each other, which leads to viscous behavior. This observation is compatible

with the work of Tseng et al. [204], which shows that more homogeneous networks are more
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elastic in nature, and suggests that the cell makes the strongest elastic structures by com-

bining bundling and cross-linking proteins to form a cross-linked network of bundles [205].

It is therefore pertinent to study the dynamic formation of bundles in cross-linked actin

networks.

11.2 Morphology

The formation of bundles has previously been observed in actin suspensions with CLs such

as filamin [206, 207], scruin [188], and α-actinin [184, 208]. In all of these systems, increasing

the concentration of the cross-linking protein progressively transitions the steady state from

a homogeneous meshwork, where filaments are distributed isotropically, through a composite

bundle state, where bundles are composed of only a few filaments, to the clustered bundle

state, where bundles can be separated by distances as large as 100 µm [206, 208].

While it was observed over 30 years ago [207] that Brownian motion drives bundle for-

mation, its precise mechanism for doing so remains unclear. For instance Hou et al. [207],

speculated that rotational diffusion aids in bundling, as filaments that are linked at one loca-

tion rotate until other locations can be linked together, resulting in a bundle. More recently,

it was shown that bundling is most efficient in a fluid-like environment, where actin fila-

ments can diffuse more readily [209, 210]. At minimum, these studies imply that bundling is

more difficult without Brownian motion, but could actin filaments still arrange into bundles

without it?

The importance of Brownian motion in bundling can be seen in experiments where fil-

ament length varies, or when polymerization and bundling are initiated simultaneously. In

this case, shorter filaments form a more stable clustered bundle state [202, 210], with the

shortest filaments organizing into spindle-type structures [211, 212]. In systems where poly-

merization and bundling happen simultaneously, it has been shown that the formation of

the clustered bundle state can be prevented via an increase in the actin polymerization rate

298



[209]. Mean field theory and simulations show that the slow down in bundling at high poly-

merization rates could be driven by a combination of steric interactions and the Brownian

motion of the fibers being constrained by cross linkers [210]. It remains unclear, however, to

what extent the attenuation of bundling is driven by sterics vs. cross linking, and even if a

composite bundle state can form if the length of the filaments is larger than the initial mesh

size.

An underlying assumption in conceptual explanations of bundling is that sufficient CL is

available to cross link filaments once they move closer together. The literature is conflicted,

however, on exactly how much CL is sufficient. For instance, in the same experimental

system of filamin and actin, some authors report a constant ratio of CL to actin necessary

for bundling [184, 207], while others report that the relative amount of CL necessary for

bundling decreases as actin concentration increases [206]. There is also a nontrivial effect

of temperature on the amount of CL required for bundling; with higher CL-to-actin ratios

bundling can occur at lower temperatures [213]. Experimental investigation of the precise

amount of CL necessary for the clustered bundle state to form is difficult since the observation

of bundles is a qualitative phenomenon with a subjective definition, and therefore varies based

on the tools used.

11.3 Other modeling studies

In view of this experimental complexity, many modeling studies examine the changes in actin

network morphology and mechanics as a function of the underlying kinetic and microscopic

mechanical parameters. Some of the rheological behavior of pure actin networks can be

explained with semiflexible polymer theory [214, 215]. For instance, strain-stiffening behavior

in filament networks can be accounted for by an entropic model, in which each thermally

fluctuating polymer resists affine (stretching) deformations, or an enthalpic model, in which

the filaments bend before they stretch, allowing them to reorganize along the direction of
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shear [216]. In a similar approach, Head et al. [13] solve an energy minimization problem

for straight filaments in two dimensions and use their results to characterize the transition

from affine (stretching-dominated) to non-affine (bending-dominated) deformation in cross-

linked networks. Semiflexible filament theories of this nature have recently been extended to

transiently cross-linked networks [195, 217, 218], and it has been shown that a broad spectrum

of relaxation times appears for a cross linker with a single unbinding rate, because larger

and larger wavelength bending modes are able to relax as cross linkers unbind [193, 217].

These theories may explain the soft glassy rheology observed in living cells [193] and the

low-frequency regime where the moduli scale with the square root of frequency [195, 217].

Similarly, the bundling of actin filaments has been studied using equilibrium thermody-

namics to find conditions at which the free energy, consisting of translational and rotational

entropy of rod-like filaments and enthalpy and entropy of the CL distribution, is lower in

the bundled state than in the unbundled mesh [219, 220]. The important results of these

theories were that a critical CL concentration is needed for the bundling phase transition

and that ultimately one giant bundle has to form, but transiently the filaments could be ki-

netically trapped in multiple bundles [219, 221]. However, actin bundling is not taking place

in thermodynamic equilibrium, and a Brownian dynamics approach is therefore a useful

complement.

In bundled networks, an early Brownian dynamics study [222] looked at the roles of

translational and rotational diffusion in bundling of uniformly laterally attracting filaments.

In a more detailed approach, Kim et al. [107] use Brownian dynamics simulations on a bead-

spring model of actin to show that bundling is reduced when CLs are forced to bind in the

perpendicular direction (as they do when fascin is the cross-linker). They propose that the

ability of a network to flow on long timescales is due to the breaking of CLs with shear,

followed by their reformation on a timescale determined by network reorganization and not

individual CL binding. Last, but not least, a combination of scaling estimates and Brownian

300



dynamics simulations with simplified CL properties revealed multi-scale transitions from the

isotropic to bundled phase [210]. Most of these previous studies focused on the actin network

structure, rather than on the temporal evolution of the bundled state, which will be our focus

here.

On the rheology side, two recent studies [166, 218] combine computational rheology

with microscopic Brownian dynamics simulations to measure the rheological properties of

transiently cross-linked actin networks without filament turnover and without hydrodynamic

interactions between the filaments. In these studies, a local maximum in the viscous modulus

is observed [194], which was shown to correspond to a maximum in CL binding and unbinding

events [166]. However, the networks considered in these studies are either homogeneous [166,

Fig. 2] or highly bundled [218, Fig. 1], and we know of no detailed simulations that have

reported the rheological properties over a range of structures and microscopic parameters.

Furthermore, due to the absence of turnover, in both of these studies the structure being

simulated is not in equilibrium and evolves significantly (by bundling) with the imposed

flow, and so the measured low-frequency viscous and elastic moduli depend on history and

how the measurement is performed, and are consequently not well-defined.

Because of the complexity of microscopic simulations, there has been a considerable

amount of literature in the last few decades on continuum models of the cell cytoskeleton and

cross-linked actin networks. For example, Karcher et al. employ a continuum finite element

model to measure the stress induced by magnetic-bead-forcing [223] (a similar model was

also used in [224]). They model the cytoskeleton as either a Maxwell (spring and dashpot in

series) or Kelvin-Voigt (spring and dashpot in parallel) material and report a large sensitivity

of the mechanical behavior on the choice of model. Other studies have approximated the

cell cytoskeleton as a poroelastic [225], porous viscoelastic [226], or Brinkmann [227] fluid.

In either case, as discussed in [182, 223], continuum models are only as good as their fits

to the data, and they in general have difficulty relating macroscopic parameters (such as
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porosities, discrete timescales, and stiffnesses) to microscopic parameters. In fact, it has

been suggested that the cell possesses a continuum of relaxation timescales [193, 228], which

would invalidate any continuum model with a discrete number of elements. To us, a happy

medium is to use a microscopic model to inform a continuum fluid model which can be used

in larger-scale simulations, as we attempt to do in Chapter 13.

11.4 Program

To interpret the experimental data from these previous studies, it is vital to understand

the dynamics of the bundling process and how the resulting morphology feeds back onto

the mechanical properties of the gel as a whole. We do this in two steps. In Chapter 12,

we study the bundling process and how each of the microscopic parameters influences the

overall bundling timescale. We conclude the chapter by showing that the dynamic steady

state comes from a competition between bundling and fiber turnover. Then, in Chapter 13,

we perform an analysis of the rheology of two representative steady states, showing how

morphology and hydrodynamics contribute to the overall viscoelastic behavior.

11.4.1 Network statistics

In order to describe the evolution of the actin network, we need to introduce some statistics

to quantify the “look” of the gel (how clustered it is). We examine the connectivity of the

fibers in two ways. First, given the total number of CLs in the system C, we compute an

average link density per fiber via the formula “Link density” = 2C/(LF ). Second, we map

the network to a connected graph to study how the structure evolves in time [211]. We define

a “bundle” as a connected group of at least FB = 2 filaments, where a connection between

two fibers is a pair of links with anchoring locations at least dbund = L/4 apart on each fiber,

so that the links limit the fibers’ rotational degrees of freedom. We then define two measures
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of the degree of bundling in the system. The first measure is the bundle density, which is

the number of bundles per unit volume B/L3
d, where B is the number of bundles and Ld is

the length of the simulation cell. The second measure is the percentage of fibers in bundles,

defined as the percentage of filaments connected to at least one other filament by two links at

least dbund = L/4 apart. The bundle density statistic preferentially weights smaller bundles,

since a bundle of two filaments is counted the same as a bundle of five filaments, while the

percentage of fibers in bundles is independent of FB. In fact, we can think of a bundle of FB

filaments as contributing a weight ∼ 1/FB to the bundle density, but a weight ∼ FB to the

percentage of fibers in bundles.

For a bundle of b filaments, we define an orientation parameter as the maximum eigenvalue

of the matrix [211]

Q =
1

bL

b∑

i=1

∫
τ (i)(s)

(
τ (i)(s)

)T
ds. (11.1)

The orientation parameter takes values in [1/3, 1], with 1 being the value for a group of

straight fibers with the same tangent vector. Given information about the bundles, we

compute an average bundle orientation parameter by taking an average over bundles with

at least two filaments, weighted by the number of filaments in each bundle.

Throughout this paper, we will quantify the concentration of fibers in terms of the initial

mesh size [196] of the suspension, ℓm =
√
L3
d/(FL) (parameters are defined in Table 11.1).

Note that this estimate for ℓm applies to non-bundled (disordered) suspensions of fibers, so

really when we use ℓm we mean the initial mesh size, prior to the bundling process beginning.

We will operate in the regime where the fluctuations in the CL rest length as defined in (9.2),

which are of magnitude δℓ = 20 nm (see parameters in Table 11.1), are several times smaller

than the typical filament spacing, which is at most the initial mesh size ℓm = O(100) nm

and at least the cross linker length of 50 nm.
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Parameter Definition Value Unit Notes
a Fiber radius 4 nm [117]
L Fiber length 1 µm [118, 119]
F Number of fibers 200− 1600 ℓm = 0.2 initially
Ld Simulated volume’s extent 2− 4 µm Cubic unit cell
µ Cytoplasm viscosity 0.1 Pa·s Cytoplasm [229]
κ Fiber bending stiffness 0.07 pN·µm2 ℓp = 17 µm [18]
Kc CL spring stiffness 10 pN/µm [165]
ℓ CL rest length 50 nm [230]
kon CL first end binding rate 5 1/(µm·s)
kon,s CL second end binding rate 50 1/(µm·s) kon,s ≫ kon,
koff CL (one end) unbinding rate 1 1/s [231, 232]
koff,s CL (second end) unbinding rate 1 1/s koff,s = koff
cw Actin binding site width 20 nm [230]
kBT Thermal energy 4.1× 10−3 pN·µm 25◦C
Nx Number of Chebyshev points 12–16
∆su Binding site spacing 0.026 µm
∆t Time step size 10−4 s Limited by Kc

Table 11.1: Simulation parameters for transiently cross-linked actin networks.

11.4.2 Simulation parameters

In the case when we want to study the effect of the parameter, we pick values higher or lower

than the “base” parameter value. The base values for every parameter we consider are given

in Table 11.1. Most of the parameters here can be measured experimentally, with the notable

exception of kon, the rate (per length) at which a CL binds to a filament. In experimental

studies, what is measured for kon is a macroscopic binding rate of the order 1 µM−1 s−1,

which cannot easily be converted to the effective microscopic rate (units 1/(length×time))

that we need. To find a suitable on rate, we make the observation from [184] that 10− 50%

of a 1 µm long filament is decorated with α-actinin [184], which corresponds to about 1− 10

CLs per filament of length 1 µm; we find that kon = 5/(µm×s) is of the correct order of

magnitude to give about 5 CL ends attached to each filament. Likewise for kon,s, we simply

assume that kon,s ≫ kon.

When we simulate bundling, we limit the number of CLs that can be bound to one site.
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We introduce a CL width cw = 20 nm [230] and set the maximum number of bound CLs

at each site to ⌈∆su/cw⌉. We implement this in the stochastic simulation algorithm using

rejection: if a binding event is selected and the binding site is full, we simply move on to the

next possible event.

Our simulations use a background fluid with viscosity µ = 0.1 Pa·s, mimicking the larger

viscosity of the cytoplasm [229]. We will, however, assume the background fluid is Newtonian,

in contrast to actual cytoplasm, so that we can isolate the contribution of the fibers to the

viscoelastic moduli.

11.4.3 Calculating stress and SAOS rheology

When we perform simulations to measure the mechanical properties of cross-linked actin

networks, we need to measure the stress in the simulation cell. This section describes how

to do this for deterministic fiber networks. We do not make stress-strain measurements

in Brownian fiber networks, as more theoretical work is necessary to determine the correct

formula for the Brownian stress, as we discuss in the conclusions.

Recalling the time-oscillatory shear flow (7.50),

u0 = γ̇0 cos (ωt) (y, 0, 0) , (11.2)

the only nonzero component of the rate of strain tensor is constant in space and is given by

γ̇21(t) =
∂ux0
∂y

= γ̇0 cos (ωt), (11.3)

and the relevant component of the strain tensor is therefore

γ21(t) =

∫ t

0

γ̇21(t
′) dt′ =

γ̇0
ω

sin (ωt) := γ0 sin (ωt), (11.4)
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where we have defined γ0 as the maximum strain in the system. We define the bulk elastic

(G′) and viscous modulus (G′′) from γ0 by [233]

σ21
γ0

= G′ sin (ωt) +G′′ cos (ωt). (11.5)

Notice that the elastic modulus G′ gives the part of the stress that is in phase with the

strain, and the viscous modulus G′′ gives the part of the stress that is in phase with the rate

of strain. This analysis applies when the stress response is linear, so that higher frequency

modes do not enter, hence we must keep the strain amplitude γ0 small (Section 13.2.4 has

a quantitative analysis of how small this needs to be). This gives rise to the name small

amplitude oscillatory shear (SAOS) rheology, by which this type of experiment is known.

The stress tensor itself can be decomposed into a part coming from the background fluid

and a part coming from the internal fiber stresses,

σ21 = σ
(µ)
21 + σ

(f)
21 = µ

∂ux0
∂y

+ σ
(f)
21 . (11.6)

For pure viscous fluid, the fiber contribution to the stress is zero and the stress is given

entirely by the viscous stress tensor,

σ
(µ)
21

γ0
=
ωµ

γ̇0
(γ̇0 cos (ωt)) = ωµ cos (ωt). (11.7)

Thus the viscous modulus due to the fluid is G′′ = ωµ, and the elastic modulus is zero.

The stress due to the fibers depends on the force the fibers exert on the fluid. Because

the CLs exert no not torque or force on the fluid, we use Batchelor’s formula [23] for the

volume-averaged stress due to the fibers and CLs. In the slender limit (i.e., the case when

the surface area force density is constant on fiber cross sections), the bulk stress due to the
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fibers and CLs in a volume V is given by σ(f) = σ(i) + σ(CL), where

σ(i) = − 1

V

(
F∑

i=1

N∑

p=1

(
X

(i)
{p}

(
Λ

(i)
{p} +

(
F (κ)

)(i)
{p}

)))
, (11.8)

σ(CL) = − 1

V

(
C∑

c=1

N∑

p=1

(
X

(c1)
{p} (F ext)

(c1)
{p} +X

(c2)
{p} (F ext)

(c2)
{p}

))
, (11.9)

where the double sum for σ(i) is over points on fibers and the double sum for σ(CL) is over

points on pairs of cross-linked fibers. In the cross-linker stress, C is the number of CLs and

the notation c1 and c2 means that cross-linker c links fibers c1 and c2. The sums must be

separated since different periodic images of X(i) could be involved for different cross linkers.

In σ(CL), the positions X(c1) and X(c2) must be the periodic images of the two fibers that

are connected by the CL. In this case, the total torque exerted by the cross-linker on the pair

of fibers it connects is zero, and we expect the stress tensor (11.8) to be symmetric, since

the constraint force Λ and elastic forces FX exert exactly zero torque discretely [23].1 Note

that the formulas (11.8) and (11.9) are traditionally represented as integrals of the positions

and force densities. Here we have replaced those by sums of forces, which gives the same

result since F = W̃f , and W̃ is the matrix that appears when computing the integrals.

Because we are not considering Brownian fluctuations in these rheology simulations, these

are the only forces we need to consider (no additional random terms).

