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We develop an inertial coupling method for modeling the dynamics of point-like“blob”particles
immersed in an incompressible fluid, generalizing previous work for compressible fluids [F. Balboa
Usabiaga, I. Pagonabarraga, and R. Delgado-Buscalioni, J. Comp. Phys., 235:701-722, 2013 ].
The coupling consistently includes excess (positive or negative) inertia of the particles relative to
the displaced fluid, and accounts for thermal fluctuations in the fluid momentum equation. The
coupling between the fluid and the blob is based on a no-slip constraint equating the particle veloc-
ity with the local average of the fluid velocity, and conserves momentum and energy. We demon-
strate that the formulation obeys a fluctuation-dissipation balance, owing to the non-dissipative
nature of the no-slip coupling. We develop a spatio-temporal discretization that preserves, as
best as possible, these properties of the continuum formulation. In the spatial discretization, the
local averaging and spreading operations are accomplished using compact kernels commonly used
in immersed boundary methods. We find that the special properties of these kernels allow the
blob to provide an effective model of a particle; specifically, the volume, mass, and hydrodynamic
properties of the blob are remarkably grid-independent. We develop a second-order semi-implicit
temporal integrator that maintains discrete fluctuation-dissipation balance, and is not limited in
stability by viscosity. Furthermore, the temporal scheme requires only constant-coefficient Poisson
and Helmholtz linear solvers, enabling a very efficient and simple FFT-based implementation on
GPUs. We numerically investigate the performance of the method on several standard test prob-
lems. In the deterministic setting, we find the blob to be a remarkably robust approximation to a
rigid sphere, at both low and high Reynolds numbers. In the stochastic setting, we study in detail
the short and long-time behavior of the velocity autocorrelation function and observe agreement
with all of the known behavior for rigid sphere immersed in a fluctuating fluid. The proposed iner-
tial coupling method provides a low-cost coarse-grained (minimal resolution) model of particulate
flows over a wide range of time-scales ranging from Brownian to convection-driven motion.
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I. Introduction

The dynamics of small particles immersed in a fluid is key to many applications involving disparate
length and time scales [1]: from the dynamics of millimeter particles (dust) in turbulent flow,
to multiphase flow with micron and nanoscopic colloidal molecules in quiescent, laminar [2–4],
or turbulent regimes [5, 6]. In many engineering applications colloidal particles are exposed to
disparate dynamic regimes coexisting in different subdomains of the same chamber [7]. Such processes
demand fast computational methods able to efficiently resolve the motion of many (O (105)) colloidal
particles in quite different dynamics ranging from diffusive to inertial dynamics. Such scenarios are
paradigmatic of what one might call multi-regime systems.

A group of methods such as smooth particle hydrodynamics (SPH) [8], smoothed dissipative
particle dynamics [9], and stochastic rotation dynamics (SRD) [2] resolve both the particle and fluid
phase using similar discrete Lagrangian descriptions, and as such, seem to be natural candidates
to become multi-regime solvers [8, 10]. Particle-particle methods allow for an easy treatment of
complex boundary conditions, and offer a natural way to couple moving boundaries or immersed
particles to the fluid. However, particle-particle methods have important drawbacks when compared
with standard solvers for discretized Computational Fluid Dynamics (CFD). In particular, they
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offer limited control over the fluid properties and require relatively small time steps compared to,
for example, semi-implicit CFD schemes. Moreover, they cannot be adapted to efficiently treat the
natural time scales governing the different dynamical regimes (e.g., the Brownian or overdamped
limit). Similar advantages and drawbacks also apply to the lattice Boltzmann (LB) method [3],
although the LB approach has proven to be a rather flexible framework [11].

Many other approaches use CFD for the solvent flow and couple its dynamics with that of the
immersed particles. In the realm of CFD one can still distinguish two large subgroups of methods.
The first group of methods involves a Lagrangian description of the computational mesh which
self-adapts to follow the particle [12]. The second group uses a fixed (Eulerian) grid and requires
converting the particle boundary conditions into body forces or some interaction equations [11, 13, 14].
The present work focuses on this second group, sometimes called mixed Eulerian-Lagrangian methods.
These schemes are particularly suited to attack the “multi-regime” problem, because they are faster,
more flexible and can work with minimal resolution models (pointwise particle descriptions).

In their seminal work, Maxey and Riley [15] decomposed the fluid velocity as v(r, t) = v0(r, t)+v1(r, t),
where v0 is the undisturbed flow (which would result if the boundary conditions at the particle surface
were not applied), and v1 is the perturbative component created by the fluid-particle interaction. In
the bulk flow, convection (advection) becomes relevant for ReF = v0Lρ/η > 1; where the fluid Reynolds
number ReF is defined in terms of the typical flow speed v0, the fluid density ρ, the dynamic viscosity
η = ρν, and a characteristic length L for velocity variation in the flow. The fluid force on the particle
arises from the local fluid inertia (proportional to the local material derivative of v0) and also from
the local stress created by the particle disturbance. The relaxational part of the particle inertia
is a consequence of its mass resistance to instantaneously follow the velocity of the surrounding fluid;
the fluid drag damps the particle velocity towards the local fluid velocity within an inertial time
τP ∼ (ρP − ρ)R2/η which increases with the density contrast ρP − ρ and with the particle radius R.

By contrast, convective inertia arises from non-linear interactions between the particle dynamics and
its perturbative flow [16]. The particle Reynolds number ReP = 2wR/ν, defined with the particle-fluid
relative speed w [15], determines the relative strength of advection by the perturbative flow relative to
viscous dissipation. The importance of convective inertia is indicated by the ratio ReF (R/L)2 between
the characteristic times associated with Stokes drag and convection [15, 16]. At finite values of the
non-dimensional groups ReP and ReF (R/L)2 inertia effects due to particle mass and particle size
are not similar anymore, especially in the turbulent regime, where non-linear interactions between
the mean flow and the particle perturbative field become relevant [5, 17]. Non-linear interaction
between particle advection and thermal fluctuations are also possible at small Reynolds number.
Some examples are the change in the mobility of colloidal particles (R ∼ 10−[5−8] m) over the Stokes
limit at low values of the Schmidt number [18, 19], and inertial effects in directional locking, a process
to separate nanoparticles at very small ReP [20].

Computational approaches are usually tailored to tackle some specific dynamical regime and they
can be naturally classified according to the range of ReF , ReP and R/L they can be safely applied to.
In the creeping flow limit, ReF → 0 and ReP → 0, the perturbative flow v1 has a negligible effect on the
unperturbed field, which is a priori fixed. The perturbative field created by a collection of particles is
the linear superposition of the Stokes fields and it determines the multi-body hydrodynamic forces on
the particle ensemble. Analytical expressions for these forces are embedded in the mobility matrix of
Brownian hydrodynamics (BD) [21, 22] and Stokesian dynamics (SD) [23]. In addition to the stokeslet
(monopole) terms, in SD one can include higher terms of the multipole expansion of the perturbative
stress [1]. The zero-Reynolds regime resolves the long-time diffusive (Smoluchowski) limit of colloidal
motion, in which fluctuations make an important (O(1)) contribution. Direct implementation of the
fluctuation dissipation (FD) relation between the friction and noise matrices requires O(N3) operations,
where N is the number of particles. Sophisticated and technically-complex techniques such as the accel-
erated Stokesian dynamics [24], and the general geometry Ewald-like method for confined geometries
[25], reduce the large raw cost to O(N lnN) operations, albeit with large multiplicative prefactors.

As an alternative to BD and SD methods, two-way coupling algorithms using a Stokes frictional
force were developed for mixed Eulerian-Lagrangian dynamics [3, 26, 27]. The idea is to deploy a
relative simple and efficient fluid solver to explicitly resolve the perturbative flow responsible for the
hydrodynamic coupling between particles. The particle cost is dominated by neighbour searching and
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scales (almost) linearly with N , while the (added) fluid solver cost scales like the system volume. The
Eulerian-Lagrangian mixed approach permits to work at finite ReF . However, the Stokes (i.e. frictional)
coupling assumption limits the scheme to ReP < 1 and only resolves far-field hydrodynamics (R/L < 1).
The Stokes coupling consistently neglects convective inertia and only includes relaxational particle
inertia in an approximate way, with a finite particle response time τP introduced by a phenomenological
friction coefficient. Frictional coupling is obviously dissipative and requires introducing an additional
noise term in the particle equation, different from that of the fluctuating fluid stress tensor [3, 27].

Other methods for finite ReF have been restricted to ReP = 0, where the particle inertia is absent.
Two relevant examples are the stochastic Immersed Boundary(IB) method [27, 28] commonly used for
fluid-structure interaction at R/L = O(1), and the Force Coupling method (FCM) [16, 29, 30], where
each particle is represented by a low-order expansion of force multipoles (R/L < 1). Very recently,
subsequent to the competition and submission of this paper, an extension of the FCM that includes
fluctuations in the overdamped or inertia-less limit has been developed [31]. For ReP = 0 the relative
fluid-particle acceleration is zero and the particle velocity just follows the local fluid velocity. The
hydrodynamic force due to the particle-fluid interaction is then equal to the total force exerted on
the particle by sources other than the fluid. This permits a fluid-only formulation whereby the net
non-hydrodynamic particle force is spread from the particle to the surrounding fluid using some
compact kernel. This important spreading operation differs substantially from method to method. In
FCM two different Gaussian kernels are used to spread the force monopole and force dipole moments
(stresslet); their widths are fitted in the continuum model to recover the Stokes drag and linear
Faxen terms [29]. By contrast, the IBM kernels are specifically designed to minimize the effects
of the discrete Eulerian mesh in the spreading of Lagrangian point forces (monopole terms) [32].

For ReP � 1 and R/L� 1 advection of the perturbative flow can be neglected leading to the (analyt-
ically solvable) unsteady Stokes equation for the perturbative field [15]. The fluid-particle force can be
expressed as some function of the relative velocity field u−v0 interpolated at the particle site. This forms
the basis of one-way-coupling schemes for point-particle dynamics frequently used in turbulence research,
ReF � 1 [16]. Generalizations to ReP ∼ 1 have been also derived (see e.g. [33]) but, even in the simpler
ReP � 1 limit, the evaluation of the fluid-particle force involves cumbersome expressions which require
interpolations of the displaced fluid acceleration (the added mass effect), second order spatial derivatives
of v0 (Faxen terms), and time-convolved integrals which recast the history of vorticity diffusion around
the particle (Basset memory). For a sphere moving with velocity u at ReP � 1, the leading term is the
steady Stokes force FStokes = 6πηR(u− v0), which, due to its simple form, has been overused in two-way
point-particle approximations of turbulent (ReF � 1) and pre-turbulent regimes [5, 17]. Although the
point-particle approach can probably describe the relaxational inertia of very small (R/L� 1) heavy
particles in a light fluid (e.g. aerosol), it has the serious limitation of neglecting the convective inertia
arising from the particle finite size [34]. Even at low ReP , convection of perturbative flow is known to
alter the Basset memory and the long time particle dynamics [16]. And vice versa, recent works show
that micron-size particles can alter the turbulent spectra at moderate ReP and R ∼ L (with L the
Kolmogorov length) [5, 6] due to energy dissipation and vorticity production in the particles wake [34].

Several Eulerian-Lagrangian methods have appeared in recent years to allow for a fully consistent
treatment of the coupled particle and fluid inertia. A key issue is the spatial resolution of the particle.
In the “direct forcing” method [35], and related extensions to fluctuating hydrodynamics [11, 36–38],
the fluid force on the particle is obtained by imposing the no-slip constraint on a well-resolved particle
surface, and in some cases, to ensure rigid body motion, also in the particle interior [39]. High spatial
resolution requires substantial computational effort; the largest simulations so far reached O(103)
particles [35, 40, 41]. The smoothed particle method (SPM) [13, 14] works with a mixed (particle-fluid)
velocity field constructed with a smooth characteristic function which discriminates particle and
fluid cells. This permits an intermediate resolution with a typical particle radius R ' 5h (here h
is the mesh size) requiring O(103) fluid cells per particle. These fully or partially resolved methods are
quite far from a point-particle approach, which can require as few as 13 cells to perform a fourth order
orthogonal Lagrangian interpolation [42]. “Blob” particle descriptions, more appropriately termed
minimally-resolved models, offer a way to explore finite particle effects at moderate computational cost.
In this work each particle (blob) is described by an unique kernel of small support (27 cells) which is
shown to provide a consistent set of particle physical properties (volume, mass, hydrodynamic radius).
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It has to be noted that due to the long-ranged nature of hydrodynamic interactions, sufficiently large
boxes are required to reduce (to an acceptable extent) the finite size effects; hence a reduction in the
linear size of the particle description means a large (cubic) reduction in the overall fluid solver cost.

In a preceding paper [43], some of us proposed an inertial coupling method that directly couples
a compressible finite-volume fluctuating hydrodynamic solver [44] to blob particles. A distinguishing
feature of the coupling methodology is that it includes the effect of the particle and fluid inertia in
the dynamics, while still consistently including thermal fluctuations even in non-trivial geometries.
It was numerically demonstrated that the inertial coupling method can reproduce ultrasound forces
on colloidal particles, taking place at much faster rates than viscous friction [45]. In this previous
work [43], a compressible solver was used because one of the focus applications was the interaction
between ultrasound and colloidal particles [45]. In many applications sonic effects can be ignored
and the essential hydrodynamic interactions can be captured by using the isothermal incompressible
Navier-Stokes equations instead of the compressible equations. This eliminates the fast sound waves and
allows for a much larger time step size in the fluid solver. Here we develop an inertial coupling method
(ICM) that directly couples an incompressible finite-volume solver for the fluctuating Navier-Stokes
equations [44] with suspended particles, which do not necessarily have the same density as the fluid.
We demonstrate that the coupling obeys a continuum and a discrete fluctuation-dissipation balance and
study the performance of our algorithm. The ICM is a coarse-grained model for particle hydrodynamics
which aims to capture hydrodynamic effects (unsteady forcing, viscous friction and advection) over a
broad range of time scales and ReP : from Brownian motion to convection-driven regimes. In the ICM,
the coupling between the particle and the fluid is not assumed to have any functional form (e.g. Stokes
drag) but naturally arises from the no-slip constraint averaged over the particle (or “blob”) domain. The
present results (see also Ref. [43]) indicate that this type of (non-linear) coupling permits to take into
account both fluid and particle inertia beyond the Stokes limit, where advective interactions take place.

It is useful to point out the main similarities and differences between our work and closely related
work by others. First, at the level of the formulation, the idea of using a minimally-resolved description
of particles immersed in a fluid has a long history in both deterministic and fluctuating hydrodynamics.
In the deterministic setting, Maxey and collaborators have explored in extensive detail the coupling
between a minimally-resolved spherical particle and fluid flow within the context of the FCM [16, 29, 30].
In the context of fluctuating hydrodynamics, a blob description of particles has been used frequently to
couple a Lattice-Boltzmann (LB) fluid solver to immersed particles [3, 26]. There are two distinguishing
features of our method from that described in extensive detail in an excellent survey by Dünweg and
Ladd [3]. The first difference, inherited from our previous work [43], is the fact that we employ a direct
frictionless (conservative) coupling that instantaneously enforces a no-slip constraint. This eliminates
an artificial frictional time scale from the problem and allows us to obtain physically-accurate short-
time dynamics, as we demonstrate in detail in Section IV by examining the velocity autocorrelation
function of the blobs for very short times. In principle, a more direct coupling could be done in the
formulation of Dünweg and Ladd by taking a very large frictional constant, as explained in more
detail by Atzberger [27]. However, the resulting dynamics are stiff and doing this numerically requires
using small time steps sizes. The second important distinguishing feature of the work presented here
is the use of a semi-implicit incompressible fluid solver instead of the compressible explicit LB solver,
as also done in the stochastic IB method [27, 28]. This allows us to maintain stability at much larger
time step size than used in typical LB simulations, and, more importantly, allows us to approach
the Brownian or Stokesian (overdamped) dynamics limit without any uncontrolled approximations.
A final distinguishing feature of our work from all work we are aware of is the consistent inclusion of
inertial effects in both the formulation and the numerical algorithm. Specifically, inertial effects (excess
particle mass) are not included in the FCM or the stochastic IB method. Recently, the very strong
coupling limit of the frictional formulation described in Refs. [3, 27] has been considered theoretically
by Tabak and Atzberger [46]. The equations obtained by them are identical to the ones we derive
here based on physical guiding principles. Finally, we point out that our numerical algorithm, which
includes both the spatial and a second-order semi-implicit temporal discretizations of the fluid-particle
equations, is distinct from any other work we are aware of. The algorithm is a generalization of
the first order coupling introduced by the direct forcing method [39, 43, 47]. Our scheme achieves
second-order accuracy, avoids pressure-velocity splitting [48], as required for low Reynolds number
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flows, and can be extended to other immersed-boundary fluid-structure coupling methods as well.
It is important to point out that in this work we do not consider thermal (heat) transfer between

the particles and the fluid and instead use an isothermal description, as most relevant to microfluidic
applications. Heat transfer is important in many large-scale particulate flows, and has been included
in Direct Numerical Simulation (DNS) algorithms [41]. It is possible to include additional transport
processes in the minimally-resolved approach we employ here, however, the specifics of how to express
the surface boundary conditions to a volumetric blob condition are very problem specific and need to be
carefully constructed on a case by case basis. In this respect, recently, reaction-diffusion processes have
been included in the type of method studied here [49], and compressible blobs have been considered
and found to adequately describe coupling between ultrasound waves and small particles [50].

