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Abstract

Morphology changes in cross-linked actin networks are important in cell motility, division,

and cargo transport. Here we study the transition from a weakly cross-linked network of actin

filaments to a heavily cross-linked network of actin bundles through microscopic Brownian dy-

namics simulations. We show that this transition occurs in two stages: first, a composite bundle

network of small and highly aligned bundles evolves from cross linking of individual filaments;

second, small bundles coalesce into the clustered bundle state. We demonstrate that Brownian

motion speeds up the first stage of this process at a faster rate than the second. We quantify

the time to reach the composite bundle state and show that it strongly increases as the mesh

size increases only when the concentration of cross links is small, and that it remains roughly

constant if we decrease the relative ratio of cross linkers as we increase the actin concentration.

Finally, we examine the dependence of the bundling timescale on filament length, finding that

shorter filaments bundle faster because they diffuse faster.

1 Introduction

The structure and mechanical properties of eukaryotic cells are largely controlled by the actin

cytoskeleton, which contains a network of actin filaments interconnected by protein cross linkers

(CLs) [1, 6]. Changes in cell mechanical properties, from more viscous to more elastic, relate

to corresponding cytoskeletal morphology changes, from a weakly cross-linked network of actin
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filaments to a network of clustered bundles [34, 28]. The formation of a clustered bundle state

has previously been observed in actin suspensions with CLs such as filamin [40, 19], scruin [14],

and α-actinin [29, 45]. In all of these systems, increasing the concentration of the cross-linking

protein progressively transitions the steady state from a homogeneous meshwork, where filaments

are distributed isotropically, through a composite bundle state, where bundles are composed of

only a few filaments, to the clustered bundle state, where bundles can be separated by distances as

large as 100 µm [40, 29].

Usually, the bundled network steady state is the result of a balance between cross-linking

and other mechanisms that break up bundles. Indeed, in our previous work [34], we introduced

actin filament turnover (to model (de)polymerization) and found that the steady state network

morphology is the result of a competition between actin bundling and actin turnover. In particular,

we observed either a homogeneous filament meshwork or network of bundles embedded in the

filament meshwork, depending on the relationship between the turnover time and the timescale

of filament bundling. In most of this paper, we will disable filament turnover and study how

the timescale of bundling, which we define approximately as the time to reach the composite

bundle state, is affected by the underlying microscopic parameters and the Brownian motion of the

filaments. Quantifying this timescale is important because its competition with filament turnover

rate determines the steady state network structure, as we will demonstrate in Section 3.5.

While it was observed over 30 years ago [19] that Brownian motion drives bundle formation,

its precise mechanism for doing so remains unclear. For instance Hou et al. [19], speculated that

rotational diffusion aids in bundling, as filaments that are linked at one location rotate until other

locations can be linked together, resulting in a bundle. More recently, it was shown that bundling

is most efficient in a fluid-like environment, where actin filaments can diffuse more readily [11, 12].

At minimum, these studies imply that bundling is more difficult without Brownian motion, but

could actin filaments still arrange into bundles without it?

The importance of Brownian motion in bundling can be seen in experiments where filament

length varies, or when polymerization and bundling are initiated simultaneously. In this case,

shorter filaments form a more stable clustered bundle state [22, 12], with the shortest filaments

organizing into spindle-type structures [31, 46]. In systems where polymerization and bundling

happen simultaneously, it has been shown that the formation of the clustered bundle state can be

prevented via an increase in the actin polymerization rate [11]. Mean field theory and simulations

show that the slow down in bundling at high polymerization rates could be driven by a combination
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of steric interactions and the Brownian motion of the fibers being constrained by cross linkers [12].

It remains unclear, however, to what extent the attenuation of bundling is driven by sterics vs.

cross linking, and even if a composite bundle state can form if the length of the filaments is larger

than the initial mesh size.

An underlying assumption in conceptual explanations of bundling is that sufficient CL is avail-

able to cross link filaments once they move closer together. The literature is conflicted, however,

on exactly how much CL is sufficient. For instance, in the same experimental system of filamin and

actin, some authors report a constant ratio of CL to actin necessary for bundling [19, 45], while

others report that the relative amount of CL necessary for bundling decreases as actin concentration

increases [40]. There is also a nontrivial effect of temperature on the amount of CL required for

bundling; with higher CL-to-actin ratios bundling can occur at lower temperatures [43]. Experi-

mental investigation of the precise amount of CL necessary for the clustered bundle state to form is

difficult since the observation of bundles is a qualitative phenomenon with a subjective definition,

and therefore varies based on the tools used. Simulations can provide a more definitive analysis of

how bundling depends on CL concentration.

Two simulation approaches have been used to theorize about the bundling of actin filaments.

One of them was to use equilibrium thermodynamics to find conditions at which the free energy,

consisting of translational and rotational entropy of rod-like filaments and enthalpy and entropy

of the CL distribution, is lower in the bundled state than in the unbundled mesh [4, 52]. The

important results of these theories were that a critical CL concentration is needed for the bundling

phase transition and that ultimately one giant bundle has to form, but transiently the filaments

could be kinetically trapped in multiple bundles [4, 24]. However, actin bundling is not taking place

in thermodynamic equilibrium, and several modeling studies harnessed the Brownian dynamics ap-

proach. One of the earliest [50] of these studied the roles of translational and rotational diffusion

in bundling of uniformly laterally attracting filaments. A very detailed model in three dimensions

in the presence of polymerization, steric interactions and angular stiffness of the filament-CL bond

[25] revealed how the morphology of the bundled network scales with mechanical and biochemical

parameters. Last, but not least, a combination of scaling estimates and Brownian dynamics simu-

lations with simplified CL properties revealed multi-scale transitions from the isotropic to bundled

phase [12]. Most of these previous studies focused on the actin network structure, rather than on

the temporal evolution of the bundled state.

In this paper, we use agent-based simulations to quantify the evolution of the clustered bun-
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dle state from a homogeneous meshwork of filaments and examine the role of Brownian motion

therein. We begin in Section 2 by describing our computational methods [33, 34]. In Section 3, we

demonstrate how a composite bundle state, and subsequently a clustered bundle state, evolve from

a homogeneous meshwork, similar to what is observed in experimental networks [28]. We introduce

a timescale, τc, that quantifies the time to reach the composite bundle state, and show that the

dynamics on shorter, but not so much on longer, timescales are accelerated by Brownian motion.

While we do not consider steric interactions, we demonstrate that the strong cross linking present

at later times is sufficient to arrest the bundling process. We also show that the bundling timescale

is limited by filament diffusion for smaller CL concentrations, while for larger CL concentrations

this diffusion has a minor effect. We find that the relative CL-to-actin ratio required to achieve

the same bundling time decreases with increasing actin network mesh size. Finally, we show that

the diffusion effect explains the faster bundling for shorter filaments. We discuss some remaining

questions, and possible extensions of our model necessary to answer them, in Section 4.

2 Methods

We begin with a review of the kinematics of inextensible fibers, slender body hydrodynamics, and

our model of dynamic cross linking [33, 34] in Section 2.1. In our model, actin fibers are represented

by one-dimensional curves whose shape, position, and orientation evolve over time under the action

of a network of dynamic cross linkers. The cross linkers are modeled as elastic springs between

appropriately-separated filament pairs, and are dynamic because they appear and disappear with

characteristic rates. Steric interactions are neglected, as is the chirality and twist elasticity of

the actin filaments, and our model does not track cross linkers as individually-diffusing entities.

Having studied the role of hydrodynamics in detail in previous work [34], in this paper we neglect

hydrodynamic interactions between distinct filaments. Lastly, when Brownian motion is included,

the filaments are approximated as rigid and bending fluctuations are neglected, since the peristence

length of actin [16] is at least ten times the length of the fibers we consider.

After reviewing our formulation from previous work [33, 34], we introduce new material pertinent

to the simulation of actin bundles, including how we modify our algorithm to simulate rigid fibers

(Section 2.2) and to account for their translational and rotational diffusion (Section 2.3). Once

we introduce thermal motion, a consistent model also requires us to keep the CL dynamics in

detailed balance, i.e., that the binding and unbinding dynamics are in equilibrium with respect to
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the Gibbs-Boltzmann distribution. We account for this in Section 2.4 via a simple change to the

rates of CL binding. Finally, in Section 2.5, we discuss how we use a time-splitting algorithm to

evolve the system in time. While the CL binding and unbinding dynamics and filament evolution

are treated in a first-order-accurate manner, we use a higher-order integrator for the Brownian term

that can more accurately preserve fluctuation-dissipation balance.

