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Abstract
Human infants have remarkable abilities to reason about the
underlying social causes driving others’ actions. These abil-
ities lay the foundation for complex cognitive development,
crucial to navigating human social dynamics throughout life.
In contrast, Artificial Intelligence (AI) systems continue to
fall short in achieving the fundamental commonsense social
knowledge present in human infancy. Recent benchmarks fo-
cusing on theory of mind and social cognition have begun
to address this gap but remain limited in scope. Building
on these benchmarks, we introduce eight new tasks focus-
ing on different areas of early social competence, as informed
by behavioral studies with infants. We use a self-supervised
Transformer model as a baseline test of learning-driven neural-
network models on our tasks. Our baseline shows improved
performance on existing social-cognitive tasks compared with
other deep learning models. Nevertheless, it performs sub-
optimally on our new tasks, revealing the challenge of learning
complex causal relationships and nuanced human social rela-
tions through visual data alone.
Keywords: Social Cognition; Theory of Mind; Deep Learn-
ing; Artificial Intelligence; Cognitive Development

Introduction
Human communication, collaboration, and learning are
deeply rooted in our ability to understand and interpret the
social world around us, including identifying other agents
and their affiliations, beliefs, and intentions (Astington &
Pelletier, 1998; Krych-Appelbaum et al., 2007; Resches &
Pereira, 2007). Even human infants display remarkable pro-
ficiency in understanding the social world (J. K. Hamlin,
Wynn, & Bloom, 2007; Powell & Spelke, 2013; Sommerville
& Crane, 2009; Woodward, 1998). In contrast, deep learn-
ing systems often struggle with basic social-cognitive tasks
(Lake, Ullman, Tenenbaum, & Gershman, 2017; Marcus
& Davis, 2019). Modern deep learning architectures and
training paradigms, particularly those focused on supervised
learning, tend to reduce behavioral data to labels of classifica-
tion problems, neglecting the nuances and complexities that
factor into human reasoning (Carreira & Zisserman, 2017;
Goyal et al., 2017; LeCun, Bengio, et al., 1995). More-
over, although recent large language models succeed in many
language-based tasks (OpenAI, 2023), their successes are not
robust, for example, to variations of classic social-cognitive
tasks like theory-of-mind tasks (Ullman, 2023). By starting
from infants’ foundational knowledge of the social world, we

can begin to identify the building blocks and inductive biases
essential for the development of versatile social reasoning,
highlighting key elements missing from current AI systems
aiming to capture human intelligence.

Initial steps have been taken to bridge the gap between AI
and infant social cognition (Gandhi, Stojnic, Lake, & Dillon,
2021; Rabinowitz et al., 2018; Shu et al., 2021). For exam-
ple, the Baby Intuitions Benchmark (BIB) directly compared
the performance of machines and infants on six tasks assess-
ing an observer’s inferences about individual agents’ goal-
directed behaviors (Gandhi et al., 2021; Stojnić, Gandhi, Ya-
suda, Lake, & Dillon, 2023). BIB offered an important and
successful starting point for such a research program, and in
doing so it also introduced a framework in which to create
new tasks probing foundational social cognition not covered
in its initial set of tasks.

Expanding on BIB (Gandhi et al., 2021), we introduce
eight benchmark tasks that encompass different elements of
infant social cognition, including infants’ reasoning about
other agents’ goals, affiliations, beliefs, and intentions. These
tasks are structurally complex, for example, challenging AI
systems to track multiple agents’ mental states and to dif-
ferentiate among various passive, goal-directed, and socially
driven behaviors. Due to this complexity, the tasks are ex-
pected to pose a significant challenge to current AI systems.
Alongside our benchmark tasks, we also designed twelve
background training tasks to give machines an opportunity to
learn the environment and related, but not overlapping, cogni-
tive representations to those tested in the evaluation tasks. As
a baseline, we evaluate our tasks on a state-of-the-art Trans-
former model (Arnab et al., 2021; Vaswani et al., 2017).
This model is trained on next-frame prediction, employing a
self-supervised paradigm without reliance on synthetic labels
or negative examples. While we found that our model per-
formed better than previously tested baselines on BIB’s tasks,
it made sub-optimal predictions on our new tasks, exposing
weaknesses in its abilities to understand complex causal rela-
tions and to track the mental states of multiple agents.

Below, first, we provide comprehensive explanations of
each of our new tasks. Second, we describe our background
training tasks. Third, we discuss our Transformer baseline



model, detailing its architecture, training methodology, and
performance evaluation on both BIB’s tasks and our new
tasks. Finally, we discuss the broader implications of our
tasks to inspire more human-like AI, considering the weak-
nesses and strengths of existing modeling methodology.

Benchmark Tasks
Designed within the framework of BIB (Gandhi et al., 2021),
our tasks use videos of 2D shapes moving in a grid world
to represent rich social interactions among animate agents
(Heider & Simmel, 1944). This design eliminates the vision
challenges associated with naturalistic scenes, probing a ma-
chine’s ability to learn higher-level cognitive representations.
(Gordon, 2016; Springer, Meier, & Berry, 1996). Moreover,
our design streamlines the engineering process for synthesiz-
ing the thousands of videos necessary to train and test models.

