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We develop a fast method for computing the electrostatic energy and forces for a

collection of charges in doubly-periodic slabs with jumps in the dielectric permittiv-

ity at the slab boundaries. Our method achieves spectral accuracy by using Ewald

splitting to replace the original Poisson equation for nearly-singular sources with a

smooth far-field Poisson equation, combined with a localized near-field correction.

Unlike existing spectral Ewald methods, which make use of the Fourier transform in

the aperiodic direction, we recast the problem as a two-point boundary value problem

in the aperiodic direction for each transverse Fourier mode, for which exact analytic

boundary conditions are available. We solve each of these boundary value problems

using a fast, well-conditioned Chebyshev method. In the presence of dielectric jumps,

combining Ewald splitting with the classical method of images results in smoothed

charge distributions which overlap the dielectric boundaries themselves. We show

how to preserve spectral accuracy in this case through the use of a harmonic correc-

tion which involves solving a simple Laplace equation with smooth boundary data.

We implement our method on Graphical Processing Units, and combine our doubly-

periodic Poisson solver with Brownian Dynamics to study the equilibrium structure

of double layers in binary electrolytes confined by dielectric boundaries. Consistent

with prior studies, we find strong charge depletion near the interfaces due to re-

pulsive interactions with image charges, which points to the need for incorporating

polarization effects in understanding confined electrolytes, both theoretically and

computationally.
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I. INTRODUCTION

The evaluation of electrostatic interactions in a collection of charges is a classical prob-

lem in computational physics, with applications to the study of electrolyte solutions, macro-

molecules, ion channels, and other systems. In Molecular Dynamics (MD) and Brownian

Dynamics (BD) methods, the forces between the charges need to be computed at least once

per time step, while in Monte Carlo (MC) methods the total electrostatic energy of the entire

collection of charges is required. Hybrid BD-MC schemes require computing both forces and

energy. Each of the many linear-scaling methods available to compute these quantities (for

varying geometries and boundary conditions) falls into one of two categories: fast multipole

methods [1–3], and variants of particle-(particle-particle)-mesh (P3M) methods, including

pre-corrected FFT and spectral Ewald (SE) methods [4–9]. Our focus in this work is on the

latter type of method, which tends to be more efficient than the former for homogeneous

charge distributions.

In this paper we develop a linear-scaling spectral Ewald method to compute electro-

static forces and energy in doubly-periodic or slab geometries with dielectric jumps at the

boundaries of the slab, which is applicable to the study of (Debye) double layers in confined

electrolyte solutions. Specifically, we will consider charges in a slab 0 < z < H immersed

in a uniform dielectric medium in a domain that is periodic in the xy plane but potentially

has jumps in the dielectric permittivity at z = 0 and z = H. We will consider not point

charges, but rather Gaussian charges of width gw > 0. This approach avoids divergent

self-interactions and unnecessarily stiff electrostatic interactions at short distances and is

consistent with our focus on electrolyte solutions, for which the charged particles are sol-

vated ions that are not actually point charges to begin with. Nevertheless, our method

applies to arbitrarily small gw (to within roundoff errors), allowing us to approach the limit

of point charges if desired.

There are already a large number of methods in the literature for doubly-periodic elec-

trostatics [3–5, 10–14]. We will not attempt to review and compare all of them, but focus

instead on highlighting the improvements of our approach over recent SE methods [5, 14],

to which our approach is most closely related. Our method combines a number of ideas

from the existing literature with some new ideas and new numerical methods, which results

in an improved P3M method in the slab geometry. Like many previous approaches, we use
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the method of images to tackle the presence of dielectric jumps [3, 10, 13] and convert the

problem to a doubly-periodic problem in a medium with uniform dielectric permittivity. At

the same time, however, our method avoids the need to consider the full (infinite) image

system by imposing exact boundary conditions at z = 0 and z = H, and using a grid-

based Poisson/Laplace solver to account for the distant images. We make key use of Ewald

splitting, so that some aspects of our method are very similar to existing SE approaches.

Our use of Ewald splitting is different from that in [5, 14]. The traditional view is to

consider Ewald splitting as an analytical technique that separates the electrostatic sums

for point-like charges into “real-space” and “Fourier-space” contributions. The real-space

or near-field part is easy to handle by direct summation over pairs of nearby particles,

while the Fourier-space or far-field part is handled using Fast Fourier Transform (FFT)

based methods. These are simplest to understand in triply-periodic domains [6], and the

corresponding formulas are easy to derive. This standard view has been extended to other

geometries including slabs, as reviewed in [7, 15].

One drawback of the traditional view of Ewald splitting is that, by focusing on the Fourier

domain alone, non-physical sampling requirements are sometimes imposed on the method.

The paper [14], which was perhaps the first to introduce and carefully analyze a spectrally

accurate approach for doubly-periodic geometries, requires large oversampling factors that

depend on both the tolerance and the aspect ratio of the domain. While a later paper

[5] was able to overcome this, we believe the applicability of Ewald-type methods to more

general geometries is easier to understand in the framework we present here, which makes

simultaneous use of both Fourier and more standard PDE-based ideas. This framework is

key to understanding the novel parts of our algorithm.

Thus, we begin by considering Ewald splitting as an improvement of P3M approaches,

where the first step is to create a smooth source distribution by convolution with a Gaussian,

the second step involves solving the Poisson equation with this smooth right-hand side, and

the third step is to correct for the (localized) errors introduced by the initial smoothing. One

can use any sufficiently accurate solver for the smoothed problem, not necessarily one based

on Fourier analysis. The third step is handled (as in any Ewald-type method) analytically,

using pairwise summation over some collection of near neighbors.

Having split the problem into a PDE with smooth data (accurately representing the

far-field interactions) and a near-field correction, it remains only to correctly specify appro-
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priate boundary conditions in the unbounded z direction and to construct an appropriate

fast solver. It is straightforward to derive a Robin-type condition on the slab boundary for

each mode, through an analysis of the Dirichlet-to-Neumann (DtN) map.1 After Fourier

transformation with respect to the periodic directions, we use a real-space Chebyshev spec-

tral solver in the now finite z direction. Unlike pure Fourier-based schemes, such as [14],

all that is required is that the source distribution be resolved by the Chebyshev grid. No

oversampling is required and the aspect ratio of the domain plays no role. Unlike [5], we

maintain spectral accuracy rather than switching over to an algebraic convergence rate.

That said, since Chebyshev methods are easily implemented efficiently and robustly using

a Fourier transform on a double-sized grid, we still make use of three-dimensional FFTs as

the key component to achieving O(N logN) scaling where N is the number of unknowns.

The fixed oversampling factor of 2 is typical for any FFT-based aperiodic convolution.

For a single dielectric interface, our Ewald splitting approach can be applied after using

the classical image construction to handle the dielectric jump in the z direction. In particular,

a set of images can be constructed and Ewald splitting can be used to smear the charges,

thereby allowing for a coarse grid in the doubly-periodic Poisson solver. This approach

runs into difficulties, however, for slabs with two (or more) dielectric jumps. Our method

avoids the inherent problem of having infinitely many images for a slab geometry by only

including the images of charges that are sufficiently close to the dielectric boundary for the

corresponding Ewald cloud to overlap the boundary. We account for the rest of the infinite

image system through a harmonic correction potential that can be computed analytically

from the mismatch in the boundary conditions at the slab boundaries. This simple but

powerful idea appears have been overlooked in the field, and is easily combined with other

doubly-periodic Poisson solvers, such as the nonuniform FFT-based solver proposed in [5].

An outline of the paper follows. In Section II, we present the mathematical formulation of

the problem. In Section III A, we develop a novel continuum approach for smooth doubly-

periodic electrostatics problems based on the DtN map. We then present our variant of

Ewald splitting in Section III B that maps a nonsmooth problem into a smooth one. In

Section IV, we present our main contribution: a continuum approach to doubly-periodic

electrostatics for slabs that combines a restricted image construction, Ewald splitting, the

1 The use of the DtN map is not new; see, for example, Eqs. (17,18) in [4] or the FMM-based algorithm in

[3], but our use of it within the SE framework appears not to have been explored.
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DtN-based doubly-periodic solver, and a correction approach for coarse-graining images

that are sufficiently far away from the slab. In Section V, we present a discretization of

the continuum formulation using FFTs in the xy plane and Chebyshev polynomials in the

z direction, which we implement in a public-domain code running on Graphical Processing

Units (GPUs). In Section VI, we validate the accuracy of our method by comparing to

reference analytical and numerical results, and in Section VII we combine our electrostatic

solver with Brownian Dynamics to study binary electrolyte solutions in slit channels with

either uncharged (Section VII B) or charged walls (Section VII C). By comparing our results

to reference Monte Carlo results from the literature and analytical solutions, we validate

our method and establish the importance of polarization effects that come from jumps in

dielectric permittivity. We conclude with a summary and a discussion of future directions

in Section VIII.

II. PROBLEM STATEMENT

We consider solving an electrostatics problem for a collection of N Gaussian charges with

strengths qk and positions zk. The domain geometry is that of a slit channel: periodic in

the x and y directions on [0, Lx] and [0, Ly], respectively, and unbounded in z. We will

also assume that the charges are contained within a finite region z ∈ (0, H), and that there

are fixed surface charge densities σb/t(x, y) on the bottom and top boundaries of this region

(z = 0 and z = H). These assumptions give the electrostatic equation for the potential

φ(x = (x, y, z)),

−∇ · (ε̃∇φ) = ρ, where (1)

ρ(x) = ρ(x, y, z) =
N∑
k=1

qkg (‖x− zk‖) + σb(x, y)δ(z) + σt(x, y)δ(z −H), (2)

on (x, y) ∈ [0, Lx]× [0, Ly] with z unbounded. We assume that each charge has a Gaussian

charge density

g(r) =
1

(2πg2w)3/2
exp

(
− r2

2g2w

)
, (3)

with standard deviation gw related to the physical size of the charges, with gw → 0 corre-

sponding to point charges. In (1), the potential φ is only unique up to a constant, and so
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we set

φ(0) = 0. (4)

Our goal is to solve (1) for a slab with piecewise constant dielectric permittivity in the z

direction,

ε̃(x) = ε̃(z) =


εb z < 0

ε 0 < z < H

εt z > H

(5)

Substituting this into the electrostatic equation (1), we obtain a Poisson equation for z ∈

(0, H),

ε∆φ(x) = −
N∑
k=1

qkg (‖x− zk‖) := −f(x) (6)

together with boundary conditions on the potential and electric displacement at z = 0 and

z = H,

φ(x, y, z → 0+) = φ(x, y, z → 0−) (7)

φ(x, y, z → H−) = φ(x, y, z → H+) (8)

ε
∂φ

∂z
(x, y, z → 0+)− εb

∂φ

∂z
(x, y, z → 0−) + σb(x, y) = 0, (9)

ε
∂φ

∂z
(x, y, z → H−)− εt

∂φ

∂z
(x, y, z → H+)− σt(x, y) = 0. (10)

We assume here that the domain is overall electroneutral (including the wall-bound charge

densities),
N∑
k=1

qk +

∫ Lx

0

∫ Ly

0

(σb(x, y) + σt(x, y)) dx dy = 0, (11)

and so the electric field ∇φ must decay to zero as z → ±∞. In (11), we have assumed that

each Gaussian charge density (3) is fully contained inside the slab, so that it integrates to

unity on [0, H]. Of course, this is not possible exactly since a Gaussian is not compactly

supported. To address this, we truncate the Gaussian at a finite distance nσgw ≥ 4gw, so

that the three-dimensional integral of each charge density is at least 99.9% of the charge

q. For the Gaussian to be fully contained inside the slab, we assume that the truncated
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Gaussian envelopes do not overlap the dielectric boundaries, zk ∈ [nσgw, H − nσgw].

For MCMC simulations, we need to compute the electrostatic energy

U =
1

2

∫ Lx

0

∫ Ly

0

∫ ∞
−∞

φ(x, y, z)ρ(x, y, z) dz dy dx. (12)

Substituting the expression (2) for the charge density ρ, we obtain the energy

U =
1

2

N∑
k=1

qkφ(zk) +
1

2

∫ Ly

0

∫ Lx

0

(σ(x, y, 0)φ(x, y, 0) + σ(x, y,H)φ(x, y,H)) dx dy, (13)

where φ(z) =

∫
x

φ(x)g (‖x− z‖) dx (14)

is the convolution of the pointwise potential φ(x) with a Gaussian of width gw. This means

that the energy (13) is the sum of the average potential at the center of each charge plus

the energy due to the surface charge densities σb/t.

The electrostatic forces F k = −∂U/∂zk can now be determined in a straightforward way

from the energy (13). The pointwise electric field can be determined from the pointwise

potential by

E = −∇φ, (15)

and the average electric field is the convolution

E(z) =

∫
x

E(x)g (‖x− z‖) dx. (16)

The force on each charge is given by

F k = − ∂U
∂zk

= qkE(zk). (17)

Our goal will be to compute U(z) and F (z) to high accuracy in (log) linear time in the

number of charges N .

III. SOLVER COMPONENTS

In this section, we build on prior work to introduce solvers for two simplified problems:

the Poisson equation (6) for smooth charge density f and jump BCs (7)−(10), and a free
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space solver for point charges. In Section IV, we combine these two pieces to yield a solver

for (6)−(10) that remains efficient as gw → 0.

We begin by introducing a solution method for smooth doubly periodic problems, where

a grid-based solver can efficiently resolve the charge density f(x), as would be the case for

large gw. Our method in this case is to use superposition to split the problem into two

sub-problems: a Poisson equation over free space with uniform permittivity, and a harmonic

correction to account for the jump conditions. This solver is inefficient for (near) point

charges (small gw) because the number of grid points necessary to resolve f(x) becomes too

large. We address this in Section III B via Ewald splitting.

