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Abstract

Neural network models have recently made striking progress in natural language processing, but
they are typically trained on orders of magnitude more language input than children receive. What can
these neural networks, which are primarily distributional learners, learn from a naturalistic subset of a
single child’s experience? We examine this question using a recent longitudinal dataset collected from
a single child, consisting of egocentric visual data paired with text transcripts. We train both language-
only and vision-and-language neural networks and analyze the linguistic knowledge they acquire. In
parallel with findings from Jeffrey Elman’s seminal work, the neural networks form emergent clusters
of words corresponding to syntactic (nouns, transitive and intransitive verbs) and semantic categories
(e.g., animals and clothing), based solely on one child’s linguistic input. The networks also acquire
sensitivity to acceptability contrasts from linguistic phenomena, such as determiner-noun agreement
and argument structure. We find that incorporating visual information produces an incremental gain
in predicting words in context, especially for syntactic categories that are comparatively more easily
grounded, such as nouns and verbs, but the underlying linguistic representations are not fundamentally
altered. Our findings demonstrate which kinds of linguistic knowledge are learnable from a snapshot
of a single child’s real developmental experience.

Keywords: Learnability; Child development; Language learning; Statistical learning; Multimodal
learning; Neural networks; First-person video

1. Introduction

In the first 3 years of life, children’s linguistic development progresses rapidly. Young chil-
dren begin understanding words at around 6 months (Bergelson & Swingley, 2012, 2015;
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Tincoff & Jusczyk, 1999, 2012). The vocabulary that they can comprehend and produce
increases gradually until around 12–14 months, at which a nonlinear comprehension boost
occurs (Bergelson, 2020) and lexical-semantic networks begin to develop (Wojcik, 2018).
Language learning remains both a scientific and engineering puzzle; it is unclear what induc-
tive biases and cognitive abilities are necessary and how much can be learned through rel-
atively generic learning mechanisms, such as distributional learning from patterns of word
co-occurrence (Firth, 1957; Harris, 1954; Landauer & Dumais, 1997).

To provide some insight into this learning challenge, we captured a subset of the linguistic
and visual inputs received by a single child during their development. We then train generic
computational models for sequence processing on this data and evaluate what these mod-
els learn (e.g., Orhan, Gupta, & Lake, 2020). Previously, a major obstacle to this approach
was the lack of high-quality and substantive developmental data. However, thanks to large-
scale developmental datasets containing linguistic input (MacWhinney, 2000; Roy, Frank,
DeCamp, Miller, & Roy, 2015; Sullivan, Mei, Perfors, Wojcik, & Frank, 2021) and recent
advances in deep learning, it is now possible to run large-scale simulations on real language
input. Training neural networks on these datasets, and then analyzing what kinds of knowl-
edge are acquired, can help to answer foundational questions about what aspects of language
are learnable from a child’s experience (Huebner & Willits, 2018; Warstadt & Bowman, 2022)
via primarily distributional learning, without social cognition abilities and aspects of world
knowledge that are thought to play central roles (Bloom, 2000; Markman, 1989; Murphy,
2002).

In this work, we follow this approach by using SAYCam, a recent longitudinal developmen-
tal dataset consisting of an egocentric visual and linguistic input to a single child spanning
6–25 months of age (Sullivan et al., 2021). The scale of this dataset allows us to train sev-
eral widely used neural network architectures and explore what they learn, in terms of how
they structure their representations and how this affects behavior. The networks we adopt are
not designed for human languages specifically; rather, they are configured to process general
sequences. We first train two kinds of neural networks, Long Short-Term Memory (LSTM;
Hochreiter & Schmidhuber, 1997) and Continuous Bag-Of-Words (CBOW; Mikolov, Chen,
Corrado, & Dean, 2013), on only the language portion of the dataset and analyze the syn-
tactic and semantic structure they acquire. Then, we add the visual data and train an image
captioning model (Xu et al., 2015) on the paired vision-and-language dataset, and examine
the impact on linguistic knowledge from incorporating the visual modality.

Our work builds on previous examinations of what computational models can learn from
linguistic input (Abend, Kwiatkowski, Smith, Goldwater, & Steedman, 2017; Elman, 1990;
Huebner & Willits, 2018; Huebner, Sulem, Cynthia, & Roth, 2021; Perfors, Tenenbaum, &
Regier, 2011, i.a.). In his pioneering article, Elman (1990) formulated a means of training
simple recurrent networks (SRNs) to predict the next word in a sentence given the previous
words. When applied to simple language-like inputs, these networks formed coherent clus-
ters of words, analogous to real English syntactic and semantic categories. More recently,
researchers have examined similar questions using naturalistic sources of data combined
with more capable neural network architectures, such as LSTMs (Hochreiter & Schmidhu-
ber, 1997) and Transformers (Vaswani et al., 2017). For instance, Huebner and Willits (2018)
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trained both Elman’s SRNs and LSTMs on a corpus of naturalistic, developmental linguistic
data (CHILDES; MacWhinney, 2000), and analyzed emergent clusters in their acquired rep-
resentations. Similarly, Huebner et al. (2021) trained a Transformer on a corpus derived from
CHILDES (AO-CHILDES; Huebner & Willits, 2021) and analyzed its syntactic knowledge.
Other related work has focused on learning structured probabilistic models from naturalistic
linguistic inputs, using methods based on probabilistic grammar induction to learn syntactic
structure and word meanings (Abend et al., 2017; Perfors et al., 2011; Waterfall, Sandbank,
Onnis, & Edelman, 2010). Our work follows in these modeling traditions, as exemplified
by Elman’s seminal work. The most distinctive aspect of our work is that the networks are
trained on a strict subset of real developmental experience from just one child, without using
outside annotation beyond the transcripts. Previous work in this vein either aggregated lin-
guistic input across multiple children or utilized structured representations and/or annotations
to help bootstrap learning. Thus, our work provides a unique window into the learnability of
linguistic structure based on one child’s input—without additional data and labels, using a
distributional learning strategy.