In the remainder of this Introduction we introduce some notation and fundamental concepts. In
Section II we discuss the continuum equations of the incompressible inertial coupling method. We
present both a constrained and a constraint-free formulation, and demonstrate momentum and energy
conservation, as well as fluctuation-dissipation balance. In Section III we present a second-order
semi-implicit spatio-temporal discretization of the continuum equations, and demonstrate second-order
temporal accuracy in the deterministic setting. In Section IV we test and apply the algorithm to
a collection of standard test problems. We demonstrate that the algorithm correctly reproduces static
equilibrium properties such as the radial distribution function in a suspension of soft spheres, and also
reproduces known features of single and pair hydrodynamic interactions at small Reynolds numbers. We
also study in detail the short and long-time behavior of the velocity autocorrelation function of a freely
diffusing particle. Finally, we study the behavior of the blob particle in high Reynolds number flow. In
Section V we offer some conclusions and thoughts on possible extensions of the method and algorithm.
Several more technical calculations and algorithmic details are presented in a collection of Appendices.

A. Notation and Basic Concepts

In the beginning, we focus on the continuum formulation of the fluid-particle coupling. However,
it is important to point out that most of the notation and conclusions can directly be adopted in
the discrete formulation by simply replacing spatial integrals with sums over grid points. We will
return to the spatially-discrete formulation in Section III.

Let us consider a particle of physical mass m and size (e.g., radius) a immersed in a fluid with
density ρ. In real problems there will be many particles i = 1, . . . , Np that interact with each other,
for example, in microfluidic applications involving polymers each particle could represent a bead
in a bead-spring or bead-link polymer model [22]. Unless otherwise indicated it is straightforward to
extend the proposed formulation to a collection of interacting particles by simply adding a summation
over the different particles. Therefore, for simplicity of notation, we will typically focus on a single
particle and omit the particle index.

The position of the particle is denoted with q(t) and its velocity with u = q̇. The shape of the
particle and its effective interaction with the fluid is captured through a smooth kernel function
δa (r) that integrates to unity and whose support is localized in a region of size a. For example, one
may choose any one-dimensional “bell-shaped” curve δa (r) with half-width of order a, and define
a spherically-symmetric δa (r) = δa (r); alternatively, in d dimensions one may define a tensor-product

δa (r) =

d∏
α=1

δa (rα) . (1)

In immersed-boundary methods [32], the kernel function δa is considered to be an approximation of the
Dirac delta function of purely numerical origin and has the tensor-product form (1). By contrast, in the
force-coupling method [29, 30], the shape of the kernel function is chosen to be a spherically-symmetric
Gaussian whose width is related to the physical size and properties of the actual particle. We adopt
an approach that is intermediate between these two extremes and choose the shape of the function
based on numerical considerations, but relate its shape to the physical properties of the particle.

The fluid velocity field is denoted with v(r, t) and is assumed to extend over the whole domain,
including the particle interior. The interaction between the fluid and particle is mediated via the
kernel function through two crucial local operations. The local averaging linear operator J(q) averages
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the fluid velocity inside the particle to estimate a local fluid velocity

vq (t) = Jv(r, t) =

ˆ
δa (q − r)v (r, t) dr.

The reverse of local averaging is accomplished using the local spreading linear operator S(q) which
takes a force F applied to the particle and spreads it over the extent of the kernel function to return
a smooth force density field,

f (r, t) = SF (t) = F (t) δa (q − r) .

Note that the local spreading operator S has dimensions of inverse volume. For notational simplicity
we will slightly abuse notation and assume that the local spreading and interpolation operators can
be applied to a scalar, a vector, or a tensor field, with the interpretation that the same local averaging
or spreading operation is applied to each component independently. This sort of block-diagonal form
of the spreading and interpolation operators is not strictly required for the mathematical formulation
[27], but applies to the specific Peskin forms of the operators we use in practice [32].

The physical volume of the particle ∆V is related to the shape and width of the kernel function
via JS = ∆V −1 I, that is,

∆V = (JS 1)
−1

=

[ˆ
δ2
a (r) dr

]−1

. (2)

Therefore, even though the particle is represented only by the position of its centroid, it is not
appropriate to consider it a “point” particle. Rather, it can be thought of as a diffuse sphere that
has some physical extent and interacts with the fluid in its interior. For lack of better terminology,
we will refer to such a diffuse particle as a “blob”. In fluctuating hydrodynamics the fluid velocity
is a distribution and cannot be evaluated pointwise, therefore, to obtain well-defined fluctuating
equations spatial averaging must be used and a physical volume associated to each blob.

Because fluid permeates the interior of the particle, the effective inertia of the particle is enlarged
by ρ∆V giving the physical mass

m = me + ρ∆V = me +mf ,

where me is the excess mass of the particle over the mass of the entrained fluid mf = ρ∆V . In
particular, me = 0 corresponds to a neutrally-buoyant particle, meaning that the inertia of the fluid
is unchanged by the presence of the particle. It is a crucial property that ∆V is a constant that
only depends on the shape of the kernel function and not on the position of the particle. This ensures
that the mass of the particle m is constant and can be given a well-defined physical interpretation.
Preserving this translational invariance of the physical properties of the blob in the spatially-discrete
setting requires using special discrete averaging and spreading operations.

One could alternatively use the dimensionless operator S̃ = S∆V , as done in Ref. [43], with the
property that JS̃ = I. We prefer to use the dimensional version because the averaging and spreading
operators are adjoint, S = J?, i.e., the natural dot products in the particle (Lagrangian) and fluid
(Eulerian) domains are related via [27]

(Jv) · u =

ˆ
v · (Su) dr =

ˆ
δa (q − r) (v · u) dr (3)

for any u and v. This adjoint property follows from the fact that the same kernel function is used
is used for both averaging and spreading, and is crucial in maintaining energy conservation and
fluctuation-dissipation balance. This adjoint condition will also be preserved by the discrete local
averaging and spreading operators.

B. Fluctuating Incompressible Navier-Stokes Equation

In this work we assume that the fluid can be described via the fluctuating Navier-Stokes equation
[51]. Specifically, we model the dynamics of the fluid velocity field v(r, t) assuming an isothermal
incompressible Newtonian fluid, ∇ · v = 0,

ρ (∂tv + v ·∇v) = −∇π + ∇ · σ + f = −∇π + η∇2v + ∇ ·
[
(kBTη)

1
2
(
W + WT

)]
+ f , (4)

where the stress tensor σ includes the viscous η
(
∇v + ∇Tv

)
and fluctuating contributions, π is the

non-thermodynamic pressure, ρ is the (constant) fluid density, η = ρν is the (constant) fluid shear
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viscosity, ν is the kinematic viscosity, and f (r, t) is an additional force density such as gravity or the
force exerted by the particles on the fluid. Note that we prefer to use the standard physics notation
instead of the differential notation more common in the mathematics literature since there is no
difference between the Ito and Stratonovich interpretations of stochastic integrals for additive noise.

In the momentum conservation law (4), the stochastic momentum flux is modeled using a white-noise
random Gaussian tensor field W (r, t), that is, a tensor field whose components are independent
(space-time) white noise processes,

〈Wij(r, t)Wkl(r
′, t′)〉 = (δikδjl) δ(t− t′)δ(r − r′).

The form of the stochastic forcing term ensures fluctuation-dissipation balance between the random
forcing and the viscous dissipation and gives the correct spectrum for the thermally-induced velocity
fluctuations. The symmetrized form of the fluctuating stress (kBTη)

1/2
(
W + WT

)
mimics the symme-

try of the viscous stress tensor, ensuring fluctuation-dissipation balance even for variable viscosity flows
[51, 52]. The discretization and numerical solution of (4) is discussed in more detail in Refs. [44, 52].

It is important to emphasize here that the non-linear fluctuating Navier-Stokes equation forced
with white-noise fluxes is ill-defined because the solution should be a distribution rather than a
function and the nonlinear term v ·∇v cannot be interpreted in the sense of distributions. This
term needs to be regularized in order to give a precise meaning to (4). Such a regularization has
the physical interpretation that the fluctuating fields are only defined from the underlying microscopic
dynamics via spatial coarse-graining with a characteristic mesoscopic length σ, as discussed at length
in Ref. [53]. In the continuum setting, one can replace the term v ·∇v with ṽ ·∇v + ∇ṽT · v, where
ṽ is a smoothed velocity in which features in v at scales smaller than σ are filtered 1, following the
α-Navier-Stokes model [54] in turbulence. An alternative is to filter the stochastic forcing W with
a smoothing kernel of width σ [56] (see also Appendix in Ref. [57]). We are not aware of any careful
studies of what regularization is the most appropriate (i.e., produces the best match with molecular
dynamics), and we do not attempt to address this complex issue in this work.

In finite-volume or finite-element spatial discretizations, both the nonlinear terms and the stochastic
forcing are naturally regularized by the discretization or coarse-graining length scale (grid spacing). In
our spatial discretization, the advective term v ·∇v is discretized using a skew-adjoint (conservative
in both momentum and energy) discrete advection operator, as explained in detail in Ref. [52]. This
ensures that the inclusion of that term does not alter the equilibrium Gibbs-Boltzmann distribution
for the fluctuating velocity field. In practice, we have not observed any measurable effect of the
nonlinearity on the results presented here, as tested by simply omitting advective fluxes in the velocity
equation. This is consistent with the notion that as long as there are sufficiently many molecules
per hydrodynamic cell the fluctuations will be small and the behavior of the nonlinear equations
will closely follow that of the linearized equations of fluctuating hydrodynamics, which can be given
a precise meaning [58]. Specifically, advective terms such as v ·∇v or u ·∇v (see, for example, Eq.
(8)) scale like the square of the magnitude of the fluctuations, and in practice we observe they give
unmeasurably small corrections when the blobs are much larger than the fluid molecules.

C. No-Slip Condition

Coupling of a continuum (fluctuating) fluid with point-like (blob) particles has been considered
by other researchers. In particular, in Lattice-Boltzmann methods [3, 59, 60] a Stokes frictional force
between the particle and the fluid is postulated. Specifically, the motion of the particle is described by
a Langevin equation in which a phenomenological Stokes frictional force between the particle and the
fluid is postulated, proportional to the difference u− Jv between the particle and the locally-averaged
fluid velocity. A corresponding force is added to the fluid equations to ensure momentum and energy
conservation and fluctuation-dissipation balance in the fluid-particle system [3, 27].

An important downside of the inertial Stokes coupling is the imposition of an artificial friction
parameter and an associated delay with the response of the particle to changes in the flow. Such
a delay is often not physically acceptable unless a very large friction constant is imposed, leading

1 In the α-Navier-Stokes equations [54] the smoothing is chosen to be an inverse Helmholtz operator, v = u− σ2∇2u,
with boundary conditions chosen such that u is divergence free in the whole domain of interest [55].
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to numerical stiffness. Instead, following Ref. [43], we impose an instantaneous coupling between
the fluid and the particle in the form of a no-slip constraint,

u = q̇ = Jv =

ˆ
δa (q − r)v (r, t) dr, (5)

The no-slip condition simply states that the velocity of the particle is equal to a local average of the
fluid velocity. This is a constraint that formally eliminates the particle velocity from the formulation
and leaves only the fluid degrees of freedom. We now demonstrate that the imposition of (5) leads
to a physically-consistent coarse-grained model of the coupled fluid-particle system. Notably, the
fluid-particle coupling conserves momentum, energy, and obeys a fluctuation-dissipation principle.

It is important to point out that due to the finite extent of the kernel δa, the particle velocity
(5) differs from that of a point tracer even for a smooth fluid velocity field. As noted by Maxey
and Patel [30], to second-order in the gradients of v, the particle velocity obeys a Faxen relation [61],

u ≈
ˆ
δa (q − r)

{
v (q, t) + ∇v (q, t) · (r − q) +

1

2
∇∇v (q, t) :

[
(r − q) (r − q)

T
]}

dr =

= v (q, t) +
1

2
∇∇v (q, t) :

ˆ
δa (r) rrT dr.

If the kernel δa (r) is spherically-symmetric,

u = v (q, t) +

[ˆ
r2
x

2
δa (r) dr

]
∇2v (q, t) = v (q, t) +

a2
F

6
∇2v (q, t) , (6)

where aF can be termed the “Faxen” radius of the blob [30], in general different from the hydrodynamic
radius (unlike for a fully-resolved rigid sphere). The same formula applies for the case of a
tensor-product kernel (1).

The particle acceleration is

u̇ =
d

dt
[J (q)v] = J (∂tv) +

(
u · ∂

∂q
J

)
v, (7)

where for our choice of interpolation operator we have the explicit form:(
u · ∂

∂q
J

)
v =

ˆ [
u · ∂

∂q
δa (q − r)

]
v (r, t) dr.

Observe that in the limit of a “point particle”, a→ 0, the kernel function approaches a Dirac delta
function and one can identify (7) with the advective derivative,

d

dt
(Jv) ≈ d

dt
v (q(t), t) = Dtv = ∂tv + (v ·∇)v,

which is expected since in this limit the particle becomes a Lagrangian marker. In Ref. [62], the term
d
dt

(Jv) is replaced with the interpolated Navier-Stokes advective derivative J (Dtv), thus avoiding
the need to differentiate the kernel function. For a blob particle with finite size, however, in general,
the relative fluid-particle acceleration is non-zero,

aJ =
d

dt
(Jv)− J (Dtv) =

(
u · ∂

∂q
J

)
v − Jv ·∇v 6= 0. (8)

II. Incompressible Inertial Coupling Method

Following the discussion in the Introduction and the derivation in Section 2 of Ref. [43] we take
the equations of motion for a single particle coupled to a fluctuating fluid to be

ρ (∂tv + v ·∇v) = ρDtv = −∇π + ∇ · σ − S (q)λ (9)

meu̇ = F (q) + λ (10)

s.t. u = J (q)v, (11)

where the fluid-particle force λ is a Lagrange multiplier that enforces the constraint (11) and F (q)
is the external force applied to the particle. Observe that the total particle-fluid momentum

P = meu+

ˆ
ρv (r, t) dr

is conserved because Newton’s third law is enforced; the opposite total force is exerted on the fluid
by the particle as is exerted on the particle by the fluid. When there is more than one particle one
simply adds the forces from all the particles in the fluid equation.
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Note that similar equations apply for both compressible and incompressible fluids. In the
compressible case [43], a density equation is added to the system (9,10,11) and the pressure π (ρ)
obtained from the equation of state. In the incompressible case the divergence-free condition ∇ · v = 0
is used instead to determine the (non-thermodynamic) pressure as a Lagrange multiplier.

For now, we will silently ignore the fact that the fluctuating equations include a non-smooth white
noise component that must be handled with care, and return to a discussion of the stochastic equations
later on. For a neutrally-buoyant particle, me = 0, λ = −F , and the fluid equation is the standard Navier-
Stokes with the force on the particle spread back to the fluid as a force density SF [29, 32]. In this case
our formulation is equivalent to the Stochastic Immersed Boundary Method [27, 28], and in the deter-
ministic context, it is equivalent to the initial (“monopole”) version of the Force Coupling Method [30].

In the determinstic setting, several extensions of the deterministic IB method to include inertial
effects have already been developed by Peskin and collaborators [62–65], as well as by Uhlmann
in the context of the direct-forcing method [47], to which our method is closely related. In the penalty
method of Kim and Peskin [64], a particle (Lagrangian marker in the context of IBM) is represented
as a pair of particles, a (neutrally-buoyant) passive tracer that follows the flow, q̇ = J (q)v, and an
inertial particle of mass me connected to the tracer via an elastic spring. In the limit of an infinitely
stiff spring (infinite penalty parameter) the spring force λ becomes a Lagrange multiplier enforcing
the no-slip constraint. An advantage of our constrained formulation is that it does not include the
fast dynamics associated with the stiff elastic springs and thereby avoids the time step size restrictions
associated with an explicit penalty method [64].

A. Primitive-variable Formulation

In this section we study the properties of (9,10,11) in order to better understand the physics of
the fluid-particle coupling. Using (10) to eliminate λ = meu̇ − F and (8) to eliminate u̇, the fluid
equation (9) becomes,

ρDtv = ρ (∂tv + v ·∇v) = −meSJ (Dtv)−∇π + ∇ · σ −meSaJ + SF . (12)

This gives the effective fluid equation

(ρ+meSJ) ∂tv = −
[
ρ (v ·∇) +meS

(
u · ∂

∂q
J

)]
v −∇π + ∇ · σ + SF , (13)

in which the effective fluid inertia is given by the operator ρ + meSJ , and the kinetic stress term
ρv ·∇v includes an additional term due to the excess inertia of the particle. When there are many
interacting particles one simply adds a summation over all particles in front of all terms involving
particle quantities in (13). Note that for a neutrally-buoyant particle me = 0 and one obtains the
constant-density Navier-Stokes equation with external forcing SF .