A. Smooth doubly periodic problems

Let us suppose first that the distance between the charges is comparable to their width

gw. In this case, a grid-based method is an efficient way to solve (6) with the BCs (7)−(10).

While this can be done with a single solve, it will aid us in Section IV to split the potential

into two pieces,

φ = φ∗ + φ(c), (18)

and solve for each piece separately. The first of these, φ∗, is smooth and found by solving

the Poisson equation (6), but with free space BCs and a uniform permittivity ε (see III A 1).

The second piece, φ(c), is found by solving a Laplace equation for the correction potential

that satisfies the BCs (7)−(10) (see III A 2). This part of the solution is necessarily only

piecewise smooth, since it is built to satisfy jump BCs. Because each of the pieces accounts

for either the Gaussian or wall-bound charge densities (but not both), neither of them is

necessarily electroneutral, and we therefore conclude in Section III A 3 by constructing a

combined solution φ that gives a vanishing electric field as z → ±∞.
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1. First problem: Poisson solve in free space

For our first problem, we let φ∗ be defined everywhere as the solution of a Poisson equation

with uniform permittivity ε and no wall-bound charge densities,

ε∆φ∗(x) = −
M∑
k=1

qkg (‖x− zk‖) . (19)

We take free space boundary conditions in z, so that ∂φ/∂z(z → ±∞) → 0, and periodic

boundary conditions in x and y on [0, Lx] × [0, Ly]. For the moment we have no recourse

to a grid-based solver, since the z domain is unbounded. But since f is a sum of charge

densities concentrated on (0, H), the Poisson equation (19) is actually a Laplace equation

in the exterior,

ε∆φ∗ = 0 on z < 0 and z > H. (20)

This Laplace equation can be solved analytically by taking a Fourier transform in x and y,

which we denote with a hat. Using wave numbers k‖ = (kx, ky) = (2πn/Lx, 2πm/Ly), with

m and n integers and k‖ =
∥∥k‖∥∥, we obtain

∂2φ̂∗(k‖, z)

∂z2
− k2‖φ̂∗(k‖, z) = 0, (21)

which has the analytical solution (ruling out growth at infinity)

φ̂∗(k‖, z ≤ 0) = C2e
k‖z and φ̂∗(k‖, z ≥ H) = C1e

−k‖z, (22)

where C1 and C2 are unknown constants.

The form of the solution (22) implies the boundary conditions

∂φ̂∗(k‖, z → 0−)

∂z
− k‖φ̂∗(k‖, z → 0−) = 0,

∂φ̂∗(k‖, z → H+)

∂z
+ k‖φ̂

∗(k‖, z → H+) = 0.

(23)

Since φ∗ and ∂φ∗/∂z are continuous everywhere, including at z = 0 and z = H, the boundary

conditions (23) must hold for the solution φ̂ on [0, H] as well. These equations are the

Dirichlet to Neumann map for a doubly-periodic domain [3, 4], and they give us a two point
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boundary value problem (BVP) on [0, H] for each Fourier mode,

ε

(
∂2φ̂∗(k‖, z)

∂z2
− k2‖φ̂∗(k‖, z)

)
= −f̂(k‖, z), z ∈ [0, H], (24)

∂φ̂∗(k‖, 0)

∂z
− k‖φ̂∗(k‖, 0) = 0,

∂φ̂∗(k‖, H)

∂z
+ k‖φ̂

∗(k‖, H) = 0.

Appendix A describes the integral formulation we use to numerically solve this BVP in the

Chebyshev basis [16].

The solution for φ̂∗
(
k‖ = 0, z

)
is only well-defined when the integral of f(x) is zero.

Because this is not in general the case, we will not be able to complete the formulation

unless we consider both the charge densities f(x) and the surface charge densities σb/t

together, which we do in Section III A 3. For the moment, we consider the BVP for k‖ = 0,

ε
∂2φ̂∗(0, z)

∂z2
= −f̂(0, z), (25)

and define an initial solution which is only correct up to a linear mode,

φ̂∗(0, z) = −1

ε

(∫ z

z′=0

∫ z′

s=0

f̂(0, s) ds dz′

)
. (26)

The linear mode will be corrected in Section III A 3.

2. Second problem: harmonic correction

We now move to the second piece of the potential in the slab, the correction φ(c), the

purpose of which is to give the correct boundary conditions (7)−(10) for the total solution φ̂.

Because φ̂∗ already included the charge densities in a Poisson solve, the only charge densities

that remain are those on the walls. We therefore have the Laplace equation

∆φ(c) = 0 (27)
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on −∞ < z < 0, 0 < z < H, and H < z <∞, all with x and y periodic. For generality, we

assume that the boundary conditions are the jump conditions

φ(c)(x, y, z → 0+)− φ(c)(x, y, z → 0−) = −m(b)
φ (x, y), (28)

ε
∂φ(c)

∂z
(x, y, z → 0+)− εb

∂φ(c)

∂z
(x, y, z → 0−) = −m(b)

E (x, y), (29)

φ(c)(x, y, z → H−)− φ(c)(x, y, z → H+) = −m(t)
φ (x, y), (30)

ε
∂φ(c)

∂z
(x, y, z → H−)− εt

∂φ(c)

∂z
(x, y, z → H+) = −m(t)

E (x, y). (31)

Specifically, the values of mφ and mE that ensure the overall BCs (7)−(10) are satisfied

by φ = φ∗ + φ(c) are given by

m
(b)
φ = φ∗(x, y, z → 0+)− φ∗(x, y, z → 0−) = 0, (32)

m
(b)
E = ε

∂φ∗

∂z
(x, y, z → 0+)− εb

∂φ∗

∂z
(x, y, z → 0−) + σb(x, y) = (ε− εb)

∂φ∗

∂z
(x, y, 0) + σb(x, y),

(33)

m
(t)
φ = φ∗(x, y, z → H−)− φ∗(x, y, z → H+) = 0, (34)

m
(t)
E = ε

∂φ∗

∂z
(x, y, z → H−)− εt

∂φ∗

∂z
(x, y, z → H+)− σt(x, y) = (ε− εt)

∂φ∗

∂z
(x, y,H)− σt(x, y).

(35)

These particular expressions simplify because φ∗ is continuously differentiable across z = 0

and z = H, but in Section IV we will have nonzero mφ.

The solution method for the harmonic problem (27)−(31) is now straightforward. We

introduce smooth harmonic functions φ
(c)
i , φ

(c)
t , and φ

(c)
b , whose domain is all of R3, and set

φ(c) =


φ
(c)
i if z ∈ (0, H)

φ
(c)
t if z > H

φ
(c)
b if z < 0.

(36)
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After a Fourier transform in x and y, we obtain the solution analytically as

φ̂
(c)
i (k‖, z) =


Ai(k‖)e

k‖z +Bi(k‖)e
−k‖z k‖ > 0

Ai(0)z +Bi(0) k‖ = 0,

(37)

with solutions of the same form for φ̂b(k‖, z) and φ̂t(k‖, z), except that boundedness of φ̂

implies that At(k‖ 6= 0) = 0 and Bb(k‖ 6= 0) = 0. When k‖ 6= 0, the four coefficients

Ai/b
(
k‖
)
, Bi/t

(
k‖
)

can be determined in a straightforward way from the four boundary

conditions (28)−(31). The resulting solution in the slab interior is

φ̂i(k‖, z) =
(εt + 1)e−k‖z(m̂

(b)
E (k‖)− εbk‖m̂(b)

φ (k‖))

k‖(εb + 1)(εt + 1)− (εbεt + εb + εt − 1)e−2Hk‖
(38)

−
(εb + 1)ek‖(−H+z)(εtk‖m̂

(t)
φ (k‖) + m̂

(t)
E (k‖))

k‖(εb + 1)(εt + 1)− (εbεt + εb + εt − 1)e−2Hk‖

+
(εb − 1)e(−H−z)k‖(εtk‖m̂

(t)
φ (k‖) + m̂

(t)
E (k‖))

k‖(εb + 1)(εt + 1)− (εbεt + εb + εt − 1)e−2Hk‖

+
(εt − 1)

(
−ek‖(z−2H)

)
(m̂

(b)
E (k‖)− εbk‖m̂(b)

φ (k‖))

k‖(εb + 1)(εt + 1)− (εbεt + εb + εt − 1)e−2Hk‖

The solution for k‖ = 0 is only well-defined when φ̂∗ and φ̂(c) are added together, as we

explain next.

3. Electroneutrality and the k‖ = 0 mode

For the k‖ = 0 mode, φ̂∗(0, z) is defined as the double integral (26). We also have linear

modes for φ
(c)
i = Ai(0)z + Bi(0) and likewise for φ

(c)
b and φ

(c)
t . The total solution φ̂(0, z) =

φ̂∗(0, z)+ φ̂(c)(0, z) must satisfy the slab BCs (7)−(10). Substituting the representation (37)

for φ̂(c) into the slab BCs and using (4), we obtain equations for the unknown coefficients in
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terms of the double integral φ̂∗(0, z),

φ̂∗(0, 0) +Bi(0) = Bb(0) = 0, (39)

Ai(0)H +Bi(0) + φ̂∗(0, H) = At(0)H +Bt(0), (40)

ε

(
∂φ̂∗

∂z
(0, 0) + Ai(0)

)
− εb

(
∂φ̂∗

∂z
(0, 0) + Ab(0)

)
+ σ̂b(0) = 0, (41)

ε

(
∂φ̂∗

∂z
(0, H) + Ai(0)

)
− εt

(
∂φ̂∗

∂z
(0, H) + At(0)

)
− σ̂t(0) = 0. (42)

There are two more equations relating to the decay of the electric field at z → ±∞. On

z < 0 and z > H, the electric field must decay to zero, which implies that the growth from

φ
(c)
b and φ

(c)
t must cancel that due to φ̂∗ on z ≤ 0 and z ≥ H,

Ab(0) = −∂φ̂
∗

∂z
(0, z ≤ 0) At(0) = −∂φ̂

∗

∂z
(0, z ≥ H). (43)

Substituting this into (41)−(42), we obtain two solutions for Ai(0), which are equivalent for

electroneutral slabs,

Ai(0) = − σ̂b(0)

ε
− ∂φ̂∗

∂z
(0, z = 0) (44)

=
σ̂t(0)

ε
− ∂φ̂∗

∂z
(0, z = H). (45)

The equivalence can be seen by applying the divergence theorem to the Poisson equation

(19), and then replacing the surface integrals with zero-Fourier modes to obtain

∂φ̂∗

∂z
(0, z = H)− ∂φ̂∗

∂z
(0, z = 0) = −1

ε

N∑
k=1

qk. (46)

Substituting this into the electroneutrality condition (11) yields (44)=(45). The values of

Bi(0), Bb(0), and Bt(0) are determined from (39) and (40).
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B. Ewald splitting

Accurately computing the potential using the method of Section III A for a collection of

Gaussian charges requires a grid spacing h ∼ gw. If gw is comparable to the distance between

charges, then this method is sufficient to solve the problem. But as gw → 0 (e.g., the case

of point charges), the method becomes woefully inefficient as the grid size is dictated by the

size of the charges and not the spacing between them.

In this section, we address this problem by Ewald splitting [6, 7]. The idea of Ewald

splitting or Ewald summation is to smear the charges to the extent that they can be resolved

on a grid of reasonable size, and then correct for this smearing through an analytical near-

field correction. Here we present an Ewald splitting algorithm without dielectric jumps or

periodicity [6, 7]. We then specialize to the doubly-periodic case with dielectric interfaces

in Section IV.

As discussed in the introduction, previous presentations of SE methods [5, 6, 14] view

Ewald splitting as an algebraic construction for the fast calculation of electrostatic sums.

The sums are split into two pieces, with the near-field sums computed by summing over

neighboring points, and the far-field sums computed using non-uniform FFT methods [17].

In the approach of [6], this leads to two separate Gaussian kernels: one for the algebraic

splitting, and one in the NUFFT method for spreading and interpolating to/from the FFT

grid. This is advantageous in triply periodic domains, since the NUFFT-based approach

allows for the use of any NUFFT method [5, 17], including recent methods based on non-

Gaussian kernels [18]. Extending this NUFFT-based approach to systems with mixed pe-

riodicity requires either expensive oversampling [14] or (non-analytic) function extension in

the aperiodic directions [5].

Since we instead view Ewald splitting as a smearing of charges to allow for a grid-based

method, the only Gaussian kernel we use is the one in the smearing step, and this same

kernel is used both in the Ewald splitting and in the communication between particles

and the grid-based solver (spreading and interpolation). For triply periodic domains, this

gives an approach similar to that of [6].2 However, the smearing approach we take here

straightforwardly generalizes to systems with mixed periodicity because our far-field Ewald

sum only requires a method to solve a smooth Poisson equation in the domain of interest.

2 Specifically, our approach for triply periodic domains is equivalent to the SE method of [6] with the

parameter η fixed to η = 1.
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That said, the DtN approach that we use here to solve the Poisson equation in 2D periodic

systems does not efficiently extend to 1D periodic systems (e.g., a square channel) or 0D

periodic systems (e.g., a cubic chamber) because the DtN map is nontrivial to compute (e.g.,

it is in general nonlocal).