We discretize the stress tensor to first order accuracy in time. Specifically, we substitute

Xn for X and Λn for Λ in the internal fiber stress σ(i), and evaluate the cross-linking forces

at Xn in σ(CL). Assuming that the final time T is an integer multiple of the period 2π/ω, we

then compute the bulk moduli by discretizing with the first-order quadrature the integrals

G′ =
2

γ0T

∫ T

0

σ21 sin (ωt) dt G′′ =
2

γ0T

∫ T

0

σ21 cos (ωt) dt. (11.10)

1This is only true if we use the energy-based formulation of elastic force in Section 6.1.3.1, and if the
positions X in (11.8) are the same as those used to form the matrix K[X] that enforces KTΛ, a condition
which ensures that Λ exerts no torque on the positions X.
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Chapter 12

Bundling dynamics

In this chapter, we use our agent-based framework to quantify how a homogeneous meshwork

of filaments can evolve into a state of composite, and then clustered, bundles through Brow-

nian motion. We introduce a timescale, τc, that quantifies the time to reach the composite

bundle state, and show that the dynamics on shorter, but not so much on longer, timescales

are accelerated by Brownian motion of the filaments. We also show that the bundling

timescale is limited by filament diffusion for smaller CL concentrations, while for larger CL

concentrations this diffusion has a minor effect. We find that the relative CL-to-actin ratio

required to achieve the same bundling time decreases with increasing actin network mesh

size. We also show that the diffusion effect explains faster bundling for shorter filaments,

and that including steric interactions slows down the bundling process, but does not change

its fundamental trajectory.

Throughout this chapter, we will only consider hydrodynamic interactions on one filament

at a time. That is, there are no hydrodynamic interactions between different fibers in these

simulations. We will consider hydrodynamic interactions between fibers in Chapter 13.
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12.1 Non-Brownian filaments

We begin this section by discussing the kinetics of bundling for non-Brownian, semiflexible

fibers, and establish that semiflexible fibers with a persistence length similar to that of actin

[18] can be well-approximated by rigid filaments. This simulations are done without thermal

fluctuations; see Section 12.5 for the corresponding results with fluctuations.

We begin with simulations in a system of initial mesh size ℓm = 0.2 µm, which translates

to F = 200 filaments in an Ld = 2 µm domain, F = 675 filaments in an Ld = 3 µm domain,

and F = 1600 filaments in an Ld = 4 µm domain. The mesh size we use is of the same order

of magnitude as that in cell cortex in vivo [234] and corresponds to 10 to 15 µM G-actin

concentration often used in in vitro experiments [184, 208]. In Fig. 12.2, we show that the

statistics of the bundling process are insensitive to the domain size up to the point where

there is mass coalescence of almost all the fibers in the simulation cell. For this reason, we

will consider results from only one set of simulations, the one with F = 675 filaments and

Ld = 3.

We initialize the set of F filaments with random locations and orientations, then during

each time step we evolve the fibers by updating the dynamic CLs and then updating the

fiber positions in sequential order. Figure 12.1 shows how the bundling process evolves in

small and large systems. On the microscopic scale, filaments that are initially not parallel

are linked by CLs, which pull them closer together and allow more links to bind. The binding

of additional links leads to the alignment of filaments. Note that the key to the bundling

process is the flexibility of the CL, in particular rapid thermal fluctuation of the CL length,

which is present implicitly in our model from (9.2). Because the CLs are small, fluctuations

in their length occur on a time scale which is much faster than other characteristic time

scales, and so we do not model the fluctuations explicitly. The combination of the CLs’

elasticity and length fluctuations is crucial, as the length fluctuations effectively allow the

CLs to “find” the neighboring fibers and bind them, whereupon the elasticity of the CL

309



Figure 12.1: Bundling dynamics on small and large scales. Top: a small-scale bundling process
with three filaments and snapshots taken at times t = 0, 2, 4, 6, 8, and 10 s. Bottom: Snapshots of
the bundling process taken (from left to right and top down) at t = 5, 10, 20, and 40 seconds for
semiflexible fibers with stiffness κ = 0.07 pN·µm2. Fibers in the same bundle are colored with the
same color. The two networks at the middle are before the coalescence transition time τc ≈ 16 s,
while the two networks at the bottom are after the coalescence time.
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Figure 12.2: Link density, bundle density, % of fibers in bundles, mean bundle alignment, mean
bundle size, and maximum bundle size, in a network of semiflexible (κ = 0.07 pN·µm2) non-
Brownian filaments with initial mesh size ℓm = 0.2 µm. We show curves with different domain
sizes (in µm) to establish that the statistics are repeatable in larger systems. The only statistic
which is not repeatable is the maximum bundle size after many of the filaments have collapsed into
one bundle (t ≳ 40 s).

311



aligns the fibers, making further cross linking faster.

This process plays out on a larger scale in snapshots from the simulations, shown in

Fig. 12.1 at t = 5, 10, 20, and 40 seconds. The initial stage of bundling (first two snap-

shots) is characterized by bundles of a few straight, aligned filaments, which is similar to the

experimentally-observed composite bundle state [203] and the three-filament bundle shown

at the top of Fig. 12.1. Later times (bottom two frames) show coalescence of these smaller

bundles into larger bundles, with some curvature appearing in the fibers in the final frame.

By t = 40 seconds, there are only a few bundles made of coalesced smaller bundles, and

the network resembles the experimentally-observed clustered bundle state [203], which ap-

proaches the low energy state consisting of a single aligned bundle [218].

To quantify our observations, in Fig. 12.3 we plot the mean link density (2C/(LF ),

see Section 11.4.1), bundle density (B/L3
d), percentage of fibers in bundles, mean bundle

alignment parameter, and mean and maximum bundle size throughout the bundling process

for three values of fiber stiffness: κ = 0.07 (the value for actin), κ = 0.007 (fibers ten-fold

less stiff), and κ = ∞ (rigid filaments). In all systems, we see the number of links per

fiber grow in time to approach the maximum of ⌈∆su/cw⌉ × L/∆su = 80, while the bundle

density in all systems exhibits a peak around a critical time τc ≈ 16 seconds. At this time,

the other panels of Fig. 12.3 tell us that 60% of the fibers are already in bundles, which

have a mean alignment parameter larger than 0.9. Figure 12.4 gives a more precise look at

the composition of the bundles, which are the same for the three values of stiffness when

t ≤ τc: at t = τc, most (> 50%) of the fibers are in bundles of size 11 or less, with a small

percentage (< 10%) in bundles of size 10 − 20, and the other 40% of the filaments not in

bundles at all. Thus, a time τc into the bundling process, most of the fibers are in small,

highly aligned bundles, as we see in the snapshots in Fig. 12.1, and the dynamics up to

this point are roughly independent of the fiber stiffness. Based on Fig. 12.1, we can also

think of τc as the time required to reach the composite bundle state. For this system of
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Figure 12.3: Statistics for the bundling process, where we compare the base parameters (κ = 0.07
pN·µm2, blue) with the systems with smaller bending stiffness (κ = 0.007, orange) and rigid fibers
(yellow, κ → ∞). After τc ≈ 16 s, the bundling dynamics for the less stiff fibers are significantly
faster. Fibers with similar bending stiffness to actin are well-approximated by rigid fibers.
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non-Brownian filaments, Fig. 12.3 shows τc ≈ 16 s corresponds to the timescale of increase

of the percentage of fibers in bundles (see middle left frame), meaning it is also the timescale

on which the fibers’ rotational degrees of freedom are arrested or constrained.

After the coalesence time, we see a transition to coalescence of bundles, and the flexibility

of the fibers comes into play. Figure 12.3 shows that the number of bundles is declining and

the mean bundle alignment is dropping for t > τc, which implies that bundles are forming

with non-aligned fibers. The mean and maximum bundle sizes also start to grow, which

again means that small bundles are coming together to form the larger ones we see in the

bottom row of Fig. 12.1. Figure 12.4 shows that by t = 60 seconds, at least 75% of the

fibers are in bundles of size 30 or larger. It is in this stage where the flexibility of the fibers

can become important: when κ = 0.007 (fibers ten-fold less stiff than actin), coalescence

of bundles occurs faster than in systems with κ = 0.07 or systems with rigid fibers, since

in the former case the fibers are more compliant and can be linked together more easily by

deforming. That said, when κ = 0.07 (persistence length 17 µm), Figs. 12.3 and 12.4 show

that the dynamics throughout the bundling process are well-approximated by rigid filaments.

This analysis is of course limited by the fiber length we’ve chosen: in particular, we have

shown that, in the absence of Brownian motion, rigid filaments are a good approximation

to semiflexible actin filaments for fibers of length ≤ 1 µm, which are most common in vivo.

The approximation will be worse as the filament length gets larger.

To simplify our analysis of parameter changes, in the next three sections we will consider

rigid fluctuating filaments, which we can study by using a modified version of the temporal

integrator in Chapter 8 where the kinematic matrix K is replaced by a rigid body kinematic

matrix Kr. That is, we consider the rigid filament dynamics

∂tX = KrN rK
T
r F ext +

√
2kBTKrN

1/2
r W , (12.1)

where Kr is the kinematic matrix for a rigid fiber which acts on a 6-vector (Ω,UMP)
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Figure 12.4: Bundle sizes over time in the system with F = 675 semiflexible filaments in a domain
of size Ld = 3 µm (τc ≈ 16). We show the percentage of fibers that are in bundles of various
sizes over time for κ = 0.07 pN·µm2 (blue), κ = 0.007 pN·µm2 (orange), and rigid fibers (yellow).
For times t = 25, 40, and 60 seconds, the x coordinate reflects the center of a histogram bin with
logarithmically-scaled width. At t = 5 s, 25% of the filaments are in bundles of sizes 2 or 3, while
most of the other fibers are not in bundles. At t = τc = 16 s, about 50% of the fibers are in bundles
of size 10 or less, with a small percentage in larger bundles, and the rest not in bundles at all (this
is the composite bundle state). For semiflexible fibers with κ = 0.07 and rigid fibers, about 75% of
the fibers are in bundles of size 30 or larger by t = 60, while for fibers with κ = 0.007 the entire
suspension has coalesced together by t = 40 seconds.
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to give velocity in an analogous way to (6.28). The 6 × 6 rigid-body mobility is N r =
(
KT

r M̃
−1
Kr

)†
, exactly as in (8.3). Because the fibers are rigid and straight, there are no

stochastic drift terms [235], and so we can apply the algorithm in Section 8.2.3 to simulate

rigid fibers, but without steps 1–3.

12.2 Thermal fluctuations speed up bundling

An important quantity in the case of rigid fibers is the time for a fiber to diffuse across a

mesh size. In our initial set-up, the fibers are spaced approximately ℓm apart, and they first

must find each other in order to cross link and begin the bundling process. The theoretical

translational diffusion coefficient of a straight fiber, derived in [235], can be written in terms

of the 3× 3 translational mobility matrix N tt for rigid body motions (the trans-trans block

of the 6× 6 matrix N r) as

Dt =
kBT

3
tr (N tt) ≈

kBT

3µL
1.67, (12.2)

where the last equality gives the result for a fiber aspect ratio of ϵ = 0.004, which we

obtain from intra-fiber hydrodynamics (note that this estimate accounts for the anisotropy

of the fiber, since N tt has an eigenvalue in the parallel direction which is twice as large as the

perpendicular directions). The mean square displacement of the fiber center is then ⟨r2(t)⟩ =

6Dtt. Substituting the parameters in Table 11.1, we obtain 6Dt ≈ 0.13 µm2/s, and thus the

time to diffuse a mesh size is given by τm = ℓ2m/ (6Dt) ≈ ℓ2m/0.13 s. Since diffusion promotes

mixing of the suspension and gives more opportunities for cross linking, our expectation is

that thermal fluctuations should speed up the transition from the homogeneous meshwork

to the composite bundle state, where bundles are made of a few fibers which must be close

enough together to cross link. This assumes that the CL concentration is large enough for

links to bind as soon as fibers are close enough together; we will analyze this assumption in
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Section 12.3.

To understand how thermal diffusion affects the bundling process, in Fig. 12.5 we plot

the statistics both with (orange) and without (blue) thermal fluctuations. We see that the

entire process is faster with diffusion, as we might expect, but the degree of acceleration

changes before and after τc. Before τc, the process with diffusion is significantly faster than

without; for instance, it takes about 3 seconds for 50% of the fibers to be in bundles with

diffusion, while without diffusion it takes 12 seconds (Fig. 12.5 inset), which is a difference

of a factor of 4. Indeed, the critical bundling time τc ≈ 4 seconds with diffusion, while we

have already seen τc ≈ 16 seconds without diffusion, so that the difference is again a factor

of 4. For t > τc, when bundles start to coalesce, the difference is only a factor of 2; an

exponential fit to the decaying bundle density gives a constant of 20 seconds for simulations

with diffusion and 40 seconds for simulations without diffusion.

A similar relationship holds when we look not at the number of bundles (which depends

on FB, the minimum number of fibers forming a bundle), but the percentage of fibers in

bundles, which is independent of FB and shown in the middle left frame of Fig. 12.5. Unlike

in the non-Brownian case, where a single timescale fits the data, the Brownian case requires

two timescales for fitting, which are 3 seconds (which is close, but not equal to τc ≈ 4

s), and 13 seconds. In this case, the new fast timescale of 3 seconds reflects the ability of

Brownian filaments to freely diffuse translationally and rotationally early in the simulation.

Later in the simulation, the filaments are arrested, and the timescale on which filaments

enter bundles approaches that of non-Brownian filaments, 17 seconds. This provides more

evidence for our two stage model of bundling, where thermal fluctuations make more of a

difference in the first stage when fibers are less constrained by cross links. Equivalently,

entropic effects (Brownian motion of fibers and cross-linker stretching) are more important

at early times, while at later times energetic effects trap the fibers in the clustered bundle

state.
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Figure 12.5: Statistics for the bundling process with and without thermal fluctuations. The blue
lines show the results without thermal movement, while the orange lines show the results with
translational and rotational diffusion. Here we use ∆t = 10−4; we have verified that the statistical
noise exceeds the time stepping error for this time step size. The peak in the bundle density occurs
at τc ≈ 16 for systems without diffusion, while for systems with diffusion it occurs at τc ≈ 4 seconds.
These results should be taken with a grain of salt, since with Brownian fluctuations the CL binding
model also changes (Section 9.1.2). Because we also widen the range at which we allow cross linking
in this case (from

√
kBT/Kc to 2

√
kBT/Kc), it turns out that the bundling process is faster even

without filament fluctuations.
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To show that the network morphology has not changed when we add thermal movement,

in Fig. 12.6 we show the networks at t ≈ τc without and with thermal fluctuations. The

composite bundle network morphology at τc is similar between the two, which demonstrates

that fluctuations speed up the pace of bundling without changing the types of bundles that

evolve.

The results of this section are actually harder to interpret when we remember that in-

cluding Brownian fluctuations changed two things in our model: first, the filaments do move

faster because of flucutations. But secondly, the binding model also changes, as when we

include fluctuations we shift the binding kinetics so they are in detailed balance, as described

in Section 9.1.2. Because we also widen the range at which we allow cross linking in this

case (from
√
kBT/Kc to 2

√
kBT/Kc), it turns out that the bundling process is faster even

without filament fluctuations. Indeed, it is not really consistent in the first place to have a

model which has Brownian fluctuations for the CLs and not the filaments. Therefore, we

will now compare simulations with fluctuations with different parameters.

In subsequent sections, we will analyze how the timescale τc that we use to quantify

the speed of bundling depends on the microscopic parameters. While the precise value of

τc depends on the parameter FB (the minimum number of filaments in a “bundle”), Fig.

12.5 shows that this timescale can roughly capture the initial growth rate of the percentage

of fibers in bundles, which is independent of FB. Since τc is easier to measure by looking

at the peak bundle density (and is in principle easier to measure experimentally through

microscopy) than by fitting a double-exponential curve (which is an ill-conditioned problem

for larger timescales), we will use the bundle density maximum as the definition of τc. Of

course, making FB larger increases τc, as we show in Fig. 12.7 by setting FB = 5, but the

ratio of τc between the Brownian and non-Brownian system remains the same. However,

increasing FB will cause us to miss the initial stage of bundling where two-filament bundles

form and the fibers’ rotational degrees of freedom are arrested, so we will use FB = 2
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Figure 12.6: Representative snapshots of a network of rigid fibers without (left) and with (right)
Brownian motion. Both snapshots are taken at t = τc, which is 16 seconds for simulations without
fluctuations and 4 seconds for simulations with fluctuations. The networks are qualitatively the
same.

henceforth.