Similarly, by eliminating λ from (10) we obtain the effective particle equation (see also Section
2 of Ref. [43]),

mu̇ = ∆V J (−∇π + ∇ · σ) + F +mfaJ , (14)

where mf = ρ∆V is the mass of the fluid dragged with the particle. This equation makes it clear
why m = me + mf has the physical interpretation of particle mass (inertia). If the particle were a
rigid sphere, the force exerted by the fluid on the particle would be the surface average of the stress
tensor. It is sensible that for a blob particle this is replaced by the locally averaged divergence of
the stress tensor (first term on right hand side). The last term in the particle equation mfaJ has
a less-clear physical interpretation and comes because the fluid is allowed to have a local acceleration
different from the particle. It is expected that at small Reynolds numbers the velocity field will
be smooth at the scale of the particle size and thus aJ ≈ 0 [66]. Nevertheless, we will retain the
terms involving aJ to ensure a consistent formulation, see Appendix B.

B. Momentum Formulation

Let us define a momentum field as the sum of the fluid momentum and the spreading of the particle
momentum,

p (r, t) = ρv +meSu = (ρ+meSJ)v. (15)
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The total momentum is P (t) =
´
p (r, t) dr and therefore a local conservation law for p (r, t) implies

conservation of the total momentum.
By adding the fluid and particle equations (9,10) together we can obtain the dynamics of the

momentum field,

∂tp = ρ (∂tv) +meSu̇+me

(
u · ∂

∂q
S

)
u

= −∇π + ∇ · σ −∇ ·
[
ρvvT +meS

(
uuT

)]
+ SF , (16)

where we used the fact that S depends on the difference (q − r) only, and not on q and r separately. In
the absence of applied external forces we can write the right hand side as a divergence of a total stress ten-
sor −πI+σ+σkin, where the kinetic stress tensor includes a contribution from the inertia of the particle,

σkin = −ρvvT −meS
(
uuT

)
. (17)

This means that the momentum field obeys a local conservation law, as expected for short-ranged
interactions between the particle and the fluid molecules.

The formulation (16) is not only informative from a physical perspective, but was also found very
useful in performing adiabatic elimination in the case of frictional coupling in Refs. [27, 46].

C. Pressure-Free Formulation

The equations we wrote so far contain the ∇π term and can easily be generalized to the case of
a compressible fluid [43]. For analysis purposes, in the incompressible case it is useful to eliminate
the pressure from the equations using a projection operator formalism. This well-known procedure
[67] can be understood as follows. The fluid equation (9) is of the form

∂tv + ρ−1∇π = g, ∇ · v = 0.

By taking the divergence of the evolution equation, we get

∂t (∇ · v) + ρ−1∇2π = ρ−1∇2π = ∇ · g,
which is a Poisson equation for the pressure whose solution can be formally written as π = ρ∇−2 (∇ · g).
This means that

∂tv = g − ρ−1∇π = g −∇
[
∇−2 (∇ · g)

]
= Pg,

where P is a projection operator that projects the right-hand side g or a given velocity field onto the
space of divergence-free vector fields. Note that the boundary conditions are implicit in the definitions
of the gradient, divergence, and Laplacian operators. For periodic boundary conditions, the projection
can most easily be implemented using a spatial Fourier transform. Specifically, in Fourier space the
projection operator is simply a multiplication by the d× d matrix P̂ = I − k−2(kkT ), where d is the
dimensionality, d = 2 or d = 3, and k is the wavenumber.

By using the projection operator, we can eliminate the pressure from the equations of motion
(9,10), to obtain

ρ∂tv = P [−ρv ·∇v + ∇ · σ −meSu̇+ SF ] .

If we now use (7) to eliminate u̇ we obtain the fluid equation

ρ∂tv +mePSJP (∂tv) = P
[
−ρv ·∇v −meS

(
u · ∂

∂q
J

)
v + ∇ · σ + SF

]
,

where we used the fact that Pv = v since ∇ · v = 0, and we added a P in front of the second term
for symmetry purposes. This shows that the pressure-free form of the fluid-only equation (13) is

ρeff∂tv = P
{
−
[
ρ (v ·∇) +meSJ

(
v · ∂

∂q
J

)]
v + ∇ · σ

}
+ PSF = Pf + PSF , (18)

where the force density f contains the advective, viscous and stochastic contributions to the fluid
dynamics. This form of the equation of motion can be shown to be identical to the limiting equation
for velocity obtained by Tabak and Atzberger, with the exception of the advective term v ·∇v which
is omitted in Ref. [46]. An important feature of this formulation is that the density ρ in the usual
Navier-Stokes equation is now replaced by the effective density operator

ρeff = ρI +mePSJP , (19)
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where I is the identity operator or matrix. Notice that the effective density operator for incompressible
flow is not ρI +meSJ as one might naively expect based on (13). The distinction between SJ and
PSJP is important, and leads to a well-known but surprising difference between the short-time
motion of a particle immersed in a compressible versus an incompressible fluid [68]. When there
are many particles present, the effective inertia tensor is generalized straightforwardly by summing
the added inertia over the particles,

ρeff = ρI +
∑
i

(me)iPSiJ iP . (20)

Equation (18) together with the no-slip condition q̇ = Jv gives a closed set of equations for v and
q without any constraints. We can use this unconstrained formulation to simplify analysis of the
properties of the coupled fluid-particle problem. In particular, in Appendix B, the constraint-free form
is used for showing fluctuation-dissipation balance in the stochastic setting. The formal solution of (18),

∂tv = ρ−1
eff P (f + SF ) ,

involves the cumbersome operator PSJP via the inverse of the effective inertia ρeff. In principle
this makes the pressure-free formulation difficult to use in numerical methods. However, as we explain
in Appendix A, with periodic boundary conditions it is possible to efficiently invert the operator ρeff

using Fourier transforms and thus obtain a closed-form equation (A6) for ∂tv suitable for numerical
implementations. This relies on the fact that for a large d-dimensional periodic system JPS is a
constant multiple of the d× d identity matrix.

D. Energy Conservation

A crucial property of no-slip coupling (unlike frictional-coupling) between the particles and the flow is
that it is non-dissipative, and therefore all dissipation (drag) comes from viscous dissipation. Specifically,
in the absence of viscous dissipation, the equations of motion (9,10,11) conserve a coarse-grained Hamil-
tonian [69, 70] given by the sum of potential energy and the kinetic energy of the particle and the fluid,

H (v,u, q) = ρ

ˆ
v2

2
dr +me

u2

2
+ U (q) , (21)

where U (q) is the interaction potential of the particle with external sources and other particles, with
an associated conservative force

F (q) = −∂U
∂q

= −∂H
∂q

.

For compressible flow one needs to include the (density-dependent) internal energy of the fluid in
the Hamiltonian as well [71].

To demonstrate energy conservation, we calculate the rate of change
dH

dt
= −F · u+meu · u̇+

ˆ
ρv · (∂tv) dr

in the absence of viscous and stochastic fluxes. Using the equations of motion (9,10) we get
dH

dt
= −F · u+ u · (F + λ)−

ˆ
v · (Sλ) dr

−
ˆ
v ·∇π dr − ρ

ˆ
v · (v ·∇v) dr

= (u− Jv) · λ+

ˆ
π (∇ · v) dr

−ρ
2

ˆ
v ·∇ (v2) dr + ρ

ˆ
v · [(∇× v)× v] dr,

where integration by parts and the adjoint property (3) were used for the first two terms, and a
vector identity was used to express v ·∇v in terms of the vorticity ∇× v. The first term vanishes
due to the no-slip constraint u = Jv. The second and third terms vanish for incompressible flow ∇ · v,
and the last term vanishes because of the basic properties of the cross product. This demonstrates
that dH/dt = 0 in the absence of viscous dissipation, that is, the non-dissipative terms in the equation
strictly conserve the coarse-grained free energy.
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E. Fluctuation-Dissipation Balance

So far, we considered the equations of motion for the fluid-particle system ignoring thermal
fluctuations. In Appendix B we formally demonstrate that in order to account for thermal fluctuations
in a manner that preserves fluctuation-dissipation balance it is sufficient to add the usual Landau-
Lifshitz stochastic stress (kBTη)

1/2
(
W + WT

)
to the viscous stress tensor in σ, without adding

any stochastic forces on the particle. The key physical insight is that the fluid-particle coupling is
non-dissipative, as demonstrated in Section II D, and the only dissipation comes from the viscous terms.

Fluctuation-dissipation balance here means that at thermodynamic equilibrium the particle-fluid sys-
tem is ergodic and time-reversible with respect to the Gibbs-Boltzmann distribution Z−1 exp (−H/kBT ),
where the “Hamiltonian”H given in (21) is to be interpreted as a coarse-grained free energy. Since
u = Jv is not an independent degree of freedom, we can formally write the Hamiltonian in terms of
the degrees of freedom of the system as a sum of potential and kinetic energy. The total kinetic energy
includes, in addition to the kinetic energy of the fluid

´
(ρ/2) v2 dr, a kinetic energy contribution

due to the motion of the particle,

Ep = me

u2

2
= me

(Jv) · u
2

=
me

2

ˆ
v · (Su) dr =

me

2

ˆ
vTSJv dr,

where use was made of the adjoint condition (3). This leads to the coarse-grained Hamiltonian

H (v, q) = me

ˆ
vTSJv

2
dr + ρ

ˆ
v2

2
dr + U (q) =

1

2

ˆ
vTρeffv dr + U (q) . (22)

Note that it is not necessary here to include an entropic contribution to the coarse-grained free energy
because our formulation is isothermal, and we assume that the particles do not have internal structure.

We emphasize that the form of H (q,v) in (22) is postulated based on physical reasoning rather
than derived from a more refined model. Atzberger et al. [27, 46] provide a careful and detailed
discussion of how one might eliminate the particle velocity u by performing an adiabatic elimination,
starting from a frictional coupling model in which the particle velocity is independent from the fluid
velocity. The starting frictional coupling model, however, as we discussed earlier, involves an arbitrary
frictional force parameter that is yet to be given a microscopic interpretation. We believe that the
consistency of our inertial coupling model with general thermodynamic principles and deterministic
hydrodynamics is sufficient to adopt the inertial coupling model as a consistent coarse-grained model
without having to justify it from “first principles” [72]. We also note that the equations obtained
in Ref. [46] are similar in structure to the ones we have presented here.

The fact that fluid-particle coupling conserves the Hamiltonian (see Section II D) and is therefore
non-dissipative is a crucial component of fluctuation-dissipation balance. However, this is not sufficient
on its own. An important additional requirement is that the phase space dynamics should be
incompressible, which means that the dynamics preserves not just phase-space functions of H, but
also preserves phase-space measures such as the Gibbs-Boltzmann distribution. As discussed by
Atzberger [27], even for the case of a neutrally-buoyant particle an additional “Ito” or “thermal” drift
term needs to be added to the velocity equation to ensure fluctuation-dissipation balance. This term
has the form of an additional contribution to the stress tensor

σth = − [S (kBT )] I. (23)

The physical origin of this term is the Kirkwood kinetic stress due to the thermal motion of the
particle lost when eliminating u as a degree of freedom. Another way to interpret this term is that
it adds a particle contribution of S (kBT ) to the pressure. For incompressible flow, this simply changes
the pressure but does not change the dynamics of the velocity field since the projection P eliminates
the scalar gradient term ∇ ·σth = −∇S (kBT ). In Appendix B we argue that for non-neutrally buoyant
particles there is also no need to include an additional thermal drift term for periodic boundary
conditions. Note, however, that the above calculations rely on continuum identities that fail to be
strictly obeyed discretely. As we explain in Section B 2 of the Appendix in more detail, ensuring
strict discrete fluctuation-dissipation balance requires keeping the contribution −∇S (kBT ) in the
momentum equation in both the compressible and incompressible settings.
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F. Equipartition of Energy

For a single particle immersed in a periodic incompressible fluid in d dimensions, translational
invariance implies that there is no dependence of expectation values on q, and therefore we can keep q
fixed when calculating expectation values. The fact that the Hamiltonian (22) is quadratic in v means
that the fluctuations of velocity are Gaussian with covariance 〈vv?〉 = (kBT )ρ−1

eff . The fluctuations
of the particle velocity have variance

〈u2〉 = Trace [J 〈vv?〉S] = (kBT ) Trace [Jρ−1
eff S] .

Using the relations (A5) and (A3) derived in the Appendix, we can simplify

〈u2〉 =
kBT

ρ
Trace

[
J

(
I − me∆Ṽ

m̃
PSJP

)
S

]
= d

kBT

m̃
, (24)

where ∆Ṽ = d∆V/ (d− 1) and m̃ = me + dmf/ (d− 1).
The result 〈u2〉 = d (kBT ) /m̃ should be compared to the corresponding result for a compressible fluid

[43], 〈u2〉 = d (kBT ) /m, which follows from the usual equipartition principle of statistical mechanics.
When incompressibility is accounted for, a fraction of the equilibrium kinetic energy is carried in the
unresolved sound waves, and therefore the apparent mass of the particle is m̃ and not m = me+mf , as we
verify numerically in Section IV B. It is reassuring that our model equations reproduce the result for rigid
particles. This suggests that the model introduced here can be used to study more complicated questions
such as the effect of multi-particle interactions on 〈u2〉 in semi-dilute to dense colloidal suspensions [73].

III. Spatio-Temporal Discretization

In this section we describe our second-order spatio-temporal discretization of the equations of
motion (9,10,11). Our spatio-temporal discretization is based on the deterministic Immersed Boundary
Method (IBM), and in particular, on the deterministic second-order temporal integrator presented in
Ref. [? ]. For the fluctuating fluid solver, we use the second-order staggered-grid spatial discretization
of the fluctuating Navier-Stokes equations described in detail in Ref. [44]. A notable feature of the
fluid solver we employ is that it handles the viscous terms semi-implicitly and is stable for large
time steps. Furthermore, for the fluctuating Stokes equations, our fluid solver produces the correct
spectrum of the velocity fluctuations for any time step size [44].

There are two key novel features in our incompressible inertial coupling algorithm from those
previously developed. Firstly, our algorithm includes the effects of particle excess inertia in a
manner that strictly conserves momentum and is second-order deterministically for smooth problems.
Secondly, we focus our initial development on systems with periodic boundaries only, allowing the
use of the Fast Fourier Transform (FFT) as a linear solver for the time-dependent Stokes equations.
This greatly simplifies the implementation of the algorithm and allows us to use Graphics Processing
Units (GPUs) for very efficient parallelization of the algorithm.

For neutrally-buoyant particles our temporal discretization is exactly that described in Ref.
[? ] with the fluid solver replaced by that described in Ref. [44]. This simplified algorithm is
already implemented in the IBAMR software framework [74], an open-source library for developing
fluid-structure interaction models that use the immersed boundary method. Note that IBAMR can
handle non-periodic boundary conditions using a preconditioned iterative solver for the time-dependent
Stokes equations [75]. In this paper we focus on describing the additional steps required to handle
excess inertia and to use FFTs as a linear solver.

The majority of our presentation will focus on a single particle coupled to a fluctuating fluid. Only
small changes are required to handle multiple particles by simply summing the single-particle term
over the different particles. As we explain in more detail shortly, the error introduced by superposing
the single particle solutions to solve the multi-particle system is small if the kernels of the different
particles are not overlapping, which in practice means that there are at least 3 grid cells between
the centroids of the particles.

A. Spatial Discretization

Our second-order spatial discretization of the equations (9,10,11) is based on standard techniques for
incompressible flow and the immersed boundary method [32], as described in more detail in, for example,
Ref. [? ]. In the spatially-discretized equations, the same equations as for the continuum apply, but with



14

the interpretation that the velocity v is not a (random) vector field but rather a finite-volume discretiza-
tion of that field [53, 76]. We use a uniform Cartesian staggered-grid spatial discretization of the incom-
pressible Navier-Stokes equations, as described in more detail in Ref. [44]. In the staggered discretization
the control volume grid associated to each component of velocity is shifted by half a grid spacing along
the corresponding dimension relative to the pressure grid. In the discrete setting, the various continuum
operators acting on vector fields become matrices. The spatial discretization of the differential operators,
notably the discrete gradient, divergence and Laplacian operators, is described in detail in Ref. [44].

1. Discrete Interpolation and Spreading Operators

Application of the local averaging operator J , which is a convolution operator in the continuum
setting, becomes a discrete summation over the grid points that are near the particle,

Jv ≡
∑
k∈grid

φa (q − rk)vk,

where rk denotes the center of the control volume with which vk is associated, and φa is a function
that takes the role of the kernel function δa. We follow the traditional choice [32] and do the local
averaging independently along each dimension,

φa (q − rk) =

d∏
α=1

φa [qα − (rk)α] ,

which improves the isotropy of the spatial discretization (but note that the local averaging is not rotation-
ally invariant). As a matrix, the local spreading operator S = (∆Vf )

−1
J? is a weighted transpose of J ,

(SF )
k

= (∆Vf )
−1
φa (q − rk)F ,

where ∆Vf = ∆x∆y∆z is the volume of the hydrodynamic cell 2.
The discrete kernel function φa was constructed by Peskin [32] to yield translationally-invariant

zeroth- and first-order moment conditions, along with a quadratic condition,∑
k∈grid

φa (q − rk) = 1

∑
k∈grid

(q − rk)φa (q − rk) = 0

∑
k∈grid

φ2
a (q − rk) = ∆V −1 = const., (25)

independent of the position of the particle q relative to the underlying (fixed) velocity grid. Ensuring
these properties requires relating the support of the kernel function to the grid spacing, that is, making
a ∼ ∆x (more specifically, typically the width of the function φa has to be an integer multiple of the
grid spacing). This means that the size and shape of the particles is directly tied to the discretization
of the fluid equations, and the two cannot be varied independently, for example, simulating the motion
of a “spherical” particle requires choosing the same grid spacing along each dimension, ∆x = ∆y = ∆z.
This is a shortcoming of our method, but, at the same time, it is physically unrealistic to resolve
the fluid flow and, in particular, the fluctuations in fluid velocity, with different levels of resolution
for different particles or dimensions.

