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Abstract

Cross-linked actin networks are the primary component of the cell cytoskeleton and have

been the subject of numerous experimental and modeling studies. While these studies have

demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short

timescales to viscous fluids on long ones, questions remain about the duration of each asymp-

totic regime, the role of the surrounding fluid, and the behavior of the networks on intermedi-

ate timescales. Here we perform detailed simulations of passively cross-linked actin networks

to quantify the principal timescales involved in the elastoviscous behavior, study the role of

nonlocal hydrodynamic interactions, and derive continuum models from discrete stochastic sim-

ulations. To do this, we extend our recent computational framework for semiflexible filament

suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic

cross linkers. We introduce a model where the cross linkers are elastic springs with sticky ends

stochastically binding to and unbinding from the elastic filaments, which randomly turn over

at a characteristic rate. We show that, depending on the parameters, the network evolves to a

steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin

bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory

shear deformation to extract three timescales from networks of hundreds of filaments and cross

linkers. We analyze the dependence of these timescales, which range from the order of hun-

dredths of a second to several seconds, on the dynamic nature of the links, solvent viscosity, and

filament bending stiffness. We show that the network is mostly elastic on the short time scale,

with the elasticity coming mainly from the cross links, and viscous on the long time scale, with

the effective viscosity originating primarily from stretching and breaking of the cross links. We

show that the influence of nonlocal hydrodynamic interactions depends on the network mor-

phology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction
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to the viscous behavior, but for bundled networks it both hinders the formation of bundles

and significantly lowers the resistance to shear once bundles are formed. We use our results to

construct continuum Maxwell-type models of the networks.

1 Introduction

In most cells, as much as 10% of all protein is actin [60]. The majority of actin is the F-actin

cytoskeleton − a gel made of rapidly-turning-over (assembling and disassembling) actin filaments

(which we will call fibers), which are dynamically cross linked by a vast host of actin binding

proteins (which we will call cross linkers or CLs). The actin cytoskeleton is largely responsible

for the cell’s shape, movements, division, and mechanical response to its external environment

[2]. Thus, understanding the mechanical and rheological properties of dynamically cross-linked

cytoskeletal networks is the first step to understanding the mechanical properties of the cell at

large.

Several in vitro experimental techniques, including active poking, parallel plate shearing, and

embedded-microbead tracking, have characterized the mechano-rheological behavior of cross-linked

actin gels [60]. Depending on the experimental conditions, these studies report viscoelastic moduli

in a wide range, from 0.1 to hundreds of Pascals [30, 33, 83, 46]. The mixed viscoelastic mechanical

response of the densely cross-linked gel is expected: simply speaking, at short time scales the net-

work of elastic fibers and CLs can be considered permanently interconnected and deform elastically,

while at long time scales dynamic CLs are expected to connect fibers only transiently, enabling the

brief storage of elastic energy of deformations. This elastic energy is dissipated after the CLs detach,

which causes effective viscous behavior on long timescales. Often, the measured elastic modulus

for actin gels is about an order of magnitude greater than the viscous one [33, 30, 46]; however,

some studies measure elastic and viscous moduli of similar magnitude [10], and in some cases the

elastic modulus is smaller than the viscous one [84]. Both moduli are increasing functions of actin

and CL concentrations [21, 22]; see especially [22] for master curves over a wide range of CL and

actin concentrations.

To understand the intrinsic timescales in the gel, many experimental studies examine the de-

pendence of the loss and storage moduli on the frequency of oscillatory shear deformation ω. All

experimental studies agree that the behavior of transiently cross-linked networks on long timescales

(low frequencies) is viscous both in vitro [64, 71] and in vivo [10]. As the frequency increases, some
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studies report a monotonically-increasing viscous modulus [22], while others display a curious local

maximum and minimum in the viscous modulus data [47]. The high-frequency limit is also far

from settled, as some studies report a viscous modulus that scales as ω0.75 [22] (consistent with the

thermal fluctuations of a single semiflexible filament [62, 46]), while others observe a viscous-fluid-

like scaling of ω1 [16, 17], and still others yield a scaling of ω1/2 [64, 71, 95], which is characteristic

of the Rouse model of polymer physics (fluctuating beads joined by harmonic springs) [70]. Thus

the short and intermediate timescale behavior, and its dependence on microscopic parameters, is

still an open question, as is the exact meaning of “long” and “short” timescales (i.e., when these

observed scalings begin to dominate).

Part of the reason for the variations in experimental data is that each actin binding protein

produces a unique change in network morphology [20], which in turn uniquely affects the viscoelastic

moduli. For compliant CLs such as filamin, Kasza et al. observe a strong frequency-dependence of

ω0.7 for the viscous modulus and a weak power law scaling of the elastic modulus, with both taking

values in the range 0.1 − 1 Pa [37]. As the CLs get shorter and stiffer, the frequency-dependence

in the elastic [37, 84, 22, 85] and sometimes even viscous modulus disappears [37], which suggests

a change in the network morphology with the type of cross-linker. It is shown in [64] that changes

in the moduli with chemical cross linking are only relevant when the cross-linker length is shorter

than the mesh size, because these kind of CLs group the fibers into bundles, thereby changing the

macroscopic structure of the network.

Wachsstock et al. [83] study the relationship between mechanical response and morphology using

actin filaments with α-actinin cross linkers. Their experiments and modeling show a transition from

elastic, solid-like behavior to viscous, fluid-like behavior as the α-actinin and actin concentrations

increase, which corresponds to the formation of bundles within the network. These bundles are no

longer entangled in a complex network and are free to slide past each other, which leads to viscous

behavior. This observation is compatible with the work of Tseng et al. [81], which shows that more

homogeneous networks are more elastic in nature, and suggests that the cell makes the strongest

elastic structures by combining bundling and cross-linking proteins to form a cross-linked network

of bundles [82].

In view of this experimental complexity, many modeling studies address scaling of the cross-

linked actin gel’s mechanical moduli with kinetic and microscopic mechanical parameters. Some of

the rheological behavior of pure actin networks can be explained with semiflexible polymer theory

[53, 32]. For instance, strain-stiffening behavior in filament networks can be accounted for by an
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entropic model, in which each thermally fluctuating polymer resists affine (stretching) deformations,

or an enthalpic model, in which the filaments bend before they stretch, allowing them to reorganize

along the direction of shear [66]. That said, computational simulations are still a valuable tool, since

it remains unclear what the role of these kinds of theories is for transiently cross-linked networks, as

adding cross-linking proteins yields a significant change in the elastic modulus relative to a purified

actin network alone [21]. Broadly speaking, the existing models of the cross-linked networks fall

into two categories: continuum and agent-based (discrete) models. One aim of our work here is to

use the latter to construct the former, but first we provide an overview of existing methods.

There are a number of continuum models available for the cell cytoskeleton, and in fact there has

been a lot of work in recent years on extending the immersed boundary method [68] to cytoskeleton-

like fluids. For example, Karcher et al. employ a continuum finite element model to measure the

stress induced by magnetic-bead-forcing [36] (a similar model was also used in [59]). They model

the cytoskeleton as either a Maxwell (spring and dashpot in series) or Kelvin-Voigt (spring and

dashpot in parallel) material and report a large sensitivity of the mechanical behavior on the choice

of model. Other studies have approximated the cell cytoskeleton as a poroelastic [77], porous

viscoelastic [11], or Brinkmann [27] fluid. In either case, as discussed in [36, 60], continuum models

are only as good as their fits to the data, and they in general have difficulty relating macroscopic

parameters (such as porosities, discrete timescales, and stiffnesses) to microscopic parameters. In

fact, it has been suggested that the cell possesses a continuum of relaxation timescales [13, 63],

which would invalidate any continuum model with a discrete number of elements.

Discrete models tend to suffer the opposite problem in that they are detailed and realistic,

but are harder to analyze and do not readily extrapolate to macroscopic systems. Most of these

models have focused on simulating the steady state structure of actin networks, which presumably

could help explain some of the observed rheological behavior. Head et al. [28], for instance, solve

an energy minimization problem for straight filaments in two dimensions and use their results to

characterize the transition from affine (stretching-dominated) to non-affine (bending-dominated)

deformation in cross-linked networks. In a more detailed approach, Kim et al. [40] use Brownian

dynamics simulations on a bead-spring model of actin to show that bundling is reduced when CLs

are forced to bind in the perpendicular direction (as they do when fascin is the cross-linker). They

propose that the ability of a network to flow on long timescales is due to the breaking of CLs with

shear, followed by their reformation on a timescale determined by network reorganization and not

individual CL binding. A recent study [87] also used microscopic Brownian dynamics simulations
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to show that the observed local maximum in the viscous modulus [47] corresponds to a maximum

in CL binding and unbinding events, implying that maximum dissipation occurs when the CL

unbinding timescale matches the timescale of the imposed deformation. There have also been a

number of computational studies on the structure and contractile behavior of actomyosin networks,

which show that a critical concentration of α-actinin cross-linkers can combine with myosin motors

to form ordered bundles of actin filaments with varying polarity [69, 45].

Despite, and maybe even because of, the large volume of experimental and theoretical studies

on cross-linked actin gel mechanics, a number of questions still remain open. We focus on three

of them: What role does the morphology of the network play in the mechanical response? Could

there be a significant contribution from nonlocal hydrodynamic interactions? And can we inform

a simple and practical spring-and-dashpot model by detailed microscopic simulations?

This paper is built around answering these questions. To do so, we first review our formulation

for inextensible, semiflexible filaments [55] and extend it to the case of transient cross-linking. We

model filament polymerization dynamics by turning over filaments with a characteristic time τf

and introduce an operator splitting scheme to update the system by turning over the filaments,

updating the cross-linked network, and moving the filaments in a sequential order. Since previous

experimental and modeling studies show that the mechanical behavior of actin networks is most

affected by the presence of short, stiff CLs which induce morphological changes in the network, we

will focus our analysis on CLs with spring stiffness 10 pN/µm and a 50 nm rest length, thereby

mimicking α-actinin. We show that changing the turnover time τf with all other parameters fixed

gives two model systems: an isotropically cross-linked network, or homogeneous meshwork, and a

composite network of bundles embedded in the meshwork (here we follow the classification scheme

of [48]). We use small amplitude oscillatory shear (SAOS) rheology to show that the network has

three characteristic timescales on which the links go from rigid to flexible, permanent to dynamic,

and viscoelastic to purely viscous. It is on this last timescale that remodeling of the network occurs.