Beginning with the Poisson equation (6), posed in all of R3, we add and subtract a

convolution (denoted by ?) with a “screening” or “splitting” function γ. We will do the

splitting symmetrically by writing

φ = γ1/2 ? ψ︸ ︷︷ ︸
φ(f)

+
(
φ− γ1/2 ? ψ

)︸ ︷︷ ︸
φ(n)

, (47)

where ε∆ψ(x) = −
(
f ? γ1/2

)
(x). (48)

The first term φ(f) in (47) is the “far field” and is the potential due to smeared versions of

the original charges. We smear the Gaussian charge densities (3) using a radially symmetric

Gaussian kernel with standard deviation 1/(2ξ) [6],

γ1/2(r; ξ) =
8ξ3

(2π)3/2
e−2r

2ξ2 , (49)

where the “splitting parameter” ξ is an arbitrary positive real number that is chosen to

optimize speed (see Section VII D).

Although the far field potential defined in (47) is the convolution of γ1/2 with ψ, we recall

that we seek the potential averaged over the Gaussian cloud g, so that our real goal is to

obtain

φ
(f)

= g ? φ(f) =
(
g ? γ1/2

)
? ψ. (50)

The kernel S := g ? γ1/2 is a convolution of two Gaussians, one with standard deviation gw

and the other with standard deviation 1/(2ξ),

S(r; gw, ξ) = g ? γ1/2 =
1√

8π3g6t
exp

(
− r2

2g2t

)
, (51)

where gt =

√
1

4ξ2
+ g2w , (52)
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that is, S is a Gaussian with standard deviation gt. We can now write the average far field

potential φ(f) =S ? ψ in the symmetric form

φ(f)(x) = −1

ε
S ?∆−1

(
N∑
k=1

qkS (‖x− zk‖)

)
. (53)

Here ψ(x) can be computed on a grid with spacing h ∼ gt using any grid-based solver, for

example an FFT-based solver for triply periodic domains.

The remaining term φ(n) in (47) is the “near field.” Since the Laplacian commutes with

the convolution, we use (48) to write a Poisson equation for the near field

ε∆φ(n) = −f + γ1/2 ?
(
f ? γ1/2

)
= −f ? (1− γ). (54)

The “near field” charge density f ? (1− γ) for a single charge is sharply peaked, has negative

tails, and integrates to zero in three dimensions. Thus the field it creates decays rapidly

(exponentially) in real space, and can be computed analytically using Fourier integrals. For

this, we recall that the charge density f for a single charge is proportional to the Gaussian

g(r) defined in (3), with Fourier transform

ĝ(k) = exp

(
−1

2
g2wk

2

)
. (55)

We obtain a near field interaction kernel G(n) by setting f = g in (54) and solving the

resulting algebraic equation in Fourier space,

Ĝ(n)(k; gw, ξ) =
(1− γ̂) ĝ(k)

εk2
, where (56)

γ̂(k; ξ) = exp
(
−k2/4ξ2

)
. (57)

The near field interaction kernel in real space can now be obtained by a radially-symmetric

inverse Fourier transform of (56),

G(n)(r; gw, ξ) =
1

2π2r

∫ ∞
0

(1− γ̂(k)) ĝ(k)

εk2
k sin (kr) dk

=
1

4πεr

(
erf

(
r√
2gw

)
− erf

(
r√

2g2w + ξ−2

))
. (58)
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In the limit as ξ → 0 and gw → 0, we recover the equation for the potential of a point charge

in free space, 1/(4πεr), while in the limit gw → 0 with ξ fixed, we obtain the near field

interaction kernel for point charges [7]. Because the near field interaction kernel (58) decays

exponentially, it can be truncated to zero for r > rnf, where rnf ∼ gt (see Section V C 2).

The near field kernel (58) will give the pointwise near field potential at any point in space

via

φ(n)(x) =
N∑
k=1

qkG
(n)(‖x− zk‖ ; gw, ξ) (59)

The average near field potential φ
(n)

= g ? φ(n) is given by

φ
(n)

(x) =
N∑
k=1

qkG
(n)

(‖x− zk‖ ; gw, ξ) (60)

where the average near field interaction kernel, G
(n)

= g ? G(n). This convolution can be

computed analytically, since Ĝ
(n)

= ĝĜ(n), to give

G
(n)

(r; gw, ξ) =
1

4πεr

(
erf

(
r

2gw

)
− erf

(
r√

4g2w + ξ−2

))
= G(n)(r; gw

√
2, ξ). (61)

In a similar way to the potential field, we define the pointwise near field electric field by

E(n)(x; gw, ξ) = −
N∑
k=1

qk
∂G(n)(‖rk‖ ; gw, ξ)

∂r
r̂k, (62)

where rk = x − zk and r̂k = rk/ ‖rk‖. The averaged near field electric field is given by

convolving (62) with g, or, equivalently, by differentiating the average near field Green’s

function (61),

E
(n)

(x; gw, ξ) = −
N∑
k=1

qk
∂G

(n)
(‖rk‖ ; gw, ξ)

∂r
r̂k. (63)

To avoid cancellation of digits, for small r values (r < 10−3gw in double precision) we use

the Taylor series for G
(n)

in (63).
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IV. EWALD SPLITTING FOR SLABS

In this section we develop a solver for point-like charges in a slab geometry. The first

step is to define the solution using images rather than boundary conditions at the slab

walls. For a single dielectric boundary, reflecting the charge locations across the boundary

and giving them modified strengths yields a set of image charges. The potential from these

images plus the original charges is then what we seek. We show in Section IV A that this

method of images can be applied to the near field and far field problems separately, with the

result that both fields satisfy the boundary conditions at the dielectric interface. Thus for

a single dielectric jump, we could make a set of images and solve the problem with uniform

permittivity using Ewald splitting as described in Section III B.

The situation for multiple dielectric jumps is more complex because there are infinitely

many images. The novelty in our algorithm is its ability to handle the infinitely many

images in an efficient way. Beginning with the system of infinitely many images, we follow

the Ewald splitting method of Section III B to form a near field and far field problem with

the infinitely many image charges. In the near field problem, the interaction kernel (61)

decays exponentially in real space, and therefore in Section IV B we truncate it so that the

charges inside the slab only interact with their nearest images on either side of the slab.

In the far field problem, the smearing of the charges and images allows for the use of a

grid-based solver, and in Section IV C we evoke the components developed in Section III A to

split the far field problem (48) into two solves. In the first solve, described in Section IV C 2,

we construct an initial solution ψ∗ for the potential inside and outside the slab. We include

in this initial solve a requisite number of images so that the remaining field ψ(c) = ψ−ψ∗ is

harmonic and can be determined analytically in (k‖, z) space as described in Section IV C 3.

As in Section III A, the k‖ = 0 mode is only well-defined for the total potential ψ = ψ∗+ψ(c),

and so we consider it at the end in Section IV C 4.

A. Image construction

We begin by reviewing the classical image construction for point charges near a single

dielectric interface at z = 0, where for z > 0 the permittivity is ε and for z < 0 the

permittivity is εb. Let a charge of strength q be centered at (x, y, z > 0). Then the potential
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and electric field for z > 0 are as if the medium had uniform permittivity ε and contained

the original charge along with an image charge of strength

q∗ = −q εb − ε
εb + ε

, (64)

positioned at (x, y,−z). For z < 0, the potential and electric field are again as if the medium

had uniform permittivity ε and contained a single charge positioned at (x, y, z), with strength

q∗∗ = q
2ε

εb + ε
. (65)

This image construction ensures that the pointwise potential φ and the normal component

of the electric displacement εE are continuous at the wall, i.e., that the boundary conditions

(7) and (9) are satisfied with σb = 0.

The same image construction can be used when the charges are spherically-symmetric

clouds instead of points. To show this, let G(r) be the function that gives the pointwise

potential a distance r from the center of the charge. We assume that the charge is centered

at height ∆z above the interface. Let (x, y, 0) be any point on the xy plane, and let r be the

distance from the center of the charge to that point. Then, using the image construction,

the potential at z = 0 from z < 0 is given by (using (65))

φ(z → 0−) =
2ε

εb + ε
G(r), (66)

while using (64) for the potential on z > 0 we get

φ(z → 0+) = G(r)− εb − ε
εb + ε

G(r) = φ(z → 0−). (67)

The electric displacement calculation is similar. From (65), we have

εb
∂φ

∂z
(z → 0−) =

2εεb
εb + ε

∂G

∂r
(r)

∆z

r
, (68)

while using (64) we obtain

ε
∂φ

∂z
(z → 0+) = ε

∂G

∂r
(r)

(
∆z

r
−
(
εb − ε
εb + ε

)
(−∆z)

r

)
= εb

∂φ

∂z
(z → 0−), (69)
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which confirms that the potential and electric displacement are continuous across the in-

terface. Since the form of the kernel G(r) does not matter, this implies that the classical

image construction applies to any isotropic charge clouds (in particular, Gaussian clouds),

even ones that overlap the interface.

B. Near field in the slab geometry

For the doubly periodic slab geometry, the rapid decay of the near field kernel can be used

to simplify the number of required images in the near field problem. Let us consider first

the case of a single wall to simplify the argument. Recall that rnf is the distance at which

the near field kernel is truncated. Then in order for the near field pointwise potential φ(n)

to satisfy the boundary conditions at the wall, we must include all images that are centered

rnf or closer to the wall.

The case of the slab is similar. In order for the near field pointwise potential φ(n) to satisfy

boundary conditions at a wall, we only need to include the images (with respect to that wall)

that are rnf or closer to it. Suppose that we want to limit the near field computation to

the first set of images above/below each wall (we analyze the implications of this choice in

Section V C 2). Then, as shown in Fig. 1, the key requirement is that images below the

bottom wall cannot affect the top wall. Now let h be the minimum distance between the

bottom wall of the slab and the center of any charge. Then the closest an image can be to

the bottom wall is h, and we have the requirement that rnf < H + h for only the first set

of images below z < 0 to be included in the near field sum. Similar considerations apply to

the images above z > H and the bottom wall. We also ensure that rnf < min (Lx/2, Ly/2)

so that we can apply the nearest image convention in the near field.

Including only the first set of images is equivalent to treating the problem as two single

walls, rather than as a full slab geometry. The slab geometry only enters the near field

when we include more than the first image. By considering a picture similar to Fig. 1, it

can be shown that restricting the number of near field images to nimg gives the requirement

rnf < nimgH + h. However, we will show in Section V C that far-field constraints on the

Ewald parameter ξ give an algorithm for which rnf < H + h automatically, and so we will

set nimg = 1.
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Figure 1: Images of the original charges in the slab (blue circles) in the near field problem.
If we want the jump BCs (7)−(10) to be satisfied with σt = σb = 0 and only one set of images
above/below the slab, then the near field created by the images below z = 0 (filled red circles)
cannot extend above z ≥ H, and similarly for the images above z > H (empty red circles)
and the bottom wall.

C. Far field in the slab geometry

We are now ready to tackle the far field problem. For the dielectric slab, we need to

solve the far field Poisson equation (48) with periodicity in the x and y directions and slab

boundary conditions (7)−(10). To do this, we define ψ piecewise by

ψ(x, y, z) =


ψi(x, y, z) 0 ≤ z ≤ H

ψb(x, y, z) z < 0

ψt(x, y, z) z > H

, (70)

where ψi, ψb, and ψt are smooth fields defined for all z ∈ R.3 Specifically, the potentials

ψb and ψt are due to the far-field charges and their (infinitely many) images above z = H

and below z = 0, respectively. Using f̃ := f ∗ γ1/2 to denote the charge density from the

(smeared) far-field charges, f̃
(img)
z>H to denote the density from the smeared images centered

above the top wall, and f̃
(img)
z<0 to denote the density from the smeared images centered below

3 Note that ψi/t/b are analytic (and thus C∞), but ψ itself is not. Since we numerically only solve for

ψi/t/b and not for ψ itself, our approach still gives spectral accuracy despite the lack of smoothness at the

dielectric boundaries.
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the bottom wall, the potentials ψb and ψt satisfy the Poisson equations

ε∆ψb = − 2ε

εb + ε

(
f̃ + f̃

(img)
z>H

)
, (71)

ε∆ψt = − 2ε

εt + ε

(
f̃ + f̃

(img)
z<0

)
, (72)

with periodic BCs in the x and y directions and free space BCs in the z direction (i.e., no

dielectric boundaries and decay of the potential as z → ±∞).

The interior potential ψi satisfies the Poisson equation

ε∆ψi = −
(
f̃ + f̃ (img)

)
, (73)

with periodicity in the x and y directions. Here f̃ (img) = f̃
(img)
z>H + f̃

(img)
z<0 is the charge density

due to the (infinite number of) images above and below the slab. Note that the strength of

these images decays to zero as z → ∞, so the Poisson equations (71)−(73) are well-posed.

If we use free space boundary conditions in the z direction for (73), then we know that ψ as

defined in (70) will satisfy the jump BCs (7)−(10) with σb = σt = 0 (i.e., with no wall-bound

charge).

Assuming that the densities σb/t are smooth enough to be resolved by the grid used for

the far field solve, it makes sense to include the potential from the wall-bound densities,

which we denote by φ(c), as part of the far field potential φ(f). On the slab interior, we

define the far field potential as

φ(f) := γ1/2 ∗ ψi + φ
(c)
i , (74)

where φ
(c)
i is the harmonic potential defined in (36) and (37) with mφ = 0 and mE = ±σb/t.