The physical size of the particle (hydrodynamic radius) can be varied over a certain range
independently of the grid resolution by using modified discrete kernel functions. This can be very
useful when simulating polydisperse suspensions with mild polydispersity. A simple approach is
to use shifted or split kernels,

φa,s (q − rk) =
1

2d

d∏
α=1

{
φa

[
qα − (rk)α −

s

2

]
+ φa

[
qα − (rk)α +

s

2

]}
,

where s denotes a shift that parametrizes the kernel. By varying s in a certain range, for example,
0 ≤ s ≤ ∆x, one can smoothly increase the support of the kernel and thus increase the hydrodynamic

2 The cell volume ∆Vf is introduced here because the fluid kinetic energy appearing in the discrete Hamiltonian is
∆Vf

∑
k∈grid ρv

2
k/2 and therefore ∂H/∂v is not the functional derivative ρv as in the continuum (see Appendix

B) but rather the partial derivative ∆Vf ρv.
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radius of the blob by as much as a factor of two. While in principle one can increase the width of the
kernels arbitrarily, if the support of the kernel grows beyond 5-6 cells it better to abandon the minimally-
resolved blob approach and employ a more resolved representation of the particle [14, 39]. We do not
use split kernels in this work but have found them to work as well as the unshifted kernels, while allowing
increased flexibility in varying the grid spacing relative to the hydrodynamic radius of the particles.

The last condition (25), was imposed by Peskin [32] as a way of approximating independence under
shifts of order of the grid spacing. This property is especially important in our context since it implies
that the particle volume ∆V = (JS 1)

−1 will remain constant and independent of the position of the blob
relative to the underlying grid. The function with minimal support that satisfies (25) is uniquely de-
termined [32]. In our numerical experiments we employ this three-point discrete kernel function, which
means that the support of φ extends to only three grid points along each dimension (i.e., 3d discrete ve-
locities are involved in the averaging and spreading operations in d dimensions), see Ref. [43] for details.
This particular choice gives ∆V = 8∆Vf in three dimensions and ∆V = 4∆Vf in two dimensions. The nar-
row kernel improves the computational efficiency on the bandwidth-limited GPU, as detailed in Ref. [43].

2. Translational Invariance

In the continuum derivation, obtaining the closed-form pressure-free velocity equation (A6) relied
sensitively on the fact that for a large continuum system

JPS =
d− 1

d
∆V −1 I, (26)

see Eq. (A3) in Appendix A. Ideally, we would like the spatial discretization to have the additional
property that, for periodic boundary conditions, JPS should be invariant under translations of the
particle relative to the underlying fluid grid. This is not ensured by the Peskin operators, which
are constructed without any reference to the fluid equations and the particular form of the discrete
projection or the discrete viscous dissipation. In fact, in the traditional immersed boundary method
[32], a centered discretization of the velocity was used, which implies a very different form for the
discrete projection operator P and required the introduction of an additional “odd-even” moment
condition not strictly necessary with a staggered discretization.

Numerical experiments suggest that for the staggered grid discretization that we employ, the
continuum identity (26) is obeyed to within a maximal deviation of a few percent,

∆Ṽ
−1

(q) = JPS ≈ ∆Ṽ −1 I (27)

for a sufficiently large periodic system, where ∆Ṽ = d∆V/ (d− 1) is a modified volume of the blob. For
a periodic three-dimensional system of Nx ×Ny ×Nz hydrodynamic cells, we expect to see deviations
from (27) if one of the grid dimensions becomes of the order of the kernel width (which is 3 cells
for our spatial discretization). This is because a particle then becomes affected by its nearby periodic
images. For a grid size Nx ×Ny × 1 cells we expect to obtain two-dimensional behavior [see Eq. (A4)].

In the left panel of Fig. 1 we show numerical results for the average and maximum deviation of
∆Ṽ (JPS) from the d× d identity matrix,

δI (q) = ∆Ṽ −1 (JPS)− I,
as we vary the position of the particle q relative to a cubic Eulerian grid of size Nx = Ny = Nz = N
cells. Specifically, we show the average diagonal value, the maximum diagonal element, and the
maximum off-diagonal element of δI (q). For all but the smallest systems the diagonal elements are
smaller than 5% and the off-diagonal elements are on the order of 0.1%. For smaller system sizes
there are visible finite-size effects due to interactions with periodic images. For comparison, we also
show the corresponding two-dimensional results for a square grid of Nx = Nx = N cells. The finite-size
effects are more pronounced in two dimensions due to the slower decay of the Green’s function for the
Poisson equation, but for systems larger than N = 32 cells we find (26) to hold to a percent or so. In
the left panel of Fig. 1 we also show the average diagonal values (δIxx + δIyy)/2 and δIzz for non-cubic
systems, illustrating the change from three-dimensional to the two-dimensional behavior as Nz → 1.

Given these numerical observations, we will make an approximation and assume that JPS is
a constant multiple of the d × d identity matrix independent of q, and (27) holds as an equality.
While this is, in principle, an uncontrolled approximation, we will correct for it in order to ensure
strict momentum conservation and thus strict adherence to fundamental physical laws. We also



16

4 8 16 32 64

Number of cells N

-0.05

0

0.05

0.1

0.15

0.2

R
el

at
iv

e 
d
ev

ia
ti

o
n

Cubic (av diag)

Square (av diag)

Non-cubic (av diag xy)

Non-cubic (av diag z)

Cubic (max diag)

Cubic (max off-diag)

0 1 2 3 4 5 6 7 8
Distance l / ∆x

10
-4

10
-3

10
-2

10
-1

10
0

M
ax

 o
v
er

la
p

JS
JPS, diag, (1,1,1)

JPS, off diag, (1,1,1)

JPS, diag, (1,0,0)

JPS, off diag, (1,0,0)

Figure 1: (Left panel) Translational invariance of the approximation d∆V (JPS) / (d− 1) ≈ I over a set of 103

positions of the particle relative to the underlying fluid grid. For a periodic three-dimensional system of N3 cells,
we show the average diagonal value of δI (black squares), the maximum diagonal element of δI (magenta stars), as
well as the maximum off-diagonal element of δI (cyan pluses). We also show the average diagonal value of δI for
a two-dimensional system of N2 cells (red circles), as well as the average value (δIxx + δIyy)/2 (green diamonds)
and δIzz (blue triangles) for a three-dimensional system of 32 × 32 ×N cells. (Right panel) Maximum diagonal
and off-diagonal value of 3∆V (J iPSj) /2 and the maximum diagonal value of ∆V (J iSj) for two particles i
and j a distance l apart along the (1, 0, 0) or (1, 1, 1) direction, in a three-dimensional periodic box of 323 cells.

note that the small approximations we make when computing ρ−1
eff only affect the short-time inertial

dynamics and do not affect static properties or the long-time dynamics, as deduced from (18). The
approximation (27) allows us to write the discrete equivalent of (A5)

ρ−1
eff = (ρI +mePSJP)

−1 ≈ ρ−1

(
I − me∆Ṽ

m̃
PSJP

)
. (28)

When there are multiple particles in the system we simply sum the second term on the right hand
side over all particles, see Eq. (A7), which is an approximation even in the continuum setting. This
approximation relies on the assumption that J iPSj ≈ 0 for two particles i and j that are far away
from each other. To test the validity of this approximation, in the right panel of Fig. 1 we show
the maximum diagonal and off-diagonal value for J iPSj for two particles a distance l away from
each other, for both qi − qj = l (1, 0, 0) and qi − qj = l

(√
3,
√

3,
√

3
)
/3, in three dimensions. If l = 0

then J iPSj approaches 2∆V −1 I/3, so we normalize the value of J iPSj by a factor of 3∆V/2. We
see that for l & 5∆x, the maximum normalized value of J iPSj is less than 0.01. As seen in the figure,
J iSj vanishes identically if the kernels of particles i and j are disjoint, which is always the case when
the distance between the blobs is larger than 3∆x along at least one direction.

Another operator that is important for the long-time diffusive (Brownian) motion of the particle,
as explained in Refs. [3, 27], is the discrete mobility tensor for a single particle,

µ (q) = −JL−1S,

where L−1 denotes the discrete Stokes solution operator. For a single particle in a periodic domain,
we numerically find that µ (q) is approximately translationally-invariant to within a few percent,

µ (q) ≈ µ I =
1

6πηRH
I,

where the effective hydrodynamic radius for an infinite system is numerically extrapolated to be
RH ≈ 0.91∆x for a uniform grid spacing ∆x and the three-point kernel [43]. This is consistent with
previous results for a cell-centered discretization of the Navier-Stokes equations [77] and also with
the results obtained using a Lattice-Boltzmann fluid solver in [3]. By using the Peskin four-point
kernel [32] instead of the three-point discrete kernel function the translational invariance of the
spatial discretization can be improved, however, at a potentially significant increase in computational
cost. A more systematic investigation of different choices for the discrete kernel functions has been
performed by Mori [78], however, these types of investigations have yet to be carried out within
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the “blob” particle approach. We have found the inexpensive three-point function to perform quite
well in our tests and use it exclusively in this work.

For non-periodic systems, one must generalize the definition of J and S in the case when the
particle overlaps a physical boundary [79]. Even if a particle does not overlap a boundary, however,
it will feel the boundary hydrodynamically and therefore both JPS and JL−1S will depend on the
proximity of the particle to physical boundaries. Implementing our algorithm in such cases may
require first pre-tabulating the values of these d× d matrices for different positions of the particle
relative to the boundaries.

B. Temporal Discretization

In this section, we describe how to integrate the spatially-discretized equations in time and update
the fluid and particle velocities and particle position from time n∆t to time (n+ 1) ∆t, where ∆t is
the time step size, which can in principle be adjusted dynamically but we will assume it is kept fixed.
We will use a superscript to denote the time level at which a given quantity is evaluated, for example,
qn+ 1

2 will denote a mid-point estimate for the position of the particle at time
(
n+ 1

2

)
∆t. Similarly,

F n+ 1
2 = F

(
qn+ 1

2

)
will denote the force on the particle (due to external sources or other particles)

evaluated at the position qn+ 1
2 and, implicitly, at time

(
n+ 1

2

)
∆t in the case of a time dependent force.

For a neutrally-buoyant particle, me = 0, the fluid momentum equation is coupled to the particle posi-
tion only through the forcing term SF . In the deterministic setting, Griffith and Luo [? ] have developed
a second-order splitting scheme for integrating the spatially-discretized equations in time. The fluid
solver in this scheme is very similar to the predictor-corrector scheme employed in the stochastic setting
in Ref. [44]. The temporal discretization that we present next is based on replacing the fluid solver in Ref.
[? ] with that in Ref. [44], at least for the simpler case me = 0. The main difficulty is including the ad-
ditional inertia from the particles in the fluid momentum update in a computationally-efficient manner.

In Ref. [43] a first-order splitting algorithm was developed for the case of a compressible fluid.
This type of algorithm is similar to the original projection algorithm of Chorin [80] for incompressible
flow and can be summarized as follows. Update the fluid first without accounting for the force λ
exerted by the particle. Then, solve for the value of λ that, when applied as a correction to the
fluid update, exactly imposes the no-slip condition. Extending this type of approach to be higher
than first order accurate is known to be difficult from the literature on incompressible flow [48], due to
the fact that the splitting introduces a commutator error. Here we follow a different, though related
approach, which allows to construct a more accurate algorithm for viscous-dominated flows.

Our temporal scheme will be based on the following approach, which can be shown to be
second-order deterministically by a Taylor series expansion of the temporal local truncation-error:

1. Estimate the position of the particle at the midpoint to leading order,

qn+ 1
2 = qn +

∆t

2
Jnvn. (29)

2. Update the fluid velocity based on (13) using a second-order algorithm, while keeping the particle
positions fixed at the midpoint estimates,(

ρI +meS
n+ 1

2Jn+ 1
2

) vn+1 − vn

∆t
+ ∇πn+ 1

2 = −∇ ·
(
ρvvT − σ

)n+ 1
2 + Sn+ 1

2F n+ 1
2 ,

−
[
meSJ

(
v · ∂

∂q
J

)
v

]n+ 1
2

(30)

subject to ∇ · vn+1 = 0. Here a second order Runge-Kutta [52] or Adams-Bashforth [? ] scheme
can be used to evaluate the fluid momentum fluxes to at least second-order accuracy, denoted
generically here by superscript n+ 1

2
.

3. Update the particle position using a second-order midpoint estimate of the velocity,

qn+1 = qn +
∆t

2
Jn+ 1

2 (vn+1 + vn) . (31)

Observe that the above scheme never actually uses the particle velocity u, although one can and
should keep track of the particle excess momentum meu and update it whenever the fluid momentum
is updated, to ensure strict conservation of momentum. Also observe that during the fluid update
we fix the particle at its midpoint position qn+ 1

2 .
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1. Velocity Update

The most difficult step in the time stepping algorithm summarized above is the momentum
(velocity) update, step 2. In order to update the velocity of the fluid we need to calculate the fluid
momentum change due to viscosity and thermal fluctuations and also the momentum exchange with
the particle, all to second order in time. Our scheme is based on solving for the values of the Lagrange
multipliers πn+ 1

2 and λn+ 1
2 such that at the end of the time step both the incompressibility and the

no-slip constraints are satisfied,

ρ
vn+1 − vn

∆t
+ ∇πn+ 1

2 = −∇ ·
(
ρvvT − σ

)n+ 1
2 − Sn+ 1

2λn+ 1
2

meu
n+1 = meu

n + ∆tF n+ 1
2 + ∆tλn+ 1

2

∇ · vn+1 = 0

un+1 = Jn+ 1
2vn+1 + ∆un+ 1

2 . (32)

A correction ∆un+ 1
2 is included to account for the fact that the no-slip condition is not correctly

centered since J and v are evaluated at different points in time, as we explain shortly.
If we multiply the particle velocity update by Sn+ 1

2 and add it to the fluid equation, and use the
no-slip constraint including un = Jn−

1
2vn + ∆un−

1
2 , we get (30) with the kinetic term in the last line

approximated as[
meS

(
u · ∂

∂q
J

)
v

]n+ 1
2

= meS
n+ 1

2

[(
Jn+ 1

2 − Jn− 1
2

∆t

)
vn +

∆un+ 1
2 −∆un−

1
2

∆t

]
. (33)

The penultimate term in the above equation can be seen as a discretization of the kinetic term(
Jn+ 1

2 − Jn− 1
2

∆t

)
vn ≈

[(
u · ∂

∂q
J

)
v

]n
.

This is consistent with the continuum equations but it yields only first-order and not second-order
accuracy in ∆t because it is not centered at time level n+ 1

2
. This reduction of the accuracy comes

because the no-slip constraint in (32) uses the midpoint instead of the endpoint position of the particle.
The above discussion shows that setting ∆un+ 1

2 = 0 results in a first-order scheme if me 6= 0. To
get second-order accuracy, we need to apply a nonzero correction to the no-slip constraint. Imposing
the no-slip constraint at the end of the time step, un+1 = Jn+1vn+1, leads to a formulation that is
implicit in both qn+1 and vn+1, which is difficult to implement in practice. Instead, we can center
the no-slip constraint as

1

2
Jn+ 1

2 (vn+1 + vn) =
1

2
(un+1 + Jnvn) =

1

2

(
Jn+ 1

2vn+1 + ∆un+ 1
2 + Jnvn

)
,

which gives the no-slip centering correction

∆un+ 1
2 =

(
Jn+ 1

2 − Jn
)
vn. (34)

This correction for the no-slip constraint is simple to implement with only one additional local
averaging operation to evaluate Jnvn. Note that we purposely used Jnvn instead of un here since in
our formulation, and also in our algorithm, un+1 is only used as an intermediate variable. A Taylor series
analysis shows that using (34) makes (33) a centered second-order approximation of the kinetic term(

Jn+ 1
2 − Jn− 1

2

∆t

)
vn +

∆un+ 1
2 −∆un−

1
2

∆t
=

[(
u · ∂

∂q
J

)
v

]n+ 1
2

+O (∆t3) .

A Taylor series analysis confirms that using the no-slip correction (34) leads to a second-order
algorithm for updating the position of the particle and the velocity of the fluid.

In order to avoid one more additional local averaging operation (which requires an irregular memory
access pattern and is thus costly, especially in a GPU-based implementation) we can set ∆un+ 1

2 = 0.
We are primarily concerned with viscous-dominated (low Reynolds number) flows, for which the
kinetic term (u · ∂J/∂q)v is small (quadratic in v, just like the advective term v ·∇v) and can be
approximated to first order without a significant reduction in the overall accuracy of the method.
As we explain in Appendix C, in our scheme ∆un+ 1

2 contains an additional higher-order correction
(O(∆t3) for smooth flows) that arises solely due to the implicit handling of viscosity.
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2. Semi-Implicit Discretization of Viscous Terms

During the fluid update the particle position remains fixed at qn+ 1
2 . For notational simplicity, in the

remainder of this paper we will sometimes drop the time step index from J and S; unless otherwise
indicated, they are always evaluated at qn+ 1

2 .
Following Ref. [44], our second-order implementation of the velocity update (30) treats the viscous

term semi-implicitly and the remaining terms explicitly,

−∇ ·
(
ρvvT − σ

)n+ 1
2 =

η

2
∇2 (vn+1 + vn) + ∇ ·Σn −∇ ·

(
ρvvT

)n+ 1
2 .