This paper is, to our knowledge, the first to incorporate many-body hydrodynamic interactions

(HIs) in the study of transiently cross-linked actin networks. Here we once again find results

that depend on the timescale under consideration. At high frequency, we show that the viscous

modulus scales linearly with ω, and that accounting for nonlocal hydrodynamics simply changes this

coefficient by a fixed percentage. In contrast, at low frequency, we show that nonlocal hydrodynamic

interactions lead to a significant decrease in the moduli for structures with a significant degree of

bundling, and that the decrease can be explained by the disturbance flows inside a bundle. We
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conclude this paper by using our knowledge of the timescales and role of nonlocal hydrodynamic

interactions to suggest coarse-grained continuum models for the transiently cross-linked actin gel.

2 Materials and methods

We first introduce our simulation method for passively cross-linked actin gels. This begins with a

brief review of our recently-developed spectral method for semiflexible, inextensible fibers in the

presence of cross linkers [55]. We next introduce our models of dynamic cross-linking and actin

turnover, both of which are based on the next reaction stochastic simulation algorithm. We then

discuss the three approximations to the mobility (force-velocity) relationship: (non-isotropic) local

drag, intra-fiber hydrodynamics, and full nonlocal hydrodynamics, as well as how we evaluate them.

Most of the details of this can be found in [55]; here we only elaborate on the modifications we

have made for efficient simulation of a bundled many-fiber gel. We conclude this section with our

temporal integration (network evolution) strategy, which uses operator splitting to turn over the

fiber positions, update the cross-linked network, and update the fiber positions in a sequential

order.

2.1 Semiflexible, inextensible fibers

Since actin fibers are slender and semiflexible, we can represent them by smooth Chebyshev inter-

polants X(s), where s ∈ [0, L] is an arclength parameterization of the fiber centerline and L is the

fiber length. We denote the tangent vector by τ (s) = Xs(s). For inextensible filaments such as

actin, we have the constraint

τ (s, t) · τ (s, t) = 1, (1)

for all s and t. To enforce the constraint, we introduce a Lagrange multiplier force density λ(s, t)

on each fiber.

At every instant in time, each fiber resists bending with bending force density (per unit length)

fκ [X] = −κXssss := FX, (2)

where the constant linear operator F gives fκ with the “free fiber” boundary conditions [80]

Xss (s = 0, t) = Xsss (s = 0, t) = 0, (3)

Xss (s = L, t) = Xsss (s = L, t) = 0.
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In [55, Section 4.1.3], we discuss how to discretize the operator F to spectral accuracy in a manner

consistent with the boundary conditions (3) using a method called rectangular spectral collocation

[6, 15].

Beginning with a single fiber, let us introduce the mobility operator M[X] and a spatially and

temporally varying background flow u0(x, t). Then, accounting for the constraint force, bending

force, and any other external forces f (CL) (e.g., those coming from attached CLs), the evolution

equation on the fiber is given by

U =
∂X

∂t
− u0 (X, t) = M [X]

(
fκ [X] + λ+ f (CL)

)
. (4)

subject to the boundary conditions (3) and inextensibility constraint (1). In [55], we show how

to obtain λ and enforce inextensibility via the principle of virtual work. We discuss different

approximations to M[X] in Section 2.4.

2.2 Dynamic cross-linking model

We now specify a method to compute the external or cross-linking force density f (CL) in (4). Here

we extend [55] to account for transient cross linking, where the links can come on and off through

the course of a simulation. To model this, we assume that the density of cross-links is sufficiently

high that CLs do not get locally depleted by binding, and that the links diffuse rapidly. By “rapid”

diffusion, we mean that the Brownian motion of the links is fast relative to the residence time

of a single link, which is on the order of one second (see Table 1). To justify this, we consider

the translational diffusion of a rod of length ` = 50 nm and radius a = 4 nm. The translational

diffusion coefficient of the rigid rod can be approximated by Broersma’s relations as [93]

Dt =
kT

3πµ`

(
ζ − 1

2

(
γ‖ + γ⊥

))
(5)

where ζ = ln

(
`

a

)
, γ‖ = 1.27− 7.4

(
ζ−1 − 0.34

)2
, γ⊥ = 0.19− 4.2

(
ζ−1 − 0.39

)2
For our parameters in Table 1, we obtain ζ = 2.53, γ‖ = 1.25, γ⊥ = 0.19, and Dt = 0.15 µm2/s.

This implies a center of mass displacement of 〈r2〉 = 6Dtt ≈ 0.9t. Thus the time for a CL to travel

a mesh size of r = 0.2 µm is about 0.04 seconds, which is much faster than the one second lifetime

of each link. These assumptions considerably simplify our simulations, as we do not have to keep

track of explicit CLs, but only the number of links bound to each fiber, which can be tuned by

setting the ratio of the binding and unbinding rates.

There are four reactions in the model (parameters are summarized in Table 1):

7



Fiber turnover
Single end (un)binding Second end (un)binding

ℓ ± 𝑘𝑇/𝐾'

(a) Model schematic

(b) Bundling behavior

Figure 1: (a) Our model of dynamic cross-linking with fiber turnover. We coarse-grain the dynamics of

individual CLs into a rate for each end to bind to a fiber. The first end (purple) can bind to one fiber at any

binding site. Once bound, we account for thermal fluctuations of the CL length by allowing the second end

(red) to bind to any other fiber within a distance `±
√
kT/Kc of the first end, where ` is the CL rest length

and Kc is the CL stiffness. To model actin turnover, we allow each fiber to disassemble with rate 1/τf and for

a new (straight) fiber to assemble in a random place (nascent fiber is shown in green) at the same time. (b)

Consecutive simulation snapshots illustrate how the model reproduces the bundling behavior characteristic

of an actin mesh cross-linked with α-actinin. A pair of fibers that are close enough to be crosslinked by a

thermally stretched CL are pulled together when this CL relaxes to its rest length. This brings the fibers

closer together, promoting binding of additional CLs. When multiple CLs along the inter-fiber overlap relax

to their rest length, cross-linked pairs of fibers align and stay close together, making a bundle.
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1. The attachment of one end of a free CL to a fiber, which occurs with rate kon (units

1/(length×time)). Here kon accounts for the rate of diffusion of the CL until one end gets

sufficiently close to a fiber, and then the reaction for the CL to bind to the site.

2. The detachment of a singly-bound CL end to become a free-floating CL, which occurs with

rate koff (1/time). This is the reverse of reaction 1.

3. The attachment of the second end of a singly-bound CL to another (distinct) fiber, which

occurs with rate kon,s (units 1/(length×time)). This necessarily follows after reaction 1. The

rate kon,s accounts for the diffusion of the second end to find a fiber within a sufficient distance,

and then the binding reaction for the end to latch on to the fiber. We model the thermal

fluctuations in the CL length by allowing a singly-bound CL to bind its free end to another

attachment site on a different fiber that is within a distance interval

(`− δl, `+ δl) , where δ` =

√
kT

Kc
(6)

and kT ≈ 4 × 10−3 pN·µm. In this paper, we will fix Kc = 10 pN/µm [44], so that the

distance a link can stretch is δ` = 0.02 µm. This is 40% of the rest length of ` = 0.05 µm.

4. The detachment of a single end of the doubly-bound CL, so that it becomes singly-bound,

which occurs with rate koff,s (1/time). This is the reverse of reaction 2.

A schematic of the four reactions is shown in Fig. 1(a). In our model, we do not account for any

dependence of the binding/unbinding rates on the CL stretch.

To simulate these reactions stochastically, we employ a variant of the Stochastic simulation/

Gillespie algorithm [23, 4]. To advance the system by a time step ∆t, we calculate the rate of each

reaction and use the rate to sample an exponentially-distributed time for each reaction to occur.

We choose the minimum of these times, advance the system to that time, and then recalculate

the rates for the reactions that were affected by the previous step. We organize the event queue

efficiently using a heap data structure [14], so that we can compute the next reaction in O(log n)

time.

We break each filament into Ns possible uniformly-spaced binding sites, where each of the sites

represents a binding region of size L/(Ns− 1) = ∆su. To properly resolve the possible connections

between fibers, we require ∆s . δ`. We then compute the rates of each reaction in the following

way:
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1. Single end binding: the rate of a single end binding to one of the Ns attachment points on

one of the F fibers is kon∆su. We implement this as a single event with rate NsFkon∆su,

where the specific site is chosen uniformly at random once the event is selected. Multiple CLs

are allowed to bind to a site, since each site represents a fiber segment of length ∆su that is

typically longer than the minimal possible distance between two CLs.

2. Single end unbinding: we keep track of the number of bound ends on each of the NsF sites.

If a site has b ends bound to it, we schedule a single end unbinding event from that site with

rate koffb. We do this for each site separately, so that this reaction contributes NsF events to

the event queue.

3. Second end binding: we first construct a neighbor list of all possible pairs of sites (i, j) that

are on distinct fibers and separated by a distance ` + δ` or less, using a linked list cell data

structure [3]. If site i has b free ends bound to it, we schedule a binding event for that pair of

sites with rate bkon,s∆su. Notice that this naturally implies a zero binding rate if there are

no free ends bound to site i. We treat the (j, i) connection separate from the (i, j) one for

simplicity at the cost of increasing the number of events in the queue.

4. Second end unbinding: if a link exists between sites i and j, it can unbind from one of the

sites with rate koff,s. Letting β be the number of links in the system, the total rate for which

bound links unbind from one end is 2βkoff,s. We therefore schedule a single event with rate

2βkoff,s, and, once it is chosen, select the link and end to unbind randomly and uniformly.

In the rest of this paper, we will denote the connectivity of the network (number of single ends

bound to each site, list of sites connected by CLs) as Y (t). The CL force in (4) is then a function

of the fiber positions and network configuration, which we denote as f (CL) (X;Y ).

We use our previous work [55, Section 6.1] to define the cross-linking force density between

two fibers X(i) and X(j) in a manner that can preserve the problem smoothness and therefore the

spectral accuracy of our numerical method. Suppose that a CL connects two fibers by attaching

to arclength coordinate s∗i on fiber i and s∗j on fiber j. Then the force density on fiber i due to the

CL is

f
(CL)
i (s) = −Kc

1− `∥∥∥X(i)(s∗i )−X
(j)(s∗j )

∥∥∥
 δh(s− s∗i )

∫ L

0

(
X(i) (s)−X(j)(s′)

)
δh(s′ − s∗j )ds′

(7)
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where Kc is the spring constant for the CL (units force/length), ` is the rest length, and δh is a

Gaussian density with standard deviation σ. As discussed in [55, Section 6.1], the Gaussian width

σ depends on how many points are used to discretize the fibers. In this paper, we use N = 16

points in the fiber discretization, and so we also use the required σ/L = 0.1 to preserve smoothness.