2.1 Dynamic cross linking of semiflexible, inextensible fibers

This section reviews our algorithm for simulating the dynamic cross linking of semiflexible fibers

[33, 34], beginning with the kinematics of inextensible fibers and slender body hydrodynamics [33],

and concluding with our model of dynamic cross linking [34]. As in our previous work [33, 34], we

use a periodic boundary condition in all three dimensions to mimic a bulk suspension.

2.1.1 Semiflexible, inextensible fibers

We represent the centerline of each fiber by the Chebyshev interpolant X(s), where s ∈ [0, L] is

arclength and L is the fiber length. Likewise, the corresponding fiber tangent vector is represented

by τ (s) = Xs(s). Because the fibers are inextensible, the tangent vector should have unit length

for all time, τ (s, t) · τ (s, t) = 1, for all s and t. Differentiating this constraint with respect to time,

we obtain τ t · τ = 0, so that the velocity of the filament centerline can be parameterized as [33]

U(s) = Xt(s) =U +

∫ s

0

(
α1(s′)n1(s′) + α2(s′)n2(s′)

)
ds′ := (K[X]α) (s), (1)

where τ (s),n1(s),n2(s) are an orthonormal coordinate system at each s, and α1(s) and α2(s) are

two unknown functions. Equation (1) defines a continuum kinematic operator K that parameterizes

the space of inextensible motions [33, Sec. 3].

To close the system and solve for α =
{
α1, α2,U

}
, we need to state the forces acting on the

fiber centerline. To enforce the inextensibility constraint, we introduce a Lagrange multiplier force

density λ(s, t). In addition to the constraint force, the fibers are also subject to a bending force

with density fκ [X] = −κXssss, where κ is the bending stiffness, and an external force density that

comes from any attached cross links, which we denote by f (CL). The total force density at every

instant in time is therefore f = λ+ fκ + f (CL). Introducing the hydrodynamic mobility operator

M[X] that gives velocity from force (density), the evolution equation of the fiber centerline can
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be written as

K[X]α = M [X]
(
fκ [X] + λ+ f (CL)

)
, (2)

K∗[X]λ = 0,

subject to the “free fiber” boundary conditions [44]

Xss (s = 0, t) = Xsss (s = 0, t) = 0, (3)

Xss (s = L, t) = Xsss (s = L, t) = 0.

We solve (2) for the kinematic coefficients α and constraint forces λ. The adjoint condition K∗λ = 0

closes the system of equations, and encodes the principle of virtual work that constraint forces λ

do no work for any inextensible motion of the fiber centerline [33, Sec. 3.4]. We still have to discuss

the evaluation of M [X] and f (CL), which we do next.

2.1.2 Mobility evaluation

In previous work [33, 34], we utilized three different approaches to evaluate the mobility operator

M[X]. All of these approaches are based on traditional slender body theories [23, 21], which relate

the velocity of a slender filament in Stokes flow to the force density exerted on its centerline. The

total velocity at a point on the filament can be broken into three parts: that from force concentrated

near the point (the “local drag” part, which dominates as the fiber becomes infinitely slender), that

from the rest of the filament (intra-fiber hydrodynamics), and that from forcing on other filaments

(through hydrodynamic interactions mediated by the fluid medium). The first two of these are

simple to evaluate, given that they can be computed on each filament separately, but the third is

expensive to compute because it involves all-to-all interactions through the fluid.

We have already studied the role of nonlocal hydrodynamic interactions in previous work [34],

where we found that the time required to reach a particular bundled state is underestimated by

at most 10−20% when inter-fiber hydrodynamic interactions are dropped. In this paper, our

interest will be in how parameters other than hydrodynamic interactions affect the bundling time.

Therefore, to improve computational efficiency, we will ignore hydrodynamic interactions between

distinct filaments and evaluate the mobility by including only the local drag part and intra-fiber

hydrodynamics. Specifically, the mobility operator on each fiber is given by nonlocal slender body
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theory [23, 21]

(8πµ)U(s) = (8πµ) (M[X]f) (s) =
(
c(s)(I + τ (s)τT (s)) + (I − 3τ (s)τT (s))

)
f(s) (4)

+

∫ L

0

((
I + r̂(s, s′)r̂T (s, s′)

r(s, s′)

)
f(s′)−

(
I + τ (s)τT (s)

|s− s′|

)
f(s)

)
ds′,

where r(s, s′) = X(s) −X(s′), r = ‖r‖, r̂ = r/r, and c(s) is a local drag coefficient which has a

logarithmic dependence on the fiber radius a. Away from the fiber endpoints, we use the classical

result [23]

c(s) = ln

(
4(L− s)s

a2

)
. (5)

Near the endpoints, we regularize (5) over a distance δ = 0.1L as discussed in [33, Section 2.1]. The

choice of mobility (4) allows us to simulate the evolution of bundles faster, and prevents possible

numerical problems that could result when evaluating the nonlocal flows induced by hundreds of

filaments in a bundle on each other [34].

2.1.3 Evaluation of f (CL)

We use a stochastic simulation algorithm to update the locations of the dynamic cross linkers. At

each time step, this algorithm, which we discuss in the next section, gives the fiber indices i and

j that are linked by each link, as well as the arclength coordinates s∗i on fiber i and s∗j on fiber

j where the link is bound. Letting Kc be the link stiffness (units force/length) and ` the CL rest

length, we define the force density on fiber i due to the CL as

f
(CL)
i (s) = −Kc

1− `∥∥∥X(i)(s∗i )−X
(j)(s∗j )

∥∥∥
 δh(s− s∗i )

∫ L

0

(
X(i) (s)−X(j)(s′)

)
δh(s′ − s∗j ) ds′,

(6)

where δh is a Gaussian density with standard deviation σ. While σ → 0 corresponds to a standard

spring point force, we use a finite σ to preserve smoothness for our spectral numerical method. For

N = 16 points per fiber, which we use throughout this paper, we use σ/L = 0.1 [33]. As discussed

in [34], this model is an approximation to the complex elasticity of α-actinin, and is based on

experimental observations that the torsional stiffness of the α-actinin-actin bond does not influence

the dynamics of that bond [7].

2.1.4 Dynamic cross-linking

Our model of dynamic cross linking is discussed in detail in [34]. Briefly, we discretize each fiber into

Nu uniformly-spaced “binding sites” with distance ∆su = L/(Nu − 1) between the sites. We make
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the assumption that the diffusion of individual CLs is sufficiently fast that it can be coarse-grained

into a single binding rate kon with units 1/(length×time). This means that a CL end can bind to a

single discrete fiber binding site with rate kon∆su per second. In the absence of Brownian motion,

as in [34], when one end of the CL is bound, the second end can bind to a nearby fiber with rate

kon,s. By “nearby” we mean a binding site on a distinct fiber that is within a distance interval

(`− δl, `+ δl) , where δ` =

√
kT

Kc
(7)

from the first bound end, where ` is the CL rest length and δ` is a measure of the fluctuations in

spring length.

Each of the binding reactions has a reverse reaction: a CL with both ends bound can have one

end unbind, leaving one end bound, with rate koff,s, and a CL with one end bound can unbind

with rate koff to have zero ends bound. There are thus four possible reactions, which we simulate

stochastically using a version of the standard Stochastic simulation / Gillespie algorithm [15, 2].

The details of our implementation can be found in [34].

In the clustered bundle states that we simulate here, the number of links attached to a given

site can grow without bound. To prevent this, we introduce a CL width cw = 20 nm [36] and set

the maximum number of bound CLs at each site to d∆su/cwe. We implement this in the stochastic

simulation algorithm using rejection: if a binding event is selected and the binding site is full, we

simply move on to the next possible event.

2.2 Modifications for rigid fibers

In order to straightforwardly account for thermal fluctuations, we will consider the case when the

fibers are rigid, so that the only possible fluctuations are translational and rotational diffusion. To

simulate rigid fibers, we modify the kinematic operators K [X] and K∗ [X] in (1) and (2). For rigid

fibers, we introduce α ≡ V = {U c,Ω} to parameterize the space of rigid body motions, where

U c = dXc/dt is the translational velocity of the fiber center Xc = X(L/2), and Ω is the angular

velocity of the fiber about its center. This gives the fiber velocity

U(s) = (KrV ) (s) = U c + Ω× (X −Xc) , (8)

which reduces the constraint of virtual work to the fact that λ produces no net force and torque,

K∗rλ =

 ∫ L
0 λ(s) ds∫ L

0 (X(s)−Xc)× λ(s) ds

 = 0. (9)
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We then solve the system (2) with Kr and K∗r replacing K and K∗. In the Supplementary Text, we

show how to easily generalize our discretization for inextensible fibers [33] to straight rigid fibers

by restricting the number of Chebyshev modes included in the kinematic operator K to only the

first one.