Because φ
(c)
i is harmonic, by the generalized mean value theorem it is indistinguishable

from its convolution with the radially-symmetric kernel γ1/2. This means that the far field

potential can be rewritten as

φ(f) = γ1/2 ∗
(
ψi + φ

(c)
i

)
, and φ

(f)
=S ∗

(
ψi + φ

(c)
i

)
. (75)

For convenience of notation, we redefine ψi to refer to the combined potential ψi +ψ
(c)
i from
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the smeared charges and wall-bound densities. Using this definition, we obtain boundary

conditions for (73),

ψi(x, y, z = 0)− ψb(x, y, z = 0) = 0, (76)

ε
∂ψi
∂z

(x, y, z = 0)− εb
∂ψb
∂z

(x, y, z = 0) = −σb(x, y), (77)

ψi(x, y, z = H)− ψt(x, y, z = H) = 0, (78)

ε
∂ψi
∂z

(x, y, z = H)− εt
∂ψt
∂z

(x, y, z = H) = σt(x, y). (79)

1. Potential and charge splitting

While the Poisson equations (71)−(73) are periodic in x and y and unbounded in z, we

cannot directly apply the techniques of Section III A to solve them because the image charge

densities in (71)−(73) are unbounded in the z direction. To work around this, we split each

potential

ψi/t/b = ψ∗i/t/b + ψ
(c)
i/t/b (80)

into the potential due to a finite number of images close to the slab (denoted with ∗ and

obtained by the techniques of Section III A 1), and the harmonic potential due to the rest

of the (infinitely many) images (denoted with (c) and obtained using the method of Section

III A 2). A conceptual picture of our far field solver is depicted in Fig. 2.

To more precisely quantify the domain where we need to evaluate ψi, we define the

truncation radius of the smeared (far-field) Gaussian charges as HE, where typically HE >

4gt. If the charge centers are contained on z ∈ [0, H], then we need to compute ψi for

z ∈ [−HE, H +HE] so that we can average it with the kernel S to obtain ψi = S ? ψi. Thus

our goal is to obtain ψi for at least z ∈ [−HE, H +HE] (gray region in Fig. 2).

We first split the smeared charge density f̃ into a piece f̃>2HE
coming from charges

centered at least 2HE from the slab boundaries (i.e., charges with centers in z ∈ [2HE, H −

2HE], denoted by C>2HE
and shown with green circles in Fig. 2), and a piece f̃<2HE

coming

from charges centered a distance 2HE or less from the slab boundaries (denoted C<2HE
and

shown with blue circles in Fig. 2),

f̃ = f̃>2HE
+ f̃<2HE

. (81)
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+ +
Figure 2: Far field algorithm. We split the charges and images into four groups: blue

charges = C<2HE
, green charges = C>2HE

, filled red images = C
(img)
<2HE

, dashed red circles

= C
(img)
>2HE

; the group C
(img)
>2HE

contains infinitely many images, not all of which are shown.
Circles denote the support of the smeared far-field charges, solid black lines denote the
dielectric interfaces, solid arrows denote a region of size 2HE (the diameter of the far-field
charge support), and dotted arrows denote a region of size 3HE (the amount we must
extend the domain to enclose the solid circles). Beginning in the left column, we first
obtain an initial guess for the solution inside the slab, ψ∗i , using the charges (solid blue
and solid green) and images (solid red) whose support overlaps the gray region from which
we interpolate, z ∈ [−HE, H + HE]. In the right column, we obtain an initial guess for
the solution outside the slab, ψ∗o , using the charges (solid blue) that are centered 2HE or
closer to either wall. Both Poisson problems (for ψ∗i and ψ∗o) are solved on a doubly periodic
domain with z ∈ [−3HE, H + 3HE] using the method of Section III A 1. The rest of the
charges and images (dashed circles) can be coarse-grained into a harmonic correction solve

for ψ
(c)
i and ψ

(c)
t/b.

The splitting on the set of images f̃ (img) = f̃
(img)
>2HE

+ f̃ img
<2HE

is exactly the same, with f̃<2HE

representing the first set of images of C<2HE
, denoted by C

(img)
<2HE

and shown with solid red

circles in Fig. 2, and f̃>2HE
representing the rest of the images (including higher-order images

of C<2HE
), denoted by C

(img)
>2HE

and shown with dashed red circles in Fig. 2.
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Using this splitting, the Poisson equation (73) for the interior solution can be written as

ε∆ψi = −
(
f̃<2HE

+ f̃>2HE
+ f̃

(img)
<2HE

+ f̃
(img)
>2HE

)
, (82)

with the boundary conditions (76)−(79). In Fig. 2, we show (some of) the infinite number of

images that make up the density f̃
(img)
>2HE

as dashed red circles. We see that all of these images

are centered at least 2HE from the slab (i.e., in the region z ∈ (∞,−2HE) ∪ (H + 2HE,∞)

that is outside of the dashed lines in Fig. 2), and are therefore compactly supported outside

of the gray region z ∈ [−HE, H +HE], on which we need to compute ψi.

2. Intermediate potentials

We define the intermediate potential ψ∗i as the potential from all charges inside the slab,

together with the (finite number of) images C
(img)
<2HE

whose support penetrates the region

z ∈ [−HE, H + HE]. This is the potential due to the solid circles in the left column of Fig.

2 and is given by

ε∆ψ∗i = −
(
f̃>2HE

+ f̃<2HE
+ f̃

(img)
<2HE

)
, (83)

with periodicity in the x and y directions and free space BCs in the z direction. This Poisson

equation can be solved using the method of Section III A 1, except that the domain in the

z direction has to be modified. Because we include images centered 2HE or closer to either

wall, and because all smeared far-field charges have a support of HE in every direction, the

right hand side (r.h.s.) of (83) is supported on z ∈ [−3HE, H + 3HE]. Since all images

with support overlapping the region z ∈ [−HE, H +HE] are included in (83), the difference

ψ
(c)
i = ψi − ψ∗i must be harmonic for z ∈ [−HE, H +HE].

Similarly, we construct solutions for ψb and ψt by using the splitting (80) to decompose

each field into the potential from a finite number of charges/images and a harmonic correc-

tion. In order to solve the correction problems analytically, we require that the correction

ψ
(c)
b be harmonic on (−∞, 0], and that the correction ψ

(c)
t be harmonic on [H,∞). This

means that the intermediate potential ψ∗b must include any charges whose support extends

below z = 0 (those centered HE or closer to the bottom wall, like the bottom-most blue

charge in the right column of Fig. 2), and the intermediate potential ψ∗t must include any
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charges whose support extends above z = H (those centered HE or closer to the top wall).

To minimize the number of doubly-periodic Poisson solves, we combine these charges into

an intermediate potential ψ∗o which includes any charges C<2HE
centered within 2HE of the

top and bottom boundaries (blue charges in the right column of Fig. 2),

ε∆ψ∗o = f̃<2HE
. (84)

This Poisson equation can again be solved using the method of Section III A 1. Since all

of the charges included are centered within the slab and have support HE in all directions,

we could use the domain z ∈ [−HE, H + HE]. The algorithm is simpler and more efficient,

however, if we use the same domain and grid as the Poisson solve (83), z ∈ [−3HE, H+3HE].

If we assign the charges C<2HE
the proper image strength (depending on whether we seek the

solution above or below the slab), we obtain the representation of the intermediate potentials

ψ∗b =
2ε

εb + ε
ψ∗o , (85)

ψ∗t =
2ε

εt + ε
ψ∗o . (86)

3. Correction potentials

In our initial solve (83) for ψ∗i , we did not include the images C
(img)
>2HE

, which are shown as

dashed red circles in Fig. 2. Subtracting (83) from the original equation (82) for ψi, we get

a Poisson equation for the correction ψ
(c)
i = ψi − ψ∗i which involves these images,

ε∆ψ
(c)
i = −f̃ (img)

>2HE
. (87)

Since f̃
(img)
>2HE

is compactly supported outside of z ∈ [−HE, H+HE] (no overlap of the dashed

empty circles with the gray region in Fig. 2), we have the harmonic problem for the interior

correction

ε∆ψ
(c)
i = 0 for z ∈ [−HE, H +HE]. (88)

For the exterior corrections, the splitting of the r.h.s. f̃ in (81) and definition of ψb in
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(71) imply that the correction ψ
(c)
b solves the Poisson equation

ε∆ψ
(c)
b = − 2ε

εb + ε

(
f̃>2HE

+ f̃
(img)
z>H

)
. (89)

Since the r.h.s. of (89), which comprises the dashed open circles positioned above z = 0

in the right column of Fig. 2, is compactly supported far away from the bottom wall (all

charges and images are centered at least 2HE from the bottom wall), we obtain the Laplace

equation

ε∆ψ
(c)
b = 0 on (−∞, 0]. (90)

The procedure for ψ
(c)
t is identical. We observe that the empty charges and images positioned

below z = H in the right column of Fig. 2 are far from the top wall of the slab. The correction

field that they generate is therefore harmonic above z = H,

ε∆ψ
(c)
t = 0 on [H,∞). (91)

We now have the three Laplace equations (88), (90), and (91) (on different domains) for

ψ
(c)
i , ψ

(c)
b , and ψ

(c)
t , just as in Section III A 2.

The final step is to impose boundary conditions for the correction solve such that the total

fields ψi, ψo, and ψt satisfy the boundary conditions (76)−(79). If we use the mismatches

m
(b)
φ (x, y) = ψ∗i (x, y, z = 0)− ψ∗b (x, y, z = 0), (92)

m
(b)
E (x, y) = ε

∂ψ∗i
∂z

(x, y, z = 0)− εb
∂ψ∗b
∂z

(x, y, z = 0) + σb(x, y), (93)

m
(t)
φ (x, y) = ψ∗i (x, y, z = H)− ψ∗t (x, y, z = H), (94)

m
(t)
E (x, y) = ε

∂ψ∗i
∂z

(x, y, z = H)− εt
∂ψ∗t
∂z

(x, y, z = H)− σt(x, y), (95)

as boundary conditions for the harmonic solve described in Section III A 2, we obtain ψ
(c)
i

on [−HE, H + HE] and, if desired, ψ
(c)
t on z > H and ψ

(c)
b on z < 0, for all modes except

k‖ = 0. We could combine the corrections ψ
(c)
i/t/b with the intermediate potentials ψ∗i/t/b to

obtain ψ everywhere, although we only need ψi on [−HE, H + HE] to evaluate the energy

and forces on the charges. In any case, the k‖ = 0 mode must be handled separately as

discussed in the next section.
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4. Corrections for k‖ = 0

In a natural extension of the method presented in Section III A 3, we obtain the solution

for k‖ = 0 by considering the total solutions ψi/t/b = ψ∗i/t/b + ψ
(c)
i/t/b, rather than considering

the intermediate and correction potentials separately. In xy Fourier space, we have the

solutions for the k‖ = 0 mode

ψ̂i(k‖ = 0, z) = ψ̂∗i (0, z) + Ai(0)z +Bi(0), (96)

ψ̂b(k‖ = 0, z) = ψ̂∗b (0, z) + Ab(0)z +Bb(0), (97)

ψ̂t(k‖ = 0, z) = ψ̂∗t (0, z) + At(0)z +Bt(0) (98)

By ψ̂∗i/t/b(0, z), we mean the k‖ = 0 components of the solutions of the Poisson equations

(83) and (84),

ψ̂∗i (0, z) = −1

ε

∫ z

−3HE

dz′
∫ z′

−3HE

dz′′
(̂̃
f<2HE

(0, z′′) +
̂̃
f>2HE

(0, z′′) +
̂̃
f
(img)

<2HE
(0, z′′)

)
, (99)

ψ̂∗o(0, z) = −1

ε

∫ z

−3HE

dz′
∫ z′

−3HE

dz′′
̂̃
f<2HE

(0, z′′). (100)

Equation (100) defines ψ̂∗o(0, z), from which ψ̂∗b (0, z) and ψ̂∗t (0, z) can be obtained by (85)

and (86). Note that the formulas (99) and (100) imply a set of boundary conditions for the

corresponding BVPs (83) and (84) for k‖ = 0; these BCs are arbitrary since ψ̂∗i/o(0, z) is only

defined up to a linear function.

Once the solutions ψ̂∗i/b/t(0, z) are obtained, we can solve for the coefficients Ab(0) and

At(0) by imposing the decay boundary condition for ψ̂b in (97) and ψ̂t in (98) to obtain

Ab(0) = −∂ψ̂
∗
b

∂z
(0, z = −3HE) , At(0) = −∂ψ̂

∗
t

∂z
(0, z = H + 3HE) . (101)

The electric displacement boundary conditions (77) and (79) now give Ai(0),

εAi(0) = εb

(
∂ψ̂∗b
∂z

(0, 0) + Ab(0)

)
− ε∂ψ̂

∗
i

∂z
(0, 0)− σ̂b(0) (102)

= εt

(
∂ψ̂∗t
∂z

(0, H) + At(0)

)
− ε∂ψ̂

∗
i

∂z
(0, H) + σ̂t(0). (103)
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For electroneutral slabs, the right hand sides of (102) and (103) must be the same in contin-

uum.4 Finally, as in Section III A 3, we have the continuity conditions (76) and (78) which

give

Bb(0) = ψ̂∗i (0, 0) +Bi(0)− ψ̂∗b (0, 0), (104)

Bt(0) = ψ̂∗i (0, H)− ψ̂∗t (0, H) + (Ai(0)− At(0))H +Bi(0). (105)

In Section V B 2, we describe how to obtain Bi(0) in real space according to (4). The values

of Bb(0) and Bt(0) then follow from (104) and (105).

V. NUMERICAL METHOD AND ALGORITHM

In this section, we discuss the implementation of the algorithm we described in Section IV.