We conduct a range of linguistic evaluations and find our models achieve varying degrees of
success across different linguistic phenomena. When using language-only data, we find that
networks can differentiate words in different syntactic categories, such as nouns, transitive
and intransitive verbs, and semantic categories, such as animals and clothing.1 We also find
that these networks acquire nascent syntactic abilities, such as inferring the syntactic category
of a word from its context. In some cases, they can recognize determiner-noun agreement and
argument structure regarding verb transitivity, but they struggle with other phenomena, such
as subject-verb agreement. Additionally, we find that introducing visual information provides
an incremental improvement on our networks’ abilities to predict words in context, but does
not fundamentally alter the linguistic representations.2

2. Sensory input through the eyes and ears of a child

In this section, we briefly describe the data streams used for training and evaluating our
neural networks. The data are a subset of SAYCam (Sullivan et al., 2021), a dataset con-
sisting of egocentric head-mounted camera recordings of three very young, English-speaking
children.3 Each child’s recordings are recorded at regular intervals (several hours each week)
for around 2 years starting from 6 to 8 months of age. However, out of the three children,
only one (labeled as baby S) had a large proportion of his naturalistic speech input tran-
scribed (spanning 6–25 months of age), making baby S the choice of our focus. This dataset,
which we call the SAYCam-S dataset, consists of child-directed utterances paired with visual
data from the child’s point of view at the time of the utterance.

We outline the major steps taken to preprocess the dataset. For each original transcript,
we first replace anything annotated as “inaudible” with a special <UNK> (unknown) token,
and use the spaCy tokenizer (Honnibal & Montani, 2017) to segment the inputs into discrete
tokens. Moreover, long utterances were split into multiple sentences, and their time spans
were obtained by linearly interpolating the time span of the original transcript.4 We filter the
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Table 1
Statistics of SAYCam-S

Train Validation Test

Number of utterances 33,737 1874 1875
Mean (SD) utterance length 6.67 (5.49) 6.59 (5.46) 6.62 (4.95)
Number of tokens 225,001 12,355 12,418
Number of frames 540,681 29,686 29,918
Mean frames per utterance 16.0 15.8 16.0
Out-of-vocabulary rate 1.99% 2.42% 2.79%

utterances by excluding child-produced utterances, retaining only those from parents to focus
on the input that the child receives. For each utterance, we extract multiple frames at 5 frames
per second (fps) from the video, up to the first 6.4 s of its time span.

The dataset is randomly split into training, validation, and test sets (90%/5%/5% of all
utterances, respectively).5 In this study, only the training and validation sets are used, while
the test set is left for future use. Our vocabulary is built from all tokens contained in the
training set, excluding those with a frequency less than 3 in this set, resulting in a final vocab-
ulary size of 2350. Any out-of-vocabulary tokens are replaced by the special <UNK> token.
Appendix A.1 contains additional details.

The preprocessed dataset consists of 37,486 child-directed utterances (249,774 tokens)
paired with 600,285 image frames. Table 1 contains further descriptive statistics about the
dataset, and Fig. 1 shows some sample frames from the dataset paired with their correspond-
ing utterances. Notably, the average utterance length is rather short compared to sentence
lengths in typical written corpora, which is a characteristic of child-directed speech.

3. Neural networks and training

In this section, we introduce three kinds of neural network architectures and how we train
them on our SAYCam-S dataset. Note that because we are studying what is learnable in prin-
ciple from one child’s linguistic experience, we do not constrain ourselves to network archi-
tectures and training configurations that are strictly biologically or psychologically plausible.
One reason is that these questions are still open: we are far from a mature understanding of
the algorithmic issues involved in modeling individual cognitive development from realistic
input over the timescales of years (including the contributions of multiple memory systems,
constraints of attention, etc.). Instead, we use common machine learning architectures and
training practices that are known to be effective, leaving the integration of cognitive con-
straints as an avenue for future work.

3.1. Language-only networks

We use two kinds of networks to encode the language input: single-layer uni-directional
LSTM (Hochreiter & Schmidhuber, 1997), which is a variant of recurrent neural network
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Fig. 1. Example frames and their corresponding utterances. Each row is a different scene: eating breakfast, playing
a game with a ball, and reading a farm-themed picture book. Unlike common image-text datasets in machine
learning, the utterances only loosely align to the frames. For instance, the foods mentioned in the utterance are not
always in the corresponding video frames, and the ball mentioned in the utterance is sometimes covered by the
cup.

