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Introduction

Soliton Kinks in Pinned Colloidal Monolayers

Inspired by experiments on ”kinks and antikinks in colloidal monolayers
driven across ordered surfaces”, Bohlein et al, Nature Materials 2011.
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Introduction

Thermal Fluctuations: Brownian Motion

Depinning of the driven monolayer (transition from static to dynamic
friction) happens by thermally-activated hops of the colloids.
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Introduction

Rigid MultiBlob Models

The rigid body is discretized through a number of “beads” or “blobs”
with hydrodynamic radius a [1] connected into a rigid multiblob.

How to efficiently simulate the active and Brownian motion of
the rigid particles in fully confined domains?
Rigid-Body Fluctuating Immersed Boundary (RB-FIB) [2]
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Modeling (Brownian) Stokesian Suspensions

Fluctuating Hydrodynamics

We consider a rigid body Ω immersed in a fluctuating fluid. In the fluid
domain, we have the fluctuating Stokes equation

ρ∂tv + ∇π = η∇2v + (2kBTη)
1
2 ∇ ·Z

∇ · v = 0,

with no-slip BCs on the bottom wall, and the fluid stress tensor

σ = −πI + η
(
∇v + ∇Tv

)
+ (2kBTη)

1
2 Z

consists of the usual viscous stress as well as a stochastic stress
modeled by a symmetric white-noise tensor Z (r, t), i.e., a Gaussian
random field with mean zero and covariance

〈Zij(r, t)Zkl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).
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Modeling (Brownian) Stokesian Suspensions

Fluid-Body Coupling

At the fluid-body interface the no-slip boundary condition is assumed to
apply,

v (q) = u + ω × q− ŭ (q) for all q ∈ ∂Ω,

with the inertial body dynamics

m
du

dt
= F−

∫
∂Ω
λ (q) dq,

I
dω

dt
= τ −

∫
∂Ω

[q× λ (q)] dq

where λ (q) is the normal component of the stress on the outside of the
surface of the body, i.e., the traction

λ (q) = σ · n (q) .

To model activity we can add active slip ŭ due to active boundary layers,
or consider external forces/torques.
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Modeling (Brownian) Stokesian Suspensions

Mobility Problem

From linearity, the rigid-body motion is defined by a linear mapping
U = NF via the deterministic mobility problem:

∇π = η∇2v and ∇ · v=0 +BCs

v (q) = u + ω × q− ŭ (q) for all q ∈ ∂Ω,

With force and torque balance∫
∂Ω
λ (q) dq = F and

∫
∂Ω

[q× λ (q)] dq = τ ,

where λ (q) = σ · n (q) with

σ = −πI + η
(
∇v + ∇Tv

)
.
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Modeling (Brownian) Stokesian Suspensions

Overdamped Brownian Dynamics

Consider a suspension of Nb rigid bodies with configuration
Q = {q, θ} consisting of positions and orientations (described
using quaternions) immersed in a Stokes fluid.

By eliminating the fluid from the equations in the overdamped limit
(infinite Schmidt number) we get the equations of Brownian
Dynamics

dQ(t)

dt
= U = NF + (2kBT N )

1
2 W (t) + (kBT ) ∂Q ·N ,

where N (Q) is the body mobility matrix, U = {u, ω} collects the
linear and angular velocities, F (Q) = {f, τ} collects the applied
forces and torques.

“Square root” of mobility matrix given by fluctuation-dissipation
balance

N
1
2

(
N

1
2

)T
= N .
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Modeling (Brownian) Stokesian Suspensions

Difficulties/Goals

Complex shapes We want to stay away from analytical approximations
that only work for spherical particles.

Boundary conditions Whenever observed experimentally there are
microscope slips (glass plates) or microfluidic channels that
modify the hydrodynamics strongly.

Many-body hydrodynamics Want to be able to scale the algorithms to
suspensions of many particles.

Brownian increments How to generate N
1
2 W, i.e., Gaussian random

variables with covariance N .

Stochastic drift How to include the (kBT ) ∂Q ·N term in temporal
integrators.
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RB-FIB Method

Rough idea of temporal integration

Temporarily neglecting the stochastic drift, the apparent velocity of
the particles over an Euler-Maruyama (EM) time step ∆t,

UEM = NF +

√
2kBT

∆t
N 1/2W,

where W is a standard Gaussian random vector.

