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Complex suspensions

Research interests

The primary focus of my research is fluid dynamics at small scales
(100nm-10µm), where thermal fluctuations / Brownian motion
play an important role.

A key approach I use and try to understand is fluctuating
hydrodynamics (stochastic partial differential equations).

Tools: fast methods, fast algorithms, computational fluid dynamics,
applied stochastic analysis.

Physical systems of current interest:
suspensions of colloids (soft matter, Chem E) and fibers (comp bio),
electrolytes (ionic solutions).
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Complex suspensions Colloidal Suspensions

Microrollers: Fingering Instability

Experiments by Michelle Driscoll, simulations by Blaise Delmotte (was at
Courant, now at LadHyX Paris), Nature Physics 13 (2017) [1]
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Complex suspensions Colloidal Suspensions

Microrollers: Uniform Monolayers

B. Sprinkle et al., Soft Matter 16 (2020) [ArXiv:2005.06002] [2]
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Complex suspensions Electrolyte Solutions

Electrohydrodynamics

Electro-hydrodynamic flow
Key issue: Debye length/layer
of molecular scales and
continuum approach is
questionable quantitatively:
no sterics, no image charges,
no fluctuations, no ion pairing

Electrolyte (ion) solutions are
important for batteries, ion-selective
membranes, biology, etc.

Past work with LBNL on fluctuating
Poisson-Nernst-Planck-Stokes
SPDE solvers.

Semi-discrete approach: Brownian
HydroDynamics (BD-HI) with
discrete ions including both
electrostatic and hydrodynamic
interactions.
Ladiges et al., Phys. Rev. Fluids 6 (2021)
and ArXiv:2204.14167 (2022) [3]
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Complex suspensions Electrolyte Solutions

Electroosmotic flow: MD vs BD

Continuing work on Courant on spectral GPU-based methods/codes for
electrolyte BD-HI and electrochemical applications
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Complex suspensions Electrolyte Solutions

GPU acceleration
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(Left) Electrostatics: Spectral Ewald splitting (6ms for 20K charges).
(Right) Hydrodynamics in slit channel using Fourier-Chebyshev spectral
methods for doubly-periodic geometry (ongoing).
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Complex suspensions

Fibers involved in cell mechanics

Pawlizak and Käs, University of Leipzig

Lp =persistence length, L =fiber length, a = ϵL =fiber radius,
ϵ =slenderness ratio
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Complex suspensions

Cytoskeleton rheology

Ahmed and Betz. PNAS. (2015)
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Complex suspensions

Cross-linked actin gels

Very slender semi-flexible fibers (aspect ratio 102 − 104) suspended
in a viscous solvent.

For now cross linkers modeled as simple elastic springs.

Periodic cyclically sheared unit cell: viscoelastic moduli.
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Complex suspensions

Does nonlocal hydrodynamics matter?

Sometimes flows created by individual fibers add up constructively to
produce large-scale flows, which advect network.

For example, cytoplasmic streaming of a myosin-actin gels (must
expel liquid out).

Flow is generated at scales of fiber thickness: multiscale problem.

Role of long-ranged (nonlocal) hydrodynamics unclear for
rheology of cross-linked actin gels.

Importance/role of Brownian bending fluctuations of fibers on
rheology also not fully clear.

Dynamics of Flexible Fibers in Viscous Flows and Fluids, Ann. Rev. Fluid Mech. 51:539,
du Roure, Lindner, Nazockdast, Shelley
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Brownian Dynamics
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Brownian Dynamics

Quick intro to BD-HI

The Ito equations of Brownian HydroDynamics for the (correlated)
positions of the N particles (ions, colloids, blobs) in fluid,
Q (t) = {q1 (t) , . . . ,qN (t)}:

dQ = MFdt + (2kBT M)
1
2 dB + kBT (∂Q ·M) dt,

where B(t) is a vector of Brownian motions, and F (Q) are
electrostatic+steric+external forces.

The symmetric positive semidefinite (SPD) but dense hydrodynamic
mobility matrix M (Q):
3× 3 block Mij that maps a force on particle j to a velocity of
particle i (Stokes flow problem).
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Brownian Dynamics

Computational Issues in BDHI

Key challenges for fast linear-scaling BD-HI:

How to compute deterministic velocities MF (and electrostatic
forces) efficiently? (Poisson and Stokes solvers)
Green’s functions, immersed boundary finite-difference approaches,
Fourier(-Chebyshev) spectral methods

Generating Brownian displacements N (0, 2kBT∆tM):
Use Fluctuating Hydrodynamics (FHD) to generate noise on fluid
instead of ions with single Stokes solve!