The spatial discretization of the stochastic flux is [44]

Σn =

(
kBTη

∆Vf ∆t

) 1
2 [
W n + (W n)

T
]
,

where ∆Vf = ∆x∆y∆z is the volume of the hydrodynamic cells, and W n is a collection of i.i.d.
unit normal variates, generated independently at each time step on the faces of the staggered
momentum grid. To approximate the advective fluxes to second order in ∆t, one can use either the
predictor-corrector method described in Ref. [44] or, more efficiently, one can use the classical (time
lagged) Adams-Bashforth method [? ]

∇ ·
(
ρvvT

)n+ 1
2 =

3

2
∇ ·

(
ρvvT

)n − 1

2
∇ ·

(
ρvvT

)n−1
. (35)

For viscous-dominated (small Reynolds number) flows, one can also approximate the advective terms to
first order only without a significant reduction of the overall accuracy for reasonably large time steps.

Referring back to Eq. (30), we see that updating the fluid momentum semi-implicitly requires
solving the linear system[(

ρI +meS
n+ 1

2Jn+ 1
2

∆t

)
− η

2
∇2

]
vn+1 + ∇πn+ 1

2 =

[(
ρI +meS

n+ 1
2Jn+ 1

2

∆t

)
+
η

2
∇2

]
vn

−∇ ·
(
ρvvT

)n+ 1
2 + ∇ ·Σn + Sn+ 1

2F n+ 1
2 −

[
meSJ

(
v · ∂

∂q
J

)
v

]n+ 1
2

. (36)

If me = 0, we can solve the linear system (36) for the unknowns vn+1 and πn+ 1
2 using a preconditioned

iterative solver [75], as explained in more detail in Ref. [44]. For periodic systems the system (36) can
be solved easily by using a projection method together with FFT-based velocity and pressure linear
solvers. For non-neutrally-buoyant particles, however, solving (36) requires developing a specialized
preconditioned Krylov method. Here we develop an approximate solver for (32) that only requires
a few FFTs, and will be shown in Section III D to give nearly second-order accuracy for a wide range
of relevant time step sizes.

Our approach consists of splitting the velocity solver into two steps. In the first step, we ignore
the inertia of the particle, i.e., delete the meSJ term in (36), and solve for a provisional velocity
ṽn+1and pressure π̃n+ 1

2 ,( ρ

∆t
I − η

2
∇2
)
ṽn+1 + ∇π̃n+ 1

2 =
( ρ

∆t
I +

η

2
∇2
)
vn + ∇ ·Σn + SF n+ 1

2 −∇ ·
(
ρvvT

)n+ 1
2 , (37)

subject to ∇ · ṽn+1 = 0. If me = 0, this completes the fluid solve and setting vn+1 = ṽn+1 gives us
second-order accuracy for the viscous and stochastic terms [52]. If me 6= 0, we need to find a velocity
correction ∆vn+ 1

2 = vn+1 − ṽn+1 and pressure correction ∆πn+ 1
2 = πn+ 1

2 − π̃n+ 1
2 that takes into account

the inertia of the particle. We do this by splitting the linear system (32) into two equations, (37)
for the unperturbed velocity field, and( ρ

∆t
I − η

2
∇2
)

∆vn+ 1
2 + ∇

(
∆πn+ 1

2

)
= −S

(
λn+ 1

2 + F n+ 1
2

)
(38)

me

∆t
un+1 =

me

∆t
un +

(
λn+ 1

2 + F n+ 1
2

)
(39)

un+1 = J
(
ṽn+1 + ∆vn+ 1

2

)
+ ∆un+ 1

2 (40)

∇ ·
(

∆vn+ 1
2

)
= 0,

for the perturbed field. This gives a linear system of equations for the unknowns ṽn+1, un+1, ∆vn+ 1
2 ,

π̃n+ 1
2 , ∆πn+ 1

2 , and λn+ 1
2 . We explain how we solve this linear system of equations in Appendix C
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for periodic boundaries using Fourier Transform techniques. Here we simply summarize the resulting
algorithm, as implemented in our code. In Appendix D we give a summary of a similar algorithm
for compressible flow, which our code also implements.

C. Summary of Algorithm

1. Estimate the position of the particle at the midpoint,

qn+ 1
2 = qn +

∆t

2
Jnvn, (41)

and evaluate the external or interparticle forces F n+ 1
2

(
qn+ 1

2

)
.

2. Solve the unperturbed fluid equation

ρ
ṽn+1 − vn

∆t
+ ∇π̃n+ 1

2 =
η

2
∇2
(
ṽn+1 + vn

)
+ ∇ ·

[(
kBTη

∆Vf ∆t

)1/2 (
W n + (W n)

T
)]

(42)

−
[

3

2
∇ ·

(
ρvvT

)n − 1

2
∇ ·

(
ρvvT

)n−1

]
+ Sn+ 1

2F n+ 1
2 ,

∇ · ṽn+1 = 0, (43)

using a projection algorithm and FFTs to diagonalize the Laplacian operator.
3. If me = 0, set vn+1 = ṽn+1 and skip to step 9.
4. Evaluate the slip correction

δun+ 1
2 =

(
Jn+ 1

2 − Jn
)
vn +

ν∆t

2
Jn−

1
2∇2

(
∆vn−

1
2

)
(44)

and the change of the particle excess momentum

∆p = me

(
un − Jn+ 1

2 ṽn+1 − δun+ 1
2

)
.

5. Calculate the fluid velocity perturbation due to the excess inertia of the particle

∆ṽ =
m̃f

ρ (m̃f +me)
PS∆p,

using FFTs to implement the discrete projection P, where m̃f = d ρ∆V/ (d− 1).
6. Account for the viscous contribution to the velocity perturbation by solving the system(

ρI − ∆t

2
η∇2

)
∆vn+ 1

2 + ∆t∇
(

∆πn+ 1
2

)
= Sn+ 1

2

(
∆p−meJ

n+ 1
2 ∆ṽ

)
, (45)

∇ ·
(

∆vn+ 1
2

)
= 0 (46)

using a projection algorithm and FFTs to diagonalize the Laplacian operator.
7. Update the fluid velocity

vn+1 = ṽn+1 + ∆vn+ 1
2 . (47)

8. Update the particle velocity in a momentum-conserving manner,

un+1 = Jn+ 1
2

(
ṽn+1 + ∆ṽ

)
+ δun+ 1

2 . (48)

9. Update the particle position,

qn+1 = qn +
∆t

2
Jn+ 1

2 (vn+1 + vn) . (49)

We note that the full slip correction (44) is only required if me/mf is large and the Reynolds number is
large. For sufficiently small Reynolds numbers (viscous-dominated flows) we can neglect the quadratic
advective term and only keep the linear term, and set

δun+ 1
2 =

ν∆t

2
Jn−

1
2∇2

(
∆vn−

1
2

)
. (50)

We can also set δun+ 1
2 = 0, and obtain a first-order algorithm that does not require any time lagging

and has improved stability for very large time step sizes. We compare the three options (44), (50),
and δun+ 1

2 = 0 numerically in Section III D. The remainder of the algorithm is not affected by the
choice of the slip correction δun+ 1

2 .
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D. Efficiency, Stability and Accuracy

With periodic boundary conditions the velocity and the pressure linear systems in the incompressible
formulation decouple and Fast Fourier Transforms can be used to solve the system (42) efficiently,
see Ref. [81] for additional details. We first solve the velocity equation (42) without the gradient
of pressure term (this is a Helmholtz equation) using a Fourier transform to diagonalize the discrete
Laplacian. Then, we project the solution onto the space of divergence free vector fields by subtracting
a pressure gradient term. The pressure is a solution of a discrete Poisson equation, which can also
efficiently be computed using Fourier transforms. Note that it is possible to generalize our algorithm
to non-periodic systems by using the fluid solver developed by one of us [75] and employed in Ref.
[44], at least for the case of neutrally buoyant particles, me = 0. For me 6= 0 new iterative solvers
for the Stokes subproblem need to be developed.

We have parallelized the algorithm to run efficiently on Graphics Processing Units (GPUs), as
explained in more detail in Ref. [43]. Our public domain implementation [43] is written in the CUDA
programming environment, and is three-dimensional with the special case of Nz = 1 cell along the
z axes corresponding to a quasi two-dimensional system. In our implementation we create one thread
per cell, and each thread only writes to the memory address associated with its cell and only accesses
the memory associated with its own and neighboring cells. This avoids concurrent writes and costly
synchronizations between threads, facilitating efficient execution on the GPU. For incompressible
flow, our present GPU implementation is specific to periodic systems, and uses the NVIDIA FFT
library as a Poisson/Helmholtz solver.

The stability and accuracy of our spatio-temporal discretization is controlled by the dimensionless
advective and viscous CFL numbers

α =
V∆t

∆x
, β =

ν∆t

∆x2
, (51)

where V is a typical advection speed, which may be dominated by the thermal velocity fluctuations
or by a deterministic background flow. Here we always use the same grid spacing along all dimensions,
∆x = ∆y = ∆z. The strength of advection relative to dissipation is measured by the cell Reynolds
number r = α/β = V∆x/ν. Note that for compressible flow (see Ref. [44] and Appendix D) there
is a sonic CFL number αs = c∆t/∆x, where c is the speed of sound.

The explicit handling of the advective terms places a stability condition α . 1, in fact, for α > 1
a particle can move more than a hydrodynamic cell during a single time step and this causes not only
stability but also implementation difficulties. It is not hard to see that in the absence of advection
our semi-implicit discretization of viscosity is stable for any value of β, however, it is only by keeping
β . 1 that we can ensure the dynamics of all or at least most fluid modes is resolved [52]. We consider
a temporal integrator to be “good” if it produces reasonably-accurate results with a time step for
which at least one of α or β is close to 1/2. Typically, flows at small scales are viscous dominated
(r � 1) so that the time step is primarily limited by β and not by α.

Next we numerically check the deterministic order of accuracy of the temporal integrator. Based
on local truncation error analysis we expect that the temporal integrator summarized in Section III C
is formally second-order accurate. For small Reynolds numbers, we expect to see nearly second-order
accuracy in practice even if we use the slip correction (50) instead of (44). We also recall that for
me 6= 0 we made an uncontrolled approximation in assuming that JPS is translationally-invariant,
which is only accurate to about a percent for the three-point Peskin local averaging and spreading
operators. This approximation leads to another error in imposing the no-slip condition, which we
expect to lead to first-order accuracy for very small time step sizes.

As a test of the temporal accuracy, we study the deterministic motion of a particle in an
centrally-symmetric harmonic potential V (r) = kr2/2, where r is the distance from the origin and
k is a spring constant. In these tests we keep the spatial discretization (and thus the blob particle
shape) fixed and only change the time step size ∆t. We start the particle from rest at a certain
distance r0 from the origin and then release it. The particle will perform damped oscillations under
the influence of the spring and viscous friction. We look at the error in the position of the particle
q (t) defined as the average of the difference between the position for time steps ∆t and ∆t/2 over
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Figure 2: Average error (52) over a short deterministic trajectory of a particle initially at rest and subsequently
moving under the action of a harmonic potential. (Left panel) Small Reynolds number, Re ≈ 0.02, with no-slip
correction (50). Several values of the excess particle mass me relative to the mass of the dragged fluid mf

(symbols, see legend) are shown, including neutrally-buoyant particles (me = 0). Expected error decay rates
for a first and second-order scheme are shown with lines. (Right panel) Comparison of the three choices for the
slip correction, (44) (viscous and centering corrections), (50) (only viscous correction), and (44) (no correction),
for Reynolds numbers Re ≈ 2 (full symbols) and Re ≈ 20 (shaded symbols). The excess mass is me = 10mf .

a certain number of time steps Ns, from the initial time to a time T = NS∆t,

E(∆t) =
1

Ns

Ns∑
n=1

∥∥∥∥q∆t (n∆t)− q∆t/2

(
2n

∆t

2

)∥∥∥∥ . (52)

For a numerical scheme with order of accuracy p this error should behave as E = O (∆tp) for sufficiently
small ∆t.

We perform this test for several choices of the density of the particle relative to the fluid, as
measured via the ratio me/mf , including particles less dense than the surrounding fluid (negative
excess mass me). The tests are performed for a periodic system of 163 hydrodynamic cells of size
∆x = 1, with fluid density ρ = 1 and shear viscosity η = 1 (in arbitrary units), with the particle started
at position x0 = r0 = 10, and follow the motion of the particles to a time T = 80. In the left panel of
Fig. 2 we show the error (52) for four different values of the excess mass for a spring constant k = 0.01,
which implies a small Reynolds number Re ≈ r = umax∆x/ν ≈ 0.02, where umax is the maximal speed
of the particle. As expected, the figure shows clear second-order convergence for neutrally-buoyant
particles (me = 0), and a transition from essentially second-order (at larger ∆t) to first-order (at
smaller ∆t) accuracy in the other cases. Notably, for the larger time steps, which are of more practical
interest, we see second-order convergence. As expected, the transition from second to first order
of accuracy occurs at a larger ∆t for particles that are far from neutrally-buoyant, and for me/mf = 10
we see first-order accuracy over a broader range of time step sizes.

In order to compare the three choices for the the slip correction, (44), (50) and δun+ 1
2 = 0, in the

right panel of Fig. 2 we compare the error for the three choices for the case of a large particle excess
mass me = 10mf and a larger Reynolds number, Re ≈ 2 for k = 1, and Re ≈ 20 for k = 500. We see
qualitatively similar behavior as for the small Reynolds number case k = 0.01. Compared to the
simple choice δun+ 1

2 = 0, we see a modest improvement in the error when we use (44) for the largest
Reynolds number, and we see a small improvement when we use (50) for intermediate time step
sizes. Note that for our choice of parameters the viscous CFL number is β = ∆t and the advective
CFL is α ≈ βRe. For large Reynolds numbers the time step is limited by the requirement α . 1.

Since the majority of the tests presented here are at small Reynolds numbers, we use (50) instead of the
more expensive (44). For several of the tests we have also tried δun+ 1

2 = 0 and observed similar results.
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grid spacing ∆x 1

grid size 323

fluid density ρ 1

shear viscosity η 1

time step size ∆t 1

temperature kBT 0.001

LJ strength ε 0.001

LJ diameter σ 2

number of particles N 1000

grid spacing ∆x 1

grid size 1283

fluid density 1

viscosity 1

advective CFL α 0.01, 0.1, or 0.25

viscous CFL β 9.2, 92, or 230

excess mass me mf

Table I: (Left) Parameters used in the RDF simulations shown in the left panel of Fig. 3. (Right) Simulation
parameters for the hydrodynamic interaction simulations presented in the right panel of Fig. 3.

IV. Results

In this section we validate and test the performance of the algorithm summarized in Section III C
on a variety of standard problems from soft-condensed matter applications. We also examine the
behavior of the minimally-resolved blob in a large Reynolds number flow.

In the first few tests we examine the performance of the algorithm for thermal systems. For a system at
thermodynamic equilibrium at rest the typical value of the advection velocity to be used in the definition
of the advective CFL number α (51) is the equilibrium magnitude of the thermal velocity fluctuations,

V ≈

√
kBT

ρ∆x3
.

The temporal integrator we employ here is designed to accurately resolve the short time dynamics
of the blobs when the time step size ∆t is reasonably small. We consider a time step size ∆t large if
at least one of the advective (α) or the viscous (β) CFL numbers defined in (51) becomes comparable
to unity. It is important to emphasize that because of the semi-implicit second-order nature of the
temporal integrator, the algorithm is robust over a broad range of time step sizes, which would be
well beyond the stability limit of explicit integrators for compressible flow.

A. Equilibrium Properties

One of the most important requirements on any scheme that couples fluctuating hydrodynamics to
immersed particles is to reproduce the Gibbs-Boltzmann distribution at thermodynamic equilibrium.
In particular, the probability distribution of the positions Q = {q1, q2, . . . , qN} of a collection of N
particles interacting with a conservative potential U (Q) should be

P (Q) ∼ exp

[
−U (Q)

kBT

]
, (53)

independent of any dynamical parameters such as viscosity or particle inertia. This follows from
the balance between the dissipative and stochastic forcing terms and requires consistently including
thermal fluctuations in the momentum equation.

We verify that our incompressible inertial coupling algorithm gives the correct equilibrium
distribution P (Q) by computing the radial (pair) distribution function (RDF) g(r) for a collection
of colloidal particles interacting with a pairwise potential V (r), U (Q) =

∑N

i,j=1
V
(∥∥qi − qj∥∥). We

use the purely repulsive truncated Lennard-Jones (WCA) potential

V (r) =

{
4ε
((

σ
r

)12 −
(
σ
r

)6)
+ ε, r < 21/6σ

0, r > 21/6σ
(54)

In Fig. 3 we compare g(r) between a simulation where the particles are immersed in an incompressible
viscous solvent, and a standard computation of the equilibrium RDF using a Monte Carlo algorithm
to sample the equilibrium distribution (53). The parameters for these simulations are given in Table
I. For both me = 0 and me = mf we obtain excellent agreement with the Monte Carlo calculations,
even for the rather large time step size β = 1.