(RNN), and CBOW (Mikolov et al., 2013). The neural networks are trained from scratch: their
training objective is token prediction in context using a cross-entropy loss, which involves
multiple sweeps through the dataset during the training process.

Fig. 2(b) illustrates the architecture of a uni-directional LSTM. A uni-directional LSTM
processes a sequence of tokens left-to-right, and maintains a hidden state after each step,
keeping track of context using only tokens to the left of the predicted token in the utterance.
The dimensions of the hidden states and the word embeddings are both 512.6 When predicting
the next token, the LSTM assigns a probability distribution over all tokens in the vocabulary.

Fig. 2(a) illustrates the CBOW architecture. For CBOW, the context it can see is a con-
stant number of tokens to the left and right of the predicted token. The set of these tokens is
called its “context window.” One advantage this provides over uni-directional networks is that
the CBOW can additionally utilize information from the right of the token to be predicted.
However, unlike the LSTM, its context window size is fixed to a small number, preventing
it from modeling long-distance dependencies. CBOW also has a simpler architecture com-
pared to the LSTM: it uses an embedding layer to first embed the discrete input tokens into
their word embeddings. Then, all word embeddings within the context window are averaged
and then projected by an output layer, producing the predicted distribution over all tokens.
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(b) LSTM(a) CBOW

you want blocks too

the

average

(c) Captioning LSTM

<eos>

you want the blocks too

want the blocks too

<sos>

you

Image Encoder Decoder

you want the blocks too

<eos>want the blocks too

<sos>

you

Fig. 2. The three neural network architectures. (a) The CBOW network predicts a missing word given a surround-
ing context of fixed size. The LSTM (b) and Captioning LSTM (c) networks both predict the next word given a
sequence of previous words (additionally a corresponding image for the Captioning LSTM). The light blue boxes
indicate word embeddings, the dark blue boxes indicate hidden embeddings, and the red box indicates the visual
embedding. Fig. adapted from Lake and Murphy (2021).

All embeddings are of size 512. All parameters of both the LSTM and the CBOW, including
the input and output embeddings, are randomly initialized. See Appendix A.2 for additional
details regarding network architectures and training configurations.

We measure these networks’ performance on token prediction by per-token perplexity.7

Our LSTM and CBOW models reached an average perplexity of 24.80 (SD = 0.21) and
22.20 (SD = 0.01) on the validation set, respectively, averaged over three runs with differ-
ent random seeds.8 Despite the benefit of incorporating bidirectional context, CBOW is only
marginally better than the LSTM on this measure. For CBOW, we tested context window
sizes ranging between 1 and 4 tokens on both sides of the predicted token and found that a
context window containing only one token on both sides performed best.9

3.2. Multimodal network

Another advantage of SAYCam-S is its multimodality: it contains parallel vision and lan-
guage inputs. Adding visual information provides grounding for words, potentially allowing
the networks to learn references from words to objects, or at least visual features in the input
(Hill et al., 2021; Vong & Lake, 2022). Multimodal learning has been shown to help resolve
ambiguities when only linguistic information is present (Berzak, Barbu, Harari, Katz, &
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Ullman, 2015; Christie et al., 2016), induce constituent structures (Shi, Mao, Gimpel, &
Livescu, 2019), and ground events described in language to video (Siddharth, Barbu, &
Siskind, 2014; Yu, Siddharth, Barbu, & Siskind, 2015).

As a way to incorporate the aligned visual modality for in-context token prediction, we
treat each utterance as the caption of its associated frames. We then build an image caption-
ing network (Xu et al., 2015), which is a uni-directional LSTM with the same architecture
as described above, with an additional capacity to process information from visual inputs.
This Captioning LSTM architecture is illustrated in Fig. 2(c). We use a convolutional neural
network as our vision encoder (specifically, ResNeXt-50 32x4d; Xie, Girshick, Dollár, Tu, &
He, 2017), pretrained via unsupervised learning from the visual stream of child S (the single
child we focus on) in SAYCam (Orhan et al., 2020). The visual representation produced by
the vision encoder is used to initialize the hidden state of the uni-directional LSTM. Com-
pared to the text-only LSTM, the captioning network shares the same LSTM architecture
for language processing and is trained to optimize the same objective, next token prediction.
Therefore, it provides a natural comparison: we can apply the same set of linguistic analyses
to both models and potentially isolate the contribution of multimodality. See Appendix A.2
for additional details.

The perplexity of our Captioning LSTM was 22.10 (SD = 0.20) averaged over three runs,
which was incrementally lower than the language-only LSTM, suggesting a minor benefit of
information from the additional visual modality. Noise in the alignment between the visual
and language streams likely damped the size of the improvement. We discuss this issue further
in the context of the limitations of the multimodal objective in the General Discussion.

4. Results

4.1. Learning from language only

4.1.1. Syntactic and semantic categories
Our initial analyses closely follow Elman (1990)’s approach to assessing emergent lin-

guistic structure in neural networks. Thus, before discussing our results, we briefly summa-
rize what Elman found. Elman trained SRNs on synthetic language data and then fit cluster
dendrograms to the hidden layer activation patterns. Elman demonstrated the emergence of
soft, hierarchical category structures of words: two large categories for nouns and verbs, and
finer subcategories for each of them, including animate vs. inanimate nouns and transitive vs.
intransitive verbs.