In the limit σ → 0, the Gaussian density becomes a Dirac delta function, and the force density (7)

becomes the expected expression for a linear spring connecting the points X(i)(s∗i ) and X(j)(s∗j ).

This model is of course an approximation; as shown in [44], the stress-strain relationship for α-

actinin, which is the model CL we consider here, is nonlinear and exhibits hysteresis for loading

and unloading. We follow a number of other modeling studies [87, 41] in approximating α-actinin

as a linear spring, although we do not include an angular stiffness, since recent experimental results

[12] indicate that the dynamics of the α-actinin-actin bond are insensitive to rotation.

2.3 Fiber turnover

We account for the turnover of actin filaments by removing a filament (and all of its attached links)

from the system and rebirthing a new, straight filament with a random location and orientation

elsewhere in the system (see schematic in Fig. 1(a)). Our reasoning for this is two-fold: first, it is

simple to implement, and second, our simplifying assumptions are supported by experimental data.

Experiments have shown that pointed-end depolymerization from one end of an actin filament is

too slow to explain the observed rates of filament turnover in vivo [35], and that depolymerization

actually occurs in bursts as filaments abruptly sever into smaller pieces [42]. In this sense, our

model of depolymerization as an instantaneous event is supported by the data. For polymerization,

the process is normally linear, with monomers being added at the plus end until it is capped. It

has been shown experimentally [54], however, that the combined time of growth, capping, and

disassembly is still significantly smaller than the time in which the filament is at a finite length,

so we assume the former to be instantaneous relative to the latter. We refer to [65, Sec. 2.5] for a

mathematical treatment of linear polymerization.

Having chosen this model, fiber turnover can be added as another reaction in our stochastic

simulation algorithm. Defining the mean turnover time of each fiber as τf , we add a fiber turnover

reaction to our reaction list with rate F/τf . If this reaction is chosen, we select the fiber to turnover

randomly and uniformly. We emphasize that our time steps are at most 10−3 seconds while the

turnover times are of the order seconds, so we almost always see zero or one fiber turnover events

per time step.
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2.4 Mobility evaluation

We complete our description of the evolution equation (4) by specifying the mobility operator

M[X]. Our approach is fully described in [55, Sec. 2, Appendix A] and is based on an improved

version of the traditional slender body theory for Stokes flow [38, 34, 80]. For a single fiber, the

self-mobility gives the fiber velocity in (4) as

UL(s) = u0 (X(s)) +
1

8πµ

((
c(s)(I + τ (s)τT (s)) + (I − 3τ (s)τT (s))

)
f(s) (8)

+

∫ L

0

((
I + r̂(s, s′)r̂T (s, s′)

r(s, s′)

)
f(s′)−

(
I + τ (s)τT (s)

|s− s′|

)
f(s)

)
ds′

)
,

where r(s, s′) = X(s)−X(s′), r = ‖r‖, and r̂ = r/r. Thus the velocity on the fiber can be written

as a leading order local drag term (the first line), which accounts for forcing localized around X(s),

plus a “finite part” integral remainder term (the second line), which accounts for the intra-fiber

nonlocal hydrodynamic interactions. In (8), c(s) is a local drag coefficient which has a logarithmic

dependence on the fiber radius a as

c(s) = ln

(
4(L− s)s

a2

)
, (9)

away from the fiber endpoints. Near the endpoints, (9) as written is singular, and we regularize it

over a distance δ = 0.1L as discussed in [55, Section 2.1]. Throughout this paper, we will fix a = 4

nm [25].

When there are multiple fibers, the velocity (8) has to be modified to account for the flows

induced by fibers j 6= i on fiber i. Denoting this flow by UNL and indexing the ith fiber with a

superscript (i), we use a line integral of the Rotne-Prager-Yamakawa (RPY) hydrodynamic tensor

over all other fibers to obtain the total disturbance flow

U
(i)
NL(s) =

1

8πµ

∑
j 6=i

∫ L

0
SRPY

(
X(i)(s),X(j)

(
s′
)

; 2a2/3
)
f (j)

(
s′
)
ds′. (10)

The RPY tensor SRPY, which involves the Stokeslet and doublet singularities of Stokes flow, is a

specific form of a symmetrically regularized Stokeslet, as explained in more detail in [55, Sec. 2]

and [86].

Our strategy for evaluating the total velocity U
(i)
L + U

(i)
NL on each fiber is documented in [55,

Section 4]. The most computationally intensive part of this calculation is the evaluation of the non-

local integrals (10). These integrals present challenges because they naively cost O(F 2) operations

to evaluate, where F is the number of fibers, and because they can be nearly singular when fibers
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are close together. For triply periodic systems, which we consider in this paper, we reduce the cost

to O(F ) using the positively split Ewald method of [18, 19]. For a summary of how this method is

adapted to sheared domains, see [55, Section 4.3].

In our previous work, we dealt with the nearly singular nature of the integrals for nearly

contacting fibers by correcting the result from Ewald splitting with the special quadrature method

of [1]. While this is the most accurate way to evaluate (10), our recent experiments show that

the fastest way to compute the integrals (10) with sufficient accuracy is via oversampled direct

quadrature on a GPU. Specifically, we discretize all integrals for j 6= i using Clenshaw-Curtis

quadrature with weights w,∫ L

0
SRPY

(
X(i)(s),X(j)

(
s′
)

; 2a2/3
)
f (j)

(
s′
)
ds′ (11)

≈
Nu∑
p=1

SRPY

(
X(i)(s),X(j)

(
s′p
)

; 2a2/3
)
f (j)

(
s′p
)
wp.

We then perform the summation with periodic boundary conditions using the positively split Ewald

method [18, 19, 55], which we implement on a GPU in the UAMMD library [67], with Nu sufficiently

large to resolve all of the integrals in (10).

Following [55], to investigate the role of nonlocal hydrodynamic interactions, we vary the model

used to compute the fluid velocity on the fibers. Our first option, which we refer to as the local drag

model, is to include only the first line of (8). Note that this mobility is non-isotropic, since the c(s)

term in (8) gives approximately twice the velocity for a force in the tangential direction, so even the

local drag model we use is a significant improvement over formulations based on an isotropic local

drag coefficient [75, 87], which are also missing the logarithmic dependence in (9). Another option

is to include only the UL term in each fiber’s velocity so that (nonlocal) hydrodynamic interactions

between a fiber and itself (which for dilute suspensions are the most important) are accounted for,

but not interactions between a fiber and the others. We term this the intra-fiber mobility. Finally,

when all terms UL +UNL are included on each fiber, we refer to the mobility as the full (nonlocal)

hydrodynamic mobility.

2.5 SAOS rheology

To quantify the viscoelastic behavior of the network, we measure the linear elastic (also called

storage) modulus G′ and viscous (loss) modulus G′′. We employ small-amplitude oscillatory shear
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(SAOS) rheology to do this [61, 55], so that we impose a shear flow of the form

u0(x, t) = γ̇0 cos (2πωt)(y, 0, 0). (12)

The nonzero component of the rate of strain tensor for this flow is given by

γ̇21(t) =
∂ux0
∂y

= γ̇0 cos (2πωt), (13)

while the nonzero component of the strain tensor is

γ21(t) =

∫ t

0
γ̇21(t′) dt′ =

γ̇0

2πω
sin (2πωt) := γ0 sin (2πωt), (14)

where γ0 = γ̇0/(2πω) is the maximum strain in the system. The bulk elastic (G′) and viscous

modulus (G′′) relate the stress to the strain (for the elastic modulus G′) and rate of strain (viscous

modulus G′′) [61] via
σ21

γ0
= G′ sin (2πωt) +G′′ cos (2πωt). (15)

As discussed in [55, Sec. 6.2], the stress tensor for our system can be decomposed into a part

coming from the background fluid and a part coming from the internal fiber stresses,

σ21 = σ
(µ)
21 + σ

(f)
21 = µ

∂ux0
∂y

+ σ
(f)
21 . (16)

Substituting the background flow (12), we obtain the stress for the background (pure viscous) fluid

σ
(µ)
21

γ0
= 2πωµ cos (2πωt). (17)

A pure viscous fluid therefore has viscous modulus scaling linearly with ω as G′′(ω) = 2πωµ. This

will be useful to us when we examine the behavior of the viscous modulus of the actin gel.

The contribution of the fibers to the stress tensor is the integral
∫
X(s)f(s) ds, where f is the

total force density on the fibers [8, 80], including the elastic forces exerted by the cross-linkers. This

must be handled carefully in periodic boundary conditions, as the correct periodic copy of the fiber

must be used to ensure the stress is symmetric. The formula we use is given in [55, Eqs. (124,125)].

2.6 Temporal integration and splitting

We have three different events to process at each time step: fiber turnover, link turnover, and fiber

movement. We will treat them sequentially using a first order Lie splitting scheme [31]. For each

time step n of duration ∆t, from time n∆t to (n+ 1)∆t, we
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1. Turnover filaments to update configuration Xn →X∗n.

2. Process binding/unbinding events to evolve Y n → Y n+1.

3. Use the method of [55] to evolve X∗n →Xn+1.

The evolution of the fiber network in step 3 is performed using the method of [55, Sec. 4.5]. This

method obtains second-order accuracy and unconditional stability for fibers with permanent CLs

using a combination of a linearly-implicit trapezoidal discretization for the fiber bending force and

extrapolations for arguments of nonlinear terms (e.g., we use Xn+1/2,∗ = 3/2Xn−1/2Xn−1 as the

argument for the mobility and apply the nonlocal part of the mobility to an extrapolated constraint

force λn+1/2,∗ = 2λn−1/2 −λn−3/2). We use this temporal discretization wherever it applies and is

sufficiently stable.

However, extrapolations such as Xn+1/2,∗ are nonsensical for fibers that are turned over in the

previous time step. For those fibers, we set Xn+1/2,∗ = X∗n and compute a guess constraint force

λn+1/2,∗ by solving (4) with the local drag mobility on each fiber that is respawned. Additionally,

in our temporal discretization [55, Eq. (102)], the forcing inside the nonlocal mobility is treated

entirely explicitly, since there we assume that the local drag part dominates the fiber motion.

There are two ways this could go wrong: first, if a uniform, isotopic suspension is sufficiently

concentrated, the temporal integrator becomes unstable. This was the case we already dealt with

in [55], where we switched to implicit treatment of the bending force in all parts of the mobility

and used an iterative solver. When the fibers are in bundles, however, we find that the approach

of [55] is prohibitively expensive due to the ill-conditioning of the elastic force operator F (which

involves fourth derivatives) combined with the extrapolations for Xn+1/2,∗ and λn+1/2,∗. For this

reason, we switch to a first-order backward Euler discretization of fiber elasticity, where Xn+1/2,∗

is replaced by X∗n and the elastic force is computed on Xn+1. The backward Euler discretization

is our preferred one for simulations with significant bundling and full hydrodynamics.