12.3 Dependence on actin and CL concentration

Our conclusion that thermal fluctuations significantly accelerate the initial stage of the

bundling process is dependent on having a sufficient concentration of CLs. While ther-

mal fluctuations undoubtedly increase the frequency of fibers coming close enough together

for cross linking, the bundling process still must be initiated via binding of a CL. Conse-

quently, in this section we consider a range of values of mesh size (actin concentration) and

kon (CL attachment rate, which is proportional to CL concentration), to get a more complete

picture of how the critical bundling time τc depends on these parameters. In particular, we

will consider mesh sizes ℓm = 0.2 (F = 675, Ld = 3 µm), 0.4 (F = 400, Ld = 4 µm), and 0.8

µm (F = 338, Ld = 6 µm), and single-end binding rates kon = 1.25, 5 (the base value), and
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Figure 12.7: Comparing Brownian and non-Brownian filaments with a minimum of FB = 5
filaments per bundle. When we increase to FB = 5 filaments per bundle, we observe the same
characteristic growth and decay as with FB = 2 (Fig. 12.5), with the peak occurring three-fold
faster in simulations with Brownian dynamics and the later dynamics being accelerated by a factor
of about two (from a timescale of 60 s to 25 s). These confirm the qualitative (and quantitative)
conclusions from Fig. 12.5.

20 (µm·s)−1. By changing the rate at which a single CL end binds to a fiber, we effectively

vary the CL concentration.

Figure 12.8 shows the resulting evolution of the bundle density for the nine different

systems, as well as the resulting critical bundling time τc. For systems with large kon, where

binding is essentially instantaneous once filaments come close enough together, τc ≈ 3 s for

the small enough mesh sizes of ℓm = 0.2 and 0.4 µm. Once the mesh size increases to 0.8

µm, the bundling time increases, but only to about 4.5 s (see inset of Fig. 12.8). Thus τc

is not a strong function of mesh size for larger kon, which implies that the process for large

kon, where there is always sufficient cross-linker available for binding, is primarily limited by

cross-linking dynamics (alignment of filaments), with diffusion (across the mesh size) playing

only a secondary role.

Let us now consider the case of slower kon. In this case, filaments could come close enough

to link together, but diffuse away before a CL can actually bind them. As a result of this,
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Figure 12.8: Bundling time scales for a range of initial mesh sizes ℓm and binding rate kon. The
first three frames show the trajectory of the bundle density for the different mesh sizes, where blue

lines denote our base value of kon = k
(0)
on = 5 (µm·s)−1, red lines denote kon/k

(0)
on = 1/4, and yellow

lines kon/k
(0)
on = 4. The bottom right frame shows the dependence of the critical bundling time τc

on ℓm and kon.

322



Figure 12.9: Snapshots of the network at t = τc with initial mesh size ℓm = 0.4 µm (F = 400

filaments of length L = 1 in a domain of size Ld = 4) with kon/k
(0)
on = 1/4 (left, τc ≈ 17), kon/k

(0)
on = 1

(middle, τc ≈ 5), and kon/k
(0)
on = 4 (right, τc ≈ 2.5). A smaller kon (smaller CL concentration) gives

fewer but larger bundles at t = τc, as well as a smaller percentage of fibers in bundles.

the bundling process is slowed, and in fact the peak bundle density drops. Indeed, as shown

in Fig. 12.9, networks with smaller kon (lower CL concentration) contain larger bundles at

t = τc than those with larger kon (higher concentration). Upon reducing kon, two filaments

finding each other becomes the limiting step in the bundling process. This causes a slow

growth of the bundle curve, and a bias towards larger bundles, which build up at a faster

rate (relative to τc), and the process is rate-limited by two-filament bundle formation. The

scaling of τc at small kon (left column of the bottom right panel in Fig. 12.8) is reminiscent

of a diffusion-limited process, as it increases from 9 s to 17 s to 56 s as the mesh size doubles,

scaling approximately as ℓ2m as the mesh size increases. In some sense, diffusion is actually

a hindrance to bundling, since fibers that are close to each other diffuse away before a CL

can bind them together.

We note that a roughly constant bundling time can be achieved by decreasing kon as the

mesh size decreases (moving from the top right to the bottom left of the bottom right panel

in Fig. 12.8). This implies that the relative concentration of CL required for a particular

bundled state decreases with the mesh size, as has been found experimentally [206]. When

the mesh size is smaller, the filaments are in contact for longer, and so it is less important
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that a CL be available immediately to bind them together. By contrast, filaments in larger-

mesh-size systems are only in contact for a brief time, so relatively more CLs are necessary

to ensure that these filaments are linked when they come into contact with each other.

12.4 Faster bundling for shorter filaments

We will now explore the dependence of the critical bundling time τc on the fiber length. Ex-

perimentally, it has been shown that shorter filaments bundle faster [202, 209], but it is still

unclear whether this is due to thermal movements, cross-linking kinetics, or some combina-

tion of both. In this section, we show that the experimental results can only be reproduced

if we consider thermal movements, so that cross-linking kinetics are not responsible for the

speedup in bundling. We use a fixed mesh size of ℓm = 0.2 µm, which translates to F = 675

filaments of length L = 1 µm in a domain of size Ld = 3 µm, and F = 400 filaments of

length L = 0.5 µm in a domain of size Ld = 2 µm.

In Fig. 12.10, we show how the bundle density, percentage of fibers in bundles, and mean

bundle size evolve for the two different filament lengths both (a) without and (b) with actin

diffusion. In Fig. 12.10(a), we see that in the absence of Brownian motion the behavior in

the two systems is similar, with the peak bundle density occurring in both cases around

τc ≈ 15 seconds. Furthermore, there is only a mild difference in the percentage of fibers in

bundles over time. The mean bundle size is at most twice larger for the system with shorter

filaments, but we would expect this since the filaments are twice as short and there are twice

as many of them if ℓm is fixed.

In Section 12.2, we showed that Brownian motion speeds up the bundling process by

promoting mixing and more near-contacts of filaments. In particular, we saw that the time

for a filament with length L = 1 µm to diffuse a mesh size of ℓm = 0.2 µm is τm ≈ 0.30 s,

so that filaments can find each other rapidly and begin the bundling process. In the case of

filaments with L = 0.5 µm, our thermal diffusion coefficient (12.2) scales log-linearly with
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(a) No diffusion
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(b) With diffusion

Figure 12.10: Effect of changing filament length for rigid fibers with and without Brownian motion,
with constant initial mesh size ℓm = 0.2 µm. (a) Without fiber diffusion, we show the statistics for
filaments of length L = 0.5 µm (red) and L = 1 µm (blue), where we observe dynamics occurring
on a similar timescale, especially in the initial stage (t ≤ τc ≈ 20) of bundling. (b) When we add
fiber diffusion, the bundling process for L = 0.5 µm (red) is significantly faster than L = 1 µm
(blue), because filaments can diffuse faster.
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the fiber length, so that it takes τm = 0.17 s to diffuse a mesh size of ℓm = 0.2 µm. We

might expect, therefore, that at least the initial stages of the bundling process will be sped

up by a factor of 2.

Figure 12.10(b) shows that this is indeed the case. For ℓm = 0.2 µm, the bundle density

peak occurs around τc ≈ 2 seconds when L = 0.5 µm, while with L = 1 µm it occurs around

τc ≈ 4 seconds, so it appears that bundling time with thermal motion scales linearly with

filament length, which is in (approximate) accordance with the scaling of the translational

diffusion coefficient. The faster bundling behavior also manifests itself in the link density

and percentage of fibers in bundles, where we see that systems with shorter filaments reach

a number of links or percentage of fibers about twice as fast. For instance, 80% of the fibers

are in bundles by t ≈ 4 seconds in the L = 0.5 µm case, while with L = 1 µm the 80% mark

is not reached until about t ≈ 8 seconds.

12.5 Semiflexible fibers

So far, we included fluctuations by modeling the filaments as rigid, and made statements

about the role of thermal fluctuations in bundling dynamics for networks of rigid filaments1.

We now complete our investigation by studying the role of semiflexible fluctuations in the

bundling process.

We use the cross linking forces from (9.10), having verified that the smooth vs. nonsmooth

forcing assumption makes little difference in the overall bundling dynamics. These forces

at each time step become additional forces in the Langevin equation (8.12), so that at each

time step we solve (for each fiber independently)

∂tX = KNKT (−LX + F ext) + kBT∂X ·
(
KNKT

)
+
√

2kBTKN 1/2W . (12.3)

1The reason for this is that we actually published the study [C] on bundling in rigid fibers prior to
developing an integrator for semiflexible fibers in [F] (see p. 2 for references).
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by replacing −LXn with −LXn+F ext (X
n) on the right hand side of the saddle point solve

(8.33) (that is, we treat the spring forces explicitly in time).

The question we will examine is how the behavior changes as we increase ℓp/L, so we

will leave all parameters in Table 11.1 constant except the bending stiffness κ. This includes

kBT = 4.1×10−3 pN·µm, which corresponds to the thermal energy at room temperature. For

our spatial and temporal discretization, we use N = 12 and ∆t = 10−4 s over all simulations,

having verified that doubling the number of points and halving the time step size does not

change the results within statistical error. Our explicit treatment of the forces from the CLs,

whose base stiffness of Kc = 10 pN/µm is an order of magnitude estimate for the effective

stiffness of α-actinin [165, 209], limits the time step size. In particular, resolving the spring

dynamics automatically resolves the equilibrium statistical mechanics.2

12.5.1 Visualizing the bundling process

The same fundamental bundling process plays out in networks of semiflexible filaments, as

shown in Fig. 12.11, where we show snapshots of the bundling process at different time points

for three different orders of magnitude of ℓp/L (these plots show 200 filaments with Ld = 2).

The top plots (t = 1.5 s) correspond to initial stage of bundling, where there are many

bundles of a few filaments, while subsequent plots begin to show coalescence of the bundles.

There are a few takeaways here: first, we see that the bundle morphology looks qualitatively

different as we decrease ℓp/L, with smaller persistence length having more curved fibers

and therefore more curved bundles. Furthermore, the smaller persistence length bundles

agglomerate faster, and at a given time they appear more clumped (especially t = 6 s). It is

not clear, however, to what extent these differences in bending deformations are driven by

2If we convert the time step sizes from Fig. 8.5 to the units we use here, we need a time step size of
3× 10−3 s, 1.4× 10−3 s, and 1.2× 10−3 s to resolve the equilibrium fluctuations for ℓp/L = 1, 10, and 100,
respectively. All of these are at least an order of magnitude larger than that required to resolve the explicit
treatment of CLs.
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Figure 12.11: Snapshots of the bundling process in networks of varying fiber stiffness. Colored
fibers are actin filaments (colored by bundle), while black fibers are the cross linkers. The bundling
process is fastest for the most flexible fibers, where the final morphology shows curved bundles.
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CL forces vs. the thermal bending fluctuations.3 Indeed, we did show in Section 12.2 that

agglomeration (the second stage of the bundling process) happens faster for non-fluctuating

filaments that are less stiff, since they are able to be bent easier by the cross linkers. Thus

the main question here is whether semiflexible bending fluctuations themselves speed up (or

slow down) the bundling process, or whether CL forces dominate.

12.5.2 Quantifying the role of semiflexible bending fluctuations

To get at this question, we need to dissect the evolution of the actin filaments in a cross-

linked network into the three possible ways they can move: action by CL forces, thermal

rotation and translation (keeping the fiber shape fixed), and bending fluctuations. So far,

we studied the first two of these, showing in particular that deterministic filaments (those

that can only move by CL forces) behave the same as rigid ones when ℓp/L ∼ 10. In

this section, we can finally consider the full system, and how the third possible motion,

transverse bending fluctuations, impacts bundling. It will be important, however, to separate

these fluctuations from the rotational and translational diffusion that we have considered

previously. Since our temporal integrator in Section 8.2.3 does not distinguish between the

two kinds of fluctuations, for comparison we consider an alternative model where the only

fluctuations are translational and rotational diffusion, as if the fibers were rigid in their

current configuration. We consider a dynamics which takes the deterministic part from the

semiflexible Langevin equation (12.3), and the random part from the rigid fiber Langevin

equation (12.1)

∂tX = KNKT (−LX + F ext) +
√

2kBTKrN
1/2
r W . (12.4)

3A similar question was studied in [236] for microtubule networks, where the authors showed that large
nonthermal forces combine with polymerization dynamics to generate bent microtubule shapes in cells.
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Our rationale is that if such semiflexible rigid body motion (“SF-RBD”) simulations give the

same results as those with semiflexible bending fluctuations (“SF-Bend”), then bending fluc-

tuations are not important to the bundling process. Note however that the dynamics (12.4)

are problematic for stiffer fibers, since in that case the psuedo-inversion in the calculation

of N r =
(
KT

r M̃
−1
Kr

)†
involves singular values which are close to zero. We find that the

dynamics for SF-RBD filaments with ℓp/L = 100 are quite sensitive to the tolerance we use,

and so we do not report them here. We find it sufficient to only consider up to ℓp/L = 10,

for which we obtain dynamics that are not sensitive to the tolerance (see Fig. 12.12). For

ℓp/L = 100, fibers with semiflexible bending fluctuations behave almost identically to rigid

fibers (see Fig. 12.12), which we have already shown we can simulate without difficulty.

We begin by looking at the differences in bundling dynamics between semiflexible fila-

ments and the rigid filaments we considered in Fig. 12.3. This is actually the same test we

performed in Fig. 12.3, but this time we consider filament fluctuations in addition to CL

forces. The bundle density (number of bundles divided by periodic cell volume) and percent

of fibers in bundles over time are shown using darker colors in Fig. 12.12, where we consider

ℓp/L = 1, 10, and 100, and compare the results to the case when the fibers are actually rigid,

the dynamics of which are governed by the overdamped Ito Langevin equation (12.1).

We observe almost complete overlap between the trajectory for ℓp/L = 100 and that for

rigid fibers, (except for the bundle density curve at late times, which is when cross linkers

exert extremely large forces on the filaments). This is not a surprise given that we see bundles

of straight filaments when ℓp/L = 100 in Fig. 12.11, but it does showcase the ability of our

temporal integrator to remain accurate in the stiff limit, in contrast to that for SF-RBD

filaments. Dropping to ℓp/L = 10, the pictures in Fig. 12.11 show curved bundles, and the

plots in Fig. 12.12 for ℓp/L = 10 show significant deviations from rigid fibers, especially

in the later stages of bundling. The curves for ℓp/L = 1 do not even match rigid fibers

at early times, which indicates that the semiflexible fluctuations impact the first stage of
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Figure 12.12: Quantifying the dynamics of bundling in semiflexible fiber networks, and determining
the role of bending fluctuations. We use the bundle density (left, number of bundles per unit
volume) and percent of fibers in bundles (right) as metrics for bundling dynamics. We compare the
semiflexible filaments with ℓp/L = 1 (blue), ℓp/L = 10 (red), and ℓp/L = 100 (green) to the rigid
filament networks we have been studying (black), finding that ℓp/L = 100 is “stiff enough” to be
rigid. We then separate the effect of bending fluctuations from CL forces and rigid body diffusion
by comparing our semiflexible filament simulations (SF-Bend) to filaments which only fluctuate by
rigidly rotating and translating (SF-RBD, lighter colors, see text for details). The CL forces and
rigid body fluctuations are sufficient to account for the speed-up in bundling when ℓp/L = 10, but
not when ℓp/L = 1.

bundle formation, in contrast to larger persistence lengths where the fluctuations appear to

only accelerate later stages of bundle agglomeration. Since filaments are weakly cross-linked

at early times, these results suggest that semiflexible bending fluctuations are accelerating

the bundling process when ℓp/L ∼ 1. For ℓp/L ≳ 10, the deviations from rigid fibers come

only when the fibers are strongly cross linked, suggesting that CL forces combine with fiber

flexibility to accelerate bundling.

To make this statement more precise, we compare simulations with (SF-Bend) and with-

out (SF-RBD) thermal bending forces using lighter colors in Fig. 12.12. When ℓp/L = 10, we

see identical dynamics between SF-Bend and SF-RBD filaments, which means that bending

fluctuations contribute minimally to the bundling process for ℓp/L ≥ 10, and demonstrates

that the curvature of the bundles we see in Fig. 12.11 when ℓp/L = 10 is indeed driven pri-
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marily by cross linking forces. When ℓp/L = 1, by contrast, we see faster bundling dynamics

with SF-Bend filaments than with SF-RBD filaments, and we also see bundles in Fig. 12.11

that appear to have wavy spatial shapes. This implies that thermal bending fluctuations

can accelerate bundling both in the initial and later stages, but only when the persistence

length is comparable to the contour length of the fiber, in which case the transverse fluctua-

tions effectively increase the probability that a CL (which can only stretch a finite amount)

can bind two filaments. However, since actin filaments have persistence length on the order

10–20 µm [18], we can conclude that the bundling dynamics of filaments with length 1–2 µm

are not significantly impacted by semiflexible bending fluctuations.

12.6 Influence of steric interactions

We now include steric interactions using the formulation in Section 9.2. We will simulate

bundling of 200 fibers of length L = 1 µm and persistence length ℓp = 2 µm in a periodic

box of size Ld = 2 µm, and run bundling dynamics with various values of the time step.

Because the fibers are not too slender, ϵ = 0.004, our choice is to use a global upsampling

scheme with 1/ϵ points per fiber.