In our results, we find that neural networks trained on SAYCam-S show similar emergent
syntactic and semantic category structures. We demonstrate this in three separate analyses,
visualizing the plots of the first two analyses on the LSTM in the main text and the corre-
sponding plots for CBOW (and Captioning LSTM) can be found in Appendix A.4. First,
as in Elman (1990)’s SRN, we find that representations learned by the LSTM and CBOW
form clusters corresponding to syntactic categories, including nouns and verbs. The verbs
also form finer subcategories, including transitive and intransitive verbs. These findings are
shown in Fig. 3; we visualize the LSTM’s word embeddings using t-SNE (van der Maaten &
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(a) t-SNE (b) Dendrogram clustering

Fig. 3. Clustering LSTM’s word embeddings for syntactic categories. For two embeddings u, v, t-SNE uses 1 −
cos(u, v) as the distance metric, and dendrogram uses cos(u, v) as the similarity measure. Nouns and verbs form
two large clusters. Transitive and intransitive verbs form two smaller subclusters.

Hinton, 2008) and a dendrogram for the most frequent 24 nouns—12 transitive verbs and 12
intransitive verbs that are unambiguous in their transitivity10 (see Fig. 8 in the Appendix for
CBOW results). Both the t-SNE and dendrogram use cosine-based metrics between word
embeddings.11 Furthermore, Figures 12 and 13 in Appendix demonstrate that clusters for
other syntactic categories like adjectives and adverbs also emerge from training. Interestingly,
although CBOW is much simpler than the LSTM, its emergent syntactic clusters are just
as clear.

Second, we find that the representations learned by the LSTM form clusters corresponding
to semantic subcategories of nouns. We manually label the most frequent nouns that are
unambiguously in different semantic categories, using a reference set of semantic categories
derived from WordBank (Frank, Braginsky, Yurovsky, & Marchman, 2016).12 We exclude
categories having less than six unambiguous words from our analysis. As can be seen from
Fig. 4, there are several visually identifiable clusters that correspond to different semantic
categories.13 In addition, we find evidence for an animate vs. inanimate distinction among
this set of nouns (Elman, 1990), but this distinction is closely aligned with the semantic



W. Wang et al. / Cognitive Science 47 (2023) 9 of 23

(a) t-SNE (b) Dendrogram clustering

Fig. 4. Clustering LSTM’s word embeddings for semantic categories. Again, both plots use cosine measures in
Fig. 3. We present the most frequent six words from eight different categories. Most distinct clusters clearly
correspond to semantic categories.

category structures (see Figure 15 in the Appendix). Interestingly, some thematically related
words (“milk,” “farm,” and “cow”) are close to each other. We find that this cluster can be
directly traced back to a particular book in the training data; these words co-occur in scenes
where the parent is reading a farm-themed picture book, illustrated in the third row of Fig. 1.

Third, as pointed out by Linzen and Baroni (2021), information in the representation may
not be used by the network to causally affect its behavior. We, therefore, apply additional
behavioral tests to provide further evidence for syntactic category structures in our networks.
We design a novel cloze test (Taylor, 1953) to evaluate the noun-verb distinction. We build
clozes such as “we are going to ___ here,” where the cloze expects either a noun or a verb.14

Trials are generated by iterating over utterances in the validation set, identifying each token
that is a noun or verb, and replacing one of these tokens with an empty slot to create a cloze.
For each cloze, we fill the slot with every possible noun or verb in the vocabulary, scoring
each candidate with the whole-sequence probability. After normalizing these scores such that
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Table 2
Examples of clozes and the networks’ predictions

Model Top-5 predictions

we should turn on some lights, huh?
LSTM 91.2% put 5.2% turn 0.4% leave 0.4% keep 0.4% get
CBOW 48.2% put 31.4% lid 8.9% go 2.3% sit 1.9% come

we should turn on some lights, huh?
LSTM 14.0% lights 13.4% toys 9.5% water 7.6% music 5.4% books
CBOW 11.3% ducks 10.2% bread 8.0% breaky 5.8% books 5.1% grapes

are you done going potty?
LSTM 9.3% done 6.4% ’re 6.0% feeling 5.5% hiding 5.4% are
CBOW 69.1% ’re 26.4% re 4.2% are 0.1% keep 0.1% were

and there’s a kitty looking at a mouse.
LSTM 40.9% kitty 18.9% mouse 4.3% doggy 3.8% door 2.3% dog
CBOW 23.0% lot 4.9% bit 3.5% bottle 3.0% tower 3.0% banana

we might go to the beach today.
LSTM 61.2% library 10.1% playground 8.8% beach 2.9% park 2.9% farm
CBOW 37.0% library 22.3% beach 17.3% camera 12.7% garden 4.0% farm

now on our way we can get some food for us for breakfast
LSTM 56.2% bread 6.9% chicken 4.2% strawberries 4.0% water 3.9% salmon
CBOW 12.6% lunch 11.6% breaky 11.4% dinner 6.9% oil 6.0% clothes