Finally, we discretize the stress tensor in a manner consistent with the numerical method, either

as σ
(f)
n+1/2 = σ(f)

(
Xn+1/2,∗;Y n+1

)
or as σ

(f)
n = σ(f) (Xn;Y n+1). The moduli G′ and G′′ are then

evaluated by integrating the stress against the orthogonal sine and cosine functions [55, Eq. (126)].
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Parameter Definition Value Unit Notes

a Fiber radius 0.004 µm 4 nm [25]

L Fiber length 1 µm [33, 57]

Ld Periodic unit cell length 2, 3 µm

F/L3
d Fiber density 25 µm−3 Iso. mesh size = 0.2 µm [92, 94]

µ Fluid viscosity 0.1 Pa·s 100× water (cytoplasm) [50]

κ Fiber bending stiffness 0.07 pN·µm2 17 µm persistence length [24]

Kc CL spring stiffness 10 pN/µm [44]

` CL rest length 50 nm [58]

kon CL first end binding 5 1/(µm·s) 1− 10 CL ends per filament1

kon,s CL second end binding 50 1/(µm·s) kon,s � kon, not measured

koff CL first end unbinding 1 1/s [43, 91]

koff,s CL second end unbinding 1 1/s koff,s = koff

δ` CL stretch amount 0.02 µm Binding in (0.03, 0.07) µm

τf Fiber turnover time [5, 15] s [79, 26] (order 10 seconds)

N Number of Chebyshev points 16 [55, Sec.6.3.1]

∆su Binding site spacing 0.026 µm Need ∆su . δl for accuracy

∆t Time step size 10−3µ s Limited by Kc

Table 1: Simulation parameters. With the exception of the changes described in Table 2, we keep these

parameters constant in all simulations.

System τf Varied params C̄ B̄ % in B

Meshwork 5 − 5.8 1.0 8.5

Meshwork, κ/10 5 κ = 0.007 5.6 0.93 8.1

B-In-M 10 − 12.5 2.2 23

B-In-M, 2k 5.7 kon = 10, kon,s = 100, koff = koff,s = 2 12.5 2.1 21

B-In-M, 10µ 16 µ = 1 12.2 1.8 17

Table 2: Description of the systems we consider and their respective computed mean link and bundle

densities. These data are from rheology simulations using ω = 1. Here C̄ is the average number of links

attached to each fiber, B̄ is the bundle density in bundles per µm3, and “% in B” is the percentage of the

fibers that are in a bundle in the dynamic steady state.
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3 Results

This section presents our results for the viscoelasticity of dynamically cross-linked actin networks.

We use the parameters in Table 1 to perform the simulations, and show in Section 3.1 that changing

the fiber turnover time gives a pair of dynamic steady states with varied degrees of bundling. In

Section 3.2, we use a stress relaxation test to show that the networks relax to a state of zero stress

on a timescale of a few seconds. This is quantified more precisely with our rheological data in

Sections 3.3−3.6, where we establish three discrete relaxation timescales and discuss the behavior

on short, long, and intermediate timescales in more detail. Our discussion of the role of nonlocal

hydrodynamic interactions (HIs) necessarily follows this, as the role of HIs is more significant on

long timescales than short ones, as we show in Section 3.7. We conclude this section by developing

a continuum Maxwell-type model that is informed by our knowledge of the three timescales.

Our simulations use a background fluid with viscosity µ = 0.1 Pa·s, mimicking the larger

viscosity of the cytoplasm [50]. We will, however, assume the background fluid is Newtonian, in

contrast to actual cytoplasm, so that we can isolate the contribution of the fibers to the viscoelastic

moduli.

3.1 Fiber turnover creates dynamic steady states with varied degrees of bundling

We first show that varying the turnover time τf of the F fibers creates a set of dynamic steady

states with varying degrees of bundling. We also verify that the statistics are independent of

the system size by considering three possible cubic periodic unit cells of different edge length

Ld, all with the same mesh size (computed assuming that the fibers are distributed isotropically)

`m =
√
L3
d/(FL) ≈ 0.2 µm. The fibers have length L = 1 µm throughout, so we will consider

domains of size Ld = 2 (F = 200 fibers), Ld = 3 (F = 675 fibers), and Ld = 4 (F = 1600 fibers).

We will show that simulations of a homogeneous meshwork (τf = 5 seconds) are suitably carried

out in the smallest of the three systems, while runs where bundling is more considerable require

the next-largest system (Ld = 3).

1In experimental studies, what is measured is a macroscopic binding rate of the order 1 µM−1 s−1, which cannot
easily be converted to the effective microscopic rate we need. To find a suitable on rate, we make the observation

from [83] that 10 − 50% of a 1 µm long filament is decorated with α-actinin [83], which corresponds to about 1 − 10

CLs per filament of length 1 µm; we find that kon = 5/(µm×s) is of the correct order of magnitude to give about 5

CL ends attached to each filament.
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As shown in Fig. 1(b), dynamic cross-linking leads to bundling of fibers, a phenomenon that

is well documented experimentally for a variety of CL types [49, 73, 21]. To define a bundle, we

use the network Y to map the fibers to a connected graph [51]. Unlike [51], we say that two fibers

are connected by an edge if they are connected by two links a distance L/4 apart, the idea being

that the fibers are sufficiently aligned in that case for the links to constrain their orientations.

“Bundles” are then the connected components of this graph (two or more fibers per bundle). To

better understand the network morphology, we define a bundle density B̄ = B/L3
d, where B is the

total number of bundles, and also quantify the percentage of fibers in bundles. We define C̄ as the

average number of links bound to each fiber (the total number of links is FC̄/2).

3.1.1 Homogeneous meshwork morphology

Beginning with turnover time τf = 5 seconds, we perform a steady state run to 10τf = 50 s using

the three domain sizes. As shown in Fig. 2(a), the network is made primarily of fibers oriented

isotropically (as can be verified by computing an order parameter of the type [51, Eq. (21)]), with

a few bundles of at most two to three aligned fibers. We quantify this more precisely in Table 2,

where we see that there is on average one bundle per µm3, and that less than 10% of the fibers are

in bundles. Because there are only a small number of bundles and no permanent structures over

long timescales in this system, we classify this system as a homogeneous meshwork. We will report

results for it using a domain size of Ld = 2 µm (we have verified that using Ld = 3 does not change

the results significantly; see Fig. S1).

3.1.2 Bundles embedded in meshwork morphology (B-In-M)

In Fig. 2(b), we show snapshots from the dynamic steady state with a (doubled) turnover time of

τf = 10 seconds. We observe significantly more bundling and fiber alignment, as well as bundles

with several (four to six) fibers in them. In Table 2, we see that the steady-state link density has

more than doubled from the 5 second turnover case, and that the percentage of fibers in bundles has

gone from about 10% for τf = 5 to 25% for τf = 10. The fluctuations of link density in the smaller

system (Ld = 2) are quite large (about 20%, see Fig. S2), which makes averaging too inaccurate.

For this reason, for τf = 10 seconds we run a larger system with Ld = 3 and τf = 10 seconds, which

we show in Fig. 2(b). We use the Ld = 4 system with 1600 fibers to verify that the finite system

size has little effect; see, for example, Table 3.

Because this system has a significant number, but not more than half, of the fibers in bundles,
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(a) τf = 5 seconds (b) τf = 10 seconds

Figure 2: The actin gel for (a) τf = 5 seconds and (b) τf = 10 seconds, both shown on a domain with

edge length Ld = 3 µm. Fibers in the same bundle are colored with the same color. In (a), we observe a

more homogeneous mesh. In this case, we use Ld = 2 µm in most simulations. In (b), we observe multiple

bundles embedded into a mesh, and we use Ld = 3 µm in most simulations.
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and because the maximum bundle size is still at most ten fibers, we refer to this system as a

bundles embedded in meshwork (B-In-M) morphology, where there are small bundles of a few fibers

embedded in an otherwise homogeneous mesh.

3.1.3 Other systems (parameter variations)

In addition to varying the morphology through the turnover time, we also look at systems with the

same morphologies, but different microscopic parameters. Table 2 gives our description of these

systems. For a homogeneous meshwork, we consider τf = 5 seconds again, but this time with ten

times smaller bending stiffness, so that κ = 0.007 pN·µm2. Table 2 shows that the morphology

in this case is the same as the homogeneous meshwork with κ = 0.07, so changing the bending

stiffness has a minimal impact on the morphology. Indeed, the fibers remain relatively straight

even with the smaller bending stiffness (see Fig. S3).

We also consider B-In-M systems with larger viscosity, µ = 1 Pa·s instead of 0.1, and another

system where we double the rates of link binding and unbinding. Table 2 shows how we vary the

turnover time in these systems to obtain a B-In-M morphology. When the viscosity is increased

by a factor of 10, we only need to increase the turnover time by a factor of 1.5 to obtain a similar

morphology (match C̄ as closely as possible). Meanwhile, doubling the rates forces us to cut the

turnover time almost in half to obtain the same morphology. This provides our first indication that

the morphology, or the timescale on which the network organizes itself into bundles, is strongly

dependent on the link binding and unbinding rates and weakly dependent on the underlying fluid

viscosity. This combination of behavior suggests we are operating in a regime where the CLs are

attached for long enough to move the fibers into a quasi-steady state (since using twice the link

turnover rate speeds up the process by a factor of two and making the dynamics slower by changing

viscosity has little effect).

3.1.4 The linear response regime (LRR): viscoelastic moduli and stress spectra

Our goal for the rheology experiments is to measure the shear moduli of the network in its dynamic

steady state, and in the linear response regime (LRR). In this section we briefly demonstrate how to

find the LRR and what happens when we go beyond it, using the B-In-M geometry as an example.

