
A Supplementary Material: Learning Compositional Rules via Neural
Program Synthesis

A.1 Experimental and computational details

All models were implemented in PyTorch. All testing and training was performed on one Nvidia
GTX 1080 Ti GPU. For all models, we used LSTM embedding and hidden sizes of 200, and trained
using the Adam optimizer [1] with a learning rate of 1e-3. Training and testing runs used a batch size
of 128. For all experiments, we report standard error below.

A.1.1 Experimental details: MiniSCAN

Meta-grammar As discussed in the main text, each grammar contained 3-4 primitive rules and
2-4 higher-order rules. Primitive rules map a word to a color (e.g. dax -> RED), and higher order
rules encode variable transformations given by a word (e.g. x1 kiki x2 -> [x2] [x1]). In a
higher-order rule, the left hand side can be one or two variables and a word, and the right hand
side can be any sequence of bracketed forms of those variables. The last rule of every grammar
is a concatenation rule: u1 x1 -> [u1] [x1], which dictates how a sequence of tokens can be
concatenated. Figure A.2 shows several example training grammars sampled from the meta-grammar.
We trained our models for 12 hours.

Generating input-output examples To generate a set of support input-output sequences X from a
program G, we uniformly sample a set of input sequences from the CFG formed by the left hand side
of each rule in G. We then apply the program G to each input sequence xi to find the corresponding
output sequence yi = G(xi). This gives a set of examples {(xi, yi)}, which we can divide into
support examples and query examples.

Test details For each of our experiments, we used a sampling timeout of 30 sec, and tested on
50 held-out test grammars, each containing 10 query examples. The model samples approx. 35
prog/second, resulting in a maximum search budget of approx. 1000 candidate programs.

10 30 50 70
Number of support examples at test time

0

20

40

60

80

100

%
 o

f t
es

t q
ue

rie
s c

or
re

ct

Varying number of support examples

synthesis
synthesis, no search
meta seq2seq

3 4 5 6
Number of primitives at test time

0

20

40

60

80

100

%
 o

f t
es

t q
ue

rie
s c

or
re

ct

Varying number of primitives

synthesis
synthesis, no search
meta seq2seq

3 4 5 6
Number of higher-order rules at test time

0

20

40

60

80

100

%
 o

f t
es

t q
ue

rie
s c

or
re

ct

Varying number of higher-order rules

synthesis
synthesis, no search
meta seq2seq

Figure A.1: MiniSCAN generalization results. We train on random grammars with 3-4 primitives,
2-4 higher order rules, and 10-20 support examples. At test time, we vary the number of support
examples (left), primitive rules (center), and higher-order rules (right). The synthesis-based approach
using search achieves near-perfect accuracy for most test conditions.

Results Our results are shown in Figure A.1. We observed that, when the support set is too small,
there are often not enough examples to disambiguate between several grammars which all satisfy
the support set, but may not satisfy the query set. Thus, we varied the number of support examples
during test time and evaluated the accuracy of each model (Figure A.1 left). We observed that, when
we increased the number of support elements to 50 or more, the probability of failing any of the
query elements fell to less than 1% for our model. We also we varied the number of primitives in the
test grammars (Figure A.1 center), and the number of higher-order functions in the test grammars
(Figure A.1 right, also Figure 4 in the main text). For these experiments, each support set contained
30 examples.

We additionally extended the higher-order rules experiment, again training on 2-4 higher-order rules,
but testing on grammars with 7-13 higher-order rules. See Table A.1 for results. These results
demonstrate generalization and relatively graceful degradation on test grammars with up to 3x the
number of rules compared to those seen during training.

1



Table A.1: Accuracy on extended higher-order rules MiniSCAN experiment, with standard error.

Higher-order rules: 7 8 9 10 11 12 13
Synth (Ours) 96.0 (1.3) 93.6 (1.4) 92.0 (1.7) 90.5 (2.1) 83.5 (3.4) 78.5 (3.6) 77.5 (3.1)
Synth (no search) 59.5 (5.7) 62.0 (2.8) 62.5 (4.4) 56.0 (4.3) 59.5 (4.7) 48.5 (3.8) 52.5 (4.5)
Meta Seq2Seq 58.5 (3.6) 59.8 (2.3) 69.0 (4.5) 62.5 (3.9) 56.5 (4.2) 55.5 (3.7) 53.0 (4.3)

A.1.2 Experimental details: SCAN

Meta-grammar The meta-grammar used to train networks for SCAN is based on the meta-grammar
used in the MiniSCAN experiments above. Each grammar has between 4 and 9 primitives and 3 and 7
higher order rules, with random assignment of words to meanings. Examples of random grammars
are shown below. Models are trained on 30-50 support examples, and we train for 48 hours, viewing
approximately 9 million grammars.