Note. We present a cloze by underlining the ground-truth word at the slot. We list the top-5 predictions in this
form: (predicted normalized probability, word). The top predictions frequently align with expected categories. For
instance, a noun follows a determiner, and a word in the food-drink category occurs if breakfast is mentioned.
By comparing the predictions of the LSTM and the CBOW, we can also see the disadvantages of CBOW’s small
context window. For instance, in the fourth example, the CBOW model could not see the word “kitty” farther
away, so it could not make a more reasonable guess that the word at the slot should be in the animal category as
the LSTM did.

they sum to 1, we can estimate the degree to which the network anticipates a noun or verb in
a particular slot. Across the 2412 clozes we generated (with a base rate of 65% verbs), LSTM
achieves a high accuracy of 97.96% (SD = 0.23% over three runs) and CBOW achieves an
accuracy of 91.20% (SD = 0.33%). Table 2 presents some cloze examples and top predictions
from our networks. Appendix A.5 contains more details regarding cloze construction and
additional examples. Overall, these results demonstrate the network’s ability to contextually
differentiate nouns and verbs, supplementing our earlier findings.

4.1.2. Linguistic acceptability analysis
Next, we examine the networks’ sensitivity to acceptability of a sequence modulated by

more complex linguistic phenomena, such as subject-verb agreement and argument structure,
again following Elman’s lead (1989, 1991). We study this using Zorro: a minimal pair test



W. Wang et al. / Cognitive Science 47 (2023) 11 of 23

suite for 13 different linguistic phenomena (Zorro; Huebner et al., 2021), which itself is
derived from another minimal pair test suite (BLiMP; Warstadt et al., 2020). The minimal
pair approach asks models to judge which of the two sentences is more acceptable (e.g.,
“I saw this toy” vs. “I saw this toys”). The sentences in a minimal pair highlight a single
linguistic phenomenon that leads to a contrast in acceptability judgments. We filter the Zorro
dataset such that only sentence pairs that are entirely within our models’ vocabulary are
included. This leaves us with 15 subsets of the dataset, corresponding to seven different
linguistic phenomena; eight were excluded for having no items after filtering. Additional
details regarding dataset curation can be found in Appendix A.6.

On these filtered subsets, we test and compare several networks: the three networks we
trained (language-only LSTM, CBOW, and Captioning LSTM15), two baseline n-gram lan-
guage models based on statistics of the training set (unigram and bigram language models16),
and a strong Transformer model (pretrained weights from Huebner et al., 2021 trained on AO-
CHILDES which aggregates data from many children). The results are summarized in Fig. 5.
Though the networks trained on SAYCam-S perform worse than the Transformer trained on
more data, they are clearly above chance on many tests. For example, the LSTM achieves
67.7% accuracy on determiner-noun agreement, and the CBOW achieves 61.1% accuracy.
The lower performance of CBOW on this test can be explained by the length of the depen-
dency that needs to be processed. That is, some of the dependencies in this test span longer
distances than CBOW’s context window, which is advantageous for the LSTM. However, on
the subject-verb agreement test which requires even longer dependencies, even the LSTM
does not perform substantially above chance (55.7%). It is possible that there are too few dis-
tributional cues for long-distance agreements in SAYCam-S in particular; other findings have
also shown that RNNs (Elman, 1991; Linzen & Leonard, 2018) and Transformers (Pérez-
Mayos, Ballesteros, & Wanner, 2021; Tay et al., 2021) with modest amounts of training data
in general have difficulty with longer-distance dependencies.17 Other tests such as quanti-
fiers and grammatical case are less useful for distinguishing between models because the
unigram and bigram models performed well, indicating that even very simple distributional
statistics are sufficient for high accuracy on these tests. See Appendix A.6 for a more detailed
explanation of baseline n-gram models and further analysis of the relative performance of
different models.

4.2. Learning from multimodal input

As mentioned earlier, the LSTM showed an incremental improvement in perplexity with
additional visual information. In this final set of analyses, we examine how incorporating
visual information influences the linguistic representations in the Captioning LSTM.

4.2.1. Sources of multimodal improvement
To investigate the areas of possible improvement, we first measure the improvement in

cross-entropy loss for words occurring at least twice in the validation set, grouped by each
word’s syntactic category. This difference in loss between the Captioning LSTM and the
language-only LSTM is shown in Fig. 6. The improvements for most syntactic categories are
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Fig. 5. Mean linguistic acceptability test accuracy over subsets for each network and linguistic phenomenon. The
top group of bars is the mean over all subsets, and each of the remaining groups is the mean over the subsets
corresponding to specific linguistic phenomena. Each label for a phenomenon is accompanied by an illustrative
example, in which the first option in the bracket is grammatical, while the second is not. The model is correct if
it assigns a higher probability to the grammatical sentence over the ungrammatical one. The dashed line denotes
chance accuracy. See Appendix A.6 for fine-grained results on each phenomenon.

Fig. 6. Type-level loss difference between language-only LSTMs and Captioning LSTMs on the validation set.
Losses are means over all occurrences of the word type and all three runs for each architecture. The box plot
shows the median, first quartile, and third quartile; the whiskers extend from the box by 1.5x the inter-quartile
range. *: p ≤ .05, **: p ≤ .01, ***: p ≤ .001. More negative values on the x-axis indicate more improvement
with added visual information. See Table 7 in the Appendix for detailed t-test results.
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statistically significant (Table 7 in the Appendix), but in particular, nouns and verbs benefit
the most from additional visual information. The improvement for nouns is expected, since
most nouns acquired early by children can be visually grounded (Frank, Braginsky, Yurovsky,
& Marchman, 2021). Surprisingly, verbs and even function words show some improvement,
even though they are often more challenging to directly ground in images.