Because the fibers are rigid, we can formulate the hydrodynamic mobility as a 6 × 6 mobility

matrix N [X] which computes the fiber motion due to a total force F and torque T ,

V =

N tt N tr

N rt N rr

F
T

 = N

F
T

 . (10)

When the fibers are straight, as in this work, and we measure the mobility about the geometric

center of the fiber, the cross translation-rotation and rotation-translation mobilities vanish, N tr =

N rt = 0. We recall that in this work we neglect hydrodynamic interactions between fibers, so the

mobility matrix N can be computed for each fiber separately.

The mobility N can be obtained numerically from the slender body mobility matrix M (see

[33, Sec. 4.2] for the discretization) via the Schur complement [42, 47]

N =
(
K∗rM

−1Kr

)†
. (11)

Note that the pseudo-inverse is required because applying a torque about the axis of a straight

fiber produces no net motion (other than twisting, which we do not account for here). For straight

fibers with constant tangent vector τ , by symmetry, the mobility N must be of the form

N tt =
1

µL
(α(ε)I + β(ε)ττ ) , N rr =

γ(ε)

µL3
(I − ττ ) . (12)

In Supplementary Table S1, we tabulate the coefficients α, β, and γ for biologically-relevant ε. See

also [51] for semi-analytical approximations.

2.3 Thermal fluctuations with rigid fibers

For Brownian dynamics simulations, we need to solve the overdamped Ito Langevin equation

∂X

∂t
= M

(
λ+ f (CL)

)
+
√

2kBT KrN
1/2W , (13)

= KrNK∗rf (CL) +
√

2kBT KrN
1/2W

where W(t) is a vector of six i.i.d white-noise processes, andN1/2
(
N1/2

)T
= N . The last equality,

which puts the overdamped Langevin equation into the more traditional symmetric form, follows
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from the fact that the deterministic velocity can be written using (9) and (10) as

U = M
(
λ+ f (CL)

)
= KrV = KrNK∗r

(
λ+ f (CL)

)
= KrNK∗rf (CL). (14)

Note that because the fiber mobility is measured around the obvious geometric center, there is

no stochastic drift term in the resulting Ito overdamped Langevin equation (13) [32, 8]. In our

Brownian dynamics simulations with straight fibers, we use the precomputed values of α, β, and γ

in (12) to generate N
1/2
tt and N

1/2
rr from the fiber tangent vector τ according to (S10).

The random displacement of a fiber over a time interval τ can be sampled the following way,

1. Draw a vector W of six i.i.d. standard Gaussian variates and sample the rigid velocityU c

Ω

 =

√
2kBT

τ
N1/2W . (15)

2. Update the fiber by translating its center by U cτ and rotating the fiber about its center by

an oriented angle Ωτ .

Note that for straight fibers one can simplify the formulation of Brownian dynamics; the formulation

presented here applies to curved rigid fibers as well.

2.4 Keeping the CL dynamics in detailed balance

When we account for thermal translation and rotation of the fibers, we also want to be sure that

the binding and unbinding of the links is consistent with detailed balance, which is not the case

for the constant rates we introduced in Section 2.1.4. Let C denote a configuration of C links (list

of fiber pair connections), and x denote the configuration of fibers (binding site positions). The

desired Gibbs-Boltzmann equilibrium distribution is

Peq (C,x) = ζ (C)
∏
k∈C

exp

(
−Kc

2

(`k − `)2

kBT

)
, (16)

where `k is the length of link k, and ζ (C) determines the probability to observe the cross-linking

configuration C. Now consider a transition to/from a state C ′ with one added link C ′, which has

length `′k. Then at equilibrium the transition between the two states must obey

Peq (C,x) kon,s

(
`′k
)

= Peq

(
C ′,x

)
koff,s

(
`′k
)
. (17)

Substituting Peq from (16) into (17), we obtain the constraint of detailed balance

kon,s (`′k)

koff,s

(
`′k
) =

ζ(C ′)

ζ(C)
exp

(
−Kc

2

(`′k − `)
2

kBT

)
. (18)
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To satisfy (19) for every choice of C and C ′ with binding and unbinding rates that only depend

on spring length and not C and C ′, we must have

kon,s (`′k)

koff,s

(
`′k
) =

k0
on,s

k0
off,s

exp

(
−Kc

2

(`′k − `)
2

kBT

)
, (19)

where k0
on,s and k0

off,s are the transition rates for a link at rest length.

To satisfy (19), we maintain a constant koff,s (`′k) = k0
off,s and set

kon,s

(
`′k
)

= k0
on,s exp

(
−Kc

2

(`′k − `)
2

kBT

)
. (20)

Other choices are possible; for example, the rate of unbinding can depend on the stretch [3, 10]. To

efficiently search for possible binding pairs, we approximate the set of all binding combinations by

setting the maximum link stretch in (7) to be two standard deviations of the Gaussian (20), i.e.,

δ` = 2
√
kBT/Kc.

2.5 Temporal integration

We employ a time splitting approach to evolve the cross-linked actin network. At each time step,

we have three processes to simulate: the thermal diffusion of the fibers, the binding and unbinding

of the dynamic CLs, and the deterministic evolution of the fiber positions. The last two of these

steps are laid out in full in [34], where we employ Lie splitting to first process binding and unbinding

events, and then use the method developed in [33] to evolve the fiber positions in an inextensible

(or rigid, see Supplementary Section 5.1) way. Here we use the first-order accurate, backward Euler

version of the deterministic fiber update which is discussed in [34].

It remains to determine how we will treat the Brownian update. We use a second-order Strang-

type splitting scheme, where during each time step of duration ∆t we:

1. Randomly displace and rotate the fibers over a time interval τ = ∆t/2 using the algorithm

in Section 2.3.

2. Update the cross link attachments (using the stochastic simulation algorithm) and perform a

deterministic fiber update, both over a time interval ∆t, using the method of [34].

3. Randomly displace and rotate the fibers over a time interval τ = ∆t/2 using the algorithm

in Section 2.3.

11



2.6 Network statistics

We quantify the evolution of the cross-linked actin network by examining the connectivity of the

fibers in two ways. First, given the total number of CLs in the system C, we compute an average

link density per fiber via the formula “Link density” = 2C/(LF ). Second, we map the network

to a connected graph to study how the structure evolves in time [31]. We define a “bundle” as a

connected group of at least FB = 2 filaments, where a connection between two fibers is a pair of

links with anchoring locations at least dbund = L/4 apart on each fiber [34], so that the links limit

the fibers’ rotational degrees of freedom. We then define two measures of the degree of bundling in

the system. The first measure is the bundle density, which is the number of bundles per unit volume

B/L3
d, where B is the number of bundles and Ld is the length of the simulation cell. The second

measure is the percentage of fibers in bundles, defined as the percentage of filaments connected to

at least one other filament by two links at least dbund = L/4 apart. The bundle density statistic

preferentially weights smaller bundles, since a bundle of two filaments is counted the same as a

bundle of five filaments, while the percentage of fibers in bundles is independent of FB.1

For a bundle of b filaments, we define an orientation parameter as the maximum eigenvalue of

the matrix [31]

Q =
1

bL

b∑
i=1

∫
τ (i)(s)

(
τ (i)(s)

)T
ds. (21)

The orientation parameter takes values in [1/3, 1], with 1 being the value for a group of straight fibers

with the same tangent vector. Given information about the bundles, we compute an average bundle

orientation parameter by taking an average over bundles with at least two filaments, weighted by

the number of filaments in each bundle.

Throughout this paper, we will quantify the concentration of fibers in terms of the initial mesh

size [37] of the suspension, `m =
√
L3
d/(FL) (parameters are defined in Table 1). Note that this

estimate for `m applies to non-bundled (disordered) suspensions of fibers, so really when we use

`m we mean the initial mesh size, prior to the bundling process beginning. We will operate in

the regime where the fluctuations in the CL rest length as defined in (7), which are of magnitude

δ` = 20 nm (see parameters in Table 1), are several times smaller than the typical filament spacing,

which is at most the initial mesh size `m = O(100) nm and at least the cross linker length of 50

nm.