Generating stochastic drift ∼ ∂Q ·M
Design specialized temporal integrators based on Random Finite
Differences (RFDs)
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Inextensible Fibers in Stokes Flow
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Inextensible Fibers in Stokes Flow

Fiber Representation

Simple approach is to represent a fiber as a discrete chain of
beads/blobs: multiblob model

More efficient approach is to represent a fibers as continuum curve
O. Maxian et al. ArXiv:2201.04187
PRF 2021 [4]and now with twist in PRF 2022 [5]
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Inextensible Fibers in Stokes Flow Elasticity

Inextensible multiblob chains

Worm-like polymer chain

Inextensibility:∥Xj+1 − Xj∥ = l ∼ a
(e.g., a or 2a).

Tangent vectors:
τj+1/2 = (Xj+1 − Xj) /l

Bending angles:
cosαj = τj+1/2 · τj−1/2

Elastic energy (bending modulus κb)

Eb =
2κb
l

N−1∑
j=1

sin2
(αj

2

)
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Inextensible Fibers in Stokes Flow Elasticity

Inextensible continuum fibers

Persistence length due to thermal fluctuations ξ = 2κb/ (kBT ) ≫ l
gives us a continuum limit, αj ≪ 1.

Fiber centerline X (s) where the arc length 0 ≤ s ≤ L.

The tangent vector is τ = ∂X/∂s = Xs , and the fibers are
inextensible,

τ (s, t) · τ (s, t) = 1 ∀(s, t).
Bending energy functional is integral of curvature squared:

Eb (X) =
2κb
l

N−1∑
j=1

(αj

2

)2
⇒ Eb [X (·)] = κb

2

∫
ds ∥Xss (s)∥2
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Inextensible Fibers in Stokes Flow Elasticity

Bending elasticity

Bending force F
(b)
j on interior blob j gives us elastic force density

F
(b)
j = −∂Eb

∂Xj
=

κb
l3

(−Xj−2 + 4Xj−1 − 6Xj + 4Xj+1 − Xj+2)

Fb ≈ −lκb D
4X ⇒ fb = −δEbend

δX
= −κbXssss

Endpoints naturally handled discretely, giving in continuum natural
BCs for free fibers:

Xss (0/L) = 0, Xsss (0/L) = 0.

Tensions Tj+1/2 → T (s) are unknown and resist stretching,

Λi = Ti+1/2τi+1/2 − Ti−1/2τi−1/2 ⇒ λ = (Tτ )s .
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Inextensible Fibers in Stokes Flow Hydrodynamics

Fluid dynamics of an immersed fiber

For multiblob chains in Stokes flow, fluid velocity v (r, t) satisfies
∇ · v = 0 and

∇π = η∇2v +
∑
j

Fj δa (Xj − r),

where δa (r) is a blob kernel of width ∼ a, and

F = −lκb D
4X+Λ

Blobs/fiber are advected by fluid

Uj = dXj/dt =

∫
dr v (r, t) δa (Xj − r) .

Continuum limit is obvious (without Brownian fluctuations)

∇π (r, t) =η∇2v (r, t) +

∫ L

0
ds f(s, t)δa (X(s, t)− r)

U (s, t) = ∂tX (s, t) =

∫
dr v (r, t) δa (X(s, t)− r)

f = −κbXssss + λ

A. Donev (CIMS) Fibers 6/2022 22 / 46



Inextensible Fibers in Stokes Flow Hydrodynamics

Multiblob chains in Stokes flow

We can (temporarily) eliminate the fluid velocity to write an equation
for fiber only.

Define the positive semi-definite hydrodynamic kernel

R (r1, r2) =

∫
δa
(
r1 − r′

)
G
(
r′, r′′

)
δa
(
r2 − r′′

)
dr′dr′′,

where G is the Green’s function for (periodic) Stokes flow.

Define M (X) ⪰ 0 to be the symmetric positive semidefinite (SPD)
mobility matrix with blocks

Mij (Xi ,Xj) = R (Xi ,Xj) = R (Xi − Xj) .