It is challenging to discern precisely which visual-linguistic correlations are responsible
for the improved predictive power. Nevertheless, in Fig. 7, we provide several examples and
compare the cross-entropy losses of the text-only LSTM and Captioning LSTM on each token
of the utterances. For concrete nouns like “ball” in the third example, introducing frames con-
taining clear referents greatly reduces losses on them. In other examples, however, the influ-
ence of visual information is not clearly beneficial or interpretable. For example, in the fourth
example, the loss on “car” decreased, but the loss on “ball” increased despite both referents
being present in the frame. This suggests the network also acquires less interpretable and indi-
rect visual-linguistic correlations. One possible hypothesis for the additional improvements in
cases where there are no direct referents in the scene is that different visual moments in child-
hood (e.g., mealtime vs. play) elicit sufficiently different distributions of words (Roy et al.,
2015). The seventh example is an illustration of such a case. We leave further investigation in
this direction for future work.

4.2.2. Influence on representations
As a second analysis on how visual information influences linguistic representations, we

perform Representational Similarity Analysis (RSA; Kriegeskorte, Mur, & Bandettini, 2008)
across the three neural networks. We compute the dissimilarity matrices of the three networks’
representations for the set of words in the aforementioned syntactic category analysis in
Section 4.1.1, using a dissimilarity metric: 1

2 (1 − cos(u, v)). Visualizations of these matri-
ces can be found in Appendix A.8.

The similarity between representations of two networks is the Pearson correlation between
elements in the upper triangulars of their dissimilarity matrices. The two networks based on
the same LSTM architecture (language-only LSTM and Captioning LSTM) are quite sim-
ilar to each other (r(1126) = .82, p < .001), while CBOW is less similar to either LSTM
(r(1126) = .71, p < .001 to LSTM, r(1126) = .70, p < .001 to Captioning LSTM). The
high similarity between the LSTM and Captioning LSTM is consistent with recent stud-
ies which found that incorporating visual information does not dramatically restructure or
improve linguistic representations (Iki & Aizawa, 2021; Yun, Sun, & Pavlick, 2021).

5. General discussion

Our work demonstrates what kinds of linguistic knowledge are learnable from the naturalis-
tic input received by a single child. There are three main takeaways. First, using the SAYCam
dataset (Sullivan et al., 2021) and techniques from modern machine learning and natural lan-
guage processing (NLP), we find that neural networks learning exclusively from developmen-
tally plausible data can differentiate words in different syntactic categories. These categories
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Fig. 7. Predicting an utterance with (Capt. LSTM) and without (LSTM) access to a video frame. The numbers
above each token show the models’ losses when predicting particular tokens (heatmap normalized within an utter-
ance). The mean loss M is also shown. The Captioning (Capt.) LSTM has better mean loss than the LSTM on
most examples, and the word predictions for some visible objects are improved over the LSTM (“doggy,” “ball”
in the third row, etc.). The third to sixth examples are harder to interpret: the Capt. LSTM fails to make better
word predictions for other visible objects (“ball” in fourth row and “car”). Finally, the last two examples mention
objects that are not present in the image (“banana” and “bear”). Nevertheless, the word “banana” is more likely in
the Capt. LSTM presumably due to the correlation with the visual context (kitchen background); on the contrary,
in the last example, the prediction on the word “bear” that does not have a corresponding visual referent becomes
worse.
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help to shape the networks’ behaviors, including sensitivity to category-conforming contexts
and phenomena, such as determiner-noun agreement, although longer distance dependencies
proved more difficult (e.g., subject-verb agreement). Second, the networks can also organize
nouns into semantic categories, such as animals, body parts, and clothing, largely following
a taxonomic organization mixed with some thematic influences. Finally, we found that intro-
ducing visual information brings an incremental improvement for predicting words in context,
with relatively larger improvements for syntactic categories, such as nouns and verbs. How-
ever, the acquired linguistic representations in the LSTMs were similar regardless of whether
they received visual information.

A distinguishing aspect of our work is using naturalistic, multimodal data from a single
child. Elman’s pioneering work (1989, 1990, 1991) showed how SRNs can learn meaningful
syntactic and semantic representations without targeted inductive biases. The NLP commu-
nity has continued this tradition, using modern successors of the SRN for modeling sequences
(LSTMs, Transformers, etc.) trained on larger-scale written text corpora (Belinkov & Glass,
2019; Linzen & Baroni, 2021; Rogers, Kovaleva, & Rumshisky, 2021; Warstadt & Bowman,
2022). Moreover, neither synthetic nor written text is essential: networks can also learn useful
syntactic and semantic representations when trained on the naturalistic, noisy data received
by multiple children (Fourtassi, 2020; Huebner & Willits, 2018; Huebner et al., 2021). Our
work takes a further step in demonstrating how the same types of regularities, although in
more nascent forms, emerge from neural networks trained on the linguistic input received
by just one child. Furthermore, we also provide an initial examination of what additionally
can be learned when visual data are paired with the linguistic input, complementing previous
work training vision-only models on SAYCam (Orhan et al., 2020; Zhuang et al., 2021).