Here we focus on getting 3−4 digits of accuracy, as this is more than sufficient for Brownian

dynamics simulations, but it is straightforward to achieve higher accuracies if desired. We

begin in Section V A with precomputations, in particular our initialization of the grid and

cutoff distances for near and far field truncation. We move on to main computations in

Section V B, where we first discuss our solver for general doubly-periodic problems and then

specialize to the Ewald splitting of Section IV. The number of images we include in the

near field and far field calculations have important implications for the allowed values of the

Ewald parameter ξ, as we explain in Section V C.

A. Cutoffs and grid spacing

The splitting parameter ξ determines the truncation distances for the near field kernel

and far-field charge width. Beginning with the near field, we will take the near field cutoff

distance rnf to be the minimum value such that (see (58) and (62))

∣∣∣∣∂G(n)(rnf; gw, ξ)/∂r

∂G(n)(rnf; gw, 0)/∂r

∣∣∣∣ < δ, (106)

4 This can be verified by writing out both sides in terms of the charge densities, substituting the solutions

(99)−(101), then using the identity
∫H

0
f̃
(img)
<2HE

dz = (ε − εb)/(εb + ε)
∫ 0

−3HE
f̃<2HE

dz for far-field images

that overlap the bottom wall. Using a similar identity for images overlapping the top wall and the

electroneutrality condition (11) then gives the equality (102)=(103).



30

where δ = 10−4 for ∼ 4 digits of accuracy and δ = 5 × 10−4 for ∼ 3 digits. Recall that

the average near field kernels (61) and (63) are averages of the pointwise near field kernels

over a Gaussian with support nσgw. As such, we truncate the kernels (61) and (63) for

r > rcut = rnf + nσgw.

We use a Fourier-Chebyshev grid to solve smooth doubly periodic problems following

the approach of Section III A. For the far field discretization, we use FFTs in the x and

y directions, so we take the (FFT-friendly) number of grid points Nx/y as an input, which

we combine with gw to calculate the total far-field charge width gt using (107) and splitting

parameter ξ using (52). We consider two different uniform grid spacings in x and y, with

hxy = gt/1.2 giving ∼ 3 digits of accuracy and hxy = gt/1.4 giving ∼ 4 digits. In the

examples studied here, hx = Lx/Nx = hy = Ly/Ny = hxy.

Although the Gaussian (51) is technically nonzero everywhere on the grid, we truncate

it at a finite number of grid cells ng for efficiency in spreading the charge density to the

far field grid (because the x and y grid is uniformly spaced, this assumption allows for the

possible optimization of fast Gaussian gridding [17] in the x and y directions). This gives

the total radius of the Gaussian spreading kernel as

HE =
ng
2
hxy = nσgt, (107)

where nσ is the (non-integer) number of standard deviations over which the Gaussian is

supported, and the radius of support of the Gaussian charge is HE. For ∼ 3 digits of

accuracy, we will use a Gaussian support ng = 10, which gives a Gaussian truncated at

nσ = 5/1.2 ≈ 4.2 standard deviations. For 4 digits, we take ng = 12 for nσ = 6/1.4 ≈ 4.3

standard deviations. Since our method is formally spectrally accurate prior to Gaussian

truncation, in principle, arbitrarily high accuracy (up to roundoff) can efficiently be achieved

by using larger Gaussian truncation widths and more grid cells in the support of the Gaussian

kernels.

Once the xy Fourier grid is chosen, the number of Chebyshev grid points for the z grid

can be chosen based on accuracy considerations. Specifically, we require the spacing at the

middle of the Chebyshev z grid (where it is the coarsest) to be comparable to that of the

Fourier xy grid. In a Chebyshev grid, the maximum spacing in the middle of the grid is

at most π/2 times the average spacing, so our Chebyshev grid requires about π/2 as many
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points as a uniform grid with the same maximum spacing. Specifically, if H is the total

height of the domain in a doubly periodic solve as described in Section III A, we set the

number of Chebyshev points to

Nz =

⌈
πH

2hxy

⌉
, (108)

where the integer rounding should be chosen for FFT optimality.5 Since the z (Chebyshev)

grid is irregularly spaced, fast Gaussian gridding is not an option, and we must simply assign

the kernel (51) a value of zero at any point farther than HE in the z direction from the charge

center. The fixed truncation distance implies that we must evaluate the kernel (51) at more

grid points near the domain boundaries, since the Chebyshev grid is finer there.

B. Algorithm

The far field solver described in Section IV C requires solving two doubly periodic Poisson

equations (83) and (84), and so we begin this section by describing an algorithm to solve

them using the method developed in Section III A 1. We then summarize the complete

algorithm for slabs. A GPU implementation of our algorithm is available freely at github,

see https://github.com/stochasticHydroTools/DPPoissonTests/ for instructions and

examples.

1. Boundary value solver

Our doubly periodic Poisson solver is based on transforming the charge density f into its

Fourier/Chebyshev representation on the grid, and consists of the following steps:

1. Compute the charge density f(x, y, z) on the Fourier-Chebyshev grid.

2. Take the 3D FFT of the charge density to obtain the Fourier and Cheyshev coefficients

on the grid. We refer to this as a fast Fourier-Chebyshev transform (FFCT). See [19,

c. 8] for a description of how to obtain Chebyshev coefficients using the FFT.

3. Use the Chebyshev boundary value solver [16] described in Appendix A to solve the

BVPs (24) for each wave number k‖ using a well-conditioned integral formulation.

5 The complex FFTs which we employ here to transform from values on the grid to Chebyshev coefficients

have 2Nz − 2 points in the z direction, so rounding should be such that 2Nz − 2 is favorable for the FFT.
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This gives the Fourier-Chebyshev coefficients of the potential φ. Note that this step

is trivially parallelizable since each mode k‖ is handled independently of others.

4. For the electric field, compute derivatives of φ on the grid by Fourier differentiation in

x and y (i.e., by multiplying φ̂ by ikx or iky), or differentiating the Chebyshev series

in z. This gives the Fourier-Chebyshev coefficients of ∇φ on the grid.

5. Perform a 3D inverse fast Fourier-Chebyshev transform (IFFCT) to obtain φ and

E = −∇φ on the (x, y, z) grid.

Note that if only energy or only forces are required then some of these steps can be skipped.

2. Ewald splitting for slabs

We now detail our Ewald splitting algorithm for computing φ and E at the centers zk

of all charges in the slab geometry. The near field algorithm is straightforward. From ξ,

we determine rnf by solving (106) and then, for each charge and dielectric boundary, we

construct one image and compute the sum (60) and/or (63) for each charge. This sum

includes only pairs of charges closer than rcut apart, and therefore the cost of the near field

algorithm is linear in the number of particles.

The far field algorithm is more complex and worth listing in steps, with a graphic repre-

sentation given in Fig. 2. Because image charges centered up to 2HE away from the slab can

be included in some of the solves and each smeared (far-field) charge has a support of HE

in all directions, we initialize a single second-kind Chebyshev grid on z ∈ [−3HE, H + 3HE]

and a Fourier grid on [0, Lx]× [0, Ly]. We then perform the steps:

1. Compute HE using (107). Then separate the charges into two groups: charges C<2HE

with z < 2HE or z > H−2HE (solid blue circles in Fig. 2), and the rest of the charges

C>2HE
(solid green circles in Fig. 2). Then compute the positions and strengths of the

necessary images C
(img)
<2HE

(solid red circles in Fig. 2) using (64).

2. Construct the intermediate potential ψ∗o outside the slab by solving the doubly periodic

problem (84) as described in Section III A for z ∈ [−3HE, H + 3HE]. Specifically,

first spread the charge qi for i ∈ C<2HE
onto the grid using the kernel S defined in

(51). Then apply steps 2− 4 in Section V B 1 to obtain ψ̂∗o on the Fourier-Chebyshev
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grid. For simplicity, use the BVP solver to also obtain the part of the k‖ = 0 mode

(100) by solving the corresponding BVP (84) for k‖ = 0 with homogeneous Dirichlet

BCs at z = −3HE and z = H + 3HE. The intermediate potentials ψ̂∗b and ψ̂∗t in

Fourier/Chebyshev space can trivially be obtained by multiplying ψ̂∗o by the coefficients

in (85) and (86).

3. Construct the intermediate potential ψ∗i by solving the doubly periodic problem (83)

for z ∈ [−3HE, H + 3HE]. To do this, spread the charges qi for i ∈ C>2HE
and images

qj for j ∈ C(img)
<2HE

to the grid and add the result to the spreading for C<2HE
already

computed in step 2. Then apply steps 2 − 4 in Section V B 1 to obtain ψ̂∗i on the

Fourier-Chebyshev grid. For simplicity, use the BVP solver to obtain the part of the

k‖ = 0 mode (99) by solving the corresponding k‖ = 0 BVP (83) with homogeneous

Dirichlet BCs at z = −3HE and z = H + 3HE.

4. Calculate the mismatches mφ(k‖ 6= 0) and mE(k‖ 6= 0) given in (92)−(95) using

Chebyshev differentiation in z. Use these mismatches as boundary conditions to obtain

the harmonic corrections ψ
(c)
i , ψ

(c)
b , and ψ

(c)
t analytically as outlined in Section III A 2.

Evaluate the solution for each k‖ and for each Chebyshev grid point zc with −HE ≤

zc ≤ H + HE, and set ψ
(c)
i (k‖, z) = 0 outside of this z range to avoid over/underflow

errors. Because of the ill-conditioning of the correction solve for large k‖, set ψ
(c)
i (k‖, z)

to zero for k‖ > kmax = π/hxy. Finally, perform NxNy independent 1D Chebyshev

transforms (FFTs) in z to obtain the Fourier-Chebyshev representation of ψ̂
(c)
i .6 Note

that this step can be trivially parallelized since each mode k‖ is handled independently.

5. To correct the k‖ = 0 mode, modify the solution for ψ∗i (k‖ = 0, z) already obtained in

step 4 by adding the linear mode Ai(0)z as discussed in Section IV C 4. In the discrete

setting, the equations for Ai(0), (102) and (103), give the same value for Ai(0) to only

about 3 relative digits, so set Ai(0) to be the mean result of the two.

6. Set the far field values in Fourier-Chebyshev space to ψ̂i = ψ̂∗i + ψ̂
(c)
i . Then perform a

3D IFFCT to obtain ψ̂i on the grid.

6 The transforms from z space to Chebyshev space are done so that ψ̂
(c)
i can be combined with ψ̂∗i directly

in Fourier-Chebyshev space, and then a single 3D IFFCT performed to obtain ψi. An alternative but less

efficient sequence is to transform ψ̂
(c)
i directly from Fourier-z space to real space via a (parallel) series of

2D IFFTs in the xy plane, then add to the result from a 3D IFFCT on ψ̂∗i .
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7. Interpolate (average) ψi at the charge centers using the kernelS given in (51) to obtain

the average far field potential φ
(f)

at the charge centers.

The calculation of the electric field follows a similar procedure. Since the potential on the

grid ψi = ψ∗i +ψ
(c)
i has two parts, we obtain the electric field inside the slab by differentiating

each. We first differentiate ψ∗i on the grid using Fourier multiplication and Chebyshev

differentiation. We then differentiate ψ
(c)
i analytically in z and with Fourier multiplication

for x and y. Adding these two pieces together gives −∇ψi, which we then interpolate

back onto the charges to obtain the average electric field E
(f)

on each charge. Note that

another way to obtain the electric field is to interpolate the potential ψi with the derivative

of the interpolation kernel S, but this enlarges the width of the interpolation kernel, thereby

requiring interpolation from more grid cells to obtain the same accuracy.

When the energy is needed in addition to the forces, we add a constant to φ (represented

by Bi(0)) to set the pointwise potential φ(0) = 0 and remove an arbitrary shift in the

energy. To do this, we sum the pointwise near field kernel at x = 0 using the kernel (59)

(with truncation at rnf and one set of images above and below the slab) to obtain φ(n)(0).

For the far field, we interpolate the potential ψi with the kernel γ1/2 at x = 0 to obtain the

pointwise far field potential φ(f)(0). We then set Bi(0) in (96) so that the total potential

φ(n)(0) + φ(f)(0) = 0.

C. Constraints on the splitting parameter

Our decision to include only the first set of images in the near field and far field problems

leads to restrictions on the Ewald parameter ξ. In both of these problems, we make the

assumption that images above the top wall cannot interact with points at or below the

bottom wall, and vice versa. This constrains the truncation distances rnf and HE, and

therefore ξ itself.

1. Relationship between ξ and gw

In order for there to be a reduction in the far field problem grid size significant enough

to justify Ewald splitting in the first place, the smearing (48) must increase the total width

of the Gaussian charge cloud by a substantial amount. Here we take substantial to mean
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that the smeared Gaussian width gt is at least twice as large as the original width gw, so

that gt ≥ 2gw. Using (52) to solve for ξ, we get the bound

gw
√

12 ≤ 1

ξ
⇔ ξ ≤ 1

gw
√

12
. (109)

2. Near field constraints

We recall the near field constraint that images above the slab cannot interact with the

bottom wall, rnf < nimgH + h, where h ≥ 4gw is the minimum distance between a charge

and one of the dielectric boundaries. This assumption gives a constraint on ξ as well. To

estimate the bound, we set rnf = α/ξ and use the upper bound on ξ from (109) to obtain

the equation

δ =

∣∣∣∣∣∂G(n)(α/ξ; 1/(
√

12ξ), ξ)/∂r

∂G(n)(α/ξ; 1/(
√

12ξ), 0)/∂r

∣∣∣∣∣ , (110)

which is independent of ξ and can be solved numerically for α to obtain a bound

nimgH + h >
α

ξ
> rnf. (111)

The actual value of α depends on the relationship between the smeared Gaussian width gt

and the original Gaussian width gw. For δ = 10−4, α ≈ 3.5 when gt/gw ≥ 2, while α = 3.25

for gt � gw, which gives the range α ∈ [3.25, 3.50]. For δ = 5× 10−4, we get α ∈ [2.98, 3.22].