Discrete dynamics = inextensibility +

U = dX/dt = M (X)F (X) = M
(
−lκb D

4X+Λ
)
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Inextensible Fibers in Stokes Flow Hydrodynamics

Inextensible fibers in Stokes flow

Define a positive semidefinite mobility operator

(M [X (·)] f (·)) (s) =
∫ L

0
ds ′ R

(
X(s),X(s ′)

)
f(s ′)

Continuum dynamics is a non-local PDE

U = Xt = M [X] (−κbXssss + λ)

τ (s, t) · τ (s, t) = 1 ∀(s, t).
Is this PDE well-posed? We have shown numerically that

Fiber velocity converges pointwise (strongly) up to the endpoints.
Moments of λ converge, e.g., stress tensor (weak convergence).
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Inextensible Fibers in Stokes Flow Hydrodynamics

Rotne-Prager-Yamakawa kernel

R (r1, r2) =

∫
δa
(
r1 − r′

)
G
(
r′, r′′

)
δa
(
r2 − r′′

)
dr′dr′′

Taking the regularization kernel and unbounded Stokes flow

δa (r) =
(
4πa2

)−1
δ (r − a)

gives the Rotne-Prager-Yamakawa (RPY) kernel

R (r) =


(8πη)−1

(
S (r) +

2a2

3
D (r)

)
, r > 2a

(6πaη)−1

[(
1− 9r

32a

)
I+

(
3r

32a

)
r ⊗ r

r2

]
, r ≤ 2a

S (r) =
1

8πηr

(
I+ r̂r̂T

)
≡ G, and D (r) =

1

8πηr3

(
I− r̂r̂T

)
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Inextensible Fibers in Stokes Flow Hydrodynamics

Slender Body Theory

(M [X (·)] f (·)) (s) =
∫ L

0
ds ′ R

(
X(s)− X(s ′)

)
f(s ′)

Matched asymptotics gives (away from endpoints)

(M f) (s) ≈ (MSBT f) (s) = (ML f) (s) + (MNL f) (s) =

=
1

8πη

(
log

(
(L− s)s

4a2

)(
I+ τ (s)τ (s)T

)
+ 4I

)
f(s)

+
1

8πη

∫ L

0
ds ′
(
S
(
X(s)− X(s ′)

)
f
(
s ′
)
−
(
I+ τ (s)τ (s)T

|s − s ′|

)
f(s)

)
For a special choice of blob radius a =

(
e3/2/4

)
ϵL = 1.12ϵL, this

formula matches the widely-used Slender Body Theory (SBT).

Our approach automatically works for multiple fibers, and also gives
us a natural regularization of the endpoints and also ensures an
SPD mobility operator.
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Inextensible Fibers in Stokes Flow Inextensibility

Inextensible motions

Ui −Ui−1

∆s
= Ωj+1/2 × τj+1/2 ⇒

U = KΩ⊥ =

U0, · · · ,U0 +∆s
i−1∑
j=0

Ω⊥
j+1/2 × τj+1/2, · · ·

→

U (s)=
(
K [X (·)]Ω⊥ (·)

)
(s) = U (0) +

∫ s

0
ds ′
(
Ω⊥ (s ′)× τ

(
s ′
))

.
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Inextensible Fibers in Stokes Flow Inextensibility

Principle of virtual work

Principle of virtual work: Constraint forces should do no work for
any inextensible motion of the fiber:

ΛTU =
(
KTΛ

)T
Ω⊥ = 0 ∀Ω⊥ ⇒ KTΛ = 0

KTΛ =

 N∑
j=0

Λj , · · · ,∆s

 N∑
j=i

Λj

× τi+1/2, · · ·

→

(K⋆ [X (·)]λ (·)) (s)=
[∫ L

0
ds ′ λ

(
s ′
)
, ∀s

(∫ L

s
ds ′ λ

(
s ′
))

× τ (s)

]
= 0.

We can express this in terms of tension

∀s
∫ L

s
ds ′ λ

(
s ′
)
= −T (s)τ (s) ⇒ λ = (Tτ )s

but the principle of virtual work is an integral constraint.
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Inextensible Fibers in Stokes Flow Inextensibility

Continuum equations

New weak formulation of inextensibility constraint:

Xt = K [X]Ω⊥= M [X] (−κbXssss + λ)

K⋆ [X]λ= 0

∂tτ = Ω⊥ × τ

X(s, t) = X(0, t) +

∫ s

0
ds ′ τ

(
ds ′, t

)
Two improvements:

Evolve tangent vector τ rather than X: strictly inextensible.
Expose saddle-point structure of problem (generalized gradient
descent for elastic energy).
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Numerical Methods
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Numerical Methods

Spatial Discretization

We develop a spectral discretization in space, based on representing
all functions using Chebyshev polynomials, with anti-aliasing.

Collocation discretization of mobility equation gives a saddle-point
system (

−M(X) K(X)

K∗(X) 0

)(
λ

Ω

)
=

(
M(X)(−κbD

4
BCX)

0

)
which we solve iteratively using a block-diagonal preconditioner.

We only use O(16− 32) Chebyshev points per fiber so doing dense
LA for individual fibers is OK.
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Numerical Methods

Temporal discretization

Backward Euler is the most stable since it ensures strict energy
dissipation; also for dense suspensions.