This meta-grammar has two additional differences from the MiniSCAN meta-grammar, allowing it to
produce grammars which solve SCAN:

1. Primitives can rewrite to empty tokens, e.g., turn -> EMPTY_STRING.

2. The last rule for each grammar can either be the standard concatenation rule above, or, with
50% probability, a different concatenation rule: u1 u2 -> [u2] [u1], which acts only on
two adjacent single primitives. This is to ensure that the SCAN grammar, which does not
support general string concatenation, is within the support of the training meta-grammar,
while maintaining compatibility with MiniSCAN grammars.

Example training grammars sampled from the meta-grammar are shown in Figure A.3. At training
time, we use the same process as for MiniSCAN to sample input-output examples for the support and
query set.

Selecting support examples at test time The distribution of input-output example sequences in
each SCAN split is very different than the training distribution. Therefore, selecting a random subset
of 100 examples uniformly from the SCAN training set would lead to a support set very different from
support sets seen during training. We found that two methods of selecting support examples from
each SCAN training set allowed us to achieve good performance:

1. To ensure that support sets during testing matched the distribution of support sets during
training, we selected our test-time support examples to match the empirical distribution of
input sequence lengths seen at training time. We used rejection sampling to ensure consistent
sequence lengths at train and test time.

2. We found that results were improved when words associated with longer sequences were
seen in more examples in the test-time support set. Therefore, we upweighted the probability
of seeing the words ‘opposite’ and ‘around’ in the support set.

The implementation details of support example selection can be found in generate_episode.py.

Baselines Our probabilistic baselines were implemented in the pyprob probabilistic programming
language [2]. For both baselines, we allow a maximum timeout of 180 seconds. Both MCMC and
sampling evaluate more candidate programs than our baseline, achieving about 60 programs/sec,
compared to the synthesis model, which evaluates about 35 programs/sec.

For our enumeration and DeepCoder baselines, we used an optimization, inspired by CEGIS [3], to
increase enumeration speed. When checking candidate grammars against the support set examples,
we randomly selected 4 examples from the support set, and only checked the grammar against
those 4 examples. We only checked the grammar against the other support set examples if any of
the original 4 examples were satisfied. Using this optimization, our enumeration and DeepCoder
baselines enumerated approximately 1000 programs/sec. For the enumerative baselines, we also
allow a maximum timeout of 180 seconds.

2



Table A.2: Accuracy on SCAN splits with standard error.

length simple jump right
Synth (Ours) 100 100 100 100
Synth (no search) 0.0 13.3 (3.3) 3.5 (0.7) 0.0
Meta Seq2Seq 0.04 (0.02) 0.88 (0.13) 0.51 (0.06) 0.03 (0.03)
MCMC 0.02 (0.01) 0.0 0.01 (0.01) 0.01 (0.01)
Sample from prior 0.04 (0.02) 0.03 (0.03) 0.03 (0.02) 0.01 (0.01)
Enumeration 0.0 0.0 0.0 0.0
DeepCoder 0.0 0.03 (0.02) 0.0 0.0

Table A.3: Required search budget for our synthesis model on SCAN, with standard error.

length simple jump right
Search time (sec) 39.1 (11.9) 33.7 (10.0) 74.6 (48.5) 36.1 (13.4)
Number of prog. seen 1516 (547) 1296 (358.2) 2993 (1990.1) 1466 (541)
Number of ex. used 149.4 (28.9) 144.8 (24.7) 209.2 (91.3) 143.8 (28.6)
Frac of ex. used 0.88% 0.86% 1.6% 0.94%

Results Table A.2 and shows the numerical results for the SCAN experiments in the main paper,
reported with standard error. Table A.3 reports how many examples and how much time are required
to find a grammar satisfying all support examples. Table A.4 shows the fixed example budget results,
averaged over 20 evaluation runs. Under this test condition, we achieve perfect performance on the
length and simple splits within 180 seconds, and nearly perfect performance on the add around right
split (98.4%). The add jump split is more difficult; we achieve 43.3% (±10%) accuracy.

We also ran an experiment to further investigate the distributional mismatch between training and
testing examples. As discussed in the main text, the SCAN splits were formed by enumerating
examples from the SCAN grammar up to a fixed depth, whereas our models were trained by sampling
examples from the target training grammar. At test time, we used example-selection heuristics
to rectify this distributional mismatch. In this additional experiment, we test whether our model
can synthesize the SCAN grammar without these heuristics, provided the distributional mismatch is
controlled for. We constructed a new SCAN corpus by re-generating data by sampling examples from
the SCAN grammar instead of enumerating, and randomly assigning sampled examples to the train
or test set.1 We observe that our model is able to solve this corpus without the example-selection
heuristics described above. Following the methodology in Table A.3, we find that, to achieve perfect
accuracy on this “sampled" SCAN corpus, we require a search budget of 69.2 seconds (± 16.1), 2146
programs (± 515), and 255.8 examples (± 39.0).