Table 3 shows the steady state statistics and mean viscoelastic moduli for the B-In-M system

with varying strains γ. In Table 3 and throughout this paper, we report the viscous modulus G′′

without the contribution from the viscosity of the Newtonian solvent G′′bkgrnd = 2πωµ. We observe
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Ld γ C̄ B̄ % in B G′ G′′

3 0 12.6 2.3 24.1

3 0.01 12.5 2.2 23.2 0.37 0.64

3 0.025 12.5 2.2 23.5 0.36 0.63

3 0.05 12.8 2.2 23.9 0.39 0.67

3 0.10 13.2 2.3 25.1 0.52 0.77

3 0.15 13.9 2.4 26.6 0.79 0.96

3 ± 0.4 0.1 0.8 0.04 0.03

4 0.025 12.7 2.2 23.8 0.37 0.66

4 0.05 12.8 2.2 24.0 0.42 0.70

4 ± 0.1 0.1 0.5 0.02 0.02

Table 3: Network structure statistics for the runs over 120 seconds for the B-In-M network with ω = 1

Hz. We give the mean for each statistic, with uncertainties on the measurements (± row) equal to two

standard deviations across five trials. The uncertainties in the viscoelastic moduli for γ = 0.15 are larger,

G′ = 0.79± 0.09 and G′′ = 0.96± 0.12. The comparable values of the statistics and moduli for Ld = 3 and

Ld = 4 demonstrate that the finite-size errors are smaller than the statistical errors.

from the table that the LRR is γ . 0.05, since using γ > 0.05 leads to significantly larger moduli.

n particular, Table 3 shows that larger strains of γ ≥ 0.10 induce significantly higher bundle

densities and the formation of more links, which increases the elastic modulus by 33% (3 standard

deviations) or more. The viscoelastic moduli for larger strains are also subject to significantly larger

uncertainties (e.g., the uncertainity for γ = 0.15 is at least double the uncertainity for γ = 0.1). The

larger uncertainties come from fluctuations in the underlying microsctructure, as the fluctuations

in the link density increase by 50% from γ = 0.01 to γ = 0.15.

Another way we can confirm that we are in the LRR is by looking at the Fourier spectrum of

the stress. Specifically, we will write the stress as

σ(t) =
∞∑

k=−∞
σ̂(k)e2πikωt (18)

and use the discrete Fourier transform to look at the amplitude of the coefficients σ̂(k) for various

γ. In Fig. S4, we show the spectrum |σ̂(k)| for integer values of k with τf = 10, where we observe

a peak at the obvious location of k = 1. It is the emergence of higher harmonics for larger strains,

however, that tells when we leave the LRR. From Fig. S4, we see that γ = 0.1 is definitely not in
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the linear regime for the B-In-M geometry, since it has a k = 3 Fourier coefficient that is only about

ten times smaller than the one for k = 1. Increasing γ to 0.15, we see an even stronger response

from the k = 3 harmonic, and the emergence of the k = 2 harmonic as well.

3.2 Timescales of stress relaxation

We first seek to gain some understanding of the timescales in the system with a stress relaxation

test, snapshots from which test are shown in Fig. 3. We simulate for 0.25 seconds using ω = 1

Hz, so that the system ends at its maximum strain γ (the results are largely independent of both

the strain and shear rate used to obtain it). In Fig. 4, we show the decay of the stress, with

t = 0 denoting the point at which the system reaches the maximum strain. In addition to our

dynamic network geometries, for which we average over 30 trials, we consider permanently linked,

interconnected networks of the type considered in [55], where C̄ = 25 ensures the network is well

above the rigidity percolation threshold (over 95% of the fibers are in one connected component,

where two fibers are connected if they are linked by at least one CL). These networks give smoother

stress profiles, and so we only average over 5 trials.

Figure 4 gives us two pieces of information that are important for our analysis going forward.

First, we observe that statically-linked networks can store elastic energy, since g0 := σ21(t→∞) >

0, while all of the energy dissipates in transiently-linked networks. Second, both permanent and

dynamic networks have multiple relaxation timescales, as most of the stress (≈ 80% for dynamic

networks) relaxes over the first 0.2 seconds or so, with the remaining part taking seconds to relax.

In Fig. 4, we show a two-timescale decay curve that approximately, but not exactly, matches the

decay of the stress in both statically- and transiently-linked networks. Given that one of the time

constants is on the order 0.1 second and the other is on the order 1 second, Fig. 4 demonstrates

that both slow and fast timescales exist in cross-linked networks. Our rheological experiments will

give more precise estimates for the individual timescales.

One observation we can make from Fig. 4 is that the long-time behavior is similar for all dynamic

networks, so the long timescale behavior is roughly independent of viscosity. We made this latter

observation once before when we saw that a similar turnover time can be used to generate a B-In-M

morphology for larger viscosity systems. We will look at the short-timescale behavior more closely

in our rheological tests, which we discuss next.
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Figure 3: Snapshots from the stress relaxation test in a homogeneous meshwork (top) and B-In-M geometry

(bottom). We begin with an unsheared unit cell at left, then shear the network until it reaches a maximum

strain (20% in this case, shown at right), after which we turn off the shear and measure the relaxation of

the stress. As in Fig. 2, the colored fibers are in bundles, and the CLs are shown in black. For the B-In-M

geometry, these snapshots are from a smaller domain (Ld = 2) than we typically use so that we can also see

the CLs.
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Figure 4: Normalized stress profiles over time in the stress relaxation test. We consider four different

systems: a permanent network (blue), for which the stress relaxes to a nonzero value (g0 ≈ 0.07 Pa after

accounting for normalization), and three dynamic networks, for which the stress relaxes to a value of zero

(orange is the homogeneous meshwork, yellow the B-In-M morphology, and purple the B-In-M morphology

with ten times larger viscosity). To illustrate the point that there are multiple intrinsic relaxation timescales

in the system, we show a double-exponential curve which approximately matches the decay of stress for both

permanent and transient CLs.
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3.3 Viscoelastic moduli

In Fig. 5, we plot the elastic and viscous moduli as a function of frequency for the five different

systems defined in Table 2. We also include the data for a permanent, interconnected network of

the type considered in [55], which we show with and without the constant elastic element g0 =

G′(ω → 0) determined in Fig. 4. For the system with ten times larger viscosity, we show the data

with time/frequency rescaled by a factor of ten, so that the value for ω = 1 Hz is mapped to ω = 10

Hz. These data are for the local drag model, since it is faster to simulate; we will consider the

effect of nonlocal hydrodynamics in Section 3.7.

Examining the data, we make the following observations:

• On very short timescales (shorter than 0.05 s, or frequencies larger than 20 Hz), the viscous

moduli all approach the viscous-fluid scaling of ≈ 0.13ω. The timescale on which this occurs is

directly proportional to the viscosity, as the rescaled G′′ curve for the larger viscosity system

makes the transition at the same time as the other B-In-M curves. In addition, the elastic

moduli for B-In-M networks are about twice as large as those of homogeneous meshwork

curves at high frequency, so the elastic modulus at short times is proportional to the link

density.

• On very long timescales (several seconds, low frequencies), the viscous modulus again scales

linearly with frequency, but with a larger slope (G′′ ≈ 0.3ω), which indicates that the links

have become viscous on those timescales. The elastic modulus is much smaller than the viscous

modulus on these timescales, and both of the moduli scale nonlinearly with the link density,

as B-In-M morphologies have moduli about 4 times as large as homogeneous meshworks.

• There is an intermediate timescale of about 1 second on which the moduli for the B-In-M

meshwork (yellow) diverge from those for the system with twice the binding/unbinding rate

(purple), and on which both of these curves diverge from the light blue permanent network

curve. In particular, for ω ≤ 2 Hz the elastic and viscous modulus are both smaller for the

system with faster link turnover. This timescale is related to (in fact, it is exactly equal to)

1/koff, the timescale on which individual links bind and unbind. The rescaled curve with

larger viscosity also diverges from the other B-In-M curves on this intermediate timescale,

which indicates that a timescale has been introduced (by the dynamic linking) that does not

scale with viscosity.
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Figure 5: Elastic (left) and viscous (right) modulus for the five systems described in Tables 1 and 2 (see

Table 2 for what parameters are varied in each system). For the B-In-M morphology with ten times the

viscosity (µ = 1 Pa·s), we show the data with time rescaled by a factor of ten. We also show the results for

permanently-cross-linked networks, and for the elastic modulus the dashed light blue curve is the remaining

elastic modulus when g0 ≈ 0.07 Pa (measured in Fig. 4) is subtracted off.

We will explore each of these fast, slow, and intermediate timescales in subsequent sections. The

picture we sketch is of a rigid network for timescales shorter than the fastest intrinsic timescale

τ1 ∼ 0.1 s; on these timescales the links are predominantly elastic and the viscous modulus is

the same as if the fibers were in a fluid without CLs. On timescales longer than τ1 but shorter

than the intermediate timescale τ2 ∼ 1 s, the links still appear permanent, but they provide

additional viscosity by deforming the network to its steady state in response to flow deformations.

On timescales longer than τ2, but shorter than the longest timescale τ3 ∼ 5 s, the links come off

before they are able to fully respond to the deformations induced by the background flow, and

the slope of the elastic and viscous modulus changes relative to the one observed in permanent

networks. Finally, on timescales longer than τ3, the network is almost completely viscous, and the

viscosity is controlled by the morphology.

3.4 Short timescales: elastic links and viscous fibers

Our hypothesis is that the shortest timescale in the system, τ1, dictates when the links make a

negligible contribution to the viscous modulus. For timescales τ < τ1, the network is essentially

frozen: the fibers are rigid, the links are static, and the fibers and links contribute exclusively to

the viscous and elastic modulus, respectively. Specifically, as ω →∞, we expect that the links will

26



make a constant contribution to G′ and that G′′ will scale like η0ω, i.e., as a viscous fluid, with the

viscous coefficient η0 independent of the number of links in the system. In Fig. 5, we show that

η0 ≈ 0.13 if ω is given in Hz.

To verify that the viscous modulus at short timescales is dominated by the fibers only (in-

dependent of the number and nature of the links), we compare to the theoretical shear viscosity

enhancement η∗0 for an isotropic suspension of rigid cylindrical fibers, where the mobility is com-

puted by the local drag approximation (first line in (8)). For dilute suspensions, the enhanced

viscosity is given to order (log ε)−2 in terms of the fiber density f and aspect ratio ε as [7, 74, 52]

η∗0
µ

=
πf

45

(
− 1

2 ln ε

(
− ln ε+ 0.640

− ln ε− 0.5

))
. (19)

For our parameters (ε = 0.004, f = FL/L3
d = 25), we obtain η∗0/µ ≈ 0.194 for cylindrical fibers.2

Recalling that G′′ = 2πωη0 for a viscous fluid, our scaling in Fig. 5 shows that we obtain a similar

value of η0/µ = 0.13/(2π × 0.1) ≈ 0.21.