Figure 12.13 shows three sets of snapshots of the bundled networks at times (from left to

right) t = 2, 4, and 8 seconds. The top row is a simulation without steric interactions, where

we see lots of overlaps between the fibers (shown in black, and defined by oversampling the

Chebyshev polynomials to 1/ϵ points and looking for pairs of points 2a or less apart). In the

middle row, we include sterics without changing the time step from the cross-linking limited

∆t = 10−4. This results in a trajectory which looks okay at early times, but has overlaps at

later times, and eventually looks completely unreasonable (see the soup of fibers at t = 8).

Decreasing the time step to ∆t = 2 × 10−5 gives nicer results: we see fibers which have a

limited number of overlaps, and which form bundles. The main difference we see between

the no sterics and converged sterics simulation is the spacing in the bundles: there is clearly
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Figure 12.13: Snapshots of the bundling process at t = 2 (left), 4 (middle), and 8 seconds (right),
with different models of steric interactions. Top row: no sterics. Middle row: sterics with ∆t =
10−4. Bottom row: sterics with ∆t = 2 × 10−5. Fiber overlaps are identified by oversampling the
Chebyshev polynomials to 1/ϵ points and looking for pairs of points 2a or less apart, and shown
using black circles.
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more space between the fibers in bundles when we include steric interactions. The amount

of spacing is a function of our imposed sterics model, which is itself a soft approximation of

a rigid interaction potential, so it is not necessarily the “truth.” The simulation with sterics

also appears to be slightly behind (less bundles at a given time) the simulation without

sterics, which is not a surprise since it has been previously speculated that sterics would

slow down the initial parts bundling process [218, Note 23], with fibers being held apart at

later times by cross linkers.

We now take our qualitative analysis a step further and look at the statistics of the

bundling process with and without steric interactions in Fig. 12.14. Our first observation is

that, in the first 2 or so seconds, all simulations with steric interactions give essentially the

same dynamics. Furthermore, those dynamics are slower than the dynamics without sterics,

which is expected from the pictures in Fig. 12.13. However, the fundamental trajectory of

the curves does not change. The most noteworthy change with steric interactions is the

displacement of the fibers at later times, which drops by about 10% when steric interactions

are included (and the time step is small enough for trajectories to be converged; for ∆t =

5× 10−5 we see larger displacements at later times which comes from the explicit treatment

of sterics with a time step size that is too large). The 10% figure is actually quite small, and

suggests that the “kinetic arrest” of bundled filaments reported in [210] is driven primarily

by cross linking and not sterics.

In Fig. 12.15, we conclude by looking at the number of contacts over time between the

1/ϵ = 250 uniform points on the filaments (this is the mean across 5 simulations). Here we

normalize by the number of contacts without sterics, so that we can look at the reduction

when sterics is included. As would be obviously expected, the number of contacts drops as

the time step decreases. For the two time step sizes for which we see convergence of the

statistics in Fig. 12.14 (yellow and purple), the number of contacts is reduced to 1− 2% of

the number of contacts without sterics. This ought to be acceptable for our purposes, since
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Figure 12.14: Bundling statistics without steric interactions (blue, ∆t = 10−4) and with steric
interactions (red, ∆t = 5×10−5, yellow, ∆t = 2×10−5, and purple ∆t = 10−5). We plot our typical
statistics (link density, bundle density, percent of fibers in bundles, and mean bundle alignment),
and then plot the mean and maximum displacement over a time of 0.02. These plots show that
the code with steric interactions converges (to within statistical error bars for ∆t ≤ 2× 10−5) to a
bundling trajectory that is slightly slower than that without.
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Figure 12.15: The number of contacts between the 250 uniform points on each fiber in simulations
with various time step sizes (red, ∆t = 5 × 10−5, yellow, ∆t = 2 × 10−5, and purple ∆t = 10−5).
Here a contact is defined as two uniform points coming within a fiber diameter of each other. When
the time step size is small enough, there are very few contacts (purple), while when it is too large
the number of contacts grows in time.

with Brownian motion we still expect to see some contacts, as our steric potential is finite

and not a hard-core potential.

12.7 Bundling, turnover times, and the steady state

Because we define the bundle density in terms of bundles of an arbitrary number of filaments

(FB = 2), the precise value of the timescale τc that we obtain is also somewhat arbitrary.

However, if we increase the number of filaments required for a bundle to FB = 5, Fig.

12.7 shows that the peak in the bundle density occurs about a factor of 2 later in both

Brownian and non-Brownian filament simulations. We therefore postulate that the ratio

τ
(A)
c /τ

(B)
c between systems A and B is a meaningful quantity, approximately independent of

the definition of τc, and can be used to predict the steady state morphology in systems with

fiber turnover.
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Figure 12.16: Steady state morphologies for systems with turnover. We introduce filament turnover
with mean filament lifetime τf and observe the steady state bundle density (left) and percentage of
fibers in bundles (right) for τf/τc = 1/2 (black), 1 (green), and 2 (red). Note that using a constant

τf/τc in the two systems ensures τ
(B)
f /τ

(NB)
f = τ

(B)
c /τ

(NB)
c . Using both non-Brownian (lighter colors,

τc ≈ 16 s) and Brownian (darker colors, τc ≈ 4 s) filaments, we show that the steady state bundling
statistics are roughly the same when τf/τc is matched.

To test this, we introduce filament turnover with mean filament lifetime τf and fix τf

as a function of τc, so that the ratio of the turnover times equals the ratio of the bundling

times between the Brownian (B) and non-Brownian (NB) cases, τ
(B)
f /τ

(NB)
f = τ

(B)
c /τ

(NB)
c , or,

equivalently, τ
(NB)
f /τ

(NB)
c = τ

(B)
f /τ

(B)
c . In Fig. 12.16 we vary the ratio τf/τc between 0.5 and

2 and plot the bundle density and percentage of fibers in bundles as they evolve to a steady

state in each case. Despite the system of Brownian filaments having much faster bundling

dynamics than the system of non-Brownian filaments, the morphology of the steady state

is the same in the Brownian and non-Brownian cases, as is shown in the snapshots of Fig.

12.17. We will make us of this in the next chapter, where we choose a ratio τf/τc, generate a

steady state, and perform rheological measurements on the steady states to determine how

the mechanical properties change with morphology.
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Figure 12.17: Steady states with fiber turnover for (top to bottom) τf = τc/2, τf = τc, and
τf = 2τc for a system with Ld = 2 and ℓm = 0.2. The left column is for non-Brownian fibers
(τc = 16 seconds) and the right column is for Brownian ones (τc = 4 seconds).
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Chapter 13

Rheology of transiently cross-linked

actin networks

Despite, and maybe even because of, the large volume of experimental and theoretical studies

on cross-linked actin gel mechanics, a number of questions about the rheology of cross-linked

networks still remain open. We focus on three of them: What role does the morphology of

the network play in the mechanical response? Could there be a significant contribution from

nonlocal hydrodynamic interactions? And can we inform a simple and practical spring-and-

dashpot model by detailed microscopic simulations?

This chapter is built around answering these questions in deterministic suspensions (no

Brownian motion). Since previous experimental and modeling studies show that the me-

chanical behavior of actin networks is most affected by the presence of short, stiff CLs which

induce morphological changes in the network, we will focus our analysis on CLs with spring

stiffness 10 pN/µm and a 50 nm rest length, thereby mimicking α-actinin. We show that

changing the turnover time τf with all other parameters fixed gives two model systems: an

isotropically cross-linked network, or homogeneous meshwork, and a composite network of

bundles embedded in the meshwork (here we follow the classification scheme of [203]). Unlike

previous simulation studies [166, 218], the networks that we consider here are in a dynamic
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steady state, which allows us to precisely quantify their steady-state mechanical properties.

In particular, we use small amplitude oscillatory shear (SAOS) rheology over a range of

biologically-relevant frequencies (0.01 Hz to 100 Hz)1 to show that the networks have three

characteristic timescales on which the links go from rigid to flexible, permanent to dynamic,

and viscoelastic to purely viscous. It is on this last timescale that remodeling of the network

occurs.

This chapter is, to our knowledge, the first to incorporate many-body hydrodynamic

interactions (HIs) in the study of transiently cross-linked actin networks. Here we find

results that depend on the timescale under consideration. At high frequency, we show that

the viscous modulus scales linearly with ω, and that accounting for nonlocal hydrodynamics

simply changes this coefficient by a fixed percentage. This seemingly uninteresting regime

still requires more analysis, however, since thermal fluctuations (Brownian motion), which are

not included here, are expected to contribute significantly for high frequencies. In contrast, at

low frequency, we show that nonlocal hydrodynamic interactions lead to a significant decrease

in the moduli for structures with a significant degree of bundling, and that the decrease can

be explained by the disturbance flows inside a bundle. We conclude this chapter by using

our knowledge of the timescales and role of nonlocal hydrodynamic interactions to suggest

coarse-grained continuum models for the transiently cross-linked actin gel.

13.1 Permanent cross linkers

Before understanding the dynamics of transiently linked networks, it will be useful to look

at the viscous and elastic moduli for a network of F = 700 fibers and 8400 CLs. In this

section only, we use a slightly different set of parameters. We set the fiber length L = 2 µm

1“Biologically relevant” timescales are from ∼0.1 sec (the fastest relevant microscopic changes in the
network structure, like unbinding of a CL [186]) to tens of seconds (turnover time, [237, 238]). The motility
and division cycles for fast cells are on the scale of minutes (hundreds of seconds) [11]. Because of this, in
vivo rheological experiments often focus on the range from 0.1 to 100 s [186] − we follow their example.
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with aspect ratio ϵ = 10−3 and bending stiffness κ = 0.01 pN · µm2, and use a box of size

Ld = 4 µm. For the fluid viscosity, we use µ = 1 Pa·s. The CLs have rest length ℓ = 0.5

µm and spring constant Kc = 1 pN/µm. In order to avoid transient behavior, we first find a

steady state configuration of the network by initializing straight fibers with CLs and running

the system forward in time using local drag and ∆t = 0.005 s without any background flow.

After t = 2500 seconds, the maximum L2 norm of the fiber velocity is approximately 4×10−6

µm/s, which indicates a near steady state.

In order to measure the steady state viscous and elastic moduli, we must wait for some

intrinsic time on which the network reaches a new steady state in the shear flow. This relax-

ation time scale, which we denote by τr, combines the cross-linker and fiber relaxation time

scales. For cross-linkers, a characteristic time scale of link relaxation is τCL = µℓ/Kc = 0.5

seconds for our parameters. For fibers, we assume that the network is sufficiently constrained

that the length scale on which the fibers can relax is the mesh size ℓm ∼
√
L3
d/(FL) ≈ 0.21,

or characteristic distance between filaments.2 Thus a characteristic time scale of fiber relax-

ation is τF = µℓ4m/κ ≈ 0.2 seconds, and our expectation is for τr to be on the order 0.1− 1

second.

To measure the time scale τr more precisely, we start with the steady state configurations,

turn on a shear flow (7.50) with ω = 0.2π rad/s and γ̇0 = 0.02π 1/s, and run for one cycle

(until T = 10 seconds) with ∆t = 0.005 s. We then turn off the shear flow and measure the

velocity of the fibers for another 5 seconds. We track the mean L2 fiber velocity, given by

v̄(t) =
1

F

F∑

i=1

v(i)(t), where (13.1)

v(i)(t) =

(
N∑

p=1

∥∥∥X(i)
p (t)−X(i)

p (t+ 0.05)
∥∥∥
2

wp

)1/2

,

2Another possibility is to assume that the fiber relaxation length scale is governed by the distance between
two CLs on each fiber. Since there are an average of 24 CL connections on each fiber (12F CLs, each of
which binds to 2 fibers), this gives a distance ℓc = 2/24 ≈ 0.08µm, and a time scale µℓ4c/κ of about 0.005
seconds, which is much faster than that measured in our numerical experiments.
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Figure 13.1: Decay of the mean fiber velocity to a steady state after being sheared for one cycle
with ω = 0.2π (permanent cross linkers). We plot the mean fiber velocity, given by (13.1) and
normalized by v̄(t = 0), over five seconds and compare the result to the double-exponential fit
0.64e−t/0.36 + 0.36e−t/2.39 to estimate the network relaxation time scale τr.

and normalize by v̄(0) to obtain the exponential-like decay shown in Fig. 13.1. The time

scale of relaxation to steady state is τr ≈ 0.5 − 2 s, with the best fit being a sum of two

exponentials τ1 = 0.4 s and τ2 = 2.4 s. These relaxation time scales are in line with our

physical estimates of τF = 0.2 s and τCL = 0.5 s.

Thus in order to measure the steady state moduli, we wait one second or one cycle

(whichever is longer) prior to measuring the stress (and moduli) over three cycles of shear

flow. We use a maximum strain γ0 = γ̇0/ω = 0.1 to stay in the linear regime (data not

shown), and we give frequencies in Hz. To initialize for a given ω, we use the final network

configuration from the previous (next smallest) frequency. A sample configuration of the

fibers in the network, taken with ω = 1 Hz at the point of maximum strain, is shown in

Fig. 13.2. Because the CLs are permanent here, they do not have the chance to thermally

ratchet the fibers into bundles, and so the network architecture is relatively homogeneous.

Figure 13.3(a) shows the steady-state elastic and viscous moduli when the dynamics of

the network are computed with fully nonlocal hydrodynamics. Figure 13.3(a) also shows
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Figure 13.2: Steady state fiber configurations for the network of 700 fibers and 8400 CLs with
ω = 1 Hz and g = 0.1. We show (left) a three-dimensional snapshot of all the fibers in the unit
cell, (middle) a view along the z axis, and (right) a snapshot of all the fibers (white/blue) and links
(black) bound to a single fiber (orange) located near the center of the simulation cell.
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(b) Changes in moduli without hydrodynamics

Figure 13.3: Elastic and viscous moduli for a permanently cross-linked network of 700 fibers and
8400 CLs. (a) Values of the elastic modulus G′ (blue circles) and viscous modulus G′′ (orange

squares, this excludes the piece due to the background fluid stress σ
(µ)
21 defined in (11.6)) for a

gel of 700 fibers and 8400 CLs. We use fully nonlocal hydrodynamics to compute the dynamics
and moduli. We show the contribution of the CL stress (11.9) to the moduli as dotted lines. (b)
Fraction of G′ (blue circles) and G′′ (orange squares) that can be recovered when the dynamics are
computed using local drag (solid lines) and short-ranged hydrodynamics only (i.e., only intra-fiber
but no inter-fiber hydrodynamics). We also show the scaling of the stress for a single fiber in a
shear flow as a dotted orange line.
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separately the contribution to the moduli of the CL stress (11.9), which is 5 − 10 times

more elastic than viscous. There is a clear transition in both of the moduli for ω ≈ 0.5− 1

Hz which can be understood using the characteristic time scales in the problem. Since the

characteristic relaxation time scale τr ≈ 0.5− 2 s, the behavior of the moduli can be divided

into three regimes: low frequency (background flow time scale τω ≫ τr), medium frequency

(τω ≈ τr), and high frequency (τω ≪ τr), where τω = ω−1.

1. In the low frequency regime (ω < 0.1 Hz), τω is the longest time scale and the system

is in a constant quasi-static state. If the frequency is small enough, the network has

the opportunity to relax at every instant, and it therefore behaves more like an elastic

solid where the links constrain the network. As in an elastic solid, the elastic modulus

is unchanged with frequency and changes very little (less than 10%, as shown in Fig.

13.3(b)) when nonlocal hydrodynamics is dropped. In this regime, the viscous modulus

scales like G′′ = ω0.59; the reason for this particular scaling is not obvious to us.

2. In the mid frequency regime (0.1 ≤ ω ≤ 1), fibers and CLs can deform and relax on the

time scale of the background flow and the dynamics involve both an elastic and viscous

response. In this regime, G′′ ≈ G′, as shown in Fig. 13.3(a), and the change in the

elastic modulus G′ due to both changes in frequency (Fig. 13.3(a)) and the inclusion

of hydrodynamics (Fig. 13.3(b)) is maximal.

3. In the high frequency regime (ω > 1), the background flow dominates the dynamics,

the network is essentially fixed on the time scale of the shear flow, and it oscillates back

and forth as a viscous fluid would. Figure 13.3(a) shows that for ω ≫ 1/τr, the viscous

modulus scales linearly with ω, as would happen for a pure viscous fluid. In this regime,

the viscous modulus decreases by as much as 25% when nonlocal hydrodynamics is not

included, with higher frequencies giving larger decreases. The larger the frequency, the

farther the network is from its quasi steady-state and the more important dynamics
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are for determining the viscous modulus.