1One can think of a bundle of FB filaments as contributing a weight ∼ 1/FB to the bundle density, but a weight

∼ FB to the percentage of fibers in bundles.
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3 Results

We begin this section by discussing the kinetics of bundling for non-Brownian, semiflexible fibers,

and establish that semiflexible fibers with a persistence length similar to that of actin [16] can be

well-approximated by rigid filaments. We then show that rigid, Brownian fibers have similar kinetic

behavior, except that the Brownian motion (translational and rotational diffusion) speeds up the

timescale of bundling.

After these preliminaries, we use our simulations to clarify and explain some of the experimental

results on the dynamic formation of cross-linked actin bundles. First, we show how the timescale

needed to reach the composite bundle state depends on the fiber concentration (initial mesh size)

and concentration of CLs (which controls kon in our model). We show that the bundling process

is slower when the actin or CL concentration is lower, but that bundling can still occur at low

actin concentration, provided there are enough CLs available to bundle the fibers, and that the

relative amount of CLs needed for a fixed bundling time decreases as actin concentration increases.

Second, we show that the experimental result that bundling occurs faster for shorter fibers [22, 11]

can only be reproduced in systems where we consider translational and rotational diffusion. Unless

otherwise noted, we will use the simulation parameters listed in Table 1. As discussed in [34], the

cross-linking parameters are chosen to mimic α-actinin, although we will compare our results to

systems with different CLs, such as filamin [40].

3.1 Kinetics of bundling for non-Brownian, semiflexible fibers

We begin with simulations in a system of initial mesh size `m = 0.2 µm, which translates to F = 200

filaments in an Ld = 2 µm domain, F = 675 filaments in an Ld = 3 µm domain, and F = 1600

filaments in an Ld = 4 µm domain. The mesh size we use is of the same order of magnitude as that

in cell cortex in vivo [9] and corresponds to 10 to 15 µM G-actin concentration often used in in

vitro experiments [29, 45]. In Supplementary Fig. S2, we show that the statistics of the bundling

process are insensitive to the domain size up to the point where there is mass coalescence of almost

all the fibers in the simulation cell. For this reason, we will consider results from only one set of

simulations, the one with F = 675 filaments and Ld = 3.

We initialize the set of F filaments with random locations and orientations, then during each

time step we evolve the fibers by updating the dynamic CLs and then updating the fiber positions

in sequential order. Figure 1 shows how the bundling process evolves in small and large systems.
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Parameter Definition Value Unit Notes

a Fiber radius 4 nm [18]

L Fiber length 0.5, 1 µm [20, 35]

F Number of fibers 200− 1600

Ld Simulated volume’s extent 2− 4 µm Cubic unit cell

µ Cytoplasm viscosity 0.1 Pa·s 100× water (cytoplasm) [30]

κ Fiber bending stiffness 0.07 pN·µm2 17 µm persistence length [16]

Kc CL spring stiffness 10 pN/µm [27]

` CL rest length 50 nm [36]

kon CL first end binding rate 5 1/(µm·s) [34]

kon,s CL second end binding rate 50 1/(µm·s) kon,s � kon, not measured

koff CL (one end bound) unbinding rate 1 1/s [26, 48]

koff,s CL (both ends bound) unbinding rate 1 1/s koff,s = koff

cw Actin binding site width 20 nm [36]

kBT Thermal energy 4× 10−3 pN·µm 25◦C

N Number of Chebyshev points 16 [33, Sec.6.3.1]

∆su Binding site spacing 0.026 µm [34]

∆t Time step size 10−4 s Limited by Kc

Table 1: Simulation parameters.
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Figure 1: Bundling dynamics on small and large scales. Top: a small-scale bundling process with three

filaments and snapshots taken at times t = 0, 2, 4, 6, 8, and 10 s. Bottom: Snapshots of the bundling process

taken (from left to right and top down) at t = 5, 10, 20, and 40 seconds for semiflexible fibers with stiffness

κ = 0.07 pN·µm2. Fibers in the same bundle are colored with the same color. The two networks at the

middle are before the coalescence transition time τc ≈ 16 s, while the two networks at the bottom are after

the coalescence time.
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On the microscopic scale, filaments that are initially not parallel are linked by CLs, which pull

them closer together and allow more links to bind. The binding of additional links leads to the

alignment of filaments. Note that the key to the bundling process is the flexibility of the CL, in

particular rapid thermal fluctuation of the CL length, which is present implicitly in our model from

(7). Because the CLs are small, fluctuations in their length occur on a time scale which is much

faster than other characteristic time scales, and so we do not model the fluctuations explicitly.

The combination of the CLs’ elasticity and length fluctuations is crucial, as the length fluctuations

effectively allow the CLs to “find” the neighboring fibers and bind them, whereupon the elasticity

of the CL aligns the fibers, making further cross linking faster.

This process plays out on a larger scale in snapshots from the simulations, shown in Fig. 1 at

t = 5, 10, 20, and 40 seconds. The initial stage of bundling (first two snapshots) is characterized

by bundles of a few straight, aligned filaments, which is similar to the experimentally-observed

composite bundle state [28] and the three-filament bundle shown at the top of Fig. 1. Later times

(bottom two frames) show coalescence of these smaller bundles into larger bundles, with some

curvature appearing in the fibers in the final frame. By t = 40 seconds, there are only a few

bundles made of coalesced smaller bundles, and the network resembles the experimentally-observed

clustered bundle state [28], which approaches the low energy state consisting of a single aligned

bundle [38].

To quantify our observations, in Fig. 2 we plot the mean link density (2C/(LF ), see Section

2.6), bundle density (B/L3
d), percentage of fibers in bundles, mean bundle alignment parameter,

and mean and maximum bundle size throughout the bundling process for three values of fiber

stiffness: κ = 0.07 (the value for actin), κ = 0.007 (fibers ten-fold less stiff), and κ = ∞ (rigid

filaments). In all systems, we see the number of links per fiber grow in time to approach the

maximum of d∆su/cwe × L/∆su = 80, while the bundle density in all systems exhibits a peak

around a critical time τc ≈ 16 seconds. At this time, the other panels of Fig. 2 tell us that 60% of

the fibers are already in bundles, which have a mean alignment parameter larger than 0.9. Figure

S3 gives a more precise look at the composition of the bundles, which are the same for the three

values of stiffness when t ≤ τc: at t = τc, most (> 50%) of the fibers are in bundles of size 11 or

less, with a small percentage (< 10%) in bundles of size 10−20, and the other 40% of the filaments

not in bundles at all. Thus, a time τc into the bundling process, most of the fibers are in small,

highly aligned bundles, as we see in the snapshots in Fig. 1, and the dynamics up to this point

are roughly independent of the fiber stiffness. Based on Fig. 1, we can also think of τc as the time
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Figure 2: Statistics for the bundling process, where we compare the base parameters (κ = 0.07 pN·µm2,

blue) with the systems with smaller bending stiffness (κ = 0.007, orange) and rigid fibers (yellow, κ→∞).

After τc ≈ 16 s, the bundling dynamics for the less stiff fibers are significantly faster. Fibers with similar

bending stiffness to actin are well-approximated by rigid fibers.

17



required to reach the composite bundle state. For this system of non-Brownian filaments, Fig. 2

shows τc ≈ 16 s corresponds to the timescale of increase of the percentage of fibers in bundles

(see middle left frame), meaning it is also the timescale on which the fibers’ rotational degrees of

freedom are arrested or constrained.

After the coalesence time, we see a transition to coalescence of bundles, and the flexibility of

the fibers comes into play. Figure 2 shows that the number of bundles is declining and the mean

bundle alignment is dropping for t > τc, which implies that bundles are forming with non-aligned

fibers. The mean and maximum bundle sizes also start to grow, which again means that small

bundles are coming together to form the larger ones we see in the bottom row of Fig. 1. Figure S3

shows that by t = 60 seconds, at least 75% of the fibers are in bundles of size 30 or larger. It is in

this stage where the flexibility of the fibers can become important: when κ = 0.007 (fibers ten-fold

less stiff than actin), coalescence of bundles occurs faster than in systems with κ = 0.07 or systems

with rigid fibers, since in the former case the fibers are more compliant and can be linked together

more easily by deforming. That said, when κ = 0.07 (persistence length 17 µm), Figs. 2 and S3

show that the dynamics throughout the bundling process are well-approximated by rigid filaments.

This analysis is of course limited by the fiber length we’ve chosen: in particular, we have shown

that, in the absence of Brownian motion, rigid filaments are a good approximation to semiflexible

actin filaments for fibers of length ≤ 1 µm, which are most common in vivo. The approximation

will be worse as the filament length gets larger. Henceforth, we will consider rigid fibers only.