Split mobility into local (e.g., intra-fiber) and non-local (e.g.,
inter-fiber) parts, M = ML +MNL:

KnΩn =Mn
L

(
−κbD

4
BCX

n+1,⋆ + λn+1
)

+Mn
NL

(
−κbD

4
BCX

n + λn
)
+Mfn

(K⋆)n λn+1 =0,

where Xn+1,⋆ = Xn +∆tKn+1/2,∗Ωn+1/2.

Actual fiber update is strictly inextensible

τ n+1 = rotate (τ n,∆tΩn) .

fn contains other forces such as cross-linkers (can be stiff).
Flow is easy to add to the rhs.
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Numerical Methods

The gory details

1 For dense suspensions, supplement L+NL splitting with additional 1-5
GMRES iterations for stability.

2 Evaluate long-ranged hydrodynamic interactions between Chebyshev
nodes in linear time using Positively Split Ewald (PSE) method (FFT
based for triply periodic), also works for deformed/sheared unit cell
(Fiore et al. J. Chem. Phys. (2017)).

3 For intra-fiber hydro we replaced slender body theory with superior
slender body quadrature (singularity subtraction).

4 For nearby fibers, use specialized near-singular quadrature to get
2-3 digits.
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Actin gels
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Actin gels

Actin network/gel
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Actin gels

Cross-linked network

Randomly generated dense network of CLs (16 attachment sites per site)
to give about 12 CLs per fiber (elastic network).
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Actin gels

Rheology

Apply linear shear flow v0(x , y , z) = γ̇0 cos(ωt)y and measure the
visco-elastic stress induced by the fibers and cross links:

σ(i) =
1

V

∑
fibers

∫ L

0
ds Xi (s) (fb(s) + λ(s))T

σ(CL) =
1

V

∑
CLs=(i ,j)

∫ L

0
ds
(
Xi (s)f(CL,i)(s) + Xj(s)f(CL,j)(s)

)
σ21
γ0

= G ′ sin(ωt) + G ′′ cos(ωt) = elastic+viscous.

G ′ =
2

γ0T

∫ T

0
σ21 sin(ωt) dt G ′′ =

2

γ0T

∫ T

0
σ21 cos(ωt) dt.
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Actin gels

Viscoelastic moduli: Maxwell fluid
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Actin gels

Nonlocal hydrodynamics
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Reduction in viscoelastic moduli with only local drag or
only inter-fiber nonlocal hydrodynamics.
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Actin gels

Dynamic cross linking

Kinetic Monte Carlo algorithm for cross linking:

Discrete set of binding sites on each fiber (for efficiency).

Doubly-bound CLs act as simple elastic springs.

Assumptions behind linking algorithm

Diffusion of cross-linkers is fast (diffusion-limited binding)

Four reactions between fibers and CL reservoir obey detailed balance

Fiber turnover
Single end (un)binding Second end (un)binding

ℓ" ± 𝛿ℓ

1/𝜏(

𝑘*+

𝑘*,, 𝑘*,,,.

𝑘*+,.

O. Maxian et al, PLOS Comp. Bio., 2021 [bioRxiv:2021.07.07.451453] [6]
and Biophysical J., 2022 [bioRxiv:021.09.17.460819] [7]
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Actin gels

Dynamically cross-linked network
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Actin gels

Rheology transient CLs
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Measured viscoelastic moduli of dynamically cross-linked networks
without Brownian motion.

For bundled networks, elastic modulus overestimated by ≈ 50%
without inter-fiber hydro, esp. long timescales.

Fibers in bundles closer together: stress is reduced because
entrainment flows in bundle make straining easier.
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Adding Brownian motion
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Adding Brownian motion

Thermal fluctuations (Brownian Motion)

Rigid fibers are“easy” though so far we have only implemented
without inter-fiber hydro [7].

Fluctuating hydrodynamics gives the fluctuating Stokes equations

ρ∂tv +∇π =η∇2v +∇ ·
(√

2ηkBT W
)

+

∫ L

0
ds f(s, t)δa (X(s, t)− r) .

The thermal fluctuations (Brownian motion of fiber) are driven by a
white-noise stochastic stress tensor W (r, t).

Must first answer deep mathematical questions:

Can one make sense of the (multiplicative noise) overdamped SPDE
for a Brownian curve?
Does the Brownian stress of the fiber converge in the continuum
limit? (bending energy does not)
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Adding Brownian motion

Brownian multiblob chains

For Brownian blob-link chains there are no mathematical issues so start
there!

Fast constrained BD-HI for blob-link chains based on rotating unit link
vectors including Brownian stress (Brennan Sprinkle, in progress)
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Adding Brownian motion
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