It is important to observe that the correct equilibrium structure for the positional degrees of
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Figure 3: (Left panel) The equilibrium radial distribution function g(r) for a suspension of particles interacting
with WCA potential (54) with cutoff radius σ. The results for two different particle inertias are compared
to a Monte Carlo sampling of the Gibbs-Boltzmann distribution. (Right panel) The equilibrium probability
distribution for the x component of the velocity of the particles in the suspension for different excess masses,
for both a compressible and an incompressible fluid (symbols). The Gaussian distribution dictated by the
equipartition principle is shown for comparison (lines). The inset in the figure shows the error εT in the
effective temperature of the particles as a function of the time step size, for me = mf .

freedom is obtained for both the compressible and the incompressible formulations, even though
the blob velocities have very different distributions. Specifically, as explained in Section II F, in the
incompressible case the variance of a component of the velocity is not kBT/m as for a compressible
fluid, but rather, kBT/m̃, where the effective blob mass m̃ > m includes an added mass due to the
incompressible fluid dragged with the blob. In the right panel of Fig. 3 we show the probability
distribution for the velocities of the blobs in the colloidal suspension, and compare them to the
theoretical predictions. The numerical variance of the velocity is sensitive to the time step size for
me 6= 0, and a small time step size (α, β < 0.25) is required to obtain a reasonably accurate variance. This
is shown in the inset of the right panel of Fig. 3, where the relative error in the effective “temperature”
of the blob εT = (〈u2〉 − kBT/m̃) / (kBT/m̃) is shown as a function of the viscous CFL number β.

B. Velocity Autocorrelation Function

In this section we apply our scheme to a standard test for the coupling of spherical particle of
hydrodynamic radius RH to a compressible [43, 60, 82–84] or incompressible [36, 38, 85, 86] fluid
solver. The velocity autocorrelation function (VACF)

C(t) = 〈vx(0)vx(t)〉 =
1

d
〈v (0) · v (t)〉 , (55)

of a single free Brownian particle diffusing through a periodic fluid is a non-trivial quantity that
contains crucial information at both short and long times. The integral of the VACF determines
the diffusion coefficient and gets contributions from three distinct stages. Firstly, at molecular times
equipartition dictates that C(0) = kBT/m, an important signature of fluctuation-dissipation balance
that has proven challenging for several fluid-particle coupling methods [60, 82, 85, 86]. We recall
that for our particle the effective particle mass m = me +mf includes the mass of the fluid dragged
with the particle mf , as well as the excess mass me. The compressible inertial coupling method is able
to reproduce the intercept kBT/m very accurately even for relatively large sound CFL numbers [43].

On the time scale of sound waves, t < tc = 2RH/c, the major effect of compressibility is that sound
waves carry away a fraction of the particle momentum with the sound speed c. The VACF quickly
decays from its initial value to C(tc) ≈ kBT/m̃, where m̃ = me + dmf/ (d− 1) includes an “added mass”
mf/(d− 1) that comes from the fluid around the particle that has to move with the particle because
of incompressibility [68, 87, 88]. The initial decay of the VACF due to sound waves will appear to
be instantaneous (discontinuous) if one increases the speed of sound to infinity. The incompressible
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Comparison between a compressible fluid for several different speeds of sound c (compressibilities), as well as
an incompressible fluid (c→∞). Vertical lines indicate the sound time scale tc = 2RH/c, and the asymptotic
power-law tail (t/tν)−3/2 is emphasized in the inset, where tν = R2

H/ν is the viscous time scale. The tail
matches the theoretical predictions for a rigid sphere with the same effective mass immersed in an incompressible
fluid [87]. All runs use a small time step size so the dynamics is well-resolved at short times. (Right panel)
Comparison between different Schmidt numbers Sc = ν/χ for an incompressible fluid. A deterministic calculation,
corresponding to the limit Sc →∞, is also shown. In the legend, the time step size is expressed in terms of
the advective CFL number α. The scaling of the time axes is adjusted to overlap the power-law tails (see text).

Parameter Fixed Sc runs Variable Sc runs

excess mass me me = mf me = mf

grid spacing ∆x 10.543 1

grid size N 413 323

fluid density ρ 1 1

shear viscosity η 0.5 variable

bulk viscosity ζ 0.5 not relevant

speed of sound c 1−∞ ∞
Temperature kBT 1 0.1

viscous CFL β 10−5 − 10−3 β = α
√
Sc/ (6π)

Sound CFL αs 0.05− 0.1 not relevant

Schmidt number Sc 48.2 variable

Table II: Parameters used in the compressible and incompressible simulations shown in the left panel of Fig.
4 (middle column), as well as the incompressible simulations shown in the right panel of Fig. 4 (right column).

inertial coupling method should produce an intercept C(0+) = kBT/m̃ in agreement with (24), rather
than the equipartition result valid for a compressible fluid. For example, for me = mf and d = 3,
we expect C(0+) = 0.8 kBT/m. This illustrates the subtle complexity of coupling a fluctuating fluid
solver to immersed particles, even in the absence of external and interparticle forces. In the left
panel of Fig. 4 we show numerical results for the VACF for several different speeds of sound, obtained
using the algorithm summarized in Appendix D. The approach to the incompressible limit c→∞
is evident in the figure, and it is clear that our incompressible inertia coupling method correctly
reproduces the limiting behavior (without however suffering from the severe time step limitation
of compressible flow solvers). The parameters for these simulations are shown in Table II.

At the viscous time scale, t > tν = ρR2
H/η, conservation of momentum (hydrodynamics) in the
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fluid introduces a memory in the motion of the particle and the VACF decays with a well-known
asymptotic power-law tail ∼ (t/tν)

−d/2 [89]. Any numerical method that solves the time-dependent
Navier-Stokes equation (as opposed to the steady or time-independent Stokes equation, as Brownian or
Stokesian dynamics do) ought to reproduce this power-law decay. The amplitude of the decay depends
on the shape of the particle and is well-known for the case of a rigid sphere with stick boundaries [87].
We expect that the VACF for our blob particle will have the same value at the origin and the same
power-law tail as a rigid sphere of radius RH and the same ratio me/mf . For the “equivalent” rigid
sphere we take mf = ρVs where Vs is the volume of the sphere, and me = (ρs − ρ)Vs, where ρs is the
density of the sphere. The exact shape of C(t) will in general be different between a blob and a rigid
sphere. In the inset of the left panel of Fig. 4 we compare the long-time behavior of the VACF of a
blob particle to that of a rigid sphere, and see the same power-law behavior. Note that the rigid sphere
theory shown here does not account for finite-size effects. In these tests we use a small time step size in
order to study the properties of the spatial discretization in the absence of temporal truncation errors.

At long times, the motion of the particle is diffusive with a diffusion coefficient predicted by the
Stokes-Einstein relation to be

χ ≈ χSE =
kBT

6πηRH
(56)

in three dimensions, where we recall that for the particular spatial discretization we employ RH ∼ ∆x
in three dimensions. The exact coefficient depends on the system size, and for the system size we
use here an excellent approximation is RH ≈ ∆x. We define here a dimensionless Schmidt number
Sc based on the Stokes-Einstein diffusion coefficient (56),

ν

χ
≈ Sc =

ν

χSE

=
6πη2RH
ρkBT

≈ 6πβ2

α2
.

The Schmidt number is an important quantity that measures how fast momentum diffuses relative
to the particles. In many cases of interest Sc � 1, which means that the dynamics of the particles
approaches the Brownian (overdamped) limit [27]. Note that the limit Sc → ∞ is the same as
the deterministic limit kBT → 0, in which fluctuations become a very weak perturbation to the
deterministic dynamics. Another important dimensionless number is the “thermal” Peclet number

Pe =
V RH
χSE

≈
√

6πSc,

which measures the relative importance of advection by the thermal velocity fluctuations to diffusion.
We see that Pe ∼ S1/2

c is directly related to the Schmidt number. A similar calculation also shows
that the “thermal” Reynolds number is Re ∼ S−1/2

c . Therefore Sc is the only relevant dimensionless
number for a particle diffusing in a fluid at thermodynamic equilibrium.

It is important to test how well our algorithm works for a range of Schmidt numbers. We expect
the case of small Sc to be the most difficult in terms of accuracy, since the particle can move a
substantial distance (compared to the grid spacing) during a single time step, α = O(1), and the
thermal and cell Reynolds number is also r = O(1). The case of large Sc, on the other hand, is the
most demanding in terms of computational effort since particles barely move during a single time
step, α� 1, and O(Sc) fluid time steps may be required to reach the diffusive time scale for β = O(1).
In order to investigate the long-time behavior we try to maximize the time step, but always keeping
α < 1, specifically, here we set α = 0.25. For the largest Schmidt number we investigate, Sc ≈ 200,
this value of α corresponds to a relatively large β ≈ 0.81, and therefore we also try a smaller time
step, corresponding to α = 0.1 and β ≈ 0.33. The temporal integrator developed here cannot be used
for β & 1 because the Crank-Nicolson temporal integrator we use for the velocity equation does not
accurately resolve the dynamics of the small wavelength fluid modes [28, 52].

In the right panel of Fig. 4 we show the VACF for several viscosities and thus Schmidt numbers. The
parameters for the runs are given in Table II. The standard theory for the tail of the VACF (long-time
behavior) [87] implicitly assumes that Sc � 1, and leads to the conclusion that for an isolated particle
in an infinite fluid asymptotically C(t) ≈ (t/tν)

−d/2 ∼ (νt)
−d/2. A more complete self-consistent mode

coupling theory [90] corrects this to account for the fact that while momentum diffuses around the
particle the particle itself diffuses, and predicts that C(t) ∼ [(χ+ ν) t]

−d/2 [89]. This means that we
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expect the tails of the VACFs for different Sc values to collapse on one master curve if we plot them
as a function not of (t/tν) but rather of (1 + S−1

c ) (t/tν). This is confirmed in the right panel of Fig. 4.
It is evident in Fig. 4 that these fluctuating calculations lead to noisy results for the tail of the

VACF, making it difficult to see the behavior of the long-time behavior. Many researchers have chosen
to calculate the VACF by performing a deterministic calculation, in which the particle is given a small
initial kick in velocity, and then the deterministic algorithm is used to track the subsequent decay of
the velocity. This is sometimes done because thermal fluctuations are not consistently included in the
algorithm, or because the deterministic calculation is much faster and more accurate, not requiring
as much statistical averaging. In the right panel of Fig. 4 we show the VACF obtained from a
deterministic test, which can be thought of as the VACF in the limit of vanishing fluctuations, kBT → 0
(equivalently, Sc →∞). Note that in the deterministic test the magnitude of the initial velocity u0

of the particle has to be chosen to match the thermal kick, ‖u0‖2 = d kBT/m̃, which in practice means
that the deterministic VACF has to be scaled so that it agrees with statistical mechanics at the
origin. Due to the slight anisotropy and imperfect translational invariance of the spatial discretization,
in principle even the deterministic result should be averaged over many initial positions and velocities
of the particle. The VACF in the limit Sc → ∞ shown in Fig. 4 matches the fluctuating runs for
the larger Schmidt numbers. Due to the lack of noise, it also clearly shows the long-time exponential
decay in the VACF at times t ∼ L2/ν [86], where finite-size effects become important.

C. Small Reynolds Number

In this section we focus on the ability of the blob model to reproduce some important features of
the interaction of rigid spheres with deterministic low Reynolds number flow. Maxey and collaborators
have performed detailed investigations of the low Reynolds number hydrodynamics for Gaussian blobs
[16, 29, 30] in the context of the Force Coupling Method (FCM). They have already demonstrated
that a blob model can model the behavior of hard sphere colloidal suspensions with remarkable
fidelity given its minimal resolution. Because our blob is not Gaussian and our spatial discretization
is very different from that employed in the FCM, we examine briefly the flow around a single particle
and the hydrodynamic interactions between a pair of particles at very small Reynolds number.

1. Stokes flow around a blob

An important property of the blob is its hydrodynamic radius, which is defined in three dimensions
from Stokes law for the drag force F d = 6πηRHv experienced by the particle as it moves slowly
through an unbounded fluid at rest far away from the particle. One can also compare the steady
Stokes flow around the blob with the well-known analytical solution for the flow around a rigid sphere.
These types of calculations were performed in detail for a compressible fluid in Ref. [43], and since
the Mach number was kept small, very similar results are to be expected for an incompressible fluid.
Here we briefly examine the steady Stokes flow around a particle as a validation of the incompressible
formulation and implementation.

We exert a constant force density (pressure gradient) on the fluid in a periodic domain of 1282

hydrodynamic cells, and attach a single blob to a tether point via a stiff elastic spring. After an initial
transient, a steady state is reached in which the drag force on the particle is balanced by the spring
force. The forcing is chosen so that the Reynolds number is kept small, Re = 2∆x vmax/ν < 0.002.
Because of the long-ranged r−1 decay of the flow away from the particle, there are strong finite-size
corrections that are well-known [43]. Taking into account these corrections we estimate RH ≈ 0.91∆x,
consistent with the more careful estimates obtained in Ref. [43] using a compressible flow simulation
and a non-periodic domain. We emphasize again that RH is not perfectly translational invariant
and changes by a couple of percent as the particle moves relative to the underlying fluid solver grid.
This is illustrated in the inset in the left panel of Fig.5. If the Peskin four-point interpolation function
[32] is used instead of the three-point function, a smaller variance in the hydrodynamic radius (i.e.,
improved translational invariance) would be observed [3].

In the left panel of Fig. 5 we compare the radial component of the fluid velocity ur(r) along θ = 0
(direction of motion of the incoming flow) and along θ = π/4 with the analytical solution for a solid
sphere with no-slip surface in a infinite system, as a function of the distance d from the particle center.
A surprisingly good agreement is observed even for distances as small as d = 2RH , in agreement with
previous investigations for Gaussian blobs [16, 29, 30]. Note, however, that there is flow penetrating
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Figure 5: (Left panel) Comparison of the radial component of the velocity in steady flow around a fixed
blob to the Stokes solution for a rigid sphere in an unbounded domain. The velocity at a given point q′ is
obtained by using the local averaging operator, v (q′) ≈ J (q′)v. The inset shows the hydrodynamic radius
of the particle for flow along the x axes, as a function of the distance between it and the center of the nearest
x face of the grid (location of the x component of velocity). (Right panel) Hydrodynamic interaction force
between two particles as a function of the interparticle distance for several time step sizes. For large distances
the Stokes mobility is recovered, and for moderate distances the next-order correction (Rotne-Prager mobility)
is recovered, independent of dynamical parameters. At close distances a large increase in the hydrodynamic
force is observed, as in the Rotne-Prager-Yamakawa (RPY) mobility (also shown). Note that the sharp increase
in the hydrodynamic interaction at short distances is qualitatively similar but distinct from the divergent
lubrication force observed between two rigid spheres (dashed-dotted line).

the blob at distances d < RH , unlike a rigid sphere. Also note that similar calculations performed
using a frictional coupling [3] in Ref. [43] clearly reveal much larger penetration of the flow into
the blob, unless a rather large friction constant is employed.

2. Hydrodynamic Interactions

In this section we investigate the hydrodynamic interaction force between two particles in the
deterministic setting, as done for a compressible fluid in Ref. [43]. In this test, we apply a force
F 0 on one particle toward the other particle, and the opposite force −F 0 on the other particle, so
that the center of mass remains at rest. The applied force is weak so that the Reynolds number
Re ≤ 10−3 and the flow is in the Stokes (steady-state) limit. As the particles approach, we measure
the relative speed of approach vr and compare it to the prediction of Stokes’s law,

F

FStokes

= − 2F0

6πηRHvr
. (57)

In the right panel of Fig. 3 we show results for F/FStokes as a function of the interparticle distance l.
The simulation parameters are reported in Table I. We performed several simulation to verify that the
results presented here are independent of the excess mass and time step size. In the figure we compare
the results of our calculations to a theoretical calculation based on the Rotne-Prager-Yamakawa
(RPY) tensor for the mobility of a pair of particles in a periodic system [91]. We see that the RPY
correction correctly captures the behavior for the blobs for distances d & 3. At short distances there is
a strong repulsive force between the blobs similar to the well-known “lubrication force” that develops
as an incompressible fluid is squeezed out between two approaching rigid spheres. However, unlike
the lubrication force between two rigid spheres, the hydrodynamic interaction force between two
blobs does not diverge like (d− 2RH)

−1. This is expected because blobs do not have a well-defined
surface; however, they are not point particles either, and they do squeeze the incompressible fluid
in-between them as they approach each other.

In fact, at short distances the hydrodynamic interaction between blobs is similar to that for the
RPY tensor (see Eq. (8) in Ref. [92]), also shown in the right panel of Fig. 3. An examination of
the derivation of the RPY mobility (see Eqs. (6) and (7) in Ref. [92]) reveals that the RPY correction
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arises due the Faxen term in (6). Therefore, the fact that we get such good agreement between RPY
and the numerical results for blobs at larger interparticle distances shows that the Faxen radius of our
blob is very close to its hydrodynamic radius, aF ≈ RH ≈ 0.9∆x. Numerical investigations show that
the Faxen radius of the blob (which can be expressed in terms of the second moment of the discrete
kernel function) is translationally-invariant to within about 5%. Note that using kernel functions
that try to approximate a Dirac delta function to higher accuracy will not give the correct Faxen
term since the Faxen radius of a true point particle is zero. In particular, for the Peskin 6pt function
[32] the second moment and thus the Faxen radius is identically zero. By contrast, the 3pt function
used here gives an excellent approximation to a rigid sphere at intermediate and large distances.