3.2 Thermal fluctuations speed up the bundling process

We now consider simulations with rigid fibers, for which we can account for translational and

rotational diffusion using standard Brownian dynamics methods [32], while maintaining detailed

balance in the cross-linking kinetics, as discussed in Section 2.4. An important quantity in this

case is the time for a fiber to diffuse across a mesh size. In our initial set-up, the fibers are spaced

approximately `m apart, and they first must find each other in order to cross link and begin the

bundling process. The theoretical translational diffusion coefficient of a straight fiber, derived in

[32], can be written in terms of the 3× 3 translational mobility matrix N tt for rigid body motions

as

Dt =
kBT

3
tr (N tt) ≈

kBT

3µL
1.67, (22)
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where the last equality gives the result for a fiber aspect ratio of ε = 0.004, which we obtain from

slender body theory with intra-fiber hydrodynamics (see Table S1, and note that this estimate

accounts for the anisotropy of the fiber, since N tt has an eigenvalue in the parallel direction which

is twice as large as the perpendicular directions). The mean square displacement of the fiber center

is then 〈r2(t)〉 = 6Dtt. Substituting the parameters in Table 1, we obtain 6Dt ≈ 0.13 µm2/s,

and thus the time to diffuse a mesh size is given by τm = `2m/ (6Dt) ≈ `2m/0.13 s. Since diffusion

promotes mixing of the suspension and gives more opportunities for cross linking, our expectation

is that thermal fluctuations should speed up the transition from the homogeneous meshwork to

the composite bundle state, where bundles are made of a few fibers which must be close enough

together to cross link. This assumes that the CL concentration is large enough for links to bind as

soon as fibers are close enough together; we will analyze this assumption in Section 3.3.

To understand how thermal diffusion affects the bundling process, in Fig. 3 we plot the statistics

both with (orange) and without (blue) thermal fluctuations. We see that the entire process is

faster with diffusion, as we might expect, but the degree of acceleration changes before and after

τc. Before τc, the process with diffusion is significantly faster than without; for instance, it takes

about 3 seconds for 50% of the fibers to be in bundles with diffusion, while without diffusion it

takes 12 seconds (Fig. 3 inset), which is a difference of a factor of 4. Indeed, the critical bundling

time τc ≈ 4 seconds with diffusion, while we have already seen τc ≈ 16 seconds without diffusion, so

that the difference is again a factor of 4. For t > τc, when bundles start to coalesce, the difference is

only a factor of 2; an exponential fit to the decaying bundle density gives a constant of 20 seconds

for simulations with diffusion and 40 seconds for simulations without diffusion.

A similar relationship holds when we look not at the number of bundles (which depends on FB,

the minimum number of fibers forming a bundle), but the percentage of fibers in bundles, which is

independent of FB and shown in the middle left frame of Fig. 3. Unlike in the non-Brownian case,

where a single timescale fits the data, the Brownian case requires two timescales for fitting, which

are 3 seconds (which is close, but not equal to τc ≈ 4 s), and 13 seconds. In this case, the new fast

timescale of 3 seconds reflects the ability of Brownian filaments to freely diffuse translationally and

rotationally early in the simulation. Later in the simulation, the filaments are arrested, and the

timescale on which filaments enter bundles approaches that of non-Brownian filaments, 17 seconds.

This provides more evidence for our two stage model of bundling, where thermal fluctuations make

more of a difference in the first stage when fibers are less constrained by cross links. Sure enough,

Fig. S4 (left, blue curve) shows that the mean squared displacement for simulations with Brownian
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Figure 3: Statistics for the bundling process with and without thermal fluctuations. The blue lines show the

results without thermal movement, while the orange lines show the results with translational and rotational

diffusion. Here we use ∆t = 10−4; we have verified that the statistical noise exceeds the time stepping error

for this time step size. The peak in the bundle density occurs at τc ≈ 16 for systems without diffusion, while

for systems with diffusion it occurs at τc ≈ 4 seconds.
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motion decays exponentially to a constant, meaning that at times larger than τc the Brownian

motion is inhibited by cross linking, and therefore becomes less important. Equivalently, entropic

effects (Brownian motion of fibers and cross-linker stretching) are more important at early times,

while at later times energetic effects trap the fibers in the clustered bundle state.

To show that the network morphology has not changed when we add thermal movement, in Fig.

S6 we show the networks at t ≈ τc without and with thermal fluctuations. The composite bundle

network morphology at τc is similar between the two, which demonstrates that fluctuations speed

up the pace of bundling without changing the types of bundles that evolve.

In subsequent sections, we will analyze how the timescale τc that we use to quantify the speed of

bundling depends on the microscopic parameters. While the precise value of τc depends on the pa-

rameter FB (the minimum number of filaments in a “bundle”), Fig. 3 shows that this timescale can

roughly capture the initial growth rate of the percentage of fibers in bundles, which is independent

of FB. Since τc is easier to measure by looking at the peak bundle density (and is in principle easier

to measure experimentally through microscopy) than by fitting a double-exponential curve (which

is an ill-conditioned problem for larger timescales), we will use the bundle density maximum as the

definition of τc. Of course, making FB larger increases τc, as we show in Fig. S5 by setting FB = 5,

but the ratio of τc between the Brownian and non-Brownian system remains the same. However,

increasing FB will cause us to miss the initial stage of bundling where two-filament bundles form

and the fibers’ rotational degrees of freedom are arrested, so we will use FB = 2 henceforth.

3.3 Dependence of bundling timescale on actin and CL concentration

Our conclusion that thermal fluctuations significantly accelerate the initial stage of the bundling

process is dependent on having a sufficient concentration of CLs. While thermal fluctuations

undoubtedly increase the frequency of fibers coming close enough together for cross linking, the

bundling process still must be initiated via binding of a CL. Consequently, in this section we

consider a range of values of mesh size (actin concentration) and kon (CL attachment rate, which

is proportional to CL concentration), to get a more complete picture of how the critical bundling

time τc depends on these parameters. In particular, we will consider mesh sizes `m = 0.2 (F = 675,

Ld = 3 µm), 0.4 (F = 400, Ld = 4 µm), and 0.8 µm (F = 338, Ld = 6 µm), and single-end binding

rates kon = 1.25, 5 (the base value), and 20 (µm·s)−1. By changing the rate at which a single CL

end binds to a fiber, we effectively vary the CL concentration.

Figure 4 shows the resulting evolution of the bundle density for the nine different systems,
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Figure 4: Bundling time scales for a range of initial mesh sizes `m and binding rate kon. The first three

frames show the trajectory of the bundle density for the different mesh sizes, where blue lines denote our

base value of kon = k
(0)
on = 5 (µm·s)−1, orange lines denote kon/k

(0)
on = 1/4, and yellow lines kon/k

(0)
on = 4.

The bottom right frame shows the dependence of the critical bundling time τc on `m and kon.
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Figure 5: Snapshots of the network at t = τc with initial mesh size `m = 0.4 µm (F = 400 filaments of

length L = 1 in a domain of size Ld = 4) with kon/k
(0)
on = 1/4 (left, τc ≈ 17), kon/k

(0)
on = 1 (middle, τc ≈ 5),

and kon/k
(0)
on = 4 (right, τc ≈ 2.5). A smaller kon (smaller CL concentration) gives fewer but larger bundles

at t = τc, as well as a smaller percentage of fibers in bundles.

as well as the resulting critical bundling time τc. For systems with large kon, where binding is

essentially instantaneous once filaments come close enough together, τc ≈ 3 s for the small enough

mesh sizes of `m = 0.2 and 0.4 µm. Once the mesh size increases to 0.8 µm, the bundling time

increases, but only to about 4.5 s (see inset of Fig. 4). Thus τc is not a strong function of mesh size

for larger kon, which implies that the process for large kon, where there is always sufficient cross-

linker available for binding, is primarily limited by cross-linking dynamics (alignment of filaments),

with diffusion (across the mesh size) playing only a secondary role.

Let us now consider the case of slower kon. In this case, filaments could come close enough

to link together, but diffuse away before a CL can actually bind them. As a result of this, the

bundling process is slowed, and in fact the peak bundle density drops. Indeed, as shown in Fig.