Generally speaking, the changes in the viscous modulus when hydrodynamics is switched

off are attributable to a reduction in stress on each fiber individually. The changes in the

viscous modulus at most frequencies can in fact be explained by considering an isolated

straight fiber that makes an angle θ with the x axis, τ (s) = (cos θ, sin θ, 0). We put a

background shear flow on the fiber u0(x, y, z) = (y, 0, 0) and compute the resulting constraint

force density λ on the fiber using both local drag and nonlocal hydrodynamics. Averaging

over θ, we obtain a mean difference in the corresponding stress of ∼ 17%, which is plotted

as a dotted line in Fig. 13.3(b), and matches the change in the network’s viscous modulus

when nonlocal hydrodynamics is dropped, except at the largest frequencies. This implies

that the change in the network’s viscous modulus comes primarily from an increase in the

stress on each fiber individually when the intra-fiber, but not necessarily inter-fiber, nonlocal

hydrodynamics is included in the mobility calculation. We confirm this in Fig. 13.4, which

shows that including nonlocal hydrodynamics causes the magnitude of the constraint forces

λ on the fibers in the network to increase without changing their positions substantially.

While Fig. 13.3(b) shows that there is a change in the viscous modulus of as much as 25%

when the dynamics are computed by local drag, it also shows that including short-ranged

hydrodynamics only, i.e., including intra-fiber but not inter-fiber hydrodynamics, gives a

viscous modulus that is at least 90% of the one computed with inter-fiber hydrodynamics.

The changes in the elastic modulus when nonlocal hydrodynamics is dropped are smaller

(at most 10%), but not explainable simply by adding only intra-fiber hydrodynamics. In-

deed, for ω = 0.5, when the change in the elastic modulus due to hydrodynamics is near

maximal, we find that the short-ranged intra-fiber hydrodynamics explains only one third

of the change, with the rest coming from inter-fiber hydrodynamics. Physically, the elastic

modulus is related to the interactions of the fibers with CLs, and the network is sufficiently

connected that the CLs transmit stress across multiple links in the network, and so long-
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Figure 13.4: Subset of fibers inside the unit cell, colored by the L2 norm of the constraint forces
λ(i) for ω = 1 Hz at t = 3.5 s (g = 0). Normalization is the maximum L2 norm of λ(i) in the
system, which is on the fiber indicated by the arrow. We show the case of local drag at left and
nonlocal hydrodynamics at right, noting that the inclusion of nonlocal hydrodynamics increases
the norm of the constraint forces (which is the dominant cause of the increase in stress), without
changing the fiber positions significantly.

ranged hydrodynamics plays a role.

Our main findings for permanent networks can be summarized as follows: there exists one

critical time scale τr, which is on the order of a second for our parameters. On time scales

longer than τr, the CLs are constantly in a steady state, as they would be in an elastic solid,

and the network is more elastic than viscous (G′ > G′′). On time scales shorter than τr, the

network does not have time to respond to (penalize) strain deformations, and the network is

more viscous than elastic (G′′ > G′). On time scales comparable to τr, the network is equally

viscous and elastic. The more viscous the network behavior and the farther the network is

from a quasi-steady state, the more nonlocal hydrodynamics impacts the moduli. Indeed, if a

modulus G′ or G′′ changes substantially with changes in frequency, then we expect dynamics,

including whether they are computed with nonlocal or local hydrodynamics, to matter.

Interestingly, we find that intra-fiber nonlocal hydrodynamics dominates the contributions
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System τf (s) Varied params C̄ B̄ (µm−3) % in B
Meshwork 5 − 5.8 1.0 8.5

Meshwork, κ/10 5 κ = 0.007 5.6 0.93 8.1
B-In-M 10 − 12.5 2.2 23

B-In-M, 2k 5.7
kon = 10, kon,s = 100,

koff = koff,s = 2
12.5 2.1 21

B-In-M, 10µ 16 µ = 1 12.2 1.8 17

Table 13.1: Description of the systems we consider with transient CLs and their respective com-
puted mean link and bundle densities. These data are from rheology simulations using ω = 1. Here
C̄ is the average number of links attached to each fiber, B̄ is the bundle density in bundles per
µm3, and “% in B” is the percentage of the fibers that are in a bundle in the dynamic steady state.

of nonlocal hydrodynamics to the viscous, but not the elastic, modulus.

In the next section, we will see how the fundamental system timescales change when the

cross linkers are transient (new timescale = rate of breaking) and the fibers are turning over

(new timescale = polymerization rate). Our expectation is that there will be at least three

timescales in this new system, which we will see is roughly the case.

13.2 Steady states with transient CLs

We first show that varying the turnover time τf of the F fibers creates a set of dynamic steady

states with varying degrees of bundling. We also verify that the statistics are independent

of the system size by considering three possible cubic periodic unit cells of different edge

length Ld, all with the same mesh size (computed assuming that the fibers are distributed

isotropically) ℓm =
√
L3
d/(FL) ≈ 0.2 µm. The fibers have length L = 1 µm throughout,

so we will consider domains of size Ld = 2 µm (F = 200 fibers), Ld = 3 µm (F = 675

fibers), and Ld = 4 µm (F = 1600 fibers). We will show that simulations of a homogeneous

meshwork (τf = 5 seconds) are suitably carried out in the smallest of the three systems,

while runs where bundling is more considerable require the next-largest system (Ld = 3

µm).

347



(a) τf = 5 seconds (b) τf = 10 seconds

Figure 13.5: The actin gel for (a) τf = 5 seconds and (b) τf = 10 seconds, both shown on a domain
with edge length Ld = 3 µm. Fibers in the same bundle are colored with the same color. In (a),
we observe a more homogeneous mesh. In this case, we use Ld = 2 µm in most simulations. In (b),
we observe multiple bundles embedded into a mesh, and we use Ld = 3 µm in most simulations.

13.2.1 Homogeneous meshwork morphology

Beginning with turnover time τf = 5 s, we perform a steady state run to 10τf = 50 s using

the three domain sizes. As shown in Fig. 13.5(a), the network is made primarily of fibers

oriented isotropically (as can be verified by computing an order parameter of the type [211,

Eq. (21)]), with a few bundles of at most two to three aligned fibers. We quantify this more

precisely in Table 13.1, where we see that there is on average one bundle per µm3, and that

less than 10% of the fibers are in bundles. Because there are only a small number of bundles

and no permanent structures over long timescales in this system, we classify this system as a

homogeneous meshwork. We will report results for it using a domain size of Ld = 2 µm (we

have verified that using Ld = 3 µm does not change the results significantly; see Fig. 13.6).
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Figure 13.6: Number of links per fiber (top left), bundle density (top right, number of bundles /
L3
d), % of fibers in bundles (bottom left), and maximum bundle size (bottom right) for simulations

from an initialized isotropic state with to the dynamic steady state for τf = 5 seconds using three
different system sizes: Ld = 2 (200 fibers, blue), Ld = 3 (675 fibers, red), and Ld = 4 (1600 fibers,
yellow). Error bars are two standard errors over five trials.

13.2.2 Bundles embedded in meshwork morphology (B-In-M)

In Fig. 13.5(b), we show snapshots from the dynamic steady state with a (doubled) turnover

time of τf = 10 s. We observe significantly more bundling and fiber alignment, as well as

bundles with several (four to six) fibers in them. In Table 13.1, we see that the steady-state

link density has more than doubled from the 5 s turnover case, and that the percentage of

fibers in bundles has gone from about 10% for τf = 5 s to 25% for τf = 10 s. The fluctuations

of link density in the smaller system (Ld = 2) are quite large (about 20%, see Fig. 13.7),

which makes averaging too inaccurate. For this reason, for τf = 10 seconds we run a larger

system with Ld = 3 µm, which we show in Fig. 13.5(b). We use the Ld = 4 system with

1600 fibers to verify that the finite system size has little effect; see, for example, Table 13.2.

Because this system has a significant number, but not more than half, of the fibers in

bundles, and because the maximum bundle size is still at most ten fibers, we refer to this
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Figure 13.7: Number of links per fiber (top left), bundle density (top right, number of bundles /
L3
d), % of fibers in bundles (bottom left), and maximum bundle size (bottom right) for simulations

from an initialized isotropic state with to the dynamic steady state for τf = 10 seconds using three
different system sizes: Ld = 2 (200 fibers, blue), Ld = 3 (675 fibers, red), and Ld = 4 (1600 fibers,
yellow). Error bars are two standard errors over five trials.
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system as a bundles embedded in meshwork (B-In-M) morphology, where there are small

bundles of a few fibers embedded in an otherwise homogeneous mesh.

13.2.3 Other systems (parameter variations)

In addition to varying the morphology through the turnover time, we also look at systems

with the same morphologies, but different microscopic parameters. Table 13.1 gives our

description of these systems. For a homogeneous meshwork, we consider τf = 5 s again,

but this time with ten times smaller bending stiffness, so that κ = 0.007 pN·µm2. Table

13.1 shows that the morphology in this case is the same as the homogeneous meshwork with

κ = 0.07 pN·µm2, so changing the bending stiffness has a minimal impact on the morphology.

Indeed, the fibers remain relatively straight even with the smaller bending stiffness (see Fig.

13.8), just as they are straight in both the B-In-M and homogeneous meshwork systems in

Fig. 13.5. This implies that the degree of cross-linking/network connectedness is insufficient

to induce filament bending, even in B-In-M geometries. The reason for this is the fibers that

are heavily cross linked are in parallel bundles, and the other fibers have so few cross linkers

attached that bending is not energetically favorable.

We also consider B-In-M systems with larger viscosity, µ = 1 Pa·s instead of 0.1, and

another system where we double the rates of link binding and unbinding. Table 13.1 shows

how we vary the turnover time in these systems to obtain a B-In-M morphology. When

the viscosity is increased by a factor of 10, we only need to increase the turnover time by a

factor of 1.5 to obtain a similar morphology (match C̄ as closely as possible). Meanwhile,

doubling the rates forces us to cut the turnover time almost in half to obtain the same

morphology. This provides our first indication that the morphology, or the timescale on

which the network organizes itself into bundles, is strongly dependent on the link binding and

unbinding rates and weakly dependent on the underlying fluid viscosity. This combination of

behavior suggests we are operating in a regime where the CLs are attached for long enough
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Figure 13.8: Side (left) and top (right) view of the homogeneous meshwork with κ = 0.007 pN·µm2,
which is 1/10 of the stiffness of actin. Despite the smaller bending stiffness, the fibers still appear
relatively straight, with the exception of some of the fibers in bundles.

to move the fibers into a quasi-steady state (since using twice the link turnover rate speeds

up the process by a factor of two and making the dynamics slower by changing viscosity has

little effect).

13.2.4 The linear response regime (LRR)

Our goal for the rheology experiments is to measure the shear moduli of the network in its

dynamic steady state, and in the linear response regime (LRR). In this section we briefly

demonstrate how to find the LRR and what happens when we go beyond it, using the B-In-M

geometry as an example.

Table 13.2 shows the steady state statistics and mean viscoelastic moduli for the B-In-

M system with varying strains γ. In Table 13.2 and throughout this paper, we report the

viscous modulus G′′ without the contribution from the viscosity of the Newtonian solvent

G′′
bkgrnd = 2πωµ. We observe from the table that the LRR is γ ≲ 0.05, since using γ > 0.05

leads to significantly larger moduli. In particular, Table 13.2 shows that larger strains of

γ ≥ 0.10 induce higher bundle densities and the formation of more links. Furthermore, the
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Ld (µm) γ C̄ B̄ (µm−3) % in B G′ (Pa) G′′ (Pa)
3 0 12.6 2.3 24.1
3 0.01 12.5 2.2 23.2 0.37 0.64
3 0.025 12.5 2.2 23.5 0.36 0.63
3 0.05 12.8 2.2 23.9 0.39 0.67
3 0.10 13.2 2.3 25.1 0.52 0.77
3 0.15 13.9 2.4 26.6 0.79 0.96
3 ± 0.4 0.1 0.8 0.04 0.03
4 0.025 12.7 2.2 23.8 0.37 0.66
4 0.05 12.8 2.2 24.0 0.42 0.70
4 ± 0.1 0.1 0.5 0.02 0.02

Table 13.2: Network structure statistics for the runs over 120 seconds for the B-In-M network with
ω = 1 Hz. We give the mean for each statistic, with uncertainties on the measurements (± row)
equal to two standard deviations across five trials. The uncertainties in the viscoelastic moduli for
γ = 0.15 are larger, G′ = 0.79 ± 0.09 Pa and G′′ = 0.96 ± 0.12 Pa. The comparable values of the
statistics and moduli for Ld = 3 µm and Ld = 4 µm demonstrate that the finite-size errors are
smaller than the statistical errors.

links that do form in the larger-strain systems are themselves more strained, as the mean

square link strain at γ = 0.1 and γ = 0.15 is 10% and 25% higher, respectively, than in the

linear regime. The combination of these two factors gives large increases in the moduli when

we reach the nonlinear regime. The viscoelastic moduli for larger strains are also subject to

significantly larger uncertainties (e.g., the uncertainity for γ = 0.15 is at least double the

uncertainity for γ = 0.1). The larger uncertainties come from fluctuations in the underlying

microsctructure, as the fluctuations in the link density increase by 50% from γ = 0.01 to

γ = 0.15.

Another way we can confirm that we are in the LRR is by looking at the Fourier spectrum

of the stress. Specifically, we will write the stress as

σ(t) =
∞∑

k=−∞

σ̂(k)e2πikωt (13.2)

and use the discrete Fourier transform to look at the amplitude of the coefficients σ̂(k) for

various γ. In Fig. 13.9, we show the spectrum |σ̂(k)| for integer values of k with τf = 10
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Figure 13.9: Spectrum of the stress for the B-In-M network. The coefficients σ̂(k) are defined in
(18) in the main text. We consider various maximum strain values γ = 0.01 (green), 0.025 (purple),
0.05 (yellow), 0.1 (orange), and 0.15 (blue). We see the emergence of a k = 3 nonlinear harmonic
for larger strains, suggesting a nonlinear response.

s, where we observe a peak at the obvious location of k = 1. It is the emergence of higher

harmonics for larger strains, however, that tells when we leave the LRR. From Fig. 13.9,

we see that γ = 0.1 is definitely not in the linear regime for the B-In-M geometry, since it

has a k = 3 Fourier coefficient that is only about ten times smaller than the one for k = 1.

Increasing γ to 0.15, we see an even stronger response from the k = 3 harmonic, and the

emergence of the k = 2 harmonic as well.

13.2.5 Timescales of stress relaxation

We first seek to gain some understanding of the timescales in the system with a stress

relaxation test, snapshots from which are shown in Fig. 13.10. We simulate for 0.25 seconds

using ω = 1 Hz, so that the system ends at its maximum strain γ (the results are largely

independent of both the strain and shear rate used to obtain it). In Fig. 13.11, we show the

decay of the stress, with t = 0 denoting the point at which the system reaches the maximum

strain. In addition to our dynamic network geometries, for which we average over 30 trials,
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we consider permanently linked, interconnected networks of the type considered in Section

13.1, where C̄ = 25 ensures the network is well above the rigidity percolation threshold (over

95% of the fibers are in one connected component, where two fibers are connected if they

are linked by at least one CL). These networks, for which we do not include fiber turnover,

give smoother stress profiles, and so we only average over 5 trials.

Figure 13.11 gives us two pieces of information that are important for our analysis going

forward. First, we observe that statically-linked networks can store elastic energy, since

g0 := σ21(t → ∞) > 0, while all of the energy dissipates in transiently-linked networks.

Second, both permanent and dynamic networks have multiple relaxation timescales, as most

of the stress (≈ 80% for dynamic networks) relaxes over the first 0.2 s or so, with the

remaining part taking seconds to relax. In Fig. 13.11, we show a two-timescale decay curve

that approximately, but not exactly, matches the decay of the stress in both statically- and

transiently-linked networks. Given that one of the time constants is on the order 0.1 s and

the other is on the order 1 s, Fig. 13.11 demonstrates that both slow and fast timescales exist

in cross-linked networks. Our rheological experiments will give more precise estimates for

the individual timescales, but it is worth noting that the dissipation of all of the stress over

a O(1s) timescale implies that the longest timescale in the system cannot be much longer

than five seconds. This is not surprising since the filament turnover time is of this order,

but is in sharp contrast to modeling studies without turnover, where stress takes hundreds

of seconds to dissipate [218, Fig. 4(a)].

One observation we can make from Fig. 13.11 is that the long-time behavior is similar

for all dynamic networks, so the long timescale behavior is roughly independent of viscosity.