D. Large Reynolds Number

As discussed in the Introduction, we believe that the blob particle model can be successfully
used for simulations of particle-laden flows at moderate and large particle Reynolds number. In
the ReP → 0 limit, we showed that the perturbative flow created by the blob particle agrees with the
Stokes solution for the steady flow around a no-slip sphere of hydrodynamic radius RH = 0.91 h for the
three point kernel and a staggered grid solver [43]. This is consistent with other calculations utilizing
a four-point kernel and a non-staggered grid [77]. However it is not a priori clear how consistently the
blob hydrodynamic behavior will be at large ReP . The drag force provides a non-trivial test because it
captures the average effect of the perturbative flow. In a previous study [43] we observed that the drag
on the blob is consistent with that of a rigid sphere up to ReP < 10. This study was performed using
a compressible flow solver, and ensuring a low Mach number was prohibitively expensive at larger
ReP . Using the incompressible (zero Mach number) solver developed here we now study larger ReP .

In the top left panel of Fig. 6 we show the drag force on a blob particle in a periodic domain
as a function of Re, normalized by the Stokes limit drag (Re→ 0). We estimate the drag coefficient
by dragging the blob with a constant applied force and measuring the average velocity v0 = 〈u〉
along the direction of the applied force at long times. The particle interacts with its periodic images
approximately after time τL = L/v0 (where L is the box length in flow direction), while viscous
transport around the blob requires a time longer than τν = R2

H/ν to settle down. In order to mimic
the behavior of an isolated blob in an infinite medium, we must have τL/τν > 1, or, equivalently,
L/RH > Rep. We therefore performed the calculations in a box of 2n × 32× 32 cells, with 2n > 3ReP ;
the size of the simulation is indicated in the legend in the figure. In the top left panel of Fig. 6
we compare the numerical results with the empirical law for the drag on a rigid sphere with a no-slip
surface [93]. The agreement is remarkably good over the studied range 0 ≤ ReP ≤ 324.

Encouraged by this result we now briefly analyze the structure of the perturbative flow around the
blob, and defer a more detailed study for future work. In the remaining panels in Fig. 6 we show iso-
contours of the vorticity perpendicular to the snapshots’ plane at a few values of ReP . For ReP ' 0 the
fully symmetric pattern observed around the blob agrees with the Stokes solution at distances larger than
2RH [43]. The fore-and-aft symmetry of the Stokes flow becomes distorted by advection at moderate
Reynolds ReP ∼ 1 leading to the so-called Oseen flow [16], as observed in the top right panel of Fig.6
for ReP = 1.5. For 20 < ReP < 270 a transition with symmetry breaking leads to a steady axisymmetric
“double-thread” structure [94, 95]. Although we have not studied the transition in detail, our blob model
qualitatively reproduces a steady axisymmetric wake with a bifid vortex trail, as illustrated in the bottom
left panel of Fig. 6 for ReP = 137. This type of wake is observed above ReP > 10 and its topology is
maintained at least up to ReP ' 300. For flow around a rigid sphere a Hopf transition to oscillatory flow
leading to vortex shedding takes place at ReP ≈ 270 [94, 95]. For the blob we observe small oscillations
of the wake, without vortex shedding at ReP > 300, indicating that some possible transition to unsteady
flow could be induced by a small perturbation. In fact, in particle-laden flows typically ReP < 100 [34],
and the induction of vortex shedding due to perturbations from the wake of other particle is a more
relevant vorticity source. Using smaller boxes, where the particle interacts with its image, we frequently
observed induced vortex shedding for ReP > 70, as illustrated in the bottom right panel of Fig. 6.

It is a remarkable fact that the ICM blob minimal-resolution model can produce wakes containing
many of the features of realistic flows. The thickness of the viscous (Oseen) layer around a sphere
decreases like R/ReP [16]; therefore, this layer is completely unresolved for ReP > 1 in our model.
However, the “local” no-slip constraint is able to capture the non-linear velocity-pressure coupling
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Figure 6: (Top left) Drag force on a blob particle in a periodic domain as a function of the particle Reynolds
number ReP = 2RH 〈u〉 /ν, normalized by the Stokes drag (ReP → 0) (symbols). Results for the incompressible
and compressible solvers (see Appendix D and Ref. [43]) are compared with the empirical law for rigid no-slip
spheres (line) [93]. The size of the domain box in cells is indicated in the legend. (Top right) Out-of-plane
vorticity iso-contours at ReP = 1.5 for a box of 323 cells, and (Bottom left) at ReP = 137 in a long box of
512× 32× 32 cells. (Bottom right) A snapshot of an unsteady (nearly oscillatory) flow in a box of 323 cells at
ReP = 70 where the particle sheds vortices due to the interaction with the wake from its image. The simulation
parameters are as in Table I, but me = 0 and advective CFL α = 0.2. Error bars are estimated to be less than 5%.

which dominates the drag at large ReP . A somewhat similar scenario was observed in simulations
of ultrasound-particle interaction [43]. In the inviscid regime (sound frequency faster than ν/R2

H),
an excellent agreement with the theory was observed even in cases where the sound-viscous boundary
layer around the blob was unresolved.

V. Conclusions

In this work we described a bidirectional coupling between a point-like “blob” particle and an
incompressible fluctuating fluid, building on prior work by some of us in the compressible setting [43].
At the continuum level, the proposed model includes inertial and stochastic effects in a consistent
manner, ensuring fluctuation-dissipation balance and independence of equilibrium thermodynamic
properties on dynamical parameters. We constructed a second-order spatio-temporal discretization
that tries to preserve the properties of the continuum model as well as possible.

Through numerical experiments, we showed that the proposed inertial coupling method (ICM) can
consistently describe the dynamics of“blob”particles in fluid flow over a broad range of particle and fluid
Reynolds numbers, from Brownian motion to convective regimes. We demonstrated that the method
reproduces well-known non-trivial effects of particle inertia on the short-time dynamics of Brownian
particles, while also capturing the long-time (Brownian) diffusive dynamics and the associated equi-
librium distribution correctly. Remarkably, we found the minimally-resolved blob model to reproduce
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non-trivial features of turbulent flow around a rigid sphere, including the non-Stokes drag at moderately
large Reynolds numbers ReP < 300 and interactions between particle wakes. As such we believe that the
method presented here can be applied to model the dynamics of dilute and semi-dilute colloidal suspen-
sions and polymeric fluids over a broader range of conditions than existing methods [3, 21, 24, 25, 27].

The algorithm we described here was specifically optimized for periodic boundary conditions. In
particular, we constructed a semi-implicit temporal integrator that only requires a few applications
of the FFT algorithm per time step. This enabled us to implement the algorithm on GPU platforms,
achieving excellent performance with little development effort. However, this simplicity was not
without a cost. Firstly, we had to make several approximations in order to avoid iterative linear solvers
and use a fixed number of FFTs per time step. Notably, we had to assume that particles were far away
from other particles compared to their size (dilute conditions). Secondly, in many problems of interest
the fluid is confined in non-periodic geometries such as channels and periodic boundary conditions
are not appropriate. It is not difficult, at least in principle, to adopt our algorithm to non-periodic
geometries and to dense collections of blobs. This requires developing specialized preconditioned
Krylov linear solvers for solving the “inertial” Stokes problem (36) in non-periodic geometries, similar
to the fluid-only solver developed by one of us [75] and implemented in the IBAMR framework [74].
In future work we will explore effective preconditioners for solving (36) using a Krylov method.

The temporal integrator algorithm we developed in this work can accurately resolve the inertial,
viscous, and fluctuating dynamics of particles immersed in an incompressible fluid if the viscous
and advective CFL numbers are less than unity. Some further work is required to tackle the large
separation of time scales present in many situations of practical interest. For example, in the Brownian
dynamics limit there is an increasing separation of scales between the particle movement, the viscous
damping, and the inertial dynamics. For the second-order temporal integrator that we presented
here, the case of large Schmidt number Sc � 1 is the most demanding in terms of computational effort.
This is because particles barely move during a single time step, α � 1, and O(Sc) fluid time steps
may be required to reach the diffusive time scale for β = O(1). For the case of a neutrally-buoyant
particle (me = 0) and periodic boundary conditions Atzberger et al. [28] have developed a specialized
exponential integrator that tackles the large separation of time scales that arise when Sc � 1. Future
work will consider extending such techniques to non-periodic systems and to the case me 6= 0.

In ICM the fluid-particle coupling is expressed as a no-slip constraint equating the translational
particle velocity with the local fluid velocity. This implies that only the monopole term (stokeslet)
is included in the fluid-particle force. As a consequence the present approach can only accurately
resolve the fluid flow at distances larger than the typical size of the particles. However, it is a
remarkable fact that with such minimal resolution permits to capture so many hydrodynamic effects
in a qualitatively, and, in some cases, quantitatively correct way (see Sec. IV and also Ref. [43]).
Even though lubrication flows (at low ReP ) or viscous boundary layers (at large ReP and/or high
forcing rates) are unresolved, the locally averaged no-slip constraint proves to be remarkably robust
in capturing their essential hydrodynamics and permits to go beyond the Stokes limit. Crucial to
this success is the fact that we employ a carefully-constructed spatial discretization, combining nearly
grid-invariant Lagrangian-Eulerian transformations, local energy and momentum conservation, and
a staggered discretization of the incompressibility condition and the fluctuating stresses.

It is not difficult to extend our approach to also include the anti-symmetric component of the dipole
(rotlet) stress [29]. Firstly, particle rotational degrees of freedom would need to be added to the blob
description, along with an angular velocity ω and an associated excess moment of inertia. We would
need to impose an additional rotational no-slip constraint, requiring that the particle rotate with
the locally-averaged angular velocity of the fluid, ω = J (∇× v) /2, and distribute the fluid-particle
torque τ (Lagrange multiplier) as a force density fτ = −∇ × (Sτ ) /2 in the fluid momentum equation.
This type of approach has already been employed in the deterministic context to model suspensions
of neutrally-buoyant semi-rigid rods [96, 97]. To our knowledge, such an approach has not yet been
applied to fluctuating hydrodynamics and the resulting rotational diffusion has not been investigated.

An additional rigidity constraint would be required to also constrain the locally-averaged deformation
tensor, and thus consistently include the symmetric components of the dipole (stresslet) force
terms, as proposed by Maxey and collaborators in the context of the deterministic Force Coupling
Method (FCM) [29]. Unlike the smooth Gaussian kernels used in the FCM [29], the existing Peskin
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kernels do not have well-behaved derivatives. Therefore, it appears necessary to generalize the
IBM kernels to enable the local averaging (“interpolation”) of spatial derivatives in a reasonably
translationally-invariant manner. The inclusion of thermal fluctuations of the stresslet requires careful
consideration even at the continuum level, and will be the subject of future research.

In a different spirit, the approach used here for single “blobs” can be extended to account for the
finite extent and shape of arbitrarily-shaped rigid bodies immersed in fluid flow. One approach that
has been successfully employed in the deterministic setting is to construct the immersed body out
of a collection of blobs constrained to move rigidly [98]. Future work will consider the inclusion of
thermal fluctuations in this type of approach, and the minimal amount of resolution required to
capture the geometry of immersed particles.

At the other extreme, our method can be used to provide a coarse-grained model for hydrodynamics
at very small scales, for example, for the Brownian motion of a small molecule suspended in a simple
solvent. At such small scales, the suspended particles do not have a fixed, or even a well-defined
shape, and there are many competing and sometimes canceling effects: normal and tangential slip [99],
breakdown of Navier-Stokes hydrodynamics, non-Gaussian fluctuations, non-Markovian effects, etc.
Our simple fluid-particle coupling model can be used to isolate hydrodynamic from non-hydrodynamic
effects and study basic physics questions about the importance of inertia and fluctuations on Brownian
motion, going beyond the uncontrolled approximations required by existing theoretical approaches.
Notably, preliminary investigations have shown that for small Schmidt numbers nonlinear effects
become important and lead to a non-trivial contribution of the thermal fluctuations to the mean
fluid-particle force. Specifically, the mobility of a particle in a fluctuating fluid was found to differ
from that in a deterministic (Stokes) fluid, thus leading to a deviation of the diffusion coefficient
from the standard Stokes-Einstein prediction. More careful investigations are required to assess how
well self-consistent mode-coupling theories can model this effect, as well as to study the influence
of particle inertia (density contrast), random slip (see Appendix B), and spatial dimensionality.
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Appendix

A. Periodic Boundary Conditions

The pressure-free fluid-only equation (18) can formally be written in a form suitable for direct
application of standard numerical methods for integrating initial value problems,

∂tv = ρ−1
eff (Pf + PSF ) , (A1)

although this form is only useful if one can actually compute the action of the inverse inertia tensor
ρ−1

eff . It turns out that this is possible for periodic systems.
To see this, we expand ρ−1

eff into a formal series,

ρ−1
eff = ρ−1

[
I −meρ

−1PSJP + (meρ
−1PSJP)

2 − (meρ
−1PSJP)

3
+ . . .

]
. (A2)

Observe that (PSJP)
n

= PS (JPS)
n−1

JP involves the (n− 1)-st power of the d × d matrix

∆Ṽ
−1

= JPS, where we made use of the fact that P2 = P. Recall from (2) that JS = ∆V −1I is
a related to the inverse of the particle volume, which is independent of the position of the particle for

the particular kernel function used herein. In principle, the matrix ∆Ṽ
−1

could depend on the position
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of the particle because of the appearance of P, which implicitly encodes the boundary conditions.

However, periodic systems are translationally invariant and therefore ∆Ṽ
−1

cannot depend on the
position of the particle and is simply a constant d× d matrix.

By performing a relatively-straightforward calculation in Fourier space it is possible to show that for

periodic systems much larger than the kernel extent ∆Ṽ
−1

is simply a multiple of the identity matrix,

∆Ṽ
−1

= JPS =
d− 1

d
∆V −1 I. (A3)

The prefactor (d− 1)/d in the relation accounts for the elimination of the longitudinal (compressible)
velocity mode by the projection operator. We can therefore define the effective particle volume
accounting for incompressibility to be

∆Ṽ =
d

d− 1
∆V,

and accordingly, define the effective mass of the fluid dragged with the particle to be
m̃f = ρ∆Ṽ = dmf/ (d− 1), and the effective particle inertia to be m̃ = m̃f + me. In three
dimensions, the added fluid mass due to incompressibility is mf/2, which is a well-known result for
rigid spheres immersed in an incompressible fluid [87, 88].

Note that for periodic systems where some of the dimensions of the unit cell are comparable to
the kernel width (A3) is only an approximation. Notably, for a three-dimensional periodic box of

shape Lx × Ly × Lz, if Lz � a the value of ∆Ṽ
−1

converges to the two-dimensional result,

∆Ṽ
−1

2D = ∆V −1

 1
2

0 0

0 1
2

0

0 0 1

 , (A4)

rather than the three-dimensional ∆Ṽ
−1

3D = (2∆V −1/3) I.
Using (A3) it is possible to simplify the infinite series (A2) and obtain the important result for

a single particle immersed in a periodic fluid,

ρ−1
eff = (ρI +mePSJP)

−1
= ρ−1

(
I − me∆Ṽ

m̃
PSJP

)
. (A5)

Using this result we can rewrite (A1) in the simple form

ρ∂tv = P
(
I − me∆Ṽ

m̃
SJ

)
Pf +

m̃f

m̃
PSF , (A6)

which is useful for analysis and for numerical approximations.
It is important to point out, however, that when there are many particles present, there is no

simple formula for ρ−1
eff . That is, we cannot just add a summation over all particles in (A5). This

is because there are cross-terms between two particles i and j in the infinite series (A2) involving
the operator J iPSj. If the particles are not overlapping, meaning that the kernel functions of the
different particles have disjoint support, then J iSj = 0, however, this is not true for incompressible
flow because the projection P is a non-local operator involving the inverse Laplacian. Nevertheless,
the cross terms decay fast as particles become well-separated from each other. Specifically, theoretical
calculations suggest that to leading order J iPSj decays with the distance between the two particles
like dipole and quadrupole terms, and is thus expected to be very small in semi-dilute suspensions
[73]. In many problems of practical interest there are repulsive forces between the particles that

will keep them from coming close to each other, and the approximation J iPSj ≈
(

∆Ṽ
)−1

δij I,

ρ−1
eff ≈ ρ−1

[
I −

∑
i

(me)i ∆Ṽi
m̃i

PSiJ iP
]

(A7)

will be quite accurate even for multiparticle systems. We investigate the accuracy of the approximation
J iPSj = 0 for i 6= j numerically in Section III A 2.
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B. Fluctuation-Dissipation Balance

In this Appendix we demonstrate that the coupled fluid-particle equations written in the form (18)

∂tv = ρ−1
eff P

{
−
[
ρ (v ·∇) +meSJ

(
v · ∂

∂q
J

)]
v + SF

+ η∇2v + ∇ ·
[
(kBTη)

1
2
(
W + WT

)]}
(B1)

dq

dt
= Jv, (B2)

obey fluctuation-dissipation balance with respect to the Gibbs-Boltzmann distribution with
coarse-grained free energy

H (v, q) =
1

2

ˆ
vTρeffv dr + U (q) ,

where the effective fluid inertia operator ρeff is given in (19). The calculations here will follow the
techniques described in detail in Ref. [72] (ignoring boundary terms), and are purely formal in
the continuum (infinite-dimensional) setting. More precisely, the equations we write should really
be interpreted as a short-hand notation for a spatially-discretized system in which there is a finite
number of degrees of freedom [27].