5, networks with smaller kon (lower CL concentration) contain larger bundles at t = τc than those

with larger kon (higher concentration). As shown in the supplementary videos, upon reducing kon,

two filaments finding each other becomes the limiting step in the bundling process. This causes a

slow growth of the bundle curve, and a bias towards larger bundles, which build up at a faster rate

(relative to τc), and the process is rate-limited by two-filament bundle formation. The scaling of τc

at small kon (left column of the bottom right panel in Fig. 4) is reminiscent of a diffusion-limited

process, as it increases from 9 s to 17 s to 56 s as the mesh size doubles, scaling approximately as

`2m as the mesh size increases. In some sense, diffusion is actually a hindrance to bundling, since

fibers that are close to each other diffuse away before a CL can bind them together.
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We note that a roughly constant bundling time can be achieved by decreasing kon as the mesh

size decreases (moving from the top right to the bottom left of the bottom right panel in Fig. 4).

This implies that the relative concentration of CL required for a particular bundled state decreases

with the mesh size, as has been found experimentally [40]. When the mesh size is smaller, the

filaments are in contact for longer, and so it is less important that a CL be available immediately

to bind them together. By contrast, filaments in larger-mesh-size systems are only in contact for

a brief time, so relatively more CLs are necessary to ensure that these filaments are linked when

they come into contact with each other.

3.4 Brownian motion is responsible for faster bundling with shorter filaments

We will now explore the dependence of the critical bundling time τc on the fiber length. Exper-

imentally, it has been shown that shorter filaments bundle faster [22, 11], but it is still unclear

whether this is due to thermal movements, cross-linking kinetics, or some combination of both. In

this section, we show that the experimental results can only be reproduced if we consider thermal

movements, so that cross-linking kinetics are not responsible for the speedup in bundling. We use

a fixed mesh size of `m = 0.2 µm, which translates to F = 675 filaments of length L = 1 µm in a

domain of size Ld = 3 µm, and F = 400 filaments of length L = 0.5 µm in a domain of size Ld = 2

µm.

In Fig. 6, we show how the bundle density, percentage of fibers in bundles, and mean bundle

size evolve for the two different filament lengths both (a) without and (b) with actin diffusion. In

Fig. 6(a), we see that in the absence of Brownian motion the behavior in the two systems is similar,

with the peak bundle density occurring in both cases around τc ≈ 15 seconds. Furthermore, there

is only a mild difference in the percentage of fibers in bundles over time. The mean bundle size

is at most twice larger for the system with shorter filaments, but we would expect this since the

filaments are twice as short and there are twice as many of them if `m is fixed.

In Section 3.2, we showed that Brownian motion speeds up the bundling process by promoting

mixing and more near-contacts of filaments. In particular, we saw that the time for a filament

with length L = 1 µm to diffuse a mesh size of `m = 0.2 µm is τm ≈ 0.30 s, so that filaments

can find each other rapidly and begin the bundling process. In the case of filaments with L = 0.5

µm, our thermal diffusion coefficient (22) scales log-linearly with the fiber length, so that it takes

τm = 0.17 s to diffuse a mesh size of `m = 0.2 µm. We might expect, therefore, that at least the

initial stages of the bundling process will be sped up by a factor of 2.
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(b) With diffusion

Figure 6: Effect of changing filament length for rigid fibers with and without Brownian motion, with

constant initial mesh size `m = 0.2 µm. (a) Without fiber diffusion, we show the statistics for filaments

of length L = 0.5 µm (orange) and L = 1 µm (blue), where we observe dynamics occurring on a similar

timescale, especially in the initial stage (t ≤ τc ≈ 20) of bundling. (b) When we add fiber diffusion, the

bundling process for L = 0.5 µm (orange) is significantly faster than L = 1 µm (blue), because filaments can

diffuse faster.
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Figure 6(b) shows that this is indeed the case. For `m = 0.2 µm, the bundle density peak occurs

around τc ≈ 2 seconds when L = 0.5 µm, while with L = 1 µm it occurs around τc ≈ 4 seconds,

so it appears that bundling time with thermal motion scales linearly with filament length, which is

in (approximate) accordance with the scaling of the translational diffusion coefficient. The faster

bundling behavior also manifests itself in the link density and percentage of fibers in bundles, where

we see that systems with shorter filaments reach a number of links or percentage of fibers about

twice as fast. For instance, 80% of the fibers are in bundles by t ≈ 4 seconds in the L = 0.5 µm

case, while with L = 1 µm the 80% mark is not reached until about t ≈ 8 seconds.

3.5 Ratio of bundling and turnover times control steady state morphology

Because we define the bundle density in terms of bundles of an arbitrary number of filaments

(FB = 2), the precise value of the timescale τc that we obtain is also somewhat arbitrary. Indeed,

plotting the decay of the fibers’ MSD over the course of the simulation, as we do in Figs. S4 and S7,

shows that τc is not the only timescale characterizing the bundling process. However, if we increase

the number of filaments required for a bundle to FB = 5, Fig. S5 shows that the peak in the bundle

density occurs about a factor of 2 later in both Brownian and non-Brownian filament simulations.

We therefore postulate that the ratio τ
(A)
c /τ

(B)
c between systems A and B is a meaningful quantity,

approximately independent of the definition of τc, and can be used to predict the steady state

morphology in systems with fiber turnover.

To test this, we introduce filament turnover with mean filament lifetime τf (see [34] for im-

plementation details) and fix τf as a function of τc, so that the ratio of the turnover times

equals the ratio of the bundling times between the Brownian (B) and non-Brownian (NB) cases,

τ
(B)
f /τ

(NB)
f = τ

(B)
c /τ

(NB)
c , or, equivalently, τ

(NB)
f /τ

(NB)
c = τ

(B)
f /τ

(B)
c . In Fig. 7 we vary the ratio

τf/τc between 0.5 and 2 and plot the bundle density and percentage of fibers in bundles as they

evolve to a steady state in each case. Despite the system of Brownian filaments having much faster

bundling dynamics than the system of non-Brownian filaments, the morphology of the steady state

is the same in the Brownian and non-Brownian cases, as is shown in the snapshots of Fig. S8.

4 Discussion

We used numerical simulations to investigate the kinetics of bundling in cross-linked actin suspen-

sions. After validating that semiflexible actin fibers can be approximated as rigid in non-Brownian
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Figure 7: Steady state morphologies for systems with turnover. We introduce filament turnover with mean

filament lifetime τf (see [34] for implementation details) and observe the steady state bundle density (left)

and percentage of fibers in bundles (right) for τf/τc = 1/2 (black), 1 (green), and 2 (red). Note that using

a constant τf/τc in the two systems ensures τ
(B)
f /τ

(NB)
f = τ

(B)
c /τ

(NB)
c . Using both non-Brownian (lighter

colors, τc ≈ 16 s) and Brownian (darker colors, τc ≈ 4 s) filaments, we show that the steady state bundling

statistics are roughly the same when τf/τc is matched.

27



suspensions, we treated actin fibers as Brownian rigid, straight, slender rods, in accordance with

a number of other simulation studies [12, 31]. We coarse grained the diffusion and binding and

unbinding of α-actinin cross-linkers (CLs) into four microscopic rates: kon, kon,s, koff, and koff,s. This

enabled the simulation of a gel with about 700 actin fibers and as many as 50 CLs bound to each

fiber.

We found that, even without thermal movements, actin filaments can still bundle, as filaments

that are initially close enough are linked together at small patches with CLs. These CLs pull fibers

together and align them, thereby allowing more CLs to bind to other sections of the fibers. What

results initially, for times smaller than the critical bundling coalescence time τc, is a collection

of bundles with a few highly aligned filaments, also called a composite bundle state [28]. For

times larger than τc, these bundles coalesce into larger bundles using a similar mechanism as that

for individual fibers, and a clustered bundle state forms. Our critical bundling timescale τc thus

describes the initial time at which networks transition from the composite bundle state to the

clustered bundle state. In networks with fiber turnover, a clustered bundle steady state is only

possible if the turnover time is much larger than τc [34]. Although our work leaves unclear the role

of steric interactions in slowing down bundling, we did show that the strong cross-linking present

at later times is sufficient to arrest the bundling process. In fact, strong cross-linking provides

a force somewhat equivalent to steric interactions, since the finite rest length of the cross linkers

keeps linked filaments apart [38, Note 23]. In this sense, our model properly treated the strong

cross-linking limit, where the fibers are so constrained by the cross linkers that they do not overlap.

We quantified the role of diffusion throughout the bundling process, finding that it has a larger

impact in the initial stages of bundling, when the filaments are not severely constrained by CLs

and can move freely to find each other. We associated this stage with t < τc, and showed that

adding thermal fluctuations decreases τc from 16 seconds to 4 seconds. We showed that the stage

when bundles coalesce (t > τc) is less affected by thermal diffusion (sped up by a factor of 2), since

at that stage the filaments are constrained by CLs, which are more involved in bundle coalescence.