3. Far field constraints

We next consider the far field constraints on ξ. In the far field solves, we never include

images of images explicitly, always assuming they can be included in the correction solve

because they are a distance H + h from the slab boundaries. For this to be the case, the

images of images cannot overlap the region z ∈ [−HE, H + HE], meaning they must be at

least 2HE ≥ 8gt away from the slab, so that in total we have the constraint H + h > 2HE.

To estimate HE in terms of ξ, we first estimate gt. For Ewald splitting to actually reduce

the computational complexity, we recall from (109) that we require gw ≤ 1/(ξ
√

12). This
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Tolerance δ 10−4 5× 10−4

Grid size hxy gt/1.4 gt/1.2
Gaussian support ng 12 10

Gaussian truncation nσ 4.29 4.17
Near field constraint 1/ξ < (nimgH + h)/[3.25, 3.50] (nimgH + h)/[2.98, 3.22]
Far field constraint 1/ξ < (H + h)/[4.29, 4.95] (H + h)/[4.17, 4.81]

Table I: Summary of constraints for Ewald splitting for ∼ 4 (left column) and ∼ 3 (right
column) digits of accuracy. For each tolerance, we first give the grid spacing hxy, number
of grid cells ng in the support of the far-field Gaussian, and the corresponding number
of Gaussian standard deviations nσ in the truncated support. We then give bounds on 1/ξ
from the near-field constraint (111) and far-field constraint (113). Lower ends of the intervals
(weaker constraints) are for the case when gw → 0 (point charges), and upper ends are for
the case when gt = 2gw.

gives an upper bound on the total Gaussian width gt,

gt =

√
1

4ξ2
+ g2w ≤

1

ξ
√

3
. (112)

In the case gw → 0, we get gt = 1/(2ξ). Since images of images are at least H + h away

from either wall, we need

2HE = 2nσgt ≤
2nσ

ξ
√

3
< H + h⇒ 1

ξ
<

√
3(H + h)

2nσ
, (113)

or 1/ξ < (H + h)/nσ in the case gw → 0.

The constraints for Ewald splitting are summarized in Table I. We see that, when we

do not include images of images (i.e., nimg = 1), the far field and near field constraint on ξ

are almost identical, with the far field constraint being more restrictive. Thus the far field

calculation restricts the Ewald parameter so much that including more images in the near

field is not necessary.

VI. NUMERICAL TESTS

In this section, we validate our algorithm for dielectric slabs. We begin in Section VI A

with a simple verification: four charges inside of a slab unbounded in the lateral directions.

In Section VI B, we verify that our answer is independent of the Ewald splitting parameter

ξ by generating a reference result without Ewald splitting (ξ →∞). We conclude in Section
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zi qi

(
EE(zi)−EF (zi)

)
/mean

(∥∥∥EF (zk)
∥∥∥)

(-0.17,-0.71,0.01) 1 (-9.2e-6, -1.9e-6, 2.4e-6)
(0.44,-0.82,0.30) -1 (-9.4e-6, -1.9e-6, 3.0e-6)
(-1.00,-0.63,1.00) 1 (-9.8e-6, -1.5e-6, 3.1e-6)
(-0.40,-0.31,1.95) -1 (-9.5e-6, -1.6e-6, 2.5e-6)

Table II: Relative errors in the extrapolated values of the electric field from the Ewald
method as Lx = Ly → ∞ vs. the image method for free space, EE −EF , for four charges
positioned at zi with strength qi.

VI C by verifying that the force (17) is indeed the gradient of the energy (13). Throughout

this section, we use a tolerance δ = 10−4 (which gives the finer grid setting ng = 12,

hxy = gt/1.4) for tests with 10 or fewer charges (Sections VI A and VI C), and a tolerance

δ = 5× 10−4 (ng = 10, hxy = gt/1.2) for tests with more than 10 charges (Section VI B).

A. Comparison with the image construction in free space

We first verify that our spectral Ewald method agrees with the free space solution as the

periodic xy length Lx = Ly = L → ∞. The solution in free space can be derived via the

image construction with an infinite series of images (see e.g. [20]).

We set up our test with four charges positioned randomly in the xy plane and with z

locations 0.01, 0.30, 1.00, 1.95 (see Table II). We set ε = 1, εt = 1/5, εb = 1/2 so that

the free space image sums converge rapidly (we use a total of 400 image charges so that

the partial sums are accurate to machine precision), H = 2, and gw = 10−2. We let ξ ≈ 3

(gt = 0.166, HE = 0.71, rnf = 1.08), solve the problem for L = 28 (236 × 236 × 84 grid)

and L = 32 (270× 270× 84 grid), extrapolate the result to L =∞ (based on the fact that

the finite-size correction decays like 1/L), and denote the resulting electric field by EE. We

show the normalized differenceEE−EF , whereEF is the free space result, in Table II, which

shows that we obtain about 5 digits of accuracy for all four charges.

B. Independence from splitting parameter

We next verify that our results are independent of the splitting parameter ξ. To do this,

we compare the results for the spectral Ewald method with various ξ to reference results

obtained without Ewald splitting (ξ →∞). We generate the reference results to 7 digits of
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ξ Grid size HE rnf Error std.
∞ (ref.) 128× 128× 76

4.3 20× 20× 59 0.5 0.71 2.7e-5

9.2 40× 40× 71 0.25 0.35 5.1e-5

12.2 50× 50× 77 0.20 0.27 6.0e-5

26.0 76× 76× 92 0.13 0.16 7.9e-5

Table III: Splitting parameters for Section VI B. Grid is on [−L,L]×[−L,L]×[−3HE, H+
3HE] with H = 0.75 and L = 2. We give the standard deviation of the errors shown in Fig.
3.

accuracy using the method of Section III A with a fine grid.

We consider 100 random charges of unit strength and alternating sign positioned on

[−1, 1] × [−1, 1] × [4.5gw, H − 4.5gw] and set gw = 0.025 so that it is not too expensive to

generate the reference solution to high accuracy. For the jump conditions, we set ε = 1,

εt = 1/50, and εb = 1/20. We take H = 0.75, so that, for some choices of the Ewald

parameter, charges in the center of the slab have (smeared far-field) support that intersects

both z = 0 and z = H.

We choose a set of Ewald parameters in the range ξ = 4 to ξ = 26. The lower bound on ξ

is chosen so that each point interacts only with its nearest image to 4 digits in the near field

calculation (this includes periodic images as well as images in the z direction). The upper

bound on ξ is the point where the grid is almost as large as that used for the calculation

without Ewald splitting (i.e., ξ is so large that the Ewald splitting is useless). Table III

summarizes the values of the Ewald parameter we use and the resulting values of HE and

rnf.

For each Ewald parameter, we solve for the averaged potential and electric field and

compute the error in each component of E(zi) (relative to the ξ → ∞ reference result),

normalized by the mean magnitude of E. We do this 10 times, so that there are a total

of 3000 observations E. Figure 3 shows histograms of the relative errors for each of the

Ewald parameters. For all ξ, we obtain distributions centered approximately around 0 with

4 digits of accuracy in E. Table III shows that the standard deviation of the relative errors

in each case is ≈ 5× 10−5. This demonstrates that the accuracy is better than the targeted

δ = 5× 10−4, especially for smaller Ewald parameters when the near field dominates.
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Figure 3: Histogram of relative errors in the components of the forces on 100 randomly
positioned charges of unit strength. We compare four different values of the splitting param-
eter ξ in the spectral Ewald method to a reference solution computed to 7 digits of accuracy
using the method of Section III A. The errors are normalized by the mean magnitude of the
force over all charges, and the experiment is repeated 10 times.

C. Energy and force

Finally, we verify that the forces (17) are the gradient of the energy (13), even in the

presence of charged walls. To do this, we set ε = 1, εt = 1/50, εb = 1/20, and H = 1 and

L = 2. We place 10 charges with unit strengths of alternating sign randomly and uniformly

on [−L,L]× [−L,L]× [4.5gw, H− 4.5gw], where gw will be varied. We also place a Gaussian

charge density on the top and bottom walls,

σb/t(x, y) = (+/−)
1

2
√

4π2s4
exp

(
−x

2 + y2

2s2

)
. (114)

We use s = 0.2 here so that the fixed charge densities can be resolved on a coarse grid, and

set ξ = 6.8 (gt ≈ 0.07, HE = 0.32, rnf = 0.48) for a grid of size 38 × 38 × 87 points. Since

the grid spacing is chosen to resolve gt = 0.07, and the wall charge density is a Gaussian
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gw 10−2 10−3 10−4 10−10

|W1 −W2|/W1 2.12e-4 3.70e-4 5.00e-4 1.40e-4

Table IV: Relative differences in computed rates of work |W1 −W2|/W1 using (115) and
(116) for δ0 = 10−4 with M = 10 charges.

with standard deviation s > gt, we expect that our grid will easily be able to resolve the

wall density, and therefore the integrals in the second term of the energy (13). We have

confirmed that the potential computed by the correction solve matches the analytical result

for a potential of a Gaussian surface charge (not shown).

We fix δ0 = 10−4 and compute a rate of work by finite differences of the energy (13)

W1 = −
U(X + δ0

2
δX)− U(X − δ0

2
δX)

δ0
, (115)

where δX is a random displacement vector of unit length for each charge. We compare this

to the rate of work done by the force on the charges (17),

W2 =
N∑
k=1

F k · δXk =
N∑
k=1

qkE(zk) · δXk. (116)

To avoid cancellation of digits as gw → 0, we subtract the self potential, φ̄(zi)→ φ̄(zi)−

qiG
(n)

(r = 0; gw, ξ = 0), so that the potentials do not become singular as gw → 0. As shown

in Table IV, W1 = W2 to at least 3 digits even for gw = 10−10.

VII. APPLICATIONS

In this section we apply our method to study the influence of polarization effects (image

charges) on the structure of electric double layers in electrolyte solutions confined by one

or two dielectric boundaries. This is a well-studied problem and it is not our intention to

provide a detailed account of the topic. Rather, our main goal is to test our method by

comparing to published results, and to demonstrate the importance of accounting for jumps

in the dielectric permittivity. We also study the performance of the algorithm on Graphical

Processing Units (GPUs) for realistic electrolyte parameters.

We use Brownian Dynamics (BD) without hydrodynamic interactions to equilibrate an

electrolyte solution in a slit channel; this requires evaluating the forces on the charges at
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each time step, but does not require the electrostatic energy. In a number of previous stud-

ies of electrolytes, Markov Chain Monte Carlo (MCMC) is used for equilibration. However,

MCMC with local moves is expensive for electrolytes since computing the long-ranged elec-

trostatics is a global operation and has to be done after each trial move. We have not been

successful with controlling the rejection rate in MCMC methods based on global moves, in-

cluding ones combining BD with MCMC like the Metropolis-adjusted Langevin Algorithm

(MALA) [21, 22]. As a compromise, we utilize here a BD method specifically designed for

computing equilibrium distributions to second-order accuracy [23]. It is important to em-

phasize that because we use BD, we operate in the canonical NV T ensemble and not in the

grand canonical ensemble. Furthermore, by construction our method requires maintaining

strict electroneutrality in every configuration. Although some conventions for handling non-

neutral slabs have been proposed [24], and can straightforwardly be incorporated into our

handling of the kx = ky = 0 mode, a unique well-defined meaning to the doubly-periodic

Poisson equation cannot be given without strict electroneutrality.

We begin by summarizing our Brownian Dynamics method in Section VII A. In Section

VII B we consider a monovalent binary electrolyte and study the depletion of charges near

a water-air interface due to repulsion by the image charges. In Section VII C we study the

same effect but in a slit-channel with charged dielectric walls and with only the counterion

present. Finally, in Section VII D we discuss the performance of our algorithm and the

optimal choice for the Ewald splitting parameter.

A. Brownian Dynamics simulations

We consider a solution of monovalent ions with effective radius a and charge ±e solvated

in water. Unless stated otherwise, simulations are carried out at room temperature (T =

298 K). We include a steric repulsion between ions in the form of a modified, truncated, and

regularized Lennard-Jones (LJ) potential [8] with repulsive force Fsteric(r) = −∂Usteric/∂r,

Fsteric(r) =


FLJ(r = rm) r ≤ rm

FLJ(r) rm < r ≤ 21/p(2a)

0 r > 21/p(2a)

(117)
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where r is the ion-ion distance and FLJ = −∂ULJ/∂r where

ULJ(r) = 4U0

((
2a

r

)2p

−
(

2a

r

)p)
+ U0. (118)

Here rm denotes a cutoff distance below which we molify the divergence of the classical

LJ potential to avoid very large forces which lead to numerical instabilities [8]. In some

simulations, we also decrease the exponent p from the traditional p = 6, in order to make

the potential softer and thus increase the stable time step size. The value of the steric

repulsion U0 is chosen to be ∼ kBT to avoid overlap but also avoid very large forces upon

overlap. We add a steric repulsion with walls (dielectric boundaries) by considering a virtual

image charge and computing the steric repulsion with that image charge.

We employ the lower precision (3 digits of accuracy) set of parameters for our algorithm

(see last column in Table I); we have confirmed that the forces on the charges did not

change to at least 3 digits upon changing the Ewald splitting paramater ξ. The algorithm

is implemented on GPUs using the Universally Adaptable Multiscale Molecular Dynamics

(UAMMD) [25] framework, and we use single precision in all calculations, except that the

correction potential (38) is computed in double precision to avoid overflow and underflow.