A.1.3 Experimental details: Number Words

Meta-grammar We designed a meta-grammar for the number domain, relying on knowledge
of English, Spanish, and Chinese. The meta-grammar includes features common to these three
languages, including regular and irregular words for powers of 10 and their multiples, exception
words, and features such as zeros or conjunctive words. We assume a base 10 number system, where
powers of 10 can have “regular" words (e.g., “one hundred", “two hundred", “three hundred" ) or
“irregular" words (“ten", “twenty", “thirty"). Additional features include exceptions to regularity,

1This corpus is therefore analgous to the “Simple” split.

Table A.4: Accuracy on SCAN splits, using a fixed budget of 100 examples.

Model length simple jump right
Synth (180 s) 100 100 43.3 (10.0) 98.4 (1.6)
Synth (120 s) 100 98.4 (1.6) 53.9 (10.3) 94.2 (2.9)
Synth (60 s) 92.2 (3.8) 97.5 (1.3) 44.3 (9.6) 80.75 (6.8)
Synth (30 s) 85.6 (4.6) 95.6 (2.3) 24.2 (8.6) 60.0 (8.7)

3



Table A.5: Accuracy on few-shot number-word learning, using a maximum timeout of 45 seconds.
Results shown with standard error over 5 evaluation runs.

Model English Spanish Chinese Japanese Italian Greek Korean French Viet
Synth (Ours) 100 80.0 (17.9) 100 100 100 94.5 (4.9) 100 75.5 (2.4) 69.5 (2.3)
Synth (no search) 100 0.0 100 100 100 70.0 (10.2) 100 0.0 69.5 (2.3)
Meta Seq2Seq 68.6 (10.0) 64.4 (3.2) 63.6 (4.0) 46.1 (3.5) 73.7 (3.2) 89.0 (2.5) 45.8 (3.7) 40.0 (5.3) 36.6 (6.2)

conjunctive words (e.g., “y" in Spanish), and words for zero. The full model can be found in
pyro_num_distribution.py, and example training grammars are shown in Figure A.4.

Training We trained our model on programs sampled from the constructed meta-grammar. For
each training program, we sampled 60-100 string-integer pairs to use as support examples, and
sampled 10 more pairs as held-out query set. We train and test on numbers up to 99,999,999. We
trained all models for 12 hours.

Test Setup To test our trained model on real languages, we used the PHP international number
conversion tool to gather data for several number systems. On the input side, the neural model is
trained on a large set of input tokens labeled by ID; at test time, we arbitrarily assign each word in
the test language to a specific token ID. Character-level variation, such as elision, omission of final
letters, and tone shifts were ignored. For integer outputs, we tokenized integers by digit. For testing,
we conditioned on a core set of primitive examples, plus 30 additional compositional examples. At
test time, we increased the preference for longer compositional examples compared to the training
time distribution, in order to test generalization.

Generating input-output examples For each grammar, example pairs (xi, yi) come in two cate-
gories: a core set of “necessary" primitive words, and a set of compositional examples.

1. Necessary words: The core set of "necessary words" are analogous to the primitives for the
MiniSCAN and SCAN domains. This set comprises examples with only one token as well as
examples for powers of 10. For both training and testing, we produce an example for every
necessary word in the language. For the synthesis models, we automatically convert the core
primitive examples into rules.

2. Compositional examples: At test time, to provide random compositional examples for each
language, we sample numbers from a distribution over integers and convert them to words
using the NumberFormatter class (see convertNum.php). To ensure a similar process
during training time, to produce compositional example pairs (xi, yi) for a training grammar
G, we sample numbers yi from a distribution over integers. We then construct the inverse
grammar G−1, which transforms integers to words, and use this to find the input sequence
examples xi = G−1(yi). At test time, the compositional example distribution is slightly
modified to encourage longer compositional examples. The sampling distribution can be
found in test_langs.py. At training time, we produce between 60 and 100 compositional
examples for the support set, and 10 for the held out query set. At test time, we produce 30
compositional examples for the support set and 30-70 examples for the held out query set.

Results Table A.5 shows the results in the number word domain with standard error, averaged over
5 evaluation runs for each language.

4



G =
mup -> BLACK
kleek -> WHITE
wif -> PINK
u2 dax u1 -> [u1] [u1] [u2]
u1 lug -> [u1]
x1 gazzer -> [x1]
u2 dox x1 -> [x1] [u2]
u1 x1 -> [u1] [x1]

G =
tufa -> PINK
zup -> RED
gazzer -> YELLOW
kleek -> PURPLE
u2 mup x2 -> [u2] [x2]
x2 dax -> [x2]
u2 lug x2 -> [u2] [x2]
u1 dox -> [u1] [u1] [u1]
u1 x1 -> [u1] [x1]

G =
gazzer -> PURPLE
wif -> BLACK
lug -> GREEN
x2 kiki -> [x2] [x2]
x1 dax x2 -> [x2] [x1]
x1 mup x2 -> [x2] [x1] [x2] [x1] [x1]
u1 x1 -> [u1] [x1]

Figure A.2: Samples from the training meta-grammar for MiniSCAN.