This complements the observation in [11, 46] that bundling occurs faster in a fluid-like environment,

where filaments can move freely prior to kinetic arrest.

At first glance, the order of magnitude of τc that we obtained seems shorter than the char-

acteristic bundling time obtained experimentally, which is generally reported to be on the order

of minutes [36]. The comparison is difficult, however, since experimental times generally include

polymerization, and the bundling timescale in experiments is defined by the onset of the clustered
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bundle steady state, which is much later than the composite bundle state where we define τc.

Nevertheless, the most instructive comparison is between our work and [11, Fig. 4], which shows

experimentally that the addition of 10% nucleates (which speeds up the polymerization process)

gives a saturated bundled state after 100 seconds of polymerization and bundling, where the bun-

dles are made of at least 15 − 30 filaments and are spaced some 10 − 20 µm apart. Given this

observation, and the fact that bundling slows down over time, it is not difficult to imagine that

the transition from the homogeneous state to the composite bundle state could take place on the

order of 5− 10 seconds after cross linkers are added to a system of (polymerized and capped) actin

filaments.

While diffusion of fibers speeds up the bundling process, we showed that it must be combined

with a sufficient concentration of CLs for rapid bundling to occur. In particular, we showed that

a high concentration of CLs (high CL binding rate) can induce bundling for filaments of any mesh

size, with a critical bundling time τc that depends only weakly on the mesh size. By contrast,

when the concentration of CLs is small, bundling is more difficult for any fixed mesh size, and

gets near impossible as the mesh size increases, as near-fiber contacts become less frequent. This

is in accordance with a number of experimental papers [40, 22] which find that bundling requires

a critical CL concentration. In addition, because the fibers are in contact for a short time at

larger mesh sizes, the system must be saturated with CLs for bundling to proceed at a reasonable

rate. This saturation is less important at smaller mesh sizes, where fiber pairs come into contact

more frequently. Translating our results to experimental parameters, we find that the ratio of

the crosslinker concentration to the F-actin concentration that is needed for a particular bundling

time scale decreases as the actin concentration increases, which is in accordance with existing

experimental observations [40, Fig. 3].

As already mentioned, one of the drawbacks of some experimental studies is the sensitivity of

the bundling time to the rate of actin polymerization. For example, it is shown in [11, Fig. 4(d)]

that polymerization kinetics make an order of magnitude difference in the bundling kinetics. While

simultaneous polymerization and bundling also occurs in vivo, our study here allowed us to divorce

bundling and polymerization by focusing on a fixed filament length. By doing this, we showed that

shorter filaments bundle faster exclusively because they can diffuse faster, because without thermal

fluctuations we saw no difference in the bundling kinetics between short and long filaments. This

clarifies why shorter actin filaments are able to associate more rapidly into bundles without the

presence of a background actin mesh [22, 46].
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There are, of course, other timescales that we could have examined in the bundling process. For

instance, Figs. S4 and S7 show that the timescale for slow down of the fibers’ diffusivity, measured

by the decay of their mean square displacement, is related to, but certainly not the same as, the

critical bundling time τc. Our choice to focus on the timescale τc was motivated by our observation

in previous work [34] that the steady state morphology of cross-linked actin networks is driven

by a competition between bundling (which occurs on timescale τc) and filament turnover (which

occurs on timescale τf ). While it is intuitively obvious that increasing the turnover timescale τf

will produce a steady state with more bundles, it is fair to ask whether the ratio τf/τc alone

controls the steady state morphology, or if some other microscopic parameters come into play. In

Fig. 7, we showed that for turnover times τf = τc/2, τc, and 2τc, the gel evolves to a steady state

where the bundle density and percentage of fibers in bundles depend primarily on the ratio τf/τc,

for either Brownian or non-Brownian fibers (recall that τc differs by a factor of 4 for these two

cases). Snapshots in Fig. S8 show little qualitative difference between the network morphology of

the Brownian and non-Brownian steady states for a fixed τf/τc. Thus, for a fixed turnover time τf ,

the steady state morphology is controlled by τc, which is the timescale we studied in detail here.

We can also extrapolate our results to the cell cytoskeleton, but this must be done with some

caution because of the complexity of the in vivo system. The simulated actin network densities

are characteristic of those observed in cell actin cortex, where mesh sizes are on the order 0.1

µm [9]. Considering that the characteristic turnover times for the cell cortex are in the order of

tens of seconds [13], longer than the characteristic bundling times our model predicts, the simple

model prediction is that there is significant bundling in the cell cortex. However, to support this

prediction, additional complexity, such as binding of filaments to the cell membrane and a mix

of formin- and Arp2/3-generated filaments, will have to be added to the model. Similarly, in the

future, the model could be modified to investigate effects of bundling rates that depend on mutual

orientation of the filament pair [36].

Our study here used rigid filaments and coarse grained the dynamics of CL diffusion and binding.

While we showed that non-Brownian semiflexible actin filaments can be approximated by rigid ones,

we have not accounted for the transverse bending fluctuations in actin filaments. In some sense,

softening the stiffness of the cross linkers, which gives a wider range of binding distances than might

otherwise be possible, qualitatively accounts for this, but we plan to develop a numerical method

that includes bending fluctuations in the future. We also hope to place our model of cross-linker

dynamics on more rigorous footing by comparing it to a model that actually tracks the diffusion,
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binding, and unbinding of individual CLs. Other modeling studies addressed bundling in more

complex systems, for example formation of unipolar bundles from a branched actin network [49]

and bundling in the presence of a mix of CLs and myosin molecular motors [39, 3]. Interestingly, the

appearance of the bundles in these more complex systems [39], which form when CL concentration

is above a threshold value [5], resemble those predicted by our model without motors. Another

level of complexity is limits on bundle sizes due chirality effects [17] and long-range electrostatic

repulsion between the filaments (reviewed in [41]). Finally, in this work it was too difficult for

us to simulate the experimental steady state clustered bundled morphologies, since we simulated

actin filament lengths of 1 µm and the observed steady states have bundles separated by hundreds

of microns [40, 29]. More efficient, GPU-based, simulation techniques might enable the efficient

simulation of even larger systems.
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5 Supplemental text

5.1 Rigid fibers as a special case of inextensible fibers

In [33], we discretized the inextensible system (2) by discretizing each fiber with N Chebyshev

collocation points and representing the functions α1(s) and α2(s) by their Chebyshev coefficients,

αj(s) =
∑N−2

k=0 αjkTk(s). Our goal here is to show that setting αj(s) = αj = const. instead gives the

straight rigid fiber kinematic operators (8) and (9). For convenience, we first restate the kinematic

equations for inextensible fibers, which are Equations (41) and (44) in [33],

(K [X]α)(s) =U +

∫ s

0

2∑
j=1

∑
k

αjkTk
(
s′
)
nj
(
τ (s′)

)
ds′ (33.41)

K∗[X]λ :=


∫ L

0

(∫ s
0 Tk(s

′)n1 (τ (s′)) ds′
)
· λ(s) ds∫ L

0

(∫ s
0 Tk(s

′)n2 (τ (s′)) ds′
)
· λ(s) ds∫ L

0 λ(s) ds

 =


0

0

0

 , (33.44)

where the first two components of (33.44) hold for all k. Let us denote by Ks the operator K in

the case of straight fibers with k = 0 being the only included Chebyshev mode, and likewise for

K∗. Then, since the fibers are straight, the orthonormal frame (τ ,n1,n2) is constant along the

fiber, and thus Ks and K∗s simplify to

Ksα =U + α1n1s+ α2n2s (S1)

K∗sλ =


n1 ·

∫ L
0 sλ(s) ds

n2 ·
∫ L

0 sλ(s) ds∫ L
0 λ(s) ds

 . (S2)

We now want to show that Ks and Kr (defined in (8)) parameterize the same linear space of rigid

motions. To do this, let us write X in (8) as an integral of the tangent vector

Krα = U c + Ω× (X0 + sτ −Xc) (S3)

= U c + Ω× (X0 −Xc) + sΩ× τ (S4)

= Û c + s ((Ω · τ ) τ + (Ω · n1)n1 + (Ω · n2)n2)× τ (S5)

= Û c + s (− (Ω · n1)n2 + (Ω · n2)n1) . (S6)

This is exactly the form of Ks in (S1) with α1 = −Ω · n2 and α2 = −Ω · n1. So Kr and Ks

parameterize the same space.
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To complete the equivalence, we now show that K∗sλ = 0 iff K∗rλ = 0. Obviously,
∫ L

0 λ(s) ds =

0 in both cases, so we only have to deal with the torque constraint. If we use the fact that∫ L
0 λ(s) ds = 0, we can write the second component of (9) as

K∗rλ =

∫ L

0
(X(s)−Xc)× λ(s) ds =

∫ L

0
X(s)× λ(s) ds =

∫ L

0
sτ × λ(s) ds (S7)

=

∫ L

0
sτ × ((τ · λ(s)) τ + (n1 · λ(s))n1 + (n2 · λ(s))n2) ds (S8)

= −n1

(
n2 ·

∫ L

0
sλ(s) ds

)
+ n2

(
n1 ·

∫ L

0
sλ(s) ds

)
(S9)

And now, since n1 and n2 are orthogonal and nonzero, we see from (S2) that K∗sλ = 0↔ K∗rλ = 0.