We have confirmed that using single precision in the rest of the calculations does not lead

to a degradation of the overall accuracy of the method. Our GPU code is freely available

on the UAMMD github https://github.com/RaulPPelaez/UAMMD, and the tests given in

this section can be reproduced using the codes and input files available at https://github.

com/stochasticHydroTools/DPPoissonTests/.

We solve the stochastic equations of Brownian Dynamics without hydrodynamic interac-

tions,

dz = µ (F (z) + F steric (z)) dt+
√

2kBTµ dB (119)

where the electrostatic forces F are defined in (17), µ is a scalar mobility, and B(t) is

a collection of independent Brownian motions (Wiener processes). These equations are

integrated in time using a non-Markov variation of the classical Euler-Maruyama method

proposed in [26] and studied theoretically in [23]. The scheme updates the ion positions
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from time step n to n+ 1 using

zn+1 = zn + µ (F steric (zn) + F (zn)) ∆t+

√
kBTµ∆t

2

(
W n + W n+1

)
, (120)

where W n is a collection of independent Gaussian random variables of mean zero and vari-

ance one. The scheme (120) has first order weak accuracy at finite times but transitions

to second-order weak accuracy exponentially fast in time [23]. In particular, it approx-

imates expectation values with respect to the Gibbs-Boltzmann equilibrium distribution

∼ exp (− (U + Usteric) / (kBT )) to second-order accuracy in the time step size ∆t. We have

found this scheme to be the most accurate among several we tested, and also found it to be

just as robust for larger time step sizes as the less-accurate Euler-Maruyama scheme. We

report the values of ∆t and time in units of the diffusive time τ0 = a2/ (kBTµ), so that

the precise value of µ is irrelevant. Charges are checked every step to be inside the allowed

domain (between z = 0 to z = H). If a charge leaves the domain after a given update

the step is discarded and retried until it results in a valid configuration. After a maximum

allowed number of retries an unrecoverable configuration is declared to avoid stagnation.

We choose ∆t to be small enough such that steps are rejected very rarely and unrecoverable

configurations do not occur over long periods of time. We find that we can use a larger time

step size if we restrict the maximum allowed displacement per time step for a particle to a

multiple of the ion radius; we return to this point in the Conclusions.

It is straightforward to adapt our method and implementation from a doubly-periodic to

a triply-periodic domain. In Fig. 4 we show results for the pair correlation function g2(r) of

counter ions in a dilute binary monovalent electrolyte of molarity 0.05M in a triply periodic

domain. The parameters for the simulations are given in Table V and in the caption of

the figure. In particular, we study two different systems in the remainder of this section.

The first system (second column of table) is meant to correspond to the hard-sphere system

studied theoretically and using Monte Carlo simulations in [27]. To mimic hard spheres,

we set the exponent to p = 6 in the LJ potential (118) and choose U0 to be sufficiently

large to make g2(r) almost zero for r < 2a. The second system (third column of table)

we study uses a softer repulsion with exponent p = 2 to avoid stiffness. In this second

system, however, we wish to mimic point charges closely so we set gw � a, which leads to

stiffness of the electrostatic potential. When neither strict steric exclusion or point-charge
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Figure 5 6

a 2.125Å 2Å
Lxy 185.8a 800a
H 50a 100a
gw 0.25a 0.02a
U0 0.7005kBT 0.2233kBT
rm 1.5a a
p 6 2

Table V: Parameters used in the BD simulations corresponding to Figs. 5 and 6. The time
step size is ∆t = 2 · 10−3τ0.

electrostatics is required, one can use a small p = 2, large rm ∼ a, and large gw ∼ a, to

make the combined interaction potential non-stiff and allow for a larger ∆t; we return to

this point in the Conclusions.

For comparison to the numerical results, in Fig. 4 we also show theoretical predictions

for the pair correlation function based on Debye-Huckel-Onsager theory, modified to account

for the fact that our charges are not point charges,

gDHO(r) = exp

(
−Usteric(r) + U(r) exp(−r/λ)

kBT

)
(121)

where U(r) is the electrostatic potential between two counter ions with Gaussian charge

density (see first term in (61)),

U(r) = − e2

4πεr
erf

(
r

2gw

)
. (122)

Here the Debye length is

λ =

(
εkBT

e2Na(2M)

) 1
2

, (123)

where Na is the Avogadro number and M is the salt molar concentration (molarity) in

mol/m3. The numerical results in Fig. 4 are in good agreement with the theory especially

in the Debye (exponential) tail (see inset). For the system with p = 6 we also show the

theoretical g2(r) if the steric repulsion were a hard-sphere potential (strictly no overlaps).
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Figure 4: Pair correlation function (symbols) of counter ions in a dilute binary monovalent
electrolyte of molarity 0.05M in a triply periodic cubic domain (N = 8192 ions), for two
different systems (p = 6 or p = 2 in the LJ potential (118)). The parameters for the potential
(p, rm, U0, and gw) and time step size ∆t are given in Table V. Solid lines are the DHO
theory (121), and the dashed line shows the theory for a hard-sphere steric repulsion with
the rest of the parameters as for the system with p = 6. The inset shows the exponential
tail ∼ exp(−r/λ)/r in g2(r)− 1.

B. Uncharged wall

In this subsection we reproduce results from the article [27] using the doubly-periodic

Poisson solver in UAMMD. We simulate an electroneutral monovalent solution inside a slab

with uncharged walls and different permittivities above and below it; the parameters are

listed in the second column in table V. We compare our results and those obtained in [27] in

Fig. 5. Since the walls are uncharged there is a symmetry between the anions and cations,

and therefore we show the ion number density n(z) averaged among the two types of ions.

There are a number of recent theories that account for the polarization effects next to

a dielectric boundary, but all of them involve nontrivial computations — for recent exam-
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Figure 5: Number density of monovalent ions n(z) at a distance z from a dielectric bound-
ary, normalized by the “bulk” density far away from the wall. The results from our code
UAMMD are compared with the results in figures 3 and 4 in [27]. The bulk ionic density is
nb = 0.495 mol/L = 2.8 · 10−3a−3 (black line) or nb = 1.00 mol/L = 5.8 · 10−3a−3 (orange
line); other parameters are listed in the second column in Table V. The total number of
ions is N = 9398 (red dots) and N = 19142 (blue dots). Simulations were initialized by
randomly placing ions in the region a < z < H − a and equilibrated for 20 diffusive times
τ0, and then data was collected every diffusion time for the subsequent 200 diffusive times.
Error bars (comparable to or smaller than the symbol size) come from averaging over 32
independent simulations.

ples see [28] without and [29] with steric repulsion. The authors of [27] developed several

theoretical approaches to compute the equilibrium density of ions next to a planar interface

(wall) with hard-sphere steric repulsion in addition to electrostatics (i.e., the so-called prim-

itive model of electrolytes), with the “BBGKY+EN” theory being in best agreement for the

molarities we study here. We have extracted the theoretical curves from the figures in [27]

and show those for comparison in Fig. 5.

The MCMC simulations and theory in [27] used the grand canonical ensemble and con-
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sidered a system that has a bottom wall but is unbounded in the z direction, i.e., a system

that is in contact with an infinite reservoir as z/a → ∞ with bulk molarity Mbulk. Since

we use the canonical ensemble, we put a top wall at z = H = 50a but set εt = ε in order

to mimic an “open” reservoir boundary. We numerically integrated the theoretical curves in

[27] to obtain a total number of ions that would give the same bulk molarity far away from

the wall, assuming that the density was constant for z � a (which is in agreement with

simulation results).

The results in Fig. 5 show excellent agreement between our numerical results and the

theoretical predictions from [27], both for bulk molarity Mbulk ≈ 0.5M and Mbulk ≈ 1M,

validating our method and implementation. We see that there is a depletion of ions next to

the interface because of the repulsion with the image charges, with some modest layering due

to steric repulsion for Mbulk = 1M predicted by the theory, and confirmed by the simulations.

In this example, the depletion layer extends only over a distance of a couple of ion diameters

away from the wall.

C. Charged wall test

In this subsection we study a slit channel with charged walls with only the counterions

present in the interior of the channel. Specifically, we place N ions of charge +e in the

channel and keep the system electroneutral by setting the surface charge densities at the

top and bottom walls to σb = σt = σ = −(Ne)/
(
2L2

xy

)
; the parameters are listed in

the third column in Table V. For this special case it is possible to analytically solve the

Poisson-Nernst-Planck (PNP) equations for the equilibrium number density of ions across

the channel (see Section 4.1 in [30]). If we denote the sterically-accessible thickness of the

channel as d = H − 2a and solve the PNP equations with charged walls inside a channel of

width d, we obtain the ion density profile for a < z < H − a (zero outside of this interval),

n(z) =
nm

cos (K(z −H/2)/d)2
, (124)

where the dimensionless constant K < π depends on the charge density,

σ = −e
2

∫ H−a

z=a

n(z)dz = −2K tan (K/2) εkBT

de
, (125)
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and nm is the number density of ions in the middle of the channel,

nm =
2K2εkBT

d2e2
. (126)

In Fig. 6 we compare numerical results for n(z) with the prediction of the PNP equations

(124) at two different densities. We see an accumulation of ions near the boundaries because

of the surface charge, but the maximum density depends on the dielectric contrast. We

consider three different materials on the outside of the channel: glass (permittivity ≈ 5

times that of vacuum), water (no dielectric jump), or an unphysical medium with zero

permittivity.

We find good agreement with the PNP prediction only if there is no dielectric jump and

εt = εb = εout = ε. This is not unexpected since the PNP equation does not take into account

polarization effects. Namely, for an electroneutral slit (or cylindrical) channel, Gauss’s law

dictates that the electric field just outside of the channel must be zero; the electric fields

created by the ions on the outside of the channel are evanescent and vanish in the mean

field approximation. Only if charge electroneutrality is broken does the dielectric constant

on the outside of the channel begin to matter in the PNP equations [31]. While polarization

effects can be included in modified PNP equations that take into account charge correlations

[28, 29], the resulting nonlocal equations are no longer simple to solve even numerically. It

is important to note that the mismatch between the PNP theory and the numerical results

seen in Fig. 6 extends over a relatively large distance from the wall, on the order of tens

of particle radii, emphasizing the need to account for dielectric jumps in theoretical and

numerical descriptions of confined electrolytes.

The results in Fig. 6 show that there is only a small difference between the results obtained

for glass and a fictitious material with εout = 0, for which there is no dielectric displacement

outside of the channel. This is good news for approaches such as immersed boundary meth-

ods [8] that only resolve the electric fields inside the channel, and impose (inhomogeneous)

Neumann conditions on the electric field, rather than the correct jump boundary conditions

for the dielectric displacement.
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Figure 6: Number density of cations n(z) inside a slab channel with oppositely charged
walls, at two different surface change densities (lower in the left panel). The density is
normalized by the density in the middle of the channel predicted by the PNP equations (see
(126)), nm = 3.26 · 10−5a−3 (left, N = 6140 ions) and nm = 1.85 · 10−5a−3 (right, N = 1739
ions); other parameters are listed in the third column in Table V. Numerical results obtained
using the UAMMD doubly-periodic code are shown for three different permittivities outside
of the channel (glass, water, and an unphysical zero permittivity medium). To accelerate
equilibration, initial configurations were generated by randomly and uniformly placing ions
and using rejection to make the density vary with z according to (126). We equilibrated for
20 diffusive times τ0, and then data was collected every diffusion time for the subsequent 200
diffusive times. Results are averaged over 64 independent runs; the error bars are smaller
than the symbol size.

D. Computational performance

In this section we study the computational performance of our GPU implementation of

the doubly-periodic (DP) method, as a function of the Ewald splitting parameter ξ. We

randomly and uniformly place 2 · 104 charges inside a slab of extent H = 50 and length

Lxy = 185, and set gw = a/4. We use single precision (except for the correction solve

to avoid overflow) and time each part of the algorithm using profiling tools; this requires

that all kernel launches are synchronous, not allowing for overlapping CPU/GPU work and

concurrent kernels (which improve performance only slightly).

The total wall clock time to compute the force on and potential at each charge, and the

breakup among different components of the algorithm, are shown in the left panel of Fig.

7. We isolate the time due to the following components of the algorithm: Computing the

correction field to account for the missing images, spreading the charges to the grid, com-

puting the near-field interactions, interpolating the field back onto the charges, computing

the Fourier-Chebyshev Transform (FCT) using 3D FFTs, and solving the boundary value
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Figure 7: Execution time for different components of the algorithm for 2 · 104 charges as
a function of the Ewald splitting parameter ξ (top axis), which controls the grid size in the
xy directions (bottom axis). The left panel is for a doubly-periodic (DP) domain, while the
right one is for a triply-periodic (TP) domain. Timings are collected using the UAMMD
[25] code compiled and run on a RTX2080Ti GPU using NVIDIA’s CUDA 11.0.

problems (BVPs) in the doubly-periodic Poisson solver.