5



G =
turn -> GREEN
left -> BLUE
right -> WALK
thrice -> RUN
blicket -> RED
u2 and x1 -> [x1] [x1] [x1] [u2] [u2] [u2] [x1]
u1 after x2 -> [u1] [u1] [x2] [x2] [u1] [x2] [x2]
u2 opposite -> [u2] [u2]
u1 lug x2 -> [u1] [x2]
u1 x1 -> [u1] [x1]

G =
and -> JUMP
kiki -> LTURN
blicket -> BLUE
walk -> LOOK
thrice -> RED
run -> GREEN
dax -> RUN
after -> RTURN
x2 twice u1 -> [u1] [x2] [x2] [x2] [x2]
u2 right x1 -> [x1] [u2] [u2]
u1 look x2 -> [u1] [x2] [x2]
u1 jump -> [u1] [u1]
u2 turn u1 -> [u2] [u1]
u1 lug -> [u1] [u1]
x2 left u1 -> [x2] [u1]
u1 x1 -> [u1] [x1]

G =
twice -> WALK
jump -> RTURN
turn -> JUMP
walk ->
blicket -> GREEN
kiki -> RUN
right -> RED
run -> BLUE
x2 left -> [x2] [x2] [x2] [x2] [x2]
x1 dax u1 -> [u1] [x1] [u1]
u1 thrice x2 -> [u1] [x2] [x2] [u1] [u1]
x1 look u2 -> [x1] [x1] [u2] [x1]
x2 around -> [x2]
u1 u2 -> [u2] [u1]

G =
twice -> WALK
jump -> RTURN
turn -> JUMP
walk ->
blicket -> GREEN
kiki -> RUN
right -> RED
run -> BLUE
x2 left -> [x2] [x2] [x2] [x2] [x2]
x1 dax u1 -> [u1] [x1] [u1]
u1 thrice x2 -> [u1] [x2] [x2] [u1] [u1]
x1 look u2 -> [x1] [x1] [u2] [x1]
x2 around -> [x2]
u1 u2 -> [u2] [u1]

Figure A.3: Samples from the training meta-grammar for SCAN.

6



G =
token14 -> 1
token16 -> 2
token50 -> 3
token31 -> 4
token49 -> 5
token28 -> 6
token17 -> 7
token03 -> 8
token06 -> 9
token14 token10 -> 10
token13 -> 100
token14 token36 -> 1000
token01 -> 1000000
token08 y1 -> 1000000* 1 + [y1]
token05 token01 y1 -> 1000000* 9 + [y1]
x1 token01 y1 -> [x1 ]*1000000 + [y1]
x1 token36 y1 -> [x1 ]*1000 + [y1]
token32 y1 -> 100* 1 + [y1]
x1 token13 y1 -> [x1]*100 + [y1]
x1 token10 y1 -> [x1]*10 + [y1]
u1 token09 x1 -> [u1] + [x1]
u1 x1 -> [u1] + [x1]

G =
token20 -> 1
token22 -> 2
token37 -> 3
token14 -> 4
token01 -> 5
token13 -> 6
token48 -> 7
token05 -> 8
token16 -> 9
token47 -> 10
token07 -> 20
token08 -> 30
token35 -> 40
token02 -> 50
token40 -> 60
token31 -> 70
token43 -> 80
token29 -> 90
token20 token38 -> 100
token20 token18 -> 1000
token20 token33 -> 10000
token28 token33 y1 -> 10000* 7 + [y1]
x1 token33 y1 -> [x1 ]*10000 + [y1]
x1 token18 y1 -> [x1 ]*1000 + [y1]
x1 token38 y1 -> [x1]*100 + [y1]
u1 x1 -> [u1] + [x1]

Figure A.4: Samples from the training meta-grammar for number word learning. Note that the model
is trained on a large set of generic input tokens labeled by ID. At test time, we arbitrarily assign each
word in the test language to a specific token ID.

7



References
[1] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[2] Tuan Anh Le, Atilim Gunes Baydin, and Frank Wood. Inference compilation and universal
probabilistic programming. arXiv preprint arXiv:1610.09900, 2016.

[3] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat.
Combinatorial sketching for finite programs. ACM SIGARCH Computer Architecture News,
34(5):404, 2006.

8


	Supplementary Material: Learning Compositional Rules via Neural Program Synthesis
	Experimental and computational details
	Experimental details: Miniscan
	Experimental details: scan
	Experimental details: Number Words