It is important to separate the viscous contribution from the links, which approaches zero at

short timescales, from that due to the fibers, which is infinite as ω →∞. For this reason, we define

G′′F = 2πη0ω (20)

as the viscous modulus coming from the fibers. In Fig. 6(a), we examine the behavior of the

moduli due to the links, G′ and G′′ − G′′F , rescaled by the average number of links in the system

C̄. After rescaling time in the system with larger viscosity, we see that the data for ω > 10 Hz

can be collapsed onto a single curve for both the elastic and viscous modulus. Thus on timescales

shorter than τ1 ∼ 0.1 seconds, each link behaves as an elastic element with strength independent

of morphology. Note that the elastic modulus is more than 2 − 3 times larger than the viscous

modulus (coming from the links) at high frequencies.

3.5 Long timescales: viscosity depends on morphology and link unbinding rate

Let us now transition to the opposite limit of long timescales. At long timescales, Fig. 6(a) shows

that each system is about five times more viscous than elastic (e.g., compare the values at ω = 0.2

2We obtained (19) by dropping the finite part integral in [7, Eq. (7.1)], which gives 1/2 instead of 3/2 in the

denominator of [7, Eq. (8.13)]. Including intra-fiber hydrodynamics in the mobility changes the 0.5 in (19) back

to 1.5. Substituting our parameters and recomputing, we get η∗0/µ = 0.242 with intra-fiber hydrodynamics, which

means the local drag approximation gives only 80% of the correct viscosity (see Section 3.7).
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Figure 6: Elastic (left) and viscous (right) modulus due to the CLs for the five systems described in Tables

1 and 2 (see Table 2 for what parameters are varied in each system). To obtain a viscous modulus due to

the links alone, we subtract the component due to the fibers G′′
F defined in (20). (a) We normalize by the

link density C̄ and see that the curves all match at short timescales on the order τ1 ≈ 0.02 s (after we also

rescale time by viscosity). (b) We normalize by the link density multiplied by the bundle density. For the

system with ten times larger viscosity, we also include the raw data (not rescaled) as a dotted green line. In

the viscous modulus plot on the right, we show a linear slope as a dashed black line and define τ3 ≈ 5 s as

the end of the low-frequency linear regime in G′′. This timescale is roughly independent of viscosity.
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Hz), and that normalizing by C̄ does not place the curves on top of each other. We say that these

“long timescales” are longer than τ3, the longest intrinsic timescale in the system, or the timescale

on which the network totally “remodels” itself. Our goal in this section is two-fold: first, we would

like to find a new rescaling that better matches the curves at low frequencies, and second, we would

like to estimate τ3, which we do by finding the regime in which G′′ is a linear function of ω for each

system.

Figure 6(b) shows our attempt to accomplish both of these goals. For both the viscous and

elastic modulus, we rescale by the mean link density C̄ multiplied by the mean number of bundles

B̄, the idea being that bundles make a stronger contribution to the moduli at low frequency.

We see a better match at low frequencies than in Fig. 6(a), which implies that bundles have a

stronger effect on the mechanical behavior at long timescales than at short ones. In particular,

the homogeneous meshworks (blue and orange) and B-In-M (yellow) curves all scale onto the same

curve for frequencies ω ≤ ω3 ≈ 0.2 Hz = 1/τ3, but the curves with larger viscosity (green) and

faster link (un)binding (purple) do not scale as well. In both of these cases, there is a change in a

timescale shorter than τ3, as we discuss in the next section.

To estimate τ3, we determine the regime where the viscous modulus G′′ scales linearly with ω

and equate τ3 with the end of the linear region. From Fig. 6(b), we see that τ3 ≈ 5 seconds, and

that the linear regime endures longer for homogeneous meshworks, which implies that they start

becoming purely viscous at shorter timescales than systems with bundles (or, equivalently, these

networks “remodel” themselves faster).

To understand exactly how much viscosity is being provided by the links and bundles in the

different systems, we use the slope in Fig. 6(b) to obtain

G′′CL := G′′ −G′′F ≈ 0.04C̄B̄ω for τ > τ3. (21)

To extract a viscosity, we write G′′CL = 2πµCLω, so that in the B-In-M system with C̄ = 12.5 and

B̄ = 2 we obtain µCL/µ = (0.04×12.5×2)/(2π×0.1) = 1.6. This is eight times more viscosity than

the fibers alone (0.2) and 1.6 times the background fluid viscosity. For the homogeneous meshwork

with C̄ = 5.75 and B̄ = 1, the additional viscosity is µCL/µ = (0.04 × 5.75 × 1)/(2π × 0.1) = 0.4.

This is twice the viscosity of the fibers but 2.5 times smaller than that of the background fluid.

Comparing the two morphologies confirms some of the prior intuition that bundles embedded in

meshworks provide stronger resistance to flow than homogeneous meshworks [82].
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3.6 Intermediate timescales

So far, we have addressed the two extreme limits of the suspension behavior. Over short timescales,

τ < τ1, the entire network is rigid, the CLs are purely elastic, and the additional viscosity is the

same as that due to the fibers alone. Over long timescales, τ > τ3, all of the energy in the network

is dissipated. Bundles break up, there is no elastic modulus, and the morphology of the network,

and the amount by which links can deform it, determines the viscous behavior.

There is also an intermediate timescale τ2 at which some of the links, but not the entire

network, start to behave viscously. While we expect τ2 ∼ 1/koff, this could change based on the

network parameters, as the same value of koff acts differently depending on the speed of network

deformation. To better understand the timescale τ2, we compare the elastic modulus with dynamic

links to the one for statically-linked networks (by starting from the same equilibrium structure and

keeping the links fixed). Similar to [55], we do this for five seconds or five cycles, and measure the

modulus over the last three cycles.

Figure 7(a) shows the results for our B-In-M structures. The solid lines show the elastic modulus

with dynamic linking, and the dotted lines show the elastic modulus with permanent linking. The

timescale τ2 is when the dynamic linking elastic modulus diverges significantly from the permanent

link modulus, so that the links come off before they can provide their maximum elastic response.

From Fig. 7(a), we see that τ2 is obviously smaller when we increase the rate of link turnover (the

purple curve diverges from the dotted yellow one faster than the solid yellow one does); this is

expected from τ2 ∼ 1/koff, which is 1 second for the yellow curve and 0.5 seconds for the purple

one.

Morphology has no impact on the timescale τ2, as we obtain the same characteristic time τ2 ≈ 1

second for the homogeneous meshwork (not shown, because the results are indistinguishable) as the

B-In-M morphology. Thus the morphology only appears to have a strong influence on the longest

timescale τ3.

It is harder to determine the effect of viscosity on τ2. On the one hand, Fig. 7(a) shows the true

data for G′ vs. ω (without scaling time by µ), so it appears that the dynamic curve diverges from

the permanent one at about the same timescale regardless of viscosity. On the other hand, for a

fixed koff the difference between the solid and dashed curves at ω = 1 Hz is larger for larger viscosity

(green). Thus the timescale τ2 depends on the interaction of dynamic linking and deformation in

a nontrivial way.
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Figure 7: (a) Elastic modulus at medium frequencies. For each network type (indicated in the legend),

we compare the solid line, which has the elastic modulus with dynamic links, to the dotted line, which

is the elastic modulus with permanent links. The intermediate timescale τ2 ≈ 0.5 s is the inverse of the

frequency where the data start to diverge. We consider only bundle-in-mesh morphologies using our standard

parameters (yellow), twice the link turnover rate (purple, but the static link reference is still the dotted

yellow), and ten times the viscosity (green). (b) Rescaling time to get all of the curves on the same plot.

This is the same plot as Fig. 6(b) (right panel), but now we rescale the time for the larger viscosity green

curve by a factor of 4 instead of 10 (ω → 4ω), and we rescale the time for the faster link turnover purple

curve by 1.5 (ω → ω/1.5). This demonstrates that the data do not scale simply with the parameters at

medium and low frequencies, when multiple timescales are involved.
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To illustrate this complicated dependency, we show that different rescalings are required when

the viscosity (dynamics) or link turnover rates change from the base parameters. We recall from

Fig. 6(b) that the larger viscosity (green) and faster link turnover (purple) B-In-M systems do not

follow the same normalization as the other systems. Figure 7(b) shows that scaling time by a factor

of 4 (and not the expected 10) puts the green larger viscosity curve onto the rest of the curves at

low frequencies, while scaling time by a factor of 1.5 (and not the expected 2) puts the curve with

twice the link turnover rate on top of the others as well. The reason for these particular scalings is

not obvious to us, other than that they fall somewhere between the expected scaling and unity.

3.7 Role of nonlocal hydrodynamic interactions

We have seen that the network behaves very differently on short timescales, where each link behaves

elastically independent of the network morphology, than on long timescales, where the system is

purely viscous and the morphology exerts a significant influence on the resistance to flow. In this

section, we show that nonlocal hydrodynamic interactions significantly decrease the elastic and

viscous moduli in B-In-M morphologies. We show that the decrease is most significant at low

frequencies, i.e., the frequencies where we already know morphology has a strong influence on the

behavior. We explain the decrease in two ways: first, nonlocal hydrodynamic interactions slow

down the bundling process, causing less bundles to form for a fixed turnover time, and second, they

create entrainment flows that reduce the stress inside of the bundles that do form.

We consider only the two characteristic morphologies in this section without varying any other

parameters from those given in Table 1. For each of the morphologies, we compute the viscoelastic

moduli with nonlocal hydrodynamics, then compute them again using local drag and intra-fiber

hydrodynamics. In Fig. 8, we plot the error/fraction of the moduli recovered with the various

mobility operators. For a homogeneous meshwork system (blue lines), we see that the elastic

modulus is the same within 10−20% whether we use local drag, intra-fiber, or full hydrodynamics.

At low frequencies, the viscous modulus is also the same within 10% regardless of the hydrodynamic

model used, but there is an obvious error in the viscous modulus when the local drag model is used

at high frequencies. This discrepancy of about 20% is also present in permanent networks [55,

Fig. 9(b)] and in B-In-M morphologies, and in all cases it can be mostly recovered by adding only

intra-fiber hydrodynamics to the mobility. The 20% difference between local drag and intra-fiber

hydrodynamics is similar to the theoretical estimate discussed in footnote 2. There appears to be a

small increase (at most 5%) in the viscous modulus when we switch from intra-fiber hydrodynamics
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Figure 8: Proportion of the (left) elastic and (right) viscous modulus that is recovered using various

mobility approximations. We compute the modulus using full hydrodynamics, then plot the fraction of it

recovered using local drag or intra-fiber hydrodynamics. We show the results for the homogeneous meshwork

in blue and the B-In-M morphology in orange. For each line color, a solid line shows the results for local

drag and a dotted line shows the results for intra-fiber hydrodynamics. Intra-fiber hydrodynamics cannot

explain the deviations in the elastic and viscous modulus at low frequency for the B-In-M geometry.

to fully nonlocal hydrodynamics, which would be more significant at smaller mesh sizes [74].