This shows that we can implement rigid fibers using the same algorithms as in [33], except we just

need to keep a single (k = 0) Chebyshev polynomial. Note that the value of κ we use does not

matter except for numerical stability since the fibers stay straight for all time, and so we set κ = 0.

5.2 Form and coefficients of the rigid body mobility matrix

Because of the symmetry of the fiber, the mobility matrix and its “square root” for a single fiber

can be written in the form

N tt =
1

µL
(α(ε)I + β(ε)ττ ) , N

1/2
tt =

1√
µL

(√
αI +

(
−
√
α+

√
α+ β

)
ττ
)
, (S10)

N rr =
γ(ε)

µL3
(I − ττ ) , N1/2

rr =

√
γ

µL3
(I − ττ ) .

Notice that the rotational mobility has a null space of the tangent vector τ . The dimensionless

coefficients α, β, and γ are given for various ε in Table S1.

5.3 Temporal integrator for fluctuating fibers

In this section, we show that our temporal integrator for Brownian motion can accurately reproduce

the steady state distribution of link strains. We place two parallel fibers a distance 0.05 apart, so

that initially X(1)(s) = (s, 0, 0) and X(2)(s) = (s, 0.05, 0). At t = 0, the fibers are connected by

a permanent CL attached at the point s = L = 1 on each fiber. We use rigid fibers with N = 50

points, CL variance σ/L = 0.005 (to simulate point-force-like springs), spring stiffness Kc = 10

pN/µm, and rest length ` = 0.05 µm. We use ε = 0.004, µ = 0.1 Pa·s, and L = 1 µm, as we do in

most of the simulations in the main text. Because we are not interested in dynamics here, we use

the local drag mobility, which is (4) without the integral term. The maximum stable time step is
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ε α(FP) β(FP) γ(FP)

0.01 0.3841 0.2230 3.4263

0.008 0.4020 0.2413 3.6412

0.006 0.4251 0.2646 3.9179

0.005 0.4396 0.2793 4.0931

0.004 0.4575 0.2973 4.3073

0.002 0.5129 0.3530 4.9721

0.001 0.5682 0.4085 5.6361

Table S1: Mobility coefficients for the 6 × 6 rigid body mobility matrix N defined in (S10) for straight

fibers. The numerical estimate of the matrix N is related to the slender body mobility M in (11), which is

computed using intra-fiber hydrodynamics as discussed in Section 2.1.2.

∆t = 0.005 s, and so we will simulate both with ∆t = 0.0005 s (to get results with small temporal

error) and ∆t = 0.0025 s (which is close to the stability limit). We simulate until t = 100 seconds

in both cases and verify that we run for long enough that we have reached the steady state.

We expect the steady state probability density function (pdf) to be the Gibbs-Boltzmann dis-

tribution

P (x) = Zx2 exp

(
−Kc(x− `)2

2kT

)
, (S11)

where the constant Z is chosen such that
∫∞

0 P (x) dx = 1, and the Jacobian x2 factor is necessary

because P (x) is actually the one-dimensional analogue of the true three-dimensional distribution

P (‖x‖). Figure S1 (left) shows that the steady state distribution with small ∆t agrees with the

theory (S11). The right plot, which gives the distributions for ∆t =50% of the stability limit, shows

that our temporal integrator can still reproduce the correct distribution with a larger time step

size.
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Figure S1: Steady state spring length distribution for two stiff fibers connected by a spring at their

endpoint with rest length ` = 0.05 µm. Histograms are the data, and red lines are (S11). Here we use

rigid fibers with N = 50 points, CL variance σ/L = 0.005, and spring stiffness Kc = 10 pN/µm. We show

∆t = 5 × 10−4 s =10% of the stability limit on the left, and ∆t = 2.5 × 10−3 s =50% of the stability limit

on the right. The spring extension measurement is performed at the midpoint of the time step (after step 1

in Section 2.5).
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Figure S2: Link density, bundle density, % of fibers in bundles, mean bundle alignment, mean bundle size,

and maximum bundle size, in a network of semiflexible (κ = 0.07 pN·µm2) non-Brownian filaments with

initial mesh size `m = 0.2 µm. We show curves with different domain sizes (in µm) to establish that the

statistics are repeatable in larger systems. The only statistic which is not repeatable is the maximum bundle

size after many of the filaments have collapsed into one bundle (t & 40 s).
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Figure S3: Bundle sizes over time in the system with F = 675 semiflexible filaments in a domain of size

Ld = 3 µm (τc ≈ 16). We show the percentage of fibers that are in bundles of various sizes over time for

κ = 0.07 pN·µm2 (blue), κ = 0.007 pN·µm2 (orange), and rigid fibers (yellow). For times t = 25, 40, and

60 seconds, the x coordinate reflects the center of a histogram bin with logarithmically-scaled width. At

t = 5 s, 25% of the filaments are in bundles of sizes 2 or 3, while most of the other fibers are not in bundles.

At t = τc = 16 s, about 50% of the fibers are in bundles of size 10 or less, with a small percentage in larger

bundles, and the rest not in bundles at all (this is the composite bundle state). For semiflexible fibers with

κ = 0.07 and rigid fibers, about 75% of the fibers are in bundles of size 30 or larger by t = 60, while for

fibers with κ = 0.007 the entire suspension has coalesced together by t = 40 seconds.
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Figure S4: Square root of average mean square displacement of the fibers’ centers over a time span of 0.05

seconds for simulations with Brownian dynamics and varying kon (colors) and mesh size (from small mesh

size to large going from left to right), all normalized by the value for a freely diffusing fiber. We normalize

time by τc. While all of the curves show significant decay on the timescale τc, it is clear that τc is not the

only timescale in the problem, since curves with small kon are qualitatively different. This is not a surprise,

since we saw in the main text that the bundling process with small kon is more biased towards large bundles

(see Fig. 5).
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Figure S5: Comparing Brownian and non-Brownian filaments with a minimum of FB = 5 filaments per

bundle. In Fig. 3 in the main text, we used a definition of a bundle as having at least two filaments to

conclude that Brownian motion accelerates the bundling process by more in the initial stages (factor of

about 4) than in the latter (factor of about 2). When we increase to FB = 5 filaments per bundle, we

observe the same characteristic growth and decay as with FB = 2, with the peak occurring three-fold faster

in simulations with Brownian dynamics and the later dynamics being accelerated by a factor of about two

(from a timescale of 60 s to 25 s). These confirm the qualitative (and quantitative) conclusions from Fig. 3

that we made in the main text.
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Figure S6: Representative snapshots of a network of rigid fibers without (left) and with (right) Brownian

motion. Both snapshots are taken at t = τc, which is 16 seconds for simulations without fluctuations and 4

seconds for simulations with fluctuations. The networks are qualitatively the same.
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Figure S7: Decay of fibers’ centers’ displacement for different fiber lengths and mesh sizes. We show (the

square root of) the average MSD of the fibers’ centers over a time span of 0.05 seconds, normalized by the

free space diffusion for fibers of the same length. We show mesh size `m = 0.2 µm (blue), 0.4 µm (red), and

0.8 µm (black). Lighter colors are for filament length L = 0.5 µm, darker are L = 1 µm.
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Figure S8: Steady states with fiber turnover for (top to bottom) τf = τc/2, τf = τc, and τf = 2τc for a

system with Ld = 2 and `m = 0.2. The left column is for non-Brownian fibers (τc = 16 seconds) and the

right column is for Brownian ones (τc = 4 seconds). There is little qualitative difference between the left

and right columns, which indicates that the network morphology is controlled primarily by the ratio τf/τc.
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