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Electrolyte Solutions

Thermal fluctuations play a key role at mesoscopic systems and, as
I will demonstrate, can affect macroscopic observables.

Primarily interested in the case when fluctuations are weak, i.e., lots
of molecules are involved, but fluctuations still make a difference:
fluctuating hydrodynamics (FHD).

Electrolyte solutions are important for batteries, ion-selective
membranes, biology, etc.

Here we study the bulk transport coefficients of a binary
electrolyte using the fluctuating Poisson-Nernst-Planck equations:
conductivity and collective diffusion coefficient.
Originally studied using other methods by Debye-Hückel-Onsager
(DHO theory) a long time ago, a lot of it forgotten and never picked
up by chemical engineers, probably in part because of complexity.
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FHD for Electrolytes: Momentum

Momentum equation in the Boussinesq (constant density)
isothermal approximation for constant dielectric constant ε:

∂ (ρv)

∂t
+ ∇π = −∇ · (ρvvT ) + ∇ · (η∇̄v + Σ) + ∇ · (ε∇Φ)∇Φ,

∇ · v = 0,

where Φ (r, t) is the electrostatic potential and ∇ · (ε∇Φ)∇Φ is the
Lorentz force.

Stochastic momentum flux from FHD:

Σ =
√
ηkBT

[
Zmom + (Zmom)T

]
.

The electrophoretic correction to conductivity ∼
√
c is due to a

coupling of charge and momentum fluctuations.
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FHD for Electrolytes: Mass

For the composition equation, our variables are the mass fractions
ws = ρs/ρ since ρ = ρ0 is constant.

The mass density ρs = wsρ of species s for a mixture of NS species
satisfies a fluctuating advection-diffusion equation:

∂ (ρws)

∂t
= −∇ · (ρwsv)−∇ · Fs ,

The dissipative and stochastic diffusive mass fluxes for a dilute
species are,

Fs ≈ −ρD0
s

(
∇ws +

mswszs
kBT

∇Φ

)
+
√

2ρmswsD0
s Zmass

s ,

where ms is the molecular mass and the charge per unit mass is zs ,
and D0

s is the bare self-diffusion coefficient at infinite dilution.
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Poisson equation

The electric potential Φ(r, t) satisfies the Poisson equation

−∇ · (ε∇Φ) = ρ

Ns∑
s=1

wszs . (1)

A key mesoscopic length is the Debye length

λD ≈

(
εkBT∑N

s=1 ρwsmsz2
s

)1/2

. (2)

From now on we consider a non-equilibrium steady state under the
action of an applied concentration gradient or electric field.

The fluctuations of the composition from the average w̄s = 〈ws〉 are
δws = ws − w̄s , and the fluctuations of the fluid velocity are δv.
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Structure factors

The static structure factor matrix is

S =

(
Sww Swv

Swv
∗ Svv

)
, (3)

where each element is a cross correlation in Fourier space,

Sfg (k) = 〈δf̂ (k)δĝ(k)∗〉 (4)

where f̂ (k) is the Fourier transform of f (r) and star denotes
conjugate transpose.

By Plancherel’s theorem,

〈(δf )(δg)∗〉 =
1

(2π)3

∫
dk Sfg (k). (5)

Macroscopic gradient applied in the x-direction so only vx is retained
in the structure factors.
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Linearized FHD

The FHD equations can be linearized around the macroscopic steady
state and Fourier transformed to obtain for each wavenumber an
Ornstein-Uhlenbeck process:

∂tÛ = MÛ + NẐ, (6)

where Û = (δŵ1, . . . , δŵNsp , δv̂x)T and

[NN ∗]ii =
2

ρ

{
k2D0

i mi w̄i i ≤ Nsp

k2
⊥νkBT i = Nsp + 1

, (7)

with k2
⊥ = k2 − k2

x = k2 sin2 θ, and θ is the angle between k and the
x axis.

Structure factor is the solution of the continuous Lyapunov equation
and easy to obtain using computer algebra,

MS + SM∗ = −NN ∗. (8)
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Equilibrium fluctuations

The fluctuations in the electric field can be expressed in terms of
species fluctuations (ι =

√
−1),

δÊ = −ιkδφ = − ιk

εk2
δq̂ = −ρ ιk

εk2

∑
i

ziδŵi . (9)

At thermodynamic equilibrium Seq
wv = 0 and Seq

vv = sin2(θ)kBT/ρ and

Seq
wi ,wi

=
1

ρ
mi w̄i −

(
1

εkBT

)
λ2

1 + k2λ2
(mizi w̄i ) (mjzj w̄j) . (10)
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Renormalization of free energy

It is well-known that the colligative properties (e.g., vapor pressure,
freezing point) of electrolyte solutions depend on their ionic strength.