The more interesting changes with nonlocal hydrodynamics come at low frequencies in the B-

In-M geometries. Unlike with the homogeneous meshwork, the local drag model makes about a

50% overestimation in the elastic modulus and a 30% overshoot in the viscous modulus at low

frequencies for B-In-M morphologies, with the largest change coming at ω = 0.5 Hz, or a timescale

of 2 seconds. We have previously seen that morphology has a strong influence on the moduli at

these timescales, so we explore the impact of nonlocal hydrodynamics on morphology next.

3.7.1 Rescaling of time cannot explain long-timescale moduli

The first possible explanation for the decrease in G′ and G′′ with nonlocal hydrodynamics at low

frequencies is a change in the network structure. In this section, we show that, while there are less

bundles and links in the dynamic steady state with full (intra- and inter-fiber) hydrodynamics for

a given turnover time, this by itself cannot entirely explain the decrease in the moduli.

To do this, we focus on the frequency where full hydrodynamics matters the most as a percent-

age. For ω = 0.5 Hz, we measure the moduli with intra-fiber hydrodynamics as G′IF = 0.18± 0.02,

G′′IF = 0.42 ± 0.01, while the moduli with full hydrodynamics are G′H = 0.127 ± 0.004, G′′H =
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τf Mobility C̄ B̄ % in B G′ G′′ − η0ω

10 H 11.7± 0.3 2.03± 0.04 20.9± 0.6 0.127± 0.004 0.27± 0.01

9.3 IF 11.5± 0.4 2.07± 0.07 21.2± 1.1 0.17± 0.01 0.33± 0.03

10 IF, µ = 0.14 11.5± 0.3 2.01± 0.07 20.1± 0.8 0.19± 0.02 0.38± 0.03

10 IF 12.3± 0.2 2.15± 0.05 22.6± 0.7 0.18± 0.02 0.34± 0.01

Table 4: Statistics for system with ω = 0.5 Hz and varying turnover times and mobility models (IF stands

for intra-fiber hydrodynamics where from Table 5 we obtain η0/µ = 1.6, and H stands for full, nonlocal

hydrodynamics, where η0/µ = 1.7). In the second and third row, we attempt to tune the turnover time

or viscosity so that the steady state morphology with intra-fiber hydrodynamics matches the steady state

morphology with hydrodynamics and τf = 10. Even after doing this, the elastic and viscous modulus are

still significantly higher with the intra-fiber mobility.

0.35 ± 0.01. As shown in Table 4, the steady state link and bundle density are 12.3 and 2.2, re-

spectively, with intra-fiber hydrodynamics, while with full hydrodynamics they are are 11.7 and

2.0. Thus at its dynamic steady state, the network has on average fewer links and fewer bundles

when we simulate with full hydrodynamics than when we simulate with intra-fiber hydrodynamics.

This is because disturbance flows in bundling fibers (fibers moving towards each other) oppose the

direction of motion, which slows down the bundling process. Thus when we fix a turnover time,

there are on average fewer bundles (and fewer links) when the bundling process is slower.

To compensate for the changes in structure, we drop the turnover time or increase the viscosity

for intra-fiber hydrodynamics simulations so that the steady state morphology matches the mor-

phology with hydrodynamics as closely as possible. We then measure the moduli for these new

steady states. In Table 4, we show our attempt to match the statistics for intra-fiber hydrodynamics

with smaller turnover times with those for hydrodynamics with τf = 10. Comparing τf = 10 with

full hydrodynamics with τf = 9.3 with intra-fiber (IF) hydrodynamics, we see the IF simulations

have larger moduli, even when we closely match the steady state link density C̄ and bundle density

B̄. The same is true when we attempt to rescale time by increasing the background fluid viscosity

(second to last line in Table 4), as in that case the larger values of G′ and G′′ persist despite a

decrease in link and bundle density. So nonlocal hydrodynamics must both change the bundle

morphology and lower the stress for a fixed morphology.
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Figure 9: Reduction of stress in bundles explains smaller moduli with hydrodynamics. (Left) We manufac-

ture a bundle geometry without CLs by placing nine fibers of length L = 1 (red) in and around an octagon

with side length ` and straining with constant rate γ̇ = 0.1 until t = 1 (blue). (Right) The resulting stress

evolution. The local drag (blue) and intra-fiber (yellow) results are independent of `, while the stress for

full hydrodynamics (orange) depends strongly on `. For ` = 0.05 (solid orange, the simulation parameters),

there is a significant decrease in stress which comes from the entrainment of the fibers in each other’s flow

fields. For ` = 0.20 (dashed orange), the decrease is minimal; note that for full hydrodynamics with ` � L

we would recover the “intra-fiber” curve.

3.7.2 Bundled fibers: when flow reduces stress

The reason for the decrease in moduli with inter-fiber hydrodynamics for a fixed morphology has to

do with the flows inside a bundle. If the fibers are packed tightly within a bundle, then we expect

their disturbance flows to have a strong influence on each other. When a fiber in a bundle moves

with the bulk fluid, the disturbance flow it creates is in the same direction as the bulk motion, so

the other fibers in the bundle will naturally move as well. This effect, which is not present when

we use local drag or intra-fiber mobility, explains the reduction in stress for a fixed rate of strain.

Figure 9 establishes this more rigorously. We consider a set of nine fibers with L = 1 without

cross-links. The fibers are arranged in a regular octagon with side length ` with another fiber

centered at the origin. We apply a constant straining flow with strength γ̇ = 0.1 and measure the

stress over the first second in Fig. 9. The solid orange line shows the stress with full hydrodynamics

and the simulation parameter of ` = 0.05 µm, so that the fibers are very close. In this case, we see

that the stress with full hydrodynamics is slightly more than half of that with local drag (which

is independent of `). Similar to our simulation result for cross-linked gels, the stress decrease
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Figure 10: Our continuum model, informed by the timescales discussed in previous sections.We use

three Maxwell elements with timescales τ1, τ2, and τ3, all in parallel with a viscous dashpot to describe the

network. The viscous dashpot η0 represents the high frequency viscosity of the permanently cross-linked fiber

suspension. The first Maxwell element has timescale τ1 ≈ 0.02 seconds associated with it, and represents the

relaxation of the fibers to a transient elastic equilibrium (the networks before and after relaxation are shown

to the left and right of this Maxwell element; the relaxing fibers are shown in blue); on this timescale, the

links are effectively static. The second Maxwell element, with timescale τ2 ≈ 0.5 s, represents the unbinding

of some links (shown more transparent than the others) and the appearance of new links (orange) − compare

the networks to the left and right of this Maxwell element. The third Maxwell element with timescale τ3 ≈ 5

s represents network remodeling (compare the networks to the left and right of this element); for timescales

larger than τ3, some of the fibers (shown in green) and links (orange) turn over and the network completely

remodels from the initial state.

is not explained by intra-fiber hydrodynamics, which increase the stress from local drag by the

theoretically predicted 20 − 25% (see footnote 2). Thus the decrease in stress comes from the

nonlocal flows induced by the fibers on each other. We demonstrate this in Fig. 9 by spacing the

fibers farther apart (` = 0.2 µm) and showing that the stress with full hydrodynamics increases

towards the intra-fiber curve.

3.8 A continuum framework: the generalized Maxwell model

In order to enable whole-cell modeling, it is important to introduce a continuum model for the pas-

sively cross-linked actin gel. We are motivated by the behavior of the network: at short timescales,

it scales as a viscous fluid with a constant elastic modulus (a dashpot in parallel with a spring),

while at long timescales it is purely viscous. Combining these two, we introduce a generalized

Maxwell model of the type shown in Fig. 10. We have the viscous dashpot of strength η0 in parallel

with three Maxwell elements, each of which has a strength gi and an associated relaxation timescale
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τi, on which the element goes from elastic (for timescales shorter than τi) to viscous (longer than

τi). The total elastic and viscous (in excess of the solvent viscosity) modulus are given by sums of

the viscous dashpot and each Maxwell element [61]

G′GM(ω;p) =
3∑
i=1

gi
(ωτi)

2

1 + ω2τ2
i

, G′′GM(ω;p) = η0ω +
3∑
i=1

gi
ωτi

1 + ω2τ2
i

, (22)

where we have denoted the 7 parameters by a vector p. As discussed in [90, 56], we can obtain the

fitting parameters (gi, τi, η0) by maximizing the log-likelihood function

L = −1

2

K∑
k=1

[(
1

δ′k

(
G′k −G′GM(ωk;p)

))2

+

(
1

δ′′k

(
G′′k −G′′GM(ωk;p)

))2
]
, (23)

where δ′k and δ′′k are the uncertainties in G′(ωk) and G′′(ωk), respectively, and K is the number

of frequencies studied. Weighting the observations by uncertainty will cause the fit to give more

weight to more certain measurements. The uncertainty in the fit p̂ is estimated by the square root

of the diagonal entries of the inverse of the Fisher information matrix,

δpi = 2

√
F−1
ii (p̂), where F ij(p) = − ∂2L

∂pi∂pj
(p̂). (24)

so that pi ± δpi is a 95% confidence interval for pi.

In Fig. S5(a), we verify that using three (as opposed to two or four) Maxwell elements is indeed

the best choice for the bundle-embedded meshwork with τf = 10 and full hydrodynamics (the other

systems are similar). As detailed in [9, 56], we determine this by increasing the number of Maxwell

elements until the fit stops improving substantially. The resulting three-timescale fit, along with

the contribution of each of the separate Maxwell elements, is shown in Fig. 11. Admittedly, the

elastic modulus data G′(ω) at small frequencies do not fit the generalized Maxwell model since they

do not decay as ω2. While we acknowledge this problem, we have already shown that G′′(ω) scales

linearly with ω at small frequencies, and therefore that the viscous modulus does fit the generalized

Maxwell assumption. Our choice is therefore to fit only G′′, and not G′, for frequencies less than

0.1 Hz (ten seconds, on which we know the network is mostly viscous anyway).

Table 5 gives the fitting parameters for all of the systems we have considered with multiple

options for the mobility. For almost all systems, we have τ1 ≈ 0.03 seconds, τ2 ≈ 0.3 seconds,

and τ3 ≈ 3 seconds, which is in line with our estimates of these timescales in Figs. 6 and 7(a).