We made this latter observation once before when we saw that a similar turnover time can

be used to generate a B-In-M morphology for larger viscosity systems. We will look at the

short-timescale behavior more closely in our rheological tests, which we discuss next.
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Meshwork

B-In-M

Figure 13.10: Snapshots from the stress relaxation test in a homogeneous meshwork (top) and
B-In-M geometry (bottom). We begin with an unsheared unit cell at left, then shear the network
until it reaches a maximum strain (20% in this case, shown at right), after which we turn off the
shear and measure the relaxation of the stress. As in Fig. 13.5, the colored fibers are in bundles,
and the CLs are shown in black. For the B-In-M geometry, these snapshots are from a smaller
domain (Ld = 2 µm) than we typically use so that we can also see the CLs.
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Figure 13.11: Normalized stress profiles over time in the stress relaxation test. We consider four
different systems: a permanent network (blue), for which the stress relaxes to a nonzero value
(g0 ≈ 0.07 Pa after accounting for normalization), and three dynamic networks, for which the stress
relaxes to a value of zero (orange is the homogeneous meshwork, yellow the B-In-M morphology,
and purple the B-In-M morphology with ten times larger viscosity). To illustrate the point that
there are multiple intrinsic relaxation timescales in the system, we show a double-exponential curve
which approximately matches the decay of stress for both permanent and transient CLs.
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13.3 Viscoelastic moduli

In Fig. 13.12, we plot the elastic and viscous moduli as a function of frequency for the

five different systems defined in Table 13.1. We also include the data for a permanent,

interconnected network of the type considered in Section 13.1, which we show with and

without the constant elastic element g0 = G′(ω → 0) determined in Fig. 13.11. For the

system with ten times larger viscosity, we show the data with time/frequency rescaled by a

factor of ten, so that the value for ω = 1 Hz is mapped to ω = 10 Hz. These data are for

the local drag model ((2.24) without the finite part integral), since it is faster to simulate;

we will consider the effect of nonlocal hydrodynamics in Section 13.4.

Examining the data, we make the following observations:

� On very short timescales (shorter than 0.05 s, or frequencies larger than 20 Hz), the

viscous moduli all approach the viscous-fluid scaling of ≈ (0.13 Pa·s) ω. The timescale

on which this occurs is directly proportional to the viscosity, as the rescaled G′′ curve

for the larger viscosity system makes the transition at the same time as the other B-In-

M curves. In addition, the elastic moduli for B-In-M networks are about twice as large

as those of homogeneous meshwork curves at high frequency, so the elastic modulus at

short times is proportional to the link density.

� On very long timescales (several seconds, low frequencies), the viscous modulus again

scales linearly with frequency, but with a larger slope (G′′ ≈ (0.3 Pa·s) ω), which

indicates that the links have become viscous on those timescales. The elastic modulus

is much smaller than the viscous modulus on these timescales, and both of the moduli

scale nonlinearly with the link density, as B-In-M morphologies have moduli about 4

times as large as homogeneous meshworks.

� There is an intermediate timescale of about 1 second on which the moduli for the

B-In-M meshwork (yellow) diverge from those for the system with twice the bind-
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ing/unbinding rate (purple), and on which both of these curves diverge from the light

blue permanent network curve. In particular, for ω ≤ 2 Hz the elastic and viscous

modulus are both smaller for the system with faster link turnover. This timescale is

related to (in fact, it is exactly equal to) 1/koff, the timescale on which individual links

bind and unbind. The rescaled curve with larger viscosity also diverges from the other

B-In-M curves on this intermediate timescale, which indicates that a timescale has

been introduced (by the dynamic linking) that does not scale with viscosity.

We will explore each of these fast, slow, and intermediate timescales in subsequent sections.

The picture we sketch is of a rigid network for timescales shorter than the fastest intrinsic

timescale τ1 ∼ 0.1 s; on these timescales the links are predominantly elastic and the viscous

modulus is the same as if the fibers were in a fluid without CLs. On timescales longer than

τ1 but shorter than the intermediate timescale τ2 ∼ 1 s, the links still appear permanent, but

they provide additional viscosity by deforming the network to its steady state in response

to flow deformations. On timescales longer than τ2, but shorter than the longest timescale

τ3 ∼ 5 s, the links come off before they are able to fully respond to the deformations induced

by the background flow, and the slope of the elastic and viscous modulus changes relative to

the one observed in permanent networks. Finally, on timescales longer than τ3, the network

is almost completely viscous, and the viscosity is controlled by the morphology.

13.3.1 Short timescales: elastic links and viscous fibers

Our hypothesis is that the shortest timescale in the system, τ1, dictates when the links make

a negligible contribution to the viscous modulus. For timescales τ < τ1, the network is

essentially frozen: the fibers are rigid, the links are static, and the fibers and links contribute

exclusively to the viscous and elastic modulus, respectively. Specifically, as ω → ∞, we

expect that the links will make a constant contribution to G′ and that G′′ will scale like η0ω,

i.e., as a viscous fluid, with the viscous coefficient η0 independent of the number of links
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Figure 13.12: Elastic (left) and viscous (right) modulus for the five systems described in Tables
11.1 and 13.1 (see Table 13.1 for what parameters are varied in each system). For the B-In-M
morphology with ten times the viscosity (µ = 1 Pa·s), we show the data with time rescaled by a
factor of ten. We also show the results for permanently-cross-linked networks, and for the elastic
modulus the dashed light blue curve is the remaining elastic modulus when g0 ≈ 0.07 Pa (measured
in Fig. 13.11) is subtracted off.

in the system. In Fig. 13.12, we show that η0 ≈ 0.13 Pa·s if ω is given in Hz. We have

confirmed that this scaling continues for frequencies all the way up to 1000 Hz.

To verify that the viscous modulus at short timescales is dominated by the fibers only

(independent of the number and nature of the links), we compare to the theoretical shear

viscosity enhancement η∗0 for an isotropic suspension of rigid cylindrical fibers, where the

mobility is computed by the local drag approximation. For dilute suspensions, the enhanced

viscosity is given to order (log ϵ)−2 in terms of the fiber density f and aspect ratio ϵ as

[82, 239, 240]

η∗0
µ

=
πf

45

(
− 1

2 ln ϵ

(− ln ϵ+ 0.640

− ln ϵ− 0.5

))
. (13.3)

For our parameters (ϵ = 0.004, f = FL/L3
d = 25), we obtain η∗0/µ ≈ 0.194 for cylindrical

fibers.3 Recalling that G′′ = 2πωη0 for a viscous fluid, our scaling in Fig. 13.12 shows that

3We obtained (13.3) by dropping the finite part integral in [82, Eq. (7.1)], which gives 1/2 instead of
3/2 in the denominator of [82, Eq. (8.13)]. Including intra-fiber hydrodynamics in the mobility changes the
0.5 in (13.3) back to 1.5. Substituting our parameters and recomputing, we get η∗0/µ = 0.242 with intra-
fiber hydrodynamics, which means the local drag approximation gives only 80% of the correct viscosity (see
Section 13.4).
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we obtain a similar value of η0/µ = 0.13/(2π × 0.1) ≈ 0.21.

It is important to separate the viscous contribution from the links, which approaches zero

at short timescales, from that due to the fibers, which is infinite as ω → ∞. For this reason,

we define

G′′
F = 2πη0ω (13.4)

as the viscous modulus coming from the fibers. In Fig. 13.13(a), we examine the behavior

of the moduli due to the links, G′ and G′′ −G′′
F , rescaled by the average number of links in

the system C̄. After rescaling time in the system with larger viscosity, we see that the data

for ω > 10 Hz can be collapsed onto a single curve for both the elastic and viscous modulus.

Thus on timescales shorter than τ1 ∼ 0.1 s, each link behaves as an elastic element with

strength independent of morphology. Note that the elastic modulus is more than 2−3 times

larger than the viscous modulus (coming from the links) at high frequencies.

13.3.2 Viscosity on long timescales

Let us now transition to the opposite limit of long timescales. On long timescales, Fig.

13.13(a) shows that each system is about five times more viscous than elastic (e.g., compare

the values at ω = 0.2 Hz), and that normalizing by C̄ does not place the curves on top of

each other. We say that these “long timescales” are longer than τ3, the longest intrinsic

timescale in the system, or the timescale on which the network totally “remodels” itself.

Our goal in this section is two-fold: first, we would like to find a new rescaling that better

matches the curves at low frequencies, and second, we would like to estimate τ3, which we

do by finding the regime in which G′′ is a linear function of ω for each system.

Figure 13.13(b) shows our attempt to accomplish both of these goals. For both the viscous

and elastic modulus, we rescale by the mean link density C̄ multiplied by the mean number

of bundles B̄, the idea being that bundles make a stronger contribution to the moduli at low

frequency. We see a better match at low frequencies than in Fig. 13.13(a), which implies that
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(b) Scaling by number of links and bundles (long timescales)

Figure 13.13: Elastic (left) and viscous (right) modulus due to the CLs for the five systems described
in Tables 11.1 and 13.1 (see Table 13.1 for what parameters are varied in each system). To obtain a
viscous modulus due to the links alone, we subtract the component due to the fibers G′′

F defined in
(13.4). (a) We normalize by the link density C̄ and see that the curves all match at short timescales
on the order τ1 ≈ 0.02 s (after we also rescale time by viscosity). (b) We normalize by the link
density multiplied by the bundle density. For the system with ten times larger viscosity, we also
include the raw data (not rescaled) as a dotted green line. In the viscous modulus plot on the right,
we show a linear slope as a dashed black line and define τ3 ≈ 5 s as the end of the low-frequency
linear regime in G′′. This timescale is roughly independent of viscosity.
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bundles have a stronger effect on the mechanical behavior at long timescales than at short

ones. In particular, the homogeneous meshworks (blue and orange) and B-In-M (yellow)

curves all scale onto the same curve for frequencies ω ≤ ω3 ≈ 0.2 Hz = 1/τ3, but the curves

with larger viscosity (green) and faster link (un)binding (purple) do not scale as well. In

both of these cases, there is a change in a timescale shorter than τ3, as we discuss in the

next section.

To estimate τ3, we determine the regime where the viscous modulus G′′ scales linearly

with ω and equate τ3 with the end of the linear region. From Fig. 13.13(b), we see that

τ3 ≈ 5 seconds, and that the linear regime endures longer for homogeneous meshworks,

which implies that they start becoming purely viscous at shorter timescales than systems

with bundles (or, equivalently, these networks “remodel” themselves faster).

To understand exactly how much viscosity is being provided by the links and bundles in

the different systems, we use the slope in Fig. 13.13(b) to obtain

G′′
CL := G′′ −G′′

F ≈ 0.04C̄B̄ω for τ > τ3. (13.5)

Since C̄ has units links per fiber and B̄ has units bundles per µm3, 0.04 in this equation has

units Pa·s/µm3. To extract a viscosity, we writeG′′
CL = 2πµCLω, so that in the B-In-M system

with C̄ = 12.5 and B̄ = 2 µm−3 we obtain µCL/µ = (0.04× 12.5× 2)/(2π× 0.1) = 1.6. This

is eight times more viscosity than the fibers alone (0.2) and 1.6 times the background fluid

viscosity. For the homogeneous meshwork with C̄ = 5.75 and B̄ = 1 µm−3, the additional

viscosity is µCL/µ = (0.04×5.75×1)/(2π×0.1) = 0.4. This is twice the viscosity of the fibers

but 2.5 times smaller than that of the background fluid. Comparing the two morphologies

confirms some of the prior intuition that bundles embedded in meshworks provide stronger

resistance to flow than homogeneous meshworks [205].
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13.3.3 Intermediate timescales

So far, we have addressed the two extreme limits of the suspension behavior. Over short

timescales, τ < τ1, the entire network is rigid, the CLs are purely elastic, and the additional

viscosity is the same as that due to the fibers alone. Over long timescales, τ > τ3, all of the

energy in the network is dissipated. Bundles break up, there is no elastic modulus, and the

morphology of the network, and the amount by which links can deform it, determines the

viscous behavior.

There is also an intermediate timescale τ2 at which some of the links, but not the entire

network, start to behave viscously. While we expect τ2 ∼ 1/koff, this could change based on

the network parameters, as the same value of koff acts differently depending on the speed

of network deformation. To better understand the timescale τ2, we compare the elastic

modulus with dynamic links to the one for statically-linked networks (by starting from the

same equilibrium structure and keeping the links fixed). We do this for five seconds or five

cycles, and measure the modulus over the last three cycles.

Figure 13.14(a) shows the results for our B-In-M structures. The solid lines show the

elastic modulus with dynamic linking, and the dotted lines show the elastic modulus with

permanent linking. The timescale τ2 is when the dynamic linking elastic modulus diverges

significantly from the permanent link modulus, so that the links come off before they can

provide their maximum elastic response. From Fig. 13.14(a), we see that τ2 is obviously

smaller when we increase the rate of link turnover (the purple curve diverges from the

dotted yellow one faster than the solid yellow one does); this is expected from τ2 ∼ 1/koff,

which is 1 s for the yellow curve and 0.5 s for the purple one.

Morphology has no impact on the timescale τ2, as we obtain the same characteristic time

τ2 ≈ 1 s for the homogeneous meshwork (not shown, because the results are indistinguishable)

as the B-In-M morphology. Thus the morphology only appears to have a strong influence

on the longest timescale τ3.
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Figure 13.14: (a) Elastic modulus at medium frequencies. For each network type (indicated in the
legend), we compare the solid line, which has the elastic modulus with dynamic links, to the dotted
line, which is the elastic modulus with permanent links. The intermediate timescale τ2 ≈ 0.5 s
is the inverse of the frequency where the data start to diverge. We consider only bundle-in-mesh
morphologies using our standard parameters (yellow), twice the link turnover rate (purple, but the
static link reference is still the dotted yellow), and ten times the viscosity (green). (b) Rescaling
time to get all of the viscous modulus curves on the same plot. This is the same plot as Fig.
13.13(b) (right panel), but now we rescale the time for the larger viscosity green curve by a factor
of 4 instead of 10 (ω → 4ω), and we rescale the time for the faster link turnover purple curve by 1.5
(ω → ω/1.5). This demonstrates that the data do not scale simply with the parameters at medium
and low frequencies, when multiple timescales are involved.
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It is harder to determine the effect of viscosity on τ2. On the one hand, Fig. 13.14(a)

shows the true data for G′ vs. ω (without scaling time by µ), so it appears that the dynamic

curve diverges from the permanent one at about the same timescale regardless of viscosity.

On the other hand, for a fixed koff the difference between the solid and dashed curves at ω = 1

Hz is larger for larger viscosity (green). Thus the timescale τ2 depends on the interaction of

dynamic linking and deformation in a nontrivial way.

To illustrate this complicated dependency, we show that different rescalings are required

when the viscosity (dynamics) or link turnover rates change from the base parameters. We

recall from Fig. 13.13(b) that the larger viscosity (green) and faster link turnover (purple)

B-In-M systems do not follow the same normalization as the other systems. Figure 13.14(b)

shows that scaling time by a factor of 4 (and not the expected 10) puts the green larger

viscosity curve onto the rest of the curves at low frequencies, while scaling time by a factor

of 1.5 (and not the expected 2) puts the curve with twice the link turnover rate on top of

the others as well. The reason for these particular scalings is not obvious to us, other than

that they fall somewhere between the expected scaling and unity.

13.4 Role of nonlocal hydrodynamic interactions

We have seen that the network behaves very differently on short timescales, where each

link behaves elastically independent of the network morphology, than on long timescales,

where the system is purely viscous and the morphology exerts a significant influence on

the resistance to flow. In this section, we show that nonlocal hydrodynamic interactions

significantly decrease the elastic and viscous moduli in B-In-M morphologies. We show that

the decrease is most significant at low frequencies, i.e., the frequencies where we already

know morphology has a strong influence on the behavior. We explain the decrease in two

ways: first, nonlocal hydrodynamic interactions slow down the bundling process, causing less

bundles to form for a fixed turnover time, and second, they create entrainment flows that
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reduce the stress inside of the bundles that do form.

We consider only the two characteristic morphologies in this section without varying any

other parameters from those given in Table 11.1. For each of the morphologies, we compute

the viscoelastic moduli with nonlocal hydrodynamics, then compute them again using local

drag and intra-fiber hydrodynamics. In Fig. 13.15, we plot the error/fraction of the moduli

recovered with the various mobility operators. For a homogeneous meshwork system (blue

lines), we see that the elastic modulus is the same within 10 − 20% whether we use local

drag, intra-fiber, or full hydrodynamics. At low frequencies, the viscous modulus is also

the same within 10% regardless of the hydrodynamic model used, but there is an obvious

error in the viscous modulus when the local drag model is used at high frequencies. This

discrepancy of about 20% is also present in permanent networks and in B-In-M morphologies,

and in all cases it can be mostly recovered by adding only intra-fiber hydrodynamics to the

mobility. The 20% difference between local drag and intra-fiber hydrodynamics is similar to

the theoretical estimate discussed in footnote 3, and to the results we obtained in Section

13.1. There appears to be a small increase (at most 5%) in the viscous modulus when we

switch from intra-fiber hydrodynamics to fully nonlocal hydrodynamics, which would be

more significant at smaller mesh sizes [239].

The more interesting changes with nonlocal hydrodynamics come at low frequencies in the

B-In-M geometries. Unlike with the homogeneous meshwork, the local drag model makes

about a 50% overestimation in the elastic modulus and a 30% overshoot in the viscous

modulus at low frequencies for B-In-M morphologies, with the largest change coming at

ω = 0.5 Hz, or a timescale of 2 seconds. We have previously seen that morphology has a

strong influence on the moduli at these timescales, so we explore the impact of nonlocal

hydrodynamics on morphology next.
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Figure 13.15: Proportion of the (left) elastic and (right) viscous modulus that is recovered using
various mobility approximations. We compute the modulus using full hydrodynamics, then plot
the fraction of it recovered using local drag or intra-fiber hydrodynamics. We show the results for
the homogeneous meshwork in blue and the B-In-M morphology in orange. For each line color,
a solid line shows the results for local drag and a dotted line shows the results for intra-fiber
hydrodynamics. Intra-fiber hydrodynamics cannot explain the deviations in the elastic and viscous
modulus at low frequency for the B-In-M geometry.