The EM update can be corrected to add the drift by using random
finite differences,

Qn+1 = Qn + ∆tUn
EM +

∆t

δ
(U+ −U−),

where, for a small δ → 0 and a random displacement/rotation ∆Qn,

U± = N
(

Qn ± δ

2
∆Qn

)
∆Qn.

This is too expensive/inaccurate as it requires three mobility solves
per step; one can do a bit better [2].
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RB-FIB Method

Immersed Boundary (IB) Re-formulation

Following the IB method we extend the fluid equation over the whole
domain ∀x ∈ Ω and use delta functions to evaluate fluid variables on the
surfaces of the bodies ∀p, ∀r ∈ ∂Bp, to write a system of

semi–continuum linear equations for UEM =
[
uEM

1 ,ωEM
1 , . . .uEM

Nb
,ωEM

Nb

]
,

−η∇2v + ∇π =

√
2kBTη

∆t
∇ · Z (x) +

∑
p

∫
∂Bp

δ (x− r)λ (r) dA(r)

∇ · v = 0∫
Ω
δ (x− r) v (x) dV (x) = uEM

p +
(
r − qp

)
× ωEM

p + ŭ (r) ,

fp =

∫
∂Bp

λ (r) dA(r), τ p =

∫
∂Bp

(
r − qp

)
× λ (r) dA(r).
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RB-FIB Method

Rigid Multiblob Discretization

Two tightly confined spheres at different grid resolutions.
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RB-FIB Method

Immersed Boundary Discretization

Represent body Bp as a rigid agglomerate of markers or blobs with
positions rpi ∈ ∂Bp.

Discretize λ on the Lagrangian grid as a collection of forces
λp
i ≈ λ

(
rpi
)

∆A
(
rpi
)
.

For fully confined domains, discretize the Stokes equations on a
staggered grid: fluid velocity v is defined on the face centers xα.

Key idea of IB method: Replace delta function with a discrete
approximation δh of width several grid cells (Peskin).

A. Donev (CIMS) FluctIBAMR 7/2019 13 / 20



RB-FIB Method

Notation

Define the spreading operator S and the adjoint interpolation
operator J = ∆VS? as

(J v)pi =
∑

xα∈Ω

δh
(
xα − rpi

)
v (xα) ≈

∫
Ω
δ
(
x− rpi

)
v (x) dV (x),

(Sλ)α =
1

∆V

∑
p

∑
rpi

δh
(
xα − rpi

)
λp
i ≈

∫
∂Bp

δ (xα − r)λ (r) dA(r).

Define the geometric matrix K(Q)

(KU)pi = up +
(
rpi − qp

)
× ωp,

(
KTλ

)
p

=


∑

rpi

λp
i∑

rpi

(
rpi − qp

)
× λp

i

 ≈


∫
∂Bp

λ (r) dA(r)∫
∂Bp

(
r − qp

)
× λ (r) dA(r)

 .
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RB-FIB Method

Spatial Discretization

We can now compactly write the spatially discretized system for
[v, π,λ,UEM],

−ηLv + Gπ =

(
2kBTη

∆V∆t

)1/2

DW + Sλ,

Dv = 0,

J v = KUEM + ŭ,

KTλ = F.

This is a nested double saddle-point system that can be solved
efficiently iteratively using preconditioners developed for a
deterministic rigid-body IB method [3, 1].

Our Split–Euler–Maruyama (SEM) temporal integrator requires
solving this kind of system twice, plus solving a fluid-only problem
once per time step [2].
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Numerical Results

Kink Soliton Waves

Nearby particles move in a coordinated manner creating “kink solitons.”
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Numerical Results

Effect of Confinement

Depinning starts near the side walls at low driving speeds.
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Numerical Results

Effect of Side Boundaries

At moderate driving speeds particles near the side walls move first but
then the middle goes next and not last.
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Numerical Results

Conclusions

We have constructed a linear-scaling algorithm for Brownian
dynamics of nonspherical fully-confined colloids.

Key to generating Brownian increments efficiently in any finite
domain is to use fluctuating hydrodynamics (Stokes solver using
FFTs or multigrid) to handle the far-field hydrodynamic interactions.

Specialized temporal integrators employing random finite
differences are required to obtain the correct stochastic drift terms.

There are related methods for other boundary conditions, e.g.,
triply periodic (Swan talk or RB-FIB) or bottom wall [4] only;
currently working on methods for doubly-periodic domains
(unbounded in one direction).

More accurate but much less flexible is our Fluctuating Boundary
Integral method [5], right now only works in two dimensions.
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Numerical Results
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