The only exception is the system with higher viscosity; in this case we have already shown that

the timescale τ1 scales with viscosity to become about 0.3 seconds, while the timescale τ2 remains

about 0.5 seconds. The result is that τ1 and τ2 blend into a single timescale, and a two-timescale
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Figure 11: Fitting the model of Fig. 10 (the moduli (22)) to the data from the B-In-M system. The data

are shown in blue, with the total fit shown in red. The dotted lines show the contribution of each element

in Fig. 10 to the total fit. Here τ1 = 0.04 s is the fastest timescale shown in purple, τ2 = 0.41 s is the

intermediate timescale shown in green, τ3 = 4.5 s is the longest timescale shown in light blue. The yellow

dotted line shows the contribution of the pure viscous element.

model is the best choice for the data, as we show in Fig. S5(b). Comparing B-In-M and meshwork

geometries, we observe that the long timescale τ3 is either longer (comparing B-In-M and meshwork

with full hydrodynamics) or its contribution in (22) is stronger (comparing B-In-M and meshwork

with local drag), which is consistent with our observation in Section 3.5 that B-In-M geometries

have longer remodeling times and a higher resistance to deformation. Finally, we notice how the

viscosity η0 scales directly with µ and increases by ≈ 30% when we account for intra-fiber or

nonlocal hydrodynamics, in accordance with our observations in Sections 3.4 and 3.7.

4 Discussion

We experimented numerically with dynamic actin gels made of micron-long actin fibers at concen-

trations characteristic of in vitro experiments. In the simulations, the fibers turned over rapidly

on a 5 to 10 second scale, similar to some experimental measurements [79, 26]. The gel was cross-

linked dynamically with flexible spring-like cross linkers (CLs) characterized by mechanical and

kinetic parameters similar to those for α-actinin, a ubiquitous actin CL. We observed that gels

with faster fiber turnover evolved into relatively homogeneous meshworks, while gels with slower

turnovers morphed into bundle-in-mesh (B-in-M) networks with small actin bundles immersed into
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System Mobility (τ1, τ2, τ3) (g1, g2, g3) η0

Meshwork LD (0.032, 0.31, 4.2) (1.56, 0.44, 0.03) 0.13

Meshwork, κ/10 LD (0.024, 0.15, 1.5) (1.34, 0.45, 0.07) 0.13

Meshwork Intra-fiber (0.022, 0.17, 1.4) (1.49, 0.59, 0.10) 0.16

Meshwork Full hydro (0.025, 0.21, 2.1) (1.42, 0.54, 0.05) 0.17

B-In-M LD (0.026, 0.28, 2.7) (2.91, 1.26, 0.30) 0.13

B-In-M Intra-fiber (0.030, 0.28, 2.4) (2.77, 1.17, 0.29) 0.16

B-In-M Full hydro (0.039, 0.41, 4.5) (2.26, 0.84, 0.11) 0.18

B-In-M, 2k LD (0.034, 0.31, 2.7) (2.54, 1.10, 0.17) 0.13

B-In-M, 10µ LD (0.49, −, 4.3) (3.13, −, 0.38) 1.33

Table 5: Parameters in the three-timescale generalized Maxwell model shown in Fig. 10. Refer to Table

2 for a detailed description of each system. The uncertainty in each measurement is about 25%, with the

exception of η0, which has an uncertainty of about 5%.

cross-linked meshworks. This result agrees with experimental observations [29].

Our simulations revealed three principal time scales characterizing the mechanics of dynamic

cross-linked actin gels. On the fastest time scale, ∼ 0.03 seconds, actin fibers relax viscously,

locally, and rapidly to the transient elastic equilibrium generated by the network configuration.

On intermediate timescales, ∼ 0.5 seconds, the CLs turn over, generating new transient elastic

equilibria, and finally on the slow time scale, ∼ 3 − 5 seconds, the network undergoes global

remodeling. One of the most useful practical results of the simulations is that very complex cross-

linked gel mechanics can be approximated with the generalized Maxwell mechanical circuit shown in

Fig. 10, in which three Maxwell elements in parallel correspond to elastoviscous gel deformations on

the three characteristic time scales, in addition to the effective viscosity of the actin fiber suspension

in the background fluid.

Our simulations predict that at small frequencies (time scales longer than a few seconds), the

effective elastic and viscous behaviors are controlled by the CL mechanics (as opposed to fiber

mechanics). In this regime, an effectively viscous mechanical response to deformation dominates

relatively weak elastic behavior. At low frequencies, the dominant viscous response originates

from the CLs stretching and deforming the fibers (in addition to the significant viscosity of the

background fluid); the fibers by themselves contribute little to the net viscosity. The mechanical

moduli scale nonlinearly with the CL density, because the CLs within actin bundles respond to
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shear differently than the CLs in the actin mesh. Thus, the gel’s morphology exerts a significant

influence on the actin resistance to flow at long timescales.

At high frequencies, or timescales shorter than one tenth of a second, we found that the effective

elastic modulus of the network is higher than (but on the same order of magnitude as) the effective

viscous modulus (once we removed the viscous scaling generated by the fibers). The elasticity

simply originates from multiple elastic springs of CLs that can be considered static on the short

time scale. The greatest contribution to the net viscosity is that of the background fluid, with

the fiber suspension contributing about 25% additional viscosity. At moderate frequencies around

1 Hz (intermediate timescale, between 0.1 and 3 sec), the mechanical behavior of the crosslinked

network is complex, combining comparable contributions of all mechanical factors described for low

and high frequencies.

Our model allowed us, for the first time, to estimate quantitatively the role of nonlocal inter-

fiber hydrodynamic interactions on the actin gel rheology. We demonstrated that, while these

interactions have little effect in a homogeneous cross-linked actin meshwork, they significantly de-

crease the elastic and viscous moduli of heterogeneous B-In-M gels. We showed that this decrease

is most significant at low frequencies, i.e., on timescales of a few seconds, when the network mor-

phology has a strong influence on its mechanical behavior. At these frequencies, in the presence

of bundles, the hydrodynamic interactions cause 30−50% downward corrections to the viscoelastic

moduli. Two factors are responsible for this effect: first, hydrodynamic interactions slow down the

bundling process, so fewer bundles form, and second, nonlocal hydrodynamics creates entrainment

flows that reduce the stress inside of the bundles that do form.

While almost all of our simulations fell in the linear viscoelastic regime, we did observe a

strain hardening effect, with the network resistance increasing beyond the linear response for

higher-amplitude deformations. This effect has been observed before experimentally [21], which

has prompted a variety of explanations and computational studies. Both Mulla et al. [63] and

Kim et al. [39], for instance, propose that strain hardening is due to the mechanics of individual

filaments, which stiffen nonlinearly in response to applied stress. Because our goal was to measure

the viscoelastic moduli of the networks in their dynamic steady state, we did not systematically

explore the viscoelastic behavior at large strains or perform measurements at zero frequency. That

said, our simulations do offer two interesting insights: first, the mechanical behavior becomes non-

linear at just 10% or greater strains, which is a typical result for in vitro networks [76], and second,

there are more bundles (which are more resistive to strains) at larger strain rates, and so at least
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one reason for the nonlinearity is the mechanosensitive character of the actin gel morphology. Our

conclusion is identical to the modeling study [5], which found that strain combined with dynamic

cross-linking induces signficant morphological changes in the network, leading to strain hardening

[5, Fig. 3]. In fact, it was recently shown that actin filament mobility is a necessary condition for

strain hardening and mechanical hysteresis [72].

In the linear response regime, our results are in line with most of the prior experimental and

modeling studies. We found viscoelastic moduli on the order 0.1 − 10 Pa [22, 37], with the links

becoming viscous on long timescales and elastic on short ones [10]. Our measurements showed that

decreasing the fiber bending stiffness decreased the viscoelastic moduli, but by a slower than linear

rate [41] (in our study, decreasing κ by a factor of ten reduced the moduli by at most 30%). We

also found that the elastic stress in the gel (from the CLs exerting force on the fibers) is much

larger than the viscous drag stress over long times, which agrees with a previous computational

study [39].

We failed, however, to observe a local maximum or minimum in the viscous modulus at interme-

diate frequencies, as was reported in [47, 87]. One explanation for this is a difference in parameters.

In the computational study [87], the unloaded CL unbinding rate is 0.1 s−1, and the CL stiffness

is 10 pN/nm (10,000 pN/µm). In this parameter regime, the CLs always make the most of their

mechanical contribution to the network mechanics while bound, since they cross-link the fibers for

seconds and are extremely stiff. Indeed, [87, Fig. 6] shows that the peak in G′′, when the timescale

of the driving frequency matches the link unbinding rate, becomes less sharp and almost disappears

when koff increases to the order of one second, as it is in our study here. This suggests that the

local maximum is only observed when the relaxation of the network is many orders of magnitude

faster than the link binding rate. This issue clearly requires more investigation, and in the future

we will explore how using a force-dependent unbinding rate, as is done in [87], impacts the results,

and whether this assumption is responsible for the peak.

What all modeling studies, including ours, suffer from is that only few features of the actin

gel are simulated, with many factors, forces, and processes either ignored or approximated crudely.

There is, of course, a good reason for this: even a very limited caricature of the gel exhibits

complex dynamics; the fact that many experimental studies paint very different pictures of the gel

mechanics likely stems from the same biological complexity. We propose that to understand the

full complexity, one has to keep adding dynamic processes to previous simpler benchmark models

and examine the changes that new dynamics bring. Thus, our next step will be to add thermal
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forces responsible for random bending of the fibers. For a one micron long fiber with persistence

length close to 20 microns, the thermal bending causes lateral fluctuations of no more than 30 to

40 nm, which is significantly less than the mesh size of the networks we investigated, so we do

not expect that our results will change drastically. Indeed, a previous computational study showed

that thermal fluctuations only impact the mechanical moduli when the average CL distance (or

CL rest length) is greater than the persistence length of the fibers [41, Fig. 7(c)], which is a regime

we are far outside of here. Nevertheless, the thermal undulations of fibers will have an effect on

the underlying morphology, cross-linking dynamics, and the scaling of the mechanical moduli with

frequency on short time scales, and so we plan to implement Brownian motion in a future study

and compare the results to those obtained here. Similarly, we will test how explicit simulation of

translational and rotational diffusion and (un)binding of individual CLs, as well as force dependence

of CL kinetics, affect these results.

Other mechanical features of actin that will be interesting to explore include elastic twisting

of actin filaments, which have been posited to contribute to elastic energy storage [51] and to

the emergence of chirality in cross-linked gels [78]. Last, but not least, in vivo, the gels are very

heterogeneous in the sense that there is a distribution of fiber lengths and turnover times, and

a diversity of CL types co-existing with myosin motors [54, 88, 89]. How this heterogeneity and

active molecular force generation affect the gel mechanics is another important question.
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