13.4.1 Rescaling of time cannot explain long-timescale moduli

The first possible explanation for the decrease in G′ and G′′ with nonlocal hydrodynamics

at low frequencies is a change in the network structure. In this section, we show that, while

there are less bundles and links in the dynamic steady state with full (intra- and inter-fiber)

hydrodynamics for a given turnover time, this by itself cannot entirely explain the decrease

in the moduli.

To do this, we focus on the frequency where full hydrodynamics matters the most as

a percentage. For ω = 0.5 Hz, we measure the moduli with intra-fiber hydrodynamics as

G′
IF = 0.18 ± 0.02 Pa, G′′

IF = 0.42 ± 0.01 Pa, while the moduli with full hydrodynamics are

G′
H = 0.127 ± 0.004 Pa, G′′

H = 0.35 ± 0.01 Pa. As shown in Table 13.3, the steady state

link and bundle density are 12.3 and 2.2 µm−3, respectively, with intra-fiber hydrodynamics,

while with full hydrodynamics they are are 11.7 and 2.0 µm−3. Thus at its dynamic steady

state, the network has on average fewer links and fewer bundles when we simulate with

full hydrodynamics than when we simulate with intra-fiber hydrodynamics. This is because
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τf (s) Mobility C̄ B̄ (µm−3) % in B G′ (Pa) G′′ − η0ω (Pa)
10 H 11.7± 0.3 2.03± 0.04 20.9± 0.6 0.127± 0.004 0.27± 0.01
9.3 IF 11.5± 0.4 2.07± 0.07 21.2± 1.1 0.17± 0.01 0.33± 0.03
10 IF, µ∗ 11.5± 0.3 2.01± 0.07 20.1± 0.8 0.19± 0.02 0.38± 0.03
10 IF 12.3± 0.2 2.15± 0.05 22.6± 0.7 0.18± 0.02 0.34± 0.01

Table 13.3: Statistics for system with ω = 0.5 Hz and varying turnover times and mobility models
(IF stands for intra-fiber hydrodynamics where from Table 13.4 we obtain η0/µ = 1.6, and H stands
for full, nonlocal hydrodynamics, where η0/µ = 1.7). In the second and third row, we attempt to
tune the turnover time or viscosity (µ = µ∗ = 0.14 Pa·s) so that the steady state morphology with
intra-fiber hydrodynamics matches the steady state morphology with hydrodynamics and τf = 10
s. Even after doing this, the elastic and viscous modulus are still significantly higher with the
intra-fiber mobility.

disturbance flows in bundling fibers (fibers moving towards each other) oppose the direction

of motion, which slows down the bundling process. Thus when we fix a turnover time, there

are on average fewer bundles (and fewer links) when the bundling process is slower.

To compensate for the changes in structure, we drop the turnover time or increase the

viscosity for intra-fiber hydrodynamics simulations so that the steady state morphology

matches the morphology with hydrodynamics as closely as possible. We then measure the

moduli for these new steady states. In Table 13.3, we show our attempt to match the statistics

for intra-fiber hydrodynamics with smaller turnover times with those for hydrodynamics with

τf = 10 s. Comparing τf = 10 s with full hydrodynamics with τf = 9.3 s with intra-fiber

(IF) hydrodynamics, we see the IF simulations have larger moduli, even when we closely

match the steady state link density C̄ and bundle density B̄. The same is true when we

attempt to rescale time by increasing the background fluid viscosity (second to last line in

Table 13.3), as in that case the larger values of G′ and G′′ persist despite a decrease in link

and bundle density. So nonlocal hydrodynamics must both change the bundle morphology

and lower the stress for a fixed morphology.
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Figure 13.16: Reduction of stress in bundles explains smaller moduli with hydrodynamics. (Left)
We manufacture a bundle geometry without CLs by placing nine fibers of length L = 1 µm (red) in
and around an octagon with side length ℓ and straining with constant rate γ̇ = 0.1 s−1 until t = 1
s (blue). (Right) The resulting stress evolution for different hydrodynamic models. The local drag
(blue) and intra-fiber (yellow) results are independent of ℓ, while the stress for full hydrodynamics
(red) depends strongly on ℓ. For ℓ = 0.05 µm (solid red, the simulation parameters), there is a
significant decrease in stress which comes from the entrainment of the fibers in each other’s flow
fields. For ℓ = 0.20 µm (dashed orange), the decrease is minimal; note that for full hydrodynamics
with ℓ ≫ L we would recover the “intra-fiber” curve.

13.4.2 Bundled fibers: when flow reduces stress

The reason for the decrease in moduli with inter-fiber hydrodynamics for a fixed morphology

has to do with the flows inside a bundle. If the fibers are packed tightly within a bundle,

then we expect their disturbance flows to have a strong influence on each other. When a

fiber in a bundle moves with the bulk fluid, the disturbance flow it creates is in the same

direction as the bulk motion, so the other fibers in the bundle will naturally move as well.

This effect, which is not present when we use local drag or intra-fiber mobility, explains the

reduction in stress for a fixed rate of strain.

Figure 13.16 establishes this more rigorously. We consider a set of nine fibers with L = 1

µm without cross-links. The fibers are arranged in a regular octagon with side length ℓ with

another fiber centered at the origin. We apply a constant straining flow with strength γ̇ = 0.1

s−1 and measure the stress over the first second in Fig. 13.16. The solid red line shows the
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Increasing timescales

Figure 13.17: Our continuum model, informed by the timescales discussed in previous sections.
We use three Maxwell elements with timescales τ1, τ2, and τ3, all in parallel with a viscous dashpot
to describe the network. The viscous dashpot η0 represents the high frequency viscosity of the per-
manently cross-linked fiber suspension. The first Maxwell element has timescale τ1 ≈ 0.02 seconds
associated with it, and represents the relaxation of the fibers to a transient elastic equilibrium (the
networks before and after relaxation are shown to the left and right of this Maxwell element; the
relaxing fibers are shown in blue); on this timescale, the links are effectively static. The second
Maxwell element, with timescale τ2 ≈ 0.5 s, represents the unbinding of some links (shown more
transparent than the others) and the appearance of new links (orange) − compare the networks
to the left and right of this Maxwell element. The third Maxwell element with timescale τ3 ≈ 5
s represents network remodeling (compare the networks to the left and right of this element); for
timescales larger than τ3, some of the fibers (shown in green) and links (orange) turn over and the
network completely remodels from the initial state.

stress with full hydrodynamics and the simulation parameter of ℓ = 0.05 µm, so that the

fibers are very close. In this case, we see that the stress with full hydrodynamics is slightly

more than half of that with local drag (which is independent of ℓ). Similar to our simulation

result for cross-linked gels, the stress decrease is not explained by intra-fiber hydrodynamics,

which increases the stress from local drag by the theoretically predicted 20 − 25%. Thus

the decrease in stress with nonlocal hydrodynamics comes from the nonlocal flows induced

by the fibers on each other. We demonstrate this in Fig. 13.16 by spacing the fibers farther

apart (ℓ = 0.2 µm) and showing that the stress with full hydrodynamics increases towards

the intra-fiber curve.
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13.5 A generalized Maxwell continuum framework

In order to enable whole-cell modeling, it is important to introduce a continuum model for

the passively cross-linked actin gel. We are motivated by the behavior of the network: at

short timescales, it scales as a viscous fluid with a constant elastic modulus (a dashpot in

parallel with a spring), while at long timescales it is purely viscous. Combining these two,

we introduce a generalized Maxwell model of the type shown in Fig. 13.17. We have the

viscous dashpot of strength η0 in parallel with three Maxwell elements, each of which has a

strength gi and an associated relaxation timescale τi, on which the element goes from elastic

(for timescales shorter than τi) to viscous (longer than τi). The total elastic and viscous (in

excess of the solvent viscosity) modulus are given by sums of the viscous dashpot and each

Maxwell element [233]

G′
GM(ω;p) =

3∑

i=1

gi
(ωτi)

2

1 + ω2τ 2i
, G′′

GM(ω;p) = η0ω +
3∑

i=1

gi
ωτi

1 + ω2τ 2i
, (13.6)

where we have denoted the 7 parameters by a vector p. As discussed in [241, 242], we can

obtain the fitting parameters (gi, τi, η0) by maximizing the log-likelihood function

L = −1

2

K∑

k=1

[(
1

δ′k
(G′

k −G′
GM(ωk;p))

)2

+

(
1

δ′′k
(G′′

k −G′′
GM(ωk;p))

)2
]
, (13.7)

where δ′k and δ′′k are the uncertainties in G′(ωk) and G′′(ωk), respectively, and K is the

number of frequencies studied. Weighting the observations by uncertainty will cause the fit

to give more weight to more certain measurements. The uncertainty in the fit p̂ is estimated

by the square root of the diagonal entries of the inverse of the Fisher information matrix,

δpi = 2

√
F−1
ii (p̂), where F ij(p) = − ∂2L

∂pi∂pj
(p̂). (13.8)

so that pi ± δpi is a 95% confidence interval for pi.

372



10
-1

10
0

10
1

10
2

10
-6

10
-4

10
-2

10
0

10
-1

10
0

10
1

10
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Figure 13.18: Fitting the model of Fig. 13.17 (the moduli (13.6)) to the data from the B-In-M
system. The data are shown in blue, with the total fit shown in red. The dotted lines show the
contribution of each element in Fig. 13.17 to the total fit. Here τ1 = 0.04 s is the fastest timescale
shown in purple, τ2 = 0.41 s is the intermediate timescale shown in green, τ3 = 4.5 s is the longest
timescale shown in light blue. The yellow dotted line shows the contribution of the pure viscous
element.

In Fig. 13.19(a), we verify that using three (as opposed to two or four) Maxwell elements

is indeed the best choice for the bundle-embedded meshwork with τf = 10 s and full hy-

drodynamics (the other systems are similar). As detailed in [242, 243], we determine this

by increasing the number of Maxwell elements until the fit stops improving substantially

and we start to overfit the data, leading to ill-conditioning. In addition to comparing the

fit with three timescales to that with two or four, in Fig. 13.19(a) we also compare to a fit

using a continuum of timescales, which is suggested by physical theories [193, 217] and used

in prior studies [186]. In this approach, the discrete values of gi in (13.6) are replaced by a

continuous function g(τ), which is integrated (instead of summed) on 0 ≤ τ ≤ τmax. If we

take the common choice of g(τ) = g0τ
−α [244], we obtain

G′
CM(ω;p) =

∫ τmax

0

g0τ
−α (ωτ)2

1 + ω2τ 2
dτ, G′′

CM(ω;p) = η0ω +

∫ τmax

0

g0τ
−α ωτ

1 + ω2τ 2
dτ,

(13.9)
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where (g0, α, τmax, η0) are the fitting parameters. In Fig. 13.19(a), we show that the fit to

the data with this continuum spectrum of timescales is not substantially better than the

three timescale generalized Maxwell fit. Our preference is the three timescale fit, since in

this case we can assign physical to meaning to each of the timescales, as we do in Sections

13.3.1−13.3.3. Given that adding more discrete timescales leads to ill-conditioning, the

continuum approach, where there are infinitely many timescales (and in fact infinitely many

for choices g(τ)), is even more poorly conditioned, and in that case it is difficult to assign a

physical meaning to the fitting parameters.

The three-timescale fit that we obtain for the B-In-M system with full hydrodynamics,

along with the contribution of each of the separate Maxwell elements, is shown in Fig. 13.18.

Admittedly, the elastic modulus data G′(ω) at small frequencies do not fit the generalized

Maxwell model since they do not decay as ω2. This suggests that the material response is

likely more complicated than just three Maxwell elements. At the same time, we have already

shown that G′′(ω) scales linearly with ω at small frequencies, and thus that the viscous

modulus, which dominates the elastic modulus at low frequencies, does fit the generalized

Maxwell assumption. Our choice is therefore to fit only G′′, and not G′, for frequencies less

than 0.1 Hz (10 s timescales).

Table 13.4 gives the fitting parameters for all of the systems we have considered with

multiple options for the mobility. For almost all systems, we have τ1 ≈ 0.03 s, τ2 ≈ 0.3

s, and τ3 ≈ 3 s, which is in line with our estimates of these timescales in Figs. 13.13 and

13.14(a). The only exception is the system with higher viscosity; in this case we have already

shown that the timescale τ1 scales with viscosity to become about 0.3 s, while the timescale

τ2 remains about 0.5 s. The result is that τ1 and τ2 blend into a single timescale, and a

two-timescale model is the best choice for the data, as we show in Fig. 13.19(b). Comparing

B-In-M and meshwork geometries, we observe that the long timescale τ3 is either longer

(comparing B-In-M and meshwork with full hydrodynamics) or its contribution in (13.6) is
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Figure 13.19: Fits to the elastic (left) and viscous (right) modulus data for (a) The B-In-M
geometry with full hydrodynamics and (b) The B-In-M geometry with ten times larger viscosity
and local drag mobility. We consider 1 (red), 2 (yellow), 3 (purple), and 4 (green) Maxwell modes
in parallel with a viscous dashpot. The elastic modulus is only fit for ω ≥ 0.1 Hz. The B-In-M
system with µ = 0.1 Pa·s is best fit with three elements, while the higher viscosity system (µ = 1
Pa·s) is best fit with only two elements, since in (b) the three and four element Maxwell models
have a timescale larger than 100 seconds, indicating overfitting. For (a), the dashed line shows the
fit to a continuous spectrum of timescales (13.9), which yields g0 = 0.22, α = 1.4, τmax = 3.5, and
η0 = 0.16, and is not a better fit than the 3 timescale generalized Maxwell model.
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System Mobility (τ1, τ2, τ3) (s) (g1, g2, g3) (Pa) η0 (Pa·s)
Meshwork LD (0.032, 0.31, 4.2) (1.56, 0.44, 0.03) 0.13

Meshwork, κ/10 LD (0.024, 0.15, 1.5) (1.34, 0.45, 0.07) 0.13
Meshwork Intra-fiber (0.022, 0.17, 1.4) (1.49, 0.59, 0.10) 0.16
Meshwork Full hydro (0.025, 0.21, 2.1) (1.42, 0.54, 0.05) 0.17
B-In-M LD (0.026, 0.28, 2.7) (2.91, 1.26, 0.30) 0.13
B-In-M Intra-fiber (0.030, 0.28, 2.4) (2.77, 1.17, 0.29) 0.16
B-In-M Full hydro (0.039, 0.41, 4.5) (2.26, 0.84, 0.11) 0.18

B-In-M, 2k LD (0.034, 0.31, 2.7) (2.54, 1.10, 0.17) 0.13
B-In-M, 10µ LD (0.49, −, 4.3) (3.13, −, 0.38) 1.33

Table 13.4: Parameters in the three-timescale generalized Maxwell model shown in Fig. 13.17.
Refer to Table 13.1 for a detailed description of each system. The uncertainty in each measurement
is about 25%, with the exception of η0, which has an uncertainty of about 5%.

stronger (comparing B-In-M and meshwork with local drag), which is consistent with our

observation in Section 13.3.2 that B-In-M geometries have longer remodeling times and a

higher resistance to deformation. Finally, we notice how the viscosity η0 scales directly with

µ and increases by ≈ 30% when we account for intra-fiber or nonlocal hydrodynamics, in

accordance with our observations in Sections 13.3.1 and 13.4.
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Chapter 14

Discussion and conclusions

This part of the dissertation was substantially more applied than the previous parts. In

it, we used the methodology we developed in Parts I and II to simulate the dynamics of

cross-linked actin networks. We focused on two main problems: the dynamic process by

which cross linkers ratchet filaments into bundles (Chapter 12) and how morphology and

hydrodynamic interactions impact the macroscopic viscoelastic behavior (Chapter 13).

We found that, even without thermal movements, actin filaments can still bundle, as

filaments that are initially close enough are linked together at small patches with CLs.

These CLs pull fibers together and align them, thereby allowing more CLs to bind to other

sections of the fibers. What results initially, for times smaller than the critical bundling

coalescence time τc, is a collection of bundles with a few highly aligned filaments, also called

a composite bundle state [203]. For times larger than τc, these bundles coalesce into larger

bundles using a similar mechanism as that for individual fibers, and a clustered bundle state

forms. Our critical bundling timescale τc thus describes the initial time at which networks

transition from the composite bundle state to the clustered bundle state. In networks with

fiber turnover, a clustered bundle steady state is only possible if the turnover time is much

larger than τc.