It is well-known [69, 72] that within an isothermal and Markovian approximation the generic form
of evolution equations for a set of macroscopic variables x has the Ito Langevin form

∂tx = −N (x)
∂H

∂x
+ (2kBT )

1
2 B (x)W (t) + (kBT )

∂

∂x
·N? (x) , (B3)

where W (t) denotes a collection of independent white noise processes, star denotes an adjoint, and
(∂x ·N?)

k
= ∂Nkj/∂xj in indicial notation. We will suppress the explicit dependence on x and usually

write the mobility operator as N ≡ N (x). The fluctuation dissipation balance is contained in the
relation

BB? = M =
1

2
(N +N?) ,

and the last term in (B3) is a “thermal” drift which ensures that the dynamics obeys detailed-balance
(time-reversibility) at equilibrium with respect the Gibbs-Boltzmann distribution Z−1 exp [−H (x) /kBT ].

In our case, the coarse-grained variables are x = (v, q) and the thermodynamic driving forces are
given by the functional and partial derivatives

∂H

∂v
= ρeffv (B4)

∂H

∂q
= −F (q) +meJ

(
v · ∂

∂q
J

)
v. (B5)

Note that the kinetic term meSJ
(
v · ∂

∂q
J
)
v appearing in (B1) term follows from ∂H/∂q, and therefore

the approximation aJ ≈ 0 in (8) is not consistent in general.

1. Mobility Operator

The mobility operator that gives (B1,B2) from the thermodynamic driving forces (B4,B5) can
be symbolically written in the block form

N =

[
ρ−1

effNNSρ
−1
eff ρ−1

eff PS
−JPρ−1

eff NBD

]
, B =

[
ρ−1

effBNS

BBD

]
where the subscript NS denotes the corresponding operators for the fluctuating Navier-Stokes
equations without any immersed particles [71]. In the form of the equations that we employ
NBD = BBD = 0. Fluctuation-dissipation balance then follows from the corresponding property of
the pure fluid equations, BNSB

?
NS = (NNS +N?

NS) /2, since there is no dissipative terms in the particle
equation. The fluid-particle coupling contribution is non-dissipative or skew-adjoint, which follows
from the antisymmetry between to the lower left and upper right blocks in N .
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It is, however, consistent with the general framework of augmented Langevin descriptions and
fluctuation-dissipation balance to allow for a nonzero BBD with NBD = BBDB

?
BD. This does not affect

the fluid equation but changes the particle equation. For example, the simple choice

BBD =
√
ζ I, NBD = ζ I,

leads to a modified equation of motion for the particle,
dq

dt
= J

[
I − ζme

(
v · ∂

∂q
J

)]
v + ζF (q) +

√
2ζkBT Wq,

where Wq (t) is a white-noise “random slip”. If v = 0 the above equation is recognized as the usual
equation of Brownian dynamics with friction coefficient ζ−1 and mobility ζ. It is therefore expected
that adding a random slip component would increase the diffusion coefficient of the particle by ζkBT .
This can be used to tune the diffusion coefficient to some target (e.g., experimental) value. In this
work, we fix ζ = 0, and in future work we will consider second-order algorithms for ζ > 0 for the
case of a neutrally buoyant particle, me = 0.

2. Thermal Drift

Complications arise because of the presence of the last term in (B3) (proportional to kBT ), which is
non-zero because J and S depend on q. This “thermal drift” term arises because u is eliminated from
the description as a variable adiabatically-slaved to v, neglecting the fact that the particle position
fluctuates rapidly due to the fluctuations in u. This term was identified in Ref. [27] as missing from the
formulation of the Stochastic Immersed Boundary Method [28], which is equivalent to our formulation
with me = 0. The missing contribution is an extra term in the velocity equation (B1) of the form

f th = (kBT )
∂

∂q
· (JPρ−1

eff ) .

One can, in principle, numerically evaluate this term without requiring any derivatives by using
“random finite-differences” [100] via the identity

∂

∂q
· (JPρ−1

eff ) = lim
ε→0

ε−2 〈[ρ−1
eff (q + ∆q)PS (q + ∆q)] ∆q − [ρ−1

eff (q)PS (q)] ∆q〉
∆q
.

where the expectation value is with respect to the small random particle displacement ∆q = εW q,
and the components of W q are independent standard normal variates.

For periodic boundaries, using (A5) we can simplify, for any q,

[ρ−1
eff (q)PS (q)] ∆q =

m̃f

m̃
P [S (q)] ∆q,

and therefore the thermal drift

f th = (kBT )
m̃f

m̃
P lim

ε→0
ε−2 〈[S (q + ∆q)− S (q)] ∆q〉∆q = −m̃f

m̃
P∇S (kBT ) = 0 (B6)

vanishes as the projection of a gradient of a scalar for incompressible flow. Observe that we can
interpret f th as the divergence of an additional “thermal” contribution to the kinetic stress,

σkin + σth = −ρvvT − S
(
meuu

T +
m̃f

m̃
kBT

)
I. (B7)

In the limit of large Schmidt number, the particle positions evolves much slower than the momenta
(and thus also u), and therefore the temporal average of the second term gives an average “themal”
contribution to the pressure

πth = S

(
me

d

〈
uTu

〉
+
m̃f

m̃
kBT

)
=

(
me

m̃
+
m̃f

m̃

)
S (kBT ) = S (kBT ) ,

where we used the equipartition result (24). We see that πth has the physical interpretation as an
osmotic pressure contribution arising from the thermal motion of the suspended particle, even when
excess particle inertia is present.

Note that some of the mathematical manipulations used above rely on continuum identities which
are not necessarily obeyed by the discrete operators. In particular, for the spatial discretization that
we employ, the discrete vector field w = ∂

∂q
S is not equal to a discrete gradient of a scalar. However,

numerical observations suggest that it is very close to a discrete gradient of a scalar field, in the sense
that application of the discrete projection reduces the magnitude by several orders, ‖Pw‖ � ‖w‖,
regardless of the position of the particle relative to the fluid grid. This is one more case in which we
find that the Peskin discrete local averaging and local spreading operators closely mimic the properties
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Figure 7: Histogram of the equilibrium distribution of the position a particle freely diffusing at thermodynamic
equilibrium in a translationally-invariant system, without including the drift f th (left) and including it (right).
The distribution is projected on one grid cell by averaging over all cells in a periodic grid of 163 cells, and
averaging over 100 non-interacting neutrally-buyuoant particles (me = 0). A small time step size corresponding
to viscous CFL number β = 0.05 is used in order to minimize time discretization artifacts.

of the continuum operators even though they were not specifically designed with the staggered-grid
discrete projection P in mind.

Nevertheless, maintaining strict discrete fluctuation-dissipation balance in the semi-discrete equations
requires keeping f th in the momentum balance equation. Note that the gradient in ∇S is a continuum
rather than a discrete gradient. There are two ways to implement this gradient numerically. The first
is to differentiate the Peskin kernel and spread a force − (kBT ) m̃f/m̃ using the derivative of the kernel
instead of the kernel itself, as we do in the calculations reported below. The second is to use a random
finite difference [100] and numerically obtain the required derivative in expectation by adding a term

m̃f

m̃

kBT

ε
[S (q + εW q)− S (q)]W q or − (kBT )

m̃f

m̃
∂δa (q − r) (B8)

to the momentum balance equation, where W q is generated independently at each time step, and
∂δa is the gradient of the kernel.

To demonstrate that it is necessary to include (B8) in the discrete setting, we investigate the
equilibrium distribution of the positions of a number of non-interacting particles (i.e., an ideal gas of
particles) in a periodic domain. Due to the translational invariance of the problem we know that the
particle positions should be uniformly distributed through space. However, the presence of the fluid grid
breaks translational invariance and if discrete fluctuation-dissipation balance is not strictly obeyed grid
artifacts can appear in the solution. In Fig. 7 we show a histogram of the positions of a freely-diffusing
particle relative to one grid cell (by grid translational invariance all cells and particles are equivalent).
We clearly see that when f th is omitted the particle spends more time near the corners of the grid cell
(nodes of the grid) than near the center of the grid cell, by about 6% for these parameters, Including
the thermal drift forcing in the momentum equation eliminates these artifacts to within statistical
and temporal integration errors. In this test we use neutrally-buyuoant particles because the particles
do not interact via a steric repulsion so the approximation (A7) fails and the no-slip condition is
not enforced to sufficient accuracy by the algorithm developed here. We note that similar results
are obtained for the compressible fluid equations, solved using the algorithm described in Appendix D.

C. Semi-Implicit Inertial Velocity Correction

In this Appendix we explain how we solve the linear system (37,38,39,40) using only FFT-based
linear subsolvers.

First, we solve (37) for ṽn+1 and π̃n+ 1
2 using a projection algorithm and FFTs as explained, for
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example, in Ref. [81]. Then, we eliminate un+1 in (39) using the no-slip constraint (40) to obtain

∆t
(
λn+ 1

2 + F n+ 1
2

)
= me

[
J
(
ṽn+1 + ∆vn+ 1

2

)
+ ∆un+ 1

2 − un
]
. (C1)

Substituting this expression into (38), we get the fluid correction equation[(
ρI − ∆t

2
ηL

)
+meSJ

]
∆vn+ 1

2 + ∆t∇
(

∆πn+ 1
2

)
= meS

(
un − Jṽn+1 −∆un+ 1

2

)
, (C2)

where L ≡∇2 denotes the discrete Laplacian operator. This is nothing but a rewriting of (36) and
just as difficult to solve, so we need to make further approximations.

We begin solving (C2) by writing

ρI − ∆t

2
ηL+meSJ = (ρI +meSJ)

(
I − ∆t

2
νL

)
+
meν∆t

2
SJL. (C3)

If we ignore the last term we obtain an approximation of order O (me∆t). We can improve the accuracy
for viscous-dominated flows if we time lag the last term, that is, evaluate it during the previous
time step. Using (C3) in (C2) along with time lagging we get the modified fluid correction equation

(ρI +meSJ)

(
I − ∆t

2
νL

)
∆vn+ 1

2 + ∆t∇
(

∆πn+ 1
2

)
= S

[
me

(
un − Jṽn+1 − δun+ 1

2

)]
= S∆p, (C4)

where we have time-lagged the last term in (C3) and denoted

δun+ 1
2 = ∆un+ 1

2 +
ν∆t

2
Jn−

1
2L∆vn−

1
2 .

Note that if one approximates δun+ 1
2 = 0 (lowering the order of accuracy), then as ∆t → ∞ we

get ∆vn+ 1
2 → 0 since both ρI + meSJ and I −∆tνL/2 are positive semi-definite matrices. This is

consistent with physical intuition that inertia should play a negligible role at long time scales, and
implies that the algorithm will be unconditionally stable in the absence of advection.

Denote ∆ṽ = (I −∆tνL/2) ∆vn+ 1
2 , and note that ∇ · (∆ṽ) = ∇ ·

(
∆vn+ 1

2

)
= 0 with periodic BCs

since the divergence and the Laplacian commute. Therefore, we can solve (C4) by first solving

(ρI +meSJ) ∆ṽ + ∆t∇
(

∆πn+ 1
2

)
= S∆p, (C5)

subject to ∇ · (∆ṽ) = 0, and then solving(
I − ∆t

2
νL

)
∆vn+ 1

2 = ∆ṽ, (C6)

using FFTs to diagonalize the Laplacian [81].
We solve (C5) using the pressure-elimination procedure described in Appendix A, to obtain the

equivalent pressure-free equation

(ρI +mePSJP) ∆ṽ = PS∆p,

where P denotes the discrete projection operator [44]. By assuming the particles are sufficiently far
away from each other, we can employ the approximation (28) to approximately solve (C5) [compare
to (A6) with f = 0],

∆ṽ =
m̃f

ρm̃
PS∆p =

mem̃f

ρ (m̃f +me)
PS

(
un − Jṽn+1 − δun+ 1

2

)
, (C7)

where we recall that m̃f = dmf/ (d− 1).
In order to ensure strict momentum conservation even in the presence of the approximation (28),

we rewrite (C6) using (C5) in the form(
ρI − ∆t

2
ηL

)
∆vn+ 1

2 + ∆t∇
(

∆πn+ 1
2

)
= S (∆p−meJ∆ṽ) , (C8)

subject to ∇ ·
(

∆vn+ 1
2

)
= 0. This is consistent with (38) if we set

∆t
(
λn+ 1

2 + F n+ 1
2

)
= me

[
J
(
ṽn+1 + ∆ṽ

)
+ δun+ 1

2 − un
]
, (C9)

which is to be compared to (C1). The linear system (C8) can be solved using the same techniques
as used to solve (37).

Having determined ∆vn+ 1
2 we can update the fluid velocity (momentum), vn+1 = ṽn+1 + ∆vn+ 1

2 .
If desired, we can update the particle momentum in a conservative manner by substituting (C9)
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into (39) to get

un+1 = J
(
ṽn+1 + ∆ṽ

)
+ δun+ 1

2 . (C10)

From (C10) we see that the approximations we used lead to a violation of the no-slip constraint (40)

∆un+1 = un+1 − J
(
ṽn+1 + ∆vn+ 1

2

)
−∆un+ 1

2 ≈ −ν∆t

2

(
Jn+ 1

2L∆vn+ 1
2 − Jn− 1

2L∆vn−
1
2

)
,

which is of O (me∆t
2) if ∆v is smooth in time, ∆vn+ 1

2 = ∆vn−
1
2 + O (∆t). This means that our

procedure approximates the solution of (37,38,39,40) with slip ∆un+1 = O (me∆t
2). Therefore, in

the deterministic setting, for sufficiently smooth flows, the temporal integrator summarized in Section
III C is expected to be second-order accurate.

D. Compressible Algorithm

In this Appendix we propose a modification of the first-order temporal integrator developed in
Ref. [43], following a similar approach to the incompressible algorithm summarized in Section III C.
The algorithm summarized below is still only first-order accurate if me 6= 0, however, it is second-order
accurate for me = 0 unlike the algorithm used in Ref. [43]. Numerical results show that the modified
algorithm below is a substantial improvement over that used previously [43].

1. Estimate the position of the particle at the midpoint,

qn+ 1
2 = qn +

∆t

2
Jnvn, (D1)

and evaluate the external or interparticle forces F n+ 1
2

(
qn+ 1

2

)
.

2. Solve the coupled density and unperturbed momentum equations [101]

Dtρ = −ρ (∇ · v)

ρ (Dtv) = −c2
T∇ρ−∇ · σ + Sn+ 1

2F n+ 1
2 − (kBT )

∑
i

(m̃f )
i

m̃i

∂δa

(
q
n+ 1

2
i − r

)
using a step of the third-order Runge-Kutta algorithm described in Ref. [44], to obtain the density

ρn+1 and the unperturbed fluid velocity ṽn+1. During this step we treat the force density Sn+ 1
2F n+ 1

2

in the momentum equation as a constant external forcing. Here we have included the thermal
drift term (B6) as the last term on the right hand side of the momentum equation, denoting
the gradient of the kernel with ∂δa; omitting this term violates discrete fluctuation-dissipation
balance and leads to small but measurable unphysical grid artifacts in the particle dynamics.

3. If me = 0, set vn+1 = ṽn+1 and skip to step 7.
4. Calculate the momentum exchange between the particle and the fluid during the time step [43],

∆t
(
λn+ 1

2 + F n+ 1
2

)
= ∆p =

memf

me +mf

(
Jn+ 1

2 ṽn+1 − un
)
, (D2)

where the mass of the dragged fluid is estimated from the local density as

mf = ∆V Jn+ 1
2 ρn+1.

5. Update the particle momentum,

un+1 = un +
∆p

me

= un +
mf

me +mf

(
Jn+ 1

2 ṽn+1 − un
)
. (D3)

6. Update the fluid velocity to enforce the no-slip condition un+1 = Jn+ 1
2vn+1,

vn+1 = ṽn+1 − ∆V

mf

Sn+ 1
2 ∆p = ṽn+1 + ∆V Sn+ 1

2

(
un+1 − Jn+ 1

2 ṽn+1
)

(D4)

Note that this conserves the total momentum since

ρn+1vn+1 − ρn+1ṽn+1 = −
(
Jn+ 1

2 ρn+1
)−1
ˆ
ρn+1Sn+ 1

2 ∆p dr = −∆p.

7. Update the particle position,

qn+1 = qn +
∆t

2
Jn+ 1

2 (vn+1 + vn) . (D5)

There are some differences between this algorithm and the incompressible algorithm summarized in
Section III C. Notably, viscosity is handled explicitly in the compressible algorithm to avoid costly linear
solvers. In the incompressible algorithm the no-slip condition is violated slightly while here the velocity
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correction vn+1− ṽn+1 is designed to enforce the no-slip condition exactly even in the presence of density
variations. Another important difference is that the compressible algorithm presented here is not second-
order accurate even for small Reynolds number because viscous corrections of O (ν∆t) are not taken
into account when computing λn+ 1

2 . Since the time step is typically strongly limited by propagation
of sound, typically β � 1 and there is little need for higher-order handling of the viscous terms.
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