By using data from just one child, we inevitably have less training data than previous stud-
ies with aggregate corpora. Unsurprisingly, data quantity impacts the acquisition of linguistic
structure (Warstadt, Zhang, Li, Liu, & Bowman, 2020). The 225K tokens in our training
set is a small fraction of a child’s overall input. Assuming a child receives roughly 3M to
20M words per year (Appendix S1 of Dupoux, 2018), our training data are 0.5%–4% of the
child’s input in the first 2 years or even smaller fraction of this, considering that not all of
the SAYCam tokens are words (e.g., punctuations). In contrast, BabyBERTa (Huebner et al.,
2021) that was trained on 5M words (using AO-CHILDES; aggregated from multiple children
and spanning a longer age range) achieved stronger performance on acceptability judgments
(Fig. 5). More work is needed to understand the nature of these differences: these gaps may
arise from differences in terms of data scale or data diversity due to more children across
more ages and more environments. We see our method as a conservative approach, using real
rather than proxy data available to one learner, that ensures models will not benefit from the
additional diversity of aggregated data. Nonetheless, we see complementary value in both
methodologies, trading off between data quantities and more realistic settings. We hope that
the future will bring denser and longer-range datasets from individual children, mitigating
these trade-offs and facilitating even more powerful studies of learnability.

Although we focused on the outcome of learning rather than the stages of learning—that
is, we did not seek to build a model of cognitive development—it is still instructive to
compare our findings to studies of language acquisition in children. We have demonstrated
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that distributional information in the input to a child before 25 months of age is enough to
support the formation of syntactic categories, including nouns and nonalternating transitive
and intransitive verbs. Meanwhile, children’s category structures develop at varying paces.
For example, children at around 23 months can productively use novel nouns but not verbs,
indicating a more well-formed grammatical category for nouns (compared to verbs) at this
age (Olguin & Tomasello, 1993; Tomasello & Olguin, 1993). Our networks’ failure to acquire
more complex linguistic phenomena, in particular, subject-verb agreement, may also benefit
from a parallel discussion with developmental work. English-speaking children have been
reported to successfully produce subject-verb agreement markers between the ages of 2;2 and
3;10 (Brown, 1973). Given that the endpoint of our training data is 25 months, it may be the
case that access to a child’s linguistic input that extends beyond this timeframe is required.
Furthermore, the comprehension of subject-verb agreement has been known to be delayed in
English-speaking children (Johnson, de Villiers, & Seymour, 2005; Legendre et al., 2014). In
this regard, our results provide a piece of supporting evidence speaking to the weakness of
distributional cues for subject-verb agreement in early child-directed input.

Regarding semantic development, our results showed that the emergent semantic clusters
of words correspond to real superordinate categories that children learn (“animal,” “vehicle,”
etc.), although exactly when and how children learn these concepts is still a puzzle (Murphy,
2002). Infants can discriminate between visual exemplars of superordinate categories (ani-
mal vs. vehicle) in the first few months of life, with discrimination between more specific
categories (Saint Bernard vs. Beagle) emerging later (Mandler & McDonough, 1993; Quinn,
2004). On the other hand, language seems to follow a different path: words for superordi-
nate categories are acquired comparatively late relative to words for basic-level categories
(Murphy, 2016). Additionally, the developmental timecourse of taxonomic relatedness, com-
pared to more associative and thematic forms of relatedness, is still debated and seems to vary
according to the task (Gelman & Markman, 1986; Markman & Hutchinson, 1984; Sloutsky,
Yim, Yao, & Dennis, 2017; Unger, Savic, & Sloutsky, 2020; Unger & Fisher, 2021). Our
results suggest that information regarding taxonomic (including superordinate) categories can
be readily extracted from a small subset of the linguistic input to one child (up to age 3), as
found in other modeling work using broader aggregate data (Sloutsky et al., 2017). It is thus
unclear what underlies the differences between modalities and the late acquisition of some
types of semantic and conceptual knowledge; future work using other multimodal models
trained on SAYCam could potentially provide a unique lens into these questions.

Our work only scratches the surface of understanding what is learnable from a young
child’s experiences. SAYCam offers an unprecedented snapshot of three children’s expe-
riences, but it captures only a small fraction of their total linguistic input, preventing us
from analyzing more complex linguistic phenomena (Belinkov & Glass, 2019; Linzen &
Baroni, 2021; Rogers et al., 2021). Our multimodal training setup also does not capture
the full richness of the multimodal signals that children may receive. Beyond imperfections
in preprocessing (Section 2) and the inherent stochasticity in a child’s gaze (Yu, Zhang,
Slone, & Smith, 2021), the use of tokenized text rather than audio removes phonological
or morphological cues, while also treating segmentation capabilities as given (Meylan &
Bergelson, 2022). We mainly focused on linguistic analyses that are applicable to text-only
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setups, because this enables us to better isolate the contribution of introducing multimodality.
Nevertheless, a very important future direction is to investigate grounded semantics of the
language, with multimodal neural networks like our captioning model or contrastive models,
using relevant tasks, such as image-text matching or cross-modal forced-choice paradigms
(Chrupała, Gelderloos, & Alishahi, 2017; Harwath et al., 2018; Khorrami & Räsänen, 2021;
Kádár, Chrupała, & Alishahi, 2015; Lazaridou, Chrupała, Fernández, & Baroni, 2016;
Nikolaus & Fourtassi, 2021; Vong & Lake, 2022). Moreover, we did not fully incorporate the
temporal nature of a child’s experience, both in how the videos were converted to still images
(impeding learning of certain kinds of words that might require visuotemporal integration,
e.g., “pick” and “take”; Ebert & Pavlick, 2020) and how networks were trained on the whole
corpus simultaneously (one alternative, training networks on age-ordered data, can be found
in Huebner & Willits, 2020). A future extension in the network architecture could incorporate
the temporal structure of video frames, such as attention-based pooling or more generally
video network architectures (Merkx, Frank, & Ernestus, 2019; Tran et al., 2018). Potentially,
dialog models could also help in learning from interactive linguistic contexts. In addition to
modeling the temporal structure, an even harder future challenge is limiting models to one
pass through the data as a stricter criterion for learnability.