We quantified the role of diffusion throughout the bundling process, finding that it has a
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larger impact in the initial stages of bundling, when the filaments are not severely constrained

by CLs and can move freely to find each other. We associated this stage with t < τc, and

showed that adding thermal fluctuations decreases τc from 16 seconds to 4 seconds, although

much of this could be driven by our change in the cross linking model to achieve detailed

balance. We showed that the stage when bundles coalesce (t > τc) is less affected by thermal

diffusion (sped up by a factor of 2), since at that stage the filaments are constrained by

CLs, which are more involved in bundle coalescence. This complements the observation in

[209, 212] that bundling occurs faster in a fluid-like environment, where filaments can move

freely prior to kinetic arrest.

At first glance, the order of magnitude of τc that we obtained seems shorter than the

characteristic bundling time obtained experimentally, which is generally reported to be on

the order of minutes [230]. The comparison is difficult, however, since experimental times

generally include polymerization, and the bundling timescale in experiments is defined by

the onset of the clustered bundle steady state, which is much later than the composite bundle

state where we define τc. Nevertheless, the most instructive comparison is between our work

and [209, Fig. 4], which shows experimentally that the addition of 10% nucleates (which

speeds up the polymerization process) gives a saturated bundled state after 100 seconds of

polymerization and bundling, where the bundles are made of at least 15− 30 filaments and

are spaced some 10− 20 µm apart. Given this observation, and the fact that bundling slows

down over time, it is not difficult to imagine that the transition from the homogeneous state

to the composite bundle state could take place on the order of 5 − 10 seconds after cross

linkers are added to a system of (polymerized and capped) actin filaments.

While diffusion of fibers speeds up the bundling process, we showed that it must be

combined with a sufficient concentration of CLs for rapid bundling to occur. In particular,

we showed that a high concentration of CLs (high CL binding rate) can induce bundling for

filaments of any mesh size, with a critical bundling time τc that depends only weakly on the
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mesh size. By contrast, when the concentration of CLs is small, bundling is more difficult

for any fixed mesh size, and gets near impossible as the mesh size increases, as near-fiber

contacts become less frequent. This is in accordance with a number of experimental papers

[202, 206] which find that bundling requires a critical CL concentration. In addition, because

the fibers are in contact for a short time at larger mesh sizes, the system must be saturated

with CLs for bundling to proceed at a reasonable rate. This saturation is less important

at smaller mesh sizes, where fiber pairs come into contact more frequently. Translating our

results to experimental parameters, we find that the ratio of the crosslinker concentration to

the F-actin concentration that is needed for a particular bundling time scale decreases as the

actin concentration increases, which is in accordance with existing experimental observations

[206, Fig. 3].

As already mentioned, one of the drawbacks of some experimental studies is the sensitivity

of the bundling time to the rate of actin polymerization. For example, it is shown in [209,

Fig. 4(d)] that polymerization kinetics make an order of magnitude difference in the bundling

kinetics. While simultaneous polymerization and bundling also occurs in vivo, our study here

allowed us to divorce bundling and polymerization by focusing on a fixed filament length.

By doing this, we showed that shorter filaments bundle faster exclusively because they can

diffuse faster, because without thermal fluctuations we saw no difference in the bundling

kinetics between short and long filaments. This clarifies why shorter actin filaments are able

to associate more rapidly into bundles without the presence of a background actin mesh

[202, 212].

We also examined how semiflexible bending fluctuations affect the bundling process,

which is a novel contribution to the biophysics literature. Here we showed that the bundling

of fluctuating actin filaments, which have persistence length on the order 10 µm [18], signif-

icantly differs from that of rigid fibers, which is in contrast to the conclusion we drew when

filaments did not fluctuate (and only moved by CL forces). However, when ℓp/L ≳ 10, we
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showed that these differences can be explained by a reduced model where actin filaments

rotate and translate randomly, and bend via CL forces. In this case the combination of

translational and rotational rigid-body diffusion with fiber flexibility and CL forces drives

the observed differences from rigid fiber dynamics. Semiflexible bending fluctuations only

accelerate bundling dynamics when ℓp/L ≈ 1, in which case the differences from rigid fibers

can be observed even in the regime when the fibers are weakly cross linked.

By applying our steric repulsion algorithm to bundling filaments, we showed that the

observed “kinetic arrest” of bundling fibers [209, 210] is driven primarily by cross linking,

with an only 10% change in the fiber displacement when we account for steric interactions.

In fact, contrary to intuition, our simulations show that actin fibers can reorient into a

percolated network even when the initial mesh size is smaller than the filament length. An

interesting future direction would be to see how, if at all, this conclusion changes when

we also account for the electrostatic interactions between actin filaments, since actin is a

polyelectrolyte made of charged molecules [245].

There are, of course, other timescales that we could have examined in the bundling

process. Our choice to focus on the timescale τc was motivated by our observation that the

steady state morphology of cross-linked actin networks is driven by a competition between

bundling (which occurs on timescale τc) and filament turnover (which occurs on timescale

τf ). While it is intuitively obvious that increasing the turnover timescale τf will produce a

steady state with more bundles, it is fair to ask whether the ratio τf/τc alone controls the

steady state morphology, or if some other microscopic parameters come into play. In Fig.

12.16, we showed that for turnover times τf = τc/2, τc, and 2τc, the gel evolves to a steady

state where the bundle density and percentage of fibers in bundles depend primarily on the

ratio τf/τc, for either Brownian or non-Brownian fibers (recall that τc differs by a factor of

4 for these two cases). Snapshots in Fig. 12.17 show little qualitative difference between the

network morphology of the Brownian and non-Brownian steady states for a fixed τf/τc.
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We took advantage of this finding in Chapter 13, where we used the fixed values τf/τc ≈

0.3 and τf/τc ≈ 0.6 to generate two steady state structures for rheological analysis. We

saw that the former structure is a homogeneous meshwork, while the latter contains bundles

embedded in a mesh. Despite the small differences in these two structures (one has 10%

of fibers in bundles, the other 20%), the differences in their behavior, especially at long

timescales, was remarkable.

For gels with permanent cross linkers, we found one timescale which dominates the be-

havior, while gels with transient cross linkers had three. On the fastest time scale, ∼ 0.03

seconds (which is the one we found for permanent networks), actin fibers relax viscously,

locally, and rapidly to the transient elastic equilibrium generated by the network configura-

tion. On intermediate timescales, ∼ 0.5 seconds, the CLs turn over, generating new transient

elastic equilibria, and finally on the slow time scale, ∼ 3− 5 seconds, the network undergoes

global remodeling through a combination of filament and CL turnover. One of the most

useful practical results of the simulations is that very complex cross-linked gel mechanics

can be approximated with the generalized Maxwell mechanical circuit shown in Fig. 13.17,

in which three Maxwell elements in parallel correspond to elastoviscous gel deformations on

the three characteristic time scales, in addition to the effective viscosity of the actin fiber

suspension in the background fluid.

Our simulations predict that at small frequencies (time scales longer than a few seconds),

the effective elastic and viscous behaviors are controlled by the CL mechanics (as opposed

to fiber mechanics). In this regime, an effectively viscous mechanical response to deforma-

tion dominates relatively weak elastic behavior. At low frequencies, the dominant viscous

response originates from the CLs stretching and deforming the fibers (in addition to the

significant viscosity of the background fluid); the fibers by themselves contribute little to

the net viscosity. The mechanical moduli scale nonlinearly with the CL density, because

the CLs within actin bundles respond to shear differently than the CLs in the actin mesh.
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Thus, the gel’s morphology exerts a significant influence on the actin resistance to flow at

long timescales.

At high frequencies, or timescales shorter than one tenth of a second, we found that the

effective elastic modulus of the network is higher than (but on the same order of magni-

tude as) the effective viscous modulus (once we removed the viscous scaling generated by

the fibers). The elasticity simply originates from multiple elastic springs of CLs that can

be considered static on the short time scale. The greatest contribution to the net viscosity

is that of the background fluid, with the fiber suspension contributing about 25% addi-

tional viscosity. At moderate frequencies around 1 Hz (intermediate timescale, between 0.1

and 3 seconds), the mechanical behavior of the crosslinked network is complex, combining

comparable contributions of all mechanical factors described for low and high frequencies.

Our model allowed us, for the first time, to estimate quantitatively the role of nonlocal

inter-fiber hydrodynamic interactions on the actin gel rheology. While these interactions

have little effect in a homogeneous cross-linked actin meshwork, they significantly decrease

the elastic and viscous moduli of heterogeneous B-In-M gels. We showed that this decrease

is most significant at low frequencies, i.e., on timescales of a few seconds, when the network

morphology has a strong influence on its mechanical behavior. At these frequencies, in the

presence of bundles, the hydrodynamic interactions cause 30−50% downward corrections

to the viscoelastic moduli. Two factors are responsible for this effect: first, hydrodynamic

interactions slow down the bundling process, so fewer bundles form, and second, nonlocal

hydrodynamics creates entrainment flows that reduce the stress inside of the bundles that

do form.

While almost all of our simulations fell in the linear viscoelastic regime, we did observe a

strain hardening effect, with the network resistance increasing beyond the linear response for

higher-amplitude deformations. This effect has been observed before experimentally [188],

which has prompted a variety of explanations and computational studies. Both Mulla et
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al. [193] and Kim et al. [246], for instance, propose that strain hardening is due to the

mechanics of individual filaments, which stiffen nonlinearly in response to applied stress.

Because our goal was to measure the viscoelastic moduli of the networks in their dynamic

steady state, we did not systematically explore the viscoelastic behavior at large strains or

perform measurements at zero frequency. That said, our simulations do offer two interesting

insights: first, the mechanical behavior becomes nonlinear at just 10% or greater strains,

which is a typical result for in vitro networks [247], and second, there are more bundles

(which are more resistive to strain) at larger strain rates, and so at least one reason for the

nonlinearity is the mechanosensitive character of the actin gel morphology. Our conclusion is

identical to the modeling study [248], which found that strain combined with dynamic cross-

linking induces signficant morphological changes in the network, leading to strain hardening

[248, Fig. 3]. In fact, it was recently shown that actin filament mobility is a necessary

condition for strain hardening and mechanical hysteresis [249].

In the linear response regime, our results are in line with most of the prior experimental

and modeling studies. We found viscoelastic moduli on the order 0.1 − 10 Pa [189, 202],

with the links becoming viscous on long timescales and elastic on short ones [186]. Our

measurements showed that decreasing the fiber bending stiffness decreased the viscoelastic

moduli, but by a slower than linear rate [167] (in our study, decreasing κ by a factor of ten

reduced the moduli by at most 30%). We also found that the elastic stress in the gel (from

the CLs exerting force on the fibers) is much larger than the viscous drag stress over long

times, which agrees with a previous computational study [246].

14.1 Future directions

What all modeling studies, including ours, suffer from is that only few features of the actin

gel are simulated, with many factors, forces, and processes either ignored or approximated

crudely. There is, of course, a good reason for this: even a very limited caricature of the

383



gel exhibits complex dynamics; the fact that many experimental studies paint very different

pictures of the gel mechanics likely stems from the same biological complexity. We propose

that to understand the full complexity, one has to keep adding dynamic processes to previous

simpler benchmark models and examine the changes that new dynamics bring. Thus, our

next step will be to use the methodology of Chapter 8 to add thermal forces responsible for

random bending of the fibers. For a one micron long fiber with persistence length close to

20 microns, the thermal bending causes lateral fluctuations of no more than 30 to 40 nm,

which is significantly less than the mesh size of the networks we investigated, so we do not

expect that our results will change drastically. Indeed, a previous computational study in

permanent networks showed that thermal fluctuations only impact the mechanical moduli

when the average distance between cross links is greater than the persistence length of the

fibers [167, Fig. 7(c)], which is a regime we are far outside of here.

Despite this speculation, the fact remains that our study was unable to reproduce a

number of experimental observations in transiently cross-linked actin networks that have

been traced to the underlying thermal fluctuations of the filaments. For instance, we report

a viscous modulus that decays as for a viscous fluid (G′′ ∼ ω at low frequencies), whereas a

number of recent experimental, modeling, and theoretical studies [192, 195, 217, 218] report

an ω1/2 dependence of both moduli at low frequencies. It is important to note, however, that

fiber turnover, which was not accounted for in these previous studies, changes the behavior

on timescales larger than the turnover time, as does our use of shorter filaments relative to

[218]. In the high-frequency range, our results show viscous-fluid scaling of G′′ at large ω, but

experiments [188] and models [166] have shown an ω3/4 dependence at high frequencies. Now

that we have performed a benchmark study which shows that a non-Brownian cross-linked

actin network exhibits G′′ ∼ ω for large ω, it will be interesting to see if adding thermal

bending modes [217, 218] reproduces the scaling relation G′′ ∼ ω3/4, and how these relations

are affected by hydrodynamic interactions. In concert with this, we will consider more
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bundled morphologies, where the flexibility of the filaments, and therefore their transverse

bending fluctuations, may become more important. Similarly, we will test how explicit

simulation of translational and rotational diffusion and (un)binding of individual CLs [218],

as well as force dependence of CL kinetics, affect these results. A key component to any

of these steps is to find an expression for the additional suspension stress due to Brownian

motion, which, although available in some of the engineering literature [250, 251], is so far

lacking in theoretical understanding from an applied stochastic analysis perspective. It is

for this reason that our rheological simulations have yet to consider Brownian motion.

We failed to observe a local maximum or minimum in the viscous modulus at interme-

diate frequencies, as was reported in [166, 194]. One explanation for this is a difference in

parameters. In the computational study [166], the unloaded CL unbinding rate is 0.1 s−1,

and the CL stiffness is 10 pN/nm (10,000 pN/µm). In this parameter regime, the CLs always

make the most of their mechanical contribution to the network mechanics while bound, since

they cross-link the fibers for seconds and are extremely stiff. Indeed, [166, Fig. 6] shows that

the peak in G′′, when the timescale of the driving frequency matches the link unbinding rate,

becomes less sharp and almost disappears when koff increases to the order of one second, as

it is in our study here. This suggests that the local maximum is only observed when the

relaxation of the network is many orders of magnitude faster than the link binding rate.

This issue clearly requires more investigation, and in the future we will explore how using

a force-dependent unbinding rate, as is done in [166], impacts the results, and whether this

assumption is responsible for the peak.

We also hope to place our model of cross-linker dynamics on more rigorous footing by

comparing it to a model that actually tracks the diffusion, binding, and unbinding of individ-

ual CLs. Other modeling studies addressed bundling in more complex systems, for example

formation of unipolar bundles from a branched actin network [252] and bundling in the pres-

ence of a mix of CLs and myosin molecular motors [163, 174]. Interestingly, the appearance
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of the bundles in these more complex systems [174], which form when CL concentration is

above a threshold value [253], resemble those predicted by our model without motors. An-

other level of complexity is limits on bundle sizes due to chirality effects [254] and long-range

electrostatic repulsion between the filaments (reviewed in [255]). Elastic twisting of actin

filaments has been posited to contribute to elastic energy storage [211] and to the emergence

of chirality in cross-linked gels [256], so it would be interesting to use the methodology of

Chapter 6 to see how twist elasticty affects the suspension behavior. In addition, the gels

in vivo are very heterogeneous in the sense that there is a distribution of fiber lengths and

turnover times, and a diversity of CL types co-existing with myosin motors [171, 212, 257].

How network heterogeneity and active molecular force generation affect the gel mechanics

is another important question. Finally, in this work it was too difficult for us to simulate

the experimental steady state clustered bundled morphologies, since we simulated actin fil-

ament lengths of 1 µm and the observed steady states have bundles separated by hundreds

of microns [206, 208]. More efficient, GPU-based, simulation techniques might enable the

efficient simulation of even larger systems.
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[148] M. Hütter and H.C. Öttinger. Fluctuation-dissipation theorem, kinetic stochastic in-

tegral and efficient simulations. J. Chem. Soc., Faraday Trans., 94(10):1403–1405,

1998.

[149] Marshall Fixman. Simulation of polymer dynamics. i. general theory. The Journal of

Chemical Physics, 69(4):1527–1537, 1978.

[150] Timothy A Westwood, Blaise Delmotte, and Eric E Keaveny. A generalised drift-

correcting time integration scheme for brownian suspensions of rigid particles with

arbitrary shape. Journal of Computational Physics, 467:111437, 2022.

[151] S. Delong, B. E. Griffith, E. Vanden-Eijnden, and A. Donev. Temporal Integrators for

Fluctuating Hydrodynamics. Phys. Rev. E, 87(3):033302, 2013.

[152] S. Delong, F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev.

Brownian dynamics without Green’s functions. J. Chem. Phys., 140(13):134110, 2014.

Software available at https://github.com/stochasticHydroTools/FIB.

[153] Sander L Poelert and Amir A Zadpoor. Analytical and numerical methods for cap-

turing the thermal fluctuations of semiflexible polymers. Macromolecular theory and

simulations, 21(6):357–371, 2012.

403

https://github.com/stochasticHydroTools/RigidMultiblobsWall
https://github.com/stochasticHydroTools/RigidMultiblobsWall
https://github.com/stochasticHydroTools/FIB


[154] Jan Wilhelm and Erwin Frey. Radial distribution function of semiflexible polymers.

Physical review letters, 77(12):2581, 1996.
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