For comparison, in the right panel of Fig. 7 we also give timing results for a triply periodic

(TP) domain (also available in UAMMD [25]), for which the Poisson equation can be solved

entirely in Fourier space using 3D FFTs. We use the same particle configurations as for

DP domains in the TP domain, but we set the length of the domain in the z direction to

Lz = 2H, which makes the sizes of the grids used in the 3D FFTs similar. Unlike the DP

solver, the TP solver does not require any images, a correction solve, or BVP solver, and,

importantly, uses a uniform grid for which spreading and interpolation are faster in the z

direction.7

At the optimum split (grid size Nxy = 88 for DP and 70 for TP), the time it takes to

complete the calculation is 0.84 ms for TP and 4.3 ms for DP. While in this example we find

that DP is a factor of 5 slower than TP, the total execution time is still remarkably small

given that no supercomputer hardware is required; the GPU used is widely available and

7 In particular, fast Gaussian gridding [17] can be used in all directions, although we do not find this to

lead to substantial improvement on the GPU. On the GPU, the main savings comes from the fact that

the number of grid points to spread to or interpolate from in the z direction is constant (10 grid cells in

each direction) in the TP case.
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inexpensive. Note that other parts of the algorithm such as Brownian Dynamics updates

and computing the steric interactions take only a negligible fraction of the time it takes to

compute the long-ranged interactions.

VIII. CONCLUSIONS

We have developed a spectrally-accurate fast method for computing electrostatic energy

and forces for a collection of charges in doubly-periodic slabs with jumps in the dielectric

permittivity at the slab boundaries. To do this, we used a modification of the Spectral Ewald

(SE) method to smear point-like charges into Gaussian clouds. Unlike existing methods

based on Fourier transforms in all directions, our method uses a novel Fourier-Chebyshev

solver to solve the smoothed (far-field) Poisson equation, which is restricted to a finite

domain using the Dirichlet-to-Neumann map. The grid size for this solver is controlled by

the Ewald splitting parameter and can be optimized to balance near-field and far-field costs

for optimal performance. We used an image construction to handle Ewald charge clouds

that overlap the dielectric boundaries, and handled the remaining smooth mismatch in the

boundary conditions (BCs) at the dielectric interfaces using the analytic solution of the

Laplace equation with inhomogeneous boundary conditions. Combining the far-field and

correction steps yields a method that requires the same components as the Spectral Ewald

method for triply-periodic domains: spreading and interpolation from the charges to the grid

using Gaussian kernels (but note that the Chebyshev grid is not uniform in the z direction),

and a forward and inverse three-dimensional FFT. All components can be parallelized on

GPUs, and our public-domain implementation takes only ∼ 5ms per time step of Brownian

Dynamics (BD) for 20K charges in a model electrolyte solution.

We used the GPU BD code to study the equilibrium structure of the (Debye) double layer

next to an uncharged and a charged dielectric interface between water (the solvent) and a

material with a low dielectric permittivity (like glass or air). We found that the interaction

with the image charges causes a substantial depletion of charges next to the interface over

a layer that can extend many ion diameters. This effect is not predicted by mean-field PNP

theories but has to be accounted for whenever there is a substantial dielectric jump. In

many previous studies, a number of uncontrolled approximations are made that can only

be justified by comparing to an algorithm that does not make those approximations. For
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example, it is well-known that in binary electrolytes electrostatic interactions are screened

by the Debye counterion cloud. This allows some authors [27] to neglect periodic effects

in the xy direction and thus compute electrostatic interactions by summing over only the

nearest image when computing electrostatic energy. Our results in Fig. 5 appear to be in

good agreement with the results given in [27], suggesting this approximation was justified

for the system studied. However, we also study here a case where there are no counterions,

and there is no screening, so that it is crucial to properly implement periodicity in the xy

directions.

Another important approximation that greatly simplifies the problem is to assume that

the dielectric constant is zero outside of the slit channel. While this is unphysical (the

smallest possible permittivity is that of vacuum), the dielectric constant of most materials

such as glass or lipid membranes is much lower than that of water, which is the typical

solvent. In the unphysical limit of zero dielectric constant in the exterior of the channel,

instead of jump conditions on the electric displacement we get a Neumann condition on the

electrostatic potential on the interior of the channel. This means that it is no longer necessary

to compute the electrostatic potential outside of the channel or worry about infinitely many

images, similar to the case of metallic boundaries. Our results in Fig. 6 suggest that for

a water-glass interface the approximation of zero permittivity outside the channel is quite

accurate.

It is straightforward to incorporate metallic slab boundaries (electrodes) in our methods

instead of dielectric jumps; only minor modifications to the correction solve are required to

set the potential at the top and/or bottom electrodes to a specified value. Since the case of

two dielectric jumps is the hardest and requires the full power of our method, we focused on

this case in our tests.

Our experience with BD for electrolyte solutions suggests that an important problem to

overcome in future work is the small time step size required to stably integrate a system with

stiff steric repulsion. To mimic hard-sphere repulsion in the presence of walls, we required

∆t ≈ 2 ·10−3τ0, where τ0 is the typical time it takes an ion to diffuse a distance of its radius.

Even with the algorithmic improvements we developed here and the computational power of

GPUs, this ∆t is too small to reach time scales relevant to dynamics of electrolytes, including

relaxation and charging dynamics of double layers, and electrohydrodynamic phenomena.

As in recent work based on the Discrete Ion Stochastic Continuum Overdamped Solvent
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(DISCOS) method [8], here we introduced several mollifications that helped increase ∆t.

The first one was to mollify the charges by making them Gaussian clouds of finite width

instead of point charges, which helps avoid the r−2 divergence of electrostatic forces for

pairs of ions. We also mollified the traditional Lenard-Jones steric repulsion by capping its

divergence at overlap and softening the potential by lowering the exponent to p < 6. These

two changes are related to each other and have to be done in tandem because the steric

repulsion (mimicking Pauli exclusion) has to be strong enough to prevent overlap of counter

ions.

The primary source of instability in temporal integration appears to be large steric or

electrostatic forces that occur upon ion overlap. These large forces occasionally lead to

displacements that are several ionic radii large, which is particularly problematic for ions

near walls, as the displacements can lead to ions leaving the domain. We have had some

success increasing the time step size by limiting the largest possible displacement of an ion

during a time step to a fraction of the ionic radius. Even with this ad hoc change the largest

stable and accurate time step size we achieved was ∆t ≈ 10−2τ0, which is still quite small

even though it is much larger than ∆t in MD. We hope that future mathematical study of

temporal integrators for overdamped BD with stiff steric repulsion will lead to improvements

and allow us to reach a desirable ∆t ≈ 10−1τ0. Another avenue worthy of exploration is

reusing information between time steps, especially for the far-field Poisson solve. Since the

far-field potential and fields are smooth, it is perhaps possible to not repeat all steps of the

solve at each time step. Our preliminary investigations found some promise in this direction

for dilute electrolytes.

Another important direction is to generalize our method to Stokes flow so that hydro-

dynamic interactions can be accounted for in Brownian Dynamics. Our doubly-periodic

Fourier-Chebyshev solver can straightforwardly be generalized to the Stokes instead of the

Poisson equation, as we will present in future publications. The main challenge is Ewald

splitting in the presence of no-slip boundaries (bottom wall only or top and bottom walls);

for triply periodic systems one can use the Positively Split Ewald method [32] or related

SE methods [33] that rely heavily on Fourier transforms in all directions. Some progress on

real-space based Ewald splitting with boundaries has been made in [34]; however, because

an image construction was not used to handle the boundaries, the near field does not satisfy

the BCs on the wall (as it did in our method for the Poisson equation). While the mis-
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match in BCs can in principle be fixed with a correction solve [34], the grid required for an

accurate correction would be much finer than the grid used for the far-field solver, negating

the advantages of Ewald splitting. Furthermore, the method in [34] cannot handle a single

bottom wall as does our approach based on the Dirichlet to Neumann map.

Ewald methods for Stokes flow based on image constructions have been developed for a

single bottom wall using Fourier transforms in all directions [35] or FMMs [36, 37]. However,

the image construction for a no-slip wall for Stokes flow involves several types of image

singularities [38], and this leads to substantial complexity and inefficiency compared to the

approach we developed here for the Poisson equation. It should be mentioned that recent

investigations using the DISCOS method demonstrate that hydrodynamic interactions make

important contributions to transport in electrolytes [8]. That said, these recent studies also

demonstrate that hydrodynamic interactions can be coarse grained at scales smaller than the

typical ion-ion distance and replaced by standard non-hydrodynamic or“dry”diffusion (as we

used in this work), which suggests that Ewald splitting may not be necessary for electrolyte

solutions. Nevertheless, it remains a challenge for the future to adapt the method developed

here to Stokes flow.
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Appendix A: Boundary value solver

Our boundary value problem (BVP) solver for (24) is based on the specgtral integration

method of [16]. Without loss of generality, it is most convenient when reviewing this for-

mulation to assume the domain is z ∈ [−1, 1]. In this case, the BVP we need to solve is

generally of the form

y′′(z)− k2y(z) = f(z), (A1)

y′(1) + ky(1) = α, y′(−1)− ky(−1) = β. (A2)

An analytical solution can be derived for this BVP, but it requires numerically computing

an integral with integrand related to ekz. Since this calculation must be done using very fine

grids for kz � 1, we prefer to use a well-conditioned more general BVP solver.

Now, let us expand all functions in truncated Chebyshev series

y(z) =
N−1∑
n=0

ŷnTn(z), y′(z) =
N−1∑
n=0

ŷ′nTn(z), y′′(z) =
N−1∑
n=0

ŷ′′nTn(z), f(z) =
N−1∑
n=0

f̂nTn(z).

(A3)

To obtain the coefficients f̂n, we can evaluate f on a Chebyshev grid with N points, take the

periodic extension of f(z), and do a complex FFT [19]. It can be shown, using the indefinite

integrals of Chebyshev polynomials,

∫
T0(x) dx = T1(x) + C, (A4)∫

Tn(x) dx =
1

2

(
Tn+1(x)

n+ 1
− Tn−1(x)

n− 1

)
+ C, n ≥ 2, (A5)

where C is constant, that

ŷ′1 =
1

2
(2ŷ′′0 − ŷ′′2)

ŷ′n =
1

2n

(
ŷ′′n−1 − ŷ′′n+1

)
, n ≥ 2. (A6)
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Computing the coefficients of the function y(z), we have the relationships

ŷ1 =
1

2
(2ŷ′0 − ŷ′2) = ŷ′0 −

1

8
(ŷ′′1 − ŷ′′3) ,

ŷ2 =
1

4
(ŷ′1 − ŷ′3) =

1

4

(
1

2
(2ŷ′′0 − ŷ′′2)− 1

6
(ŷ′′2 − ŷ′′4)

)
,

ŷn =
1

2n

(
ŷ′n−1 − ŷ′n+1

)
=

1

2n

(
1

2n− 2

(
ŷ′′n−2 − ŷ′′n

)
− 1

2n+ 2

(
ŷ′′n − ŷ′′n+2

))
, n ≥ 3. (A7)

Note that in some presentations, including [16], the first Chebyshev coefficient ŷ0 is defined

with a 1/2 in front of it, so that the exceptions in (A7) for ŷ1 and ŷ2 can be written as

part of the general case. In either case, the formulation gives two free parameters ŷ0 and

ŷ′0, which are obtained using the boundary conditions. To match the number of unknowns

(coefficients) and equations, we assume ŷ′′n = ŷ′n = 0 for n > N−1 when calculating ŷn using

(A7).

We can reformulate the boundary value problem using the Chebyshev series representa-

tions (A3) as

N−1∑
n=0

(ŷ′′n − k2ŷn)Tn(z) =
N−1∑
n=0

f̂nTn(z). (A8)

Matching modes gives a system of equations for the Chebyshev coefficients

ŷ′′n − k2ŷn = f̂n n = 0, . . . N − 1, (A9)

N−1∑
n=0

(ŷ′n + kŷn) = α,

N−1∑
n=0

(ŷ′n − kŷn)(−1)n = β. (A10)

with N+2 equations and N+2 unknowns ŷ0, ŷ
′
0, ŷ
′′
0 , . . . ŷ

′′
N−1. We solve the algebraic system of

equations (A9) and (A10) for the second derivative coefficients ŷ′′0 , . . . ŷ
′′
N−1 and integration

constants ŷ0 and ŷ′0, then determine ŷn by applying the double integral operation on the

coefficients (A7).
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If the domain is z ∈ [0, H], then the equations are

ŷ′′n − k2
H2

4
ŷn = f̂n n = 0, . . . N − 1, (A11)

N−1∑
n=0

(
H

2
ŷ′n + k

H2

4
ŷn

)
= α,

N−1∑
n=0

(
H

2
ŷ′n − k

H2

4
ŷn

)
(−1)n = β. (A12)

For the k = 0 mode, the system reduces to

N−1∑
n=0

ŷ′′nTn

(
2z

H
− 1

)
=

N−1∑
n=0

f̂nTn

(
2z

H
− 1

)
, (A13)

which gives the trivial system of equations

ŷ′′n = f̂n n = 0, . . . N − 1. (A14)

Our solver uses homogeneous boundary conditions for the k = 0 mode,

N−1∑
n=0

ŷn = 0,
N−1∑
n=0

ŷn(−1)n = 0. (A15)

We use a Schur complement approach to solve the algebraic system of equations (A11)

and (A12). We can write the system in block form as

A B

C D



ŷ′′

ŷ0

ŷ′0

 =


f̂

α

β

 . (A16)

Here B is N × 2, C is 2 × N , D is 2 × 2, and A is an N × N pentadiagonal matrix

with only three nonzero diagonals, which we first (pre)factorize using a fast algorithm for

such matrices ([39], specialized to the case of only three nonzero diagonals). Our Schur

complement approach is then to solve the 2× 2 system

(CA−1B −D)

ŷ0
ŷ′0

 = CA−1f −

α
β

 (A17)
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for ŷ0 and ŷ′0. We then obtain the coefficients ŷ′′ = (ŷ′′0 , . . . ŷ
′′
N−1) from back-substitution

ŷ′′ = A−1

f −B

ŷ0
ŷ′0

 . (A18)
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