Finally, and perhaps most importantly, the networks learn passively from a child’s fun-
damentally active and embodied experiences under the current setup. The networks cannot
choose their own actions to take in the environment, do not have desires and goals, do not
utilize social cues in support of learning, and do not realize that language can be a means
of achieving what they want. In all of these ways, the types of neural networks considered
here, even when scaled up, are far from understanding language in all the ways that people
do (Lake and Murphy, 2021). Nevertheless, our results show that neural networks can acquire
meaningful structures from a real snapshot of developmental experience. Stronger models,
paired with denser and higher-resolution developmental snapshots, would undoubtedly lead
to further discoveries.
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Notes

1 As in previous work, we draw parallels between emergent clusters of word embed-
dings and real-world categories (“animal,” “vehicle,” etc.). Importantly, however,
these learned representations are quite limited in function and structure compared to



18 of 23 W. Wang et al. / Cognitive Science 47 (2023)

full-fledged human conceptual representations (Lake and Murphy, 2021). We elaborate
on this point in the General Discussion.

2 Our code can be found on https://github.com/wkvong/multimodal-baby.
3 The SAYCam dataset can be accessed on https://nyu.databrary.org/volume/564. Access

can be provided to academic investigators through the Databrary authorization process.
4 Although this interpolation procedure did not lead to time spans that were exactly

aligned with each of the spoken utterances, the relative stability of visual information
across seconds meant that the approximate alignment was still informative. We note
that noise introduced at this step would lead to an underestimate, not an overestimate,
of learnability.

5 The temporal order of utterances is not taken into account. They are also randomly
ordered when presented to the network. So, the network treats each frame-utterance
pair as an independent datapoint.

6 The hidden state and embedding sizes were not critical for our analyses; Smaller embed-
ding dimensions led to degradation of performance on token prediction, but the quali-
tative conclusions of our analyses remained unchanged.

7 In natural language processing, perplexity is a measure of how well a predicted distri-
bution matches the ground-truth one-hot token distribution, defined as 1

p̃(y) , where p̃(y)
is the predicted probability of the ground-truth token y. For a corpus consisting of n
tokens, the perplexity is defined as exp( 1

n

∑n
i=1 − log p̃(yi)), where yi is the i-th token.

The lower the perplexity, the better.
8 In order to make perplexity as comparable as possible across LSTM and CBOW, all

these numbers exclude Start-Of-Sequence (SOS) and End-Of-Sequence (EOS) tokens
appended to the starts and ends of utterances, so they are evaluated on the same set
of tokens.

9 Note that it has been shown that small contexts primarily encode syntactic aspects over
thematic ones (Chang & Deák, 2020; Huebner and Willits, 2018).

10 See Appendix A.3 for details of how we classify the transitivity of verbs.
11 While we used word embeddings to conduct these analyses, mean hidden vectors across

the dataset (the approach used by Elman, 1990) yield similar results.
12 See Appendix A.3 for details of how we select nouns and label their semantic categories.
13 CBOW results are shown in Figure 9 in the Appendix; there are also many identifiable

clusters like body parts and clothing, but many others are less clear than clusters from
the LSTM.

14 This approach is similar to the category distinction test for masked language models in
Kim and Smolensky (2021).

15 The Captioning LSTM always needs an image input, so we used the mean image frame
of the training set in this evaluation. Of course, this mean image does not specifically
relate to the candidate sentences in the evaluation. As shown in Fig. 5, its performance
is not substantially different from the language-only LSTM.

16 n-gram models are simple language models based on token counts in a corpus. An
n-gram is n consecutive tokens. The unigram model is based on counts of individual

https://github.com/wkvong/multimodal-baby
https://nyu.databrary.org/volume/564
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token, without considering any context. The bigram model is based on counts of token
pairs occurring together, and so on. We tried larger n-gram models for the acceptability
analysis, but they performed similarly to the bigram model due to data sparsity and their
back-off mechanism. The back-off mechanism of an n-gram model is that when the n-
gram has 0 count in the training set, in order to avoid 0 probability, the model will try
using the probability of the shorter (n − 1)-gram, and so on.

17 In fact, the AO-CHILDES Transformer trained on more data also shows comparatively
worse performance on this test compared to other tests.

18 https://github.com/eminorhan/baby-vision
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