Ionic interactions renormalize the Gibbs free energy by [1]

∆G =
1

2
〈δqδφ〉 =

ρ2

2ε(2π)3

∫
zT (Seq

ww − Diag {mi w̄i/ρ}) z

k2
dk

= − kBT

8πλ3
.

This result leads directly to the limiting law of Debye and Hückel for
point ions and shows an experimentally measurable effect of
mesoscopic thermal charge fluctuations.

It is important to note that a broad range of wavenumbers
contributes to the integral over k, not just microscopic scales!
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Perturbative renormalization of transport coefficients

In perturbative (one-loop) renormalization theory we expand to
quadratic order in fluctuations and then use the solution of the
linearized FHD equations to obtain the quadratic terms.

This has been applied to many situations and is not rigorous but is
simple to execute and leads to computable predictions of nonlinear
(quadratic) FHD.

Here we expand the fluxes of the ions (giving the electric current) to
quadratic order in the fluctuations [2, 3]:

F̄i = 〈Fi (w, v)〉 = Fi (〈w〉, 〈v〉) + D0
i

eVi

kBT
〈δwiδE〉+ 〈δvδwi 〉

≡ F̄
0
i + F̄

relx
i + F̄

adv
i (11)

The term F̄
relx
i is the relaxation correction and F̄

adv
i the advection

correction.
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Perturbative expansion of structure factors

We can also expand the linearized FHD equations in powers of the
applied field,

M = Meq + M′ + O(X 2), (12)

where X is the applied thermodynamic force; Meq is O(X 0) and
M′ is O(X 1).

Similarly, we can expand the structure factor as
S = Seq + S′ + O(X 2).

Nonequilibrium fluctuating hydrodynamics makes a local equilibrium
approximation, which means that the noise covariance matrix NN ∗
is unchanged, giving the linear system

MeqS′ + S′(Meq)∗ = −M′Seq − Seq(M′)∗. (13)
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Renormalization of conductivity

Let’s consider an applied electric field X ≡ Eext = Eextex .

From the linearized fluctuating PNP equations in the presence of
an applied field one can easily obtain

M′ = Eext

(
−ιk cos θ

kBT
Diag

(
D0
i mizi

)
0

sin2(θ)zT 0

)
. (14)

The conductivity gets renormalized by the fluctuations by two pieces:
a relaxation and an advective contribution.

The advective flux correction is due to the non-equilibrium
contribution to the structure factor:

S ′wi ,v
=

λ2 sin2 θ

1 + λ2k2

mi w̄izi
ρ(D0

i + ν)
Eext. (15)
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Advective contribution

The advective flux correction comes due to correlations of charge
and velocity fluctuations:

F̄
adv
i = 〈δvδwi 〉 =

∫ π/(2ai )

k=0
dk

∫ π/2

−π/2
cos(θ)dθ S ′wi ,v (16)

≈
(

1

3πai
− 1

6πλ

)
mi w̄izi
η

Eext (17)

for Schmidt number Sc� 1 and λ� a (dilute solution).

The first piece ∼ 1/ai comes from the renormalized
Stokes-Einstein relationship

Ds = D0
s +

kBT

6πaiη
.

The second piece ∼ 1/λ is called the electrophoretic correction and
is ∼

√
c; it was first obtained by Onsager and Fuoss by much more

complicated means.
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Relaxation contribution

A similar calculation also gives the relaxation correction

F̄
relx
i =

D0
i mizi
kBT

〈δwiδE〉 = −
(2−

√
2)D0

i m
2
i zi

48πkBTρλ3
Eext, (18)

which is in exact agreement with the result obtained by Onsager and
Fuoss.

Fluctuating hydrodynamics is a powerful modeling tool at
mesoscopic scales, as demonstrated here by the calculation of the
thermodynamic and transport corrections for electrolytes.

The (fluctuating) PNP equations need to be corrected to order
square root in the ionic strength, and are thus valid only for very
dilute solutions.
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Caveats / Future Work

In the analytical perturbative approach followed here, all corrections
to the linearized fluctuating PNP equations appear additively, not
multiplicatively as they should; to compute those we need nonlinear
computational FHD.

The theoretical calculation here only works for rather dilute
electrolytes. For realistic conditions we have λ ∼ a and we cannot
really separate microscopic and electrostatic effects.

There are also too few ions per λ3 volume, so we need to treat ions
as particles using Brownian HydroDynamics – WIP.

At length scales � λ the solution is electroneutral [4] but near
boundaries it is not, so one needs to couple these two descriptions.
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