Like BIB, the benchmark relies on a violation-of-
expectation (VOE) looking-time paradigm, commonly used
to test infants. For infants, the VOE paradigm uses look-
ing time to measure their implicit predictions: Infants tend
to look longer at events they find surprising (Spelke, 1985).
To adopt this paradigm for our benchmark, we constructed
episodes consisting of nine trials within the same environ-
ment. The first eight trials—familiarization—establish a con-
sistent expectation, with events drawn from the same statis-
tical distribution. The ninth trial—test—introduces an event
that either conforms to or contradicts the expectation set up
by familiarization. To best engage with how this paradigm
is used with infants, our baseline model produces “surprisal
scores” based on the discrepancy between their predicted out-
come and the expected or unexpected test trial.

Our benchmark includes two tasks focused on social affil-
iations among agents (Approach Tasks), two focused on the
attribution of goals to agents, not objects (Object Goal Tasks),
two focused on the attribution of beliefs to agents (False Be-
lief & True Belief), and two focused on agents’ helping and
hindering behaviors (Helping & Hindering). Each task con-
sists of 1000 episodes. Below we provide further detail about
each task, explaining their structure and criterion for success.

Approach: Social & Instrumental
Does AI expect an agent to imitate the actions of another
agent it had affiliated with?

Developmental Background. Infants predict that mem-
bers of the same social group will exhibit similar actions
(Powell & Spelke, 2013, 2018). For example, when Pow-
ell and Spelke (2013) had 8-month-old infants observe two
groups of geometric figures with eyes maintain close proxim-
ity to and perform “dance” movements with their group, the
infants were surprised when one group member subsequently
performed the same actions as a member of the other group
instead of members of their own group. Unpublished research
outlined in Spelke (2022) suggests that infants as young as
7.5 months were only surprised by such group-inconsistent
actions when those actions were non-causal. When the ac-
tions included contacting an object, changing its color, infants

formed no expectations about an individual agent’s actions.
Familiarization Trials. An agent approaches one of two

target agents to establish social affiliation (Figure 1a&b).
Test Trials. The two target agents each sequentially move

in unique patterns (Figure 1a&b). The imitating agent then
adopts the movement pattern of either the target agent it had
previously approached or the target it had previously not ap-
proached. In the Instrumental task, a new target object and
obstacles are strategically placed near the imitating agent
(Figure 1b), making the movement of the agent the only
efficient action to reach the target object. Here, observers
should have no expectation regarding which target the imi-
tating agent mimics, since any similarity in actions could be
coincidental, stemming from the agent’s goal-directed behav-
ior. Conversely, in the Social task (Figure 1a), the agent is not
constrained and a target object is not present. It is expected
to mimic the target agent it previously affiliated with.

Object Goal: Agent & Object

Can an AI system recognize and attribute goals to an agent
that displays self-propelled, efficient motion, but not an object
that only moves upon contact with a mechanical spinner?

Developmental Background. Infants recognize that
agents, but not objects, exhibit self-propelled motions
(Cicchino & Rakison, 2008), have object-based goals
(Woodward, 1998), and move rationally and efficiently to-
ward their goals (Csibra, Gergely, Bıró, Koos, & Brockbank,
1999). For example, Woodward (1998) found that 5-month-
old infants expected a hand, but not a mechanical claw to
reach consistently for a goal object, not to a goal location.

Familiarization Trials. Each video contains a constantly
rotating spinner, an ambiguous element that acts as either a
goal-driven agent or passive object, and two static target ob-
jects (Figure 1c&d). In Object Goal: Agent (Figure 1c), the
element, positioned a short distance away from the spinner,
initiates its own movement. In Object Goal: Object (Fig-
ure 1d), the element begins moving only after contact with
the spinner, in a direction perpendicular to the spinner’s arm
at the point of contact. In both scenarios, the element moves
until it collides with one of the target objects, both of which
change color upon impact. The element consistently col-
lides with the same target object at a similar location in each
episode. A gray square under the spinner ensures visual con-
sistency between familiarization and test trials.

Test Trials. At test, (Figure 1c&d), the target objects’ loca-
tions are swapped. A gray square obscures the element’s ini-
tial position. This ensures ambiguity in its movement cause,
requiring the element’s agency to be inferred from familiar-
ization. At the start of each trial, the element emerges from
behind the square, moving straight toward either the same tar-
get object now in a new location (expected in Object Goal:
Agent, no expectation in Object Goal: Object), or a different
object in the location it previously approached (unexpected in
Object Goal: Agent, no expectation in Object Goal: Object).



Figure 1: Schematic Overview of the Benchmark Tasks. Eight familiarization trials are first shown to set up an expectation about the
underlying agency, affiliations, beliefs, or intentions driving the behavior of each moving entity. At test, two events are played, one consistent
and one inconsistent with the previous expectations. Here, red arrows indicate the movement of entities. Where relevant, numbers indicate
the sequential order of these movements. For clarity, this figure only partially represents the familiarization trials for (e) through (h).

Figure 2: Schematic of the False Belief and True Belief tasks. Arrows indicate the direction of movements. When applicable, numbers
show the orders of the actions. In the first trial (a), a clover-shaped agent approaches an observable heart-shaped goal object. In subsequent
familiarization trials (b), the agent searches for its goal in the same room, even when grey occluders obstruct its view. At test, (c) in the False
Belief task, when the clover-shaped agent is absent, a circular agent moves the goal to the other room (2,3) before leaving. The clover-shaped
agent enters (4) and either goes to the original room, failing to find the goal object (red arrow, 5: expected), or to the room where the object
was moved (blue arrow, 5’: unexpected). (d) In the True Belief task, the clover-shaped agent enters the grid world (1) before the circular
agent enters (2), witnessing the object change location (3,4). Hence it is expected to search the new room for its goal (red arrow, 5).

False Belief & True Belief

Does AI understand that an agent can hold and act on a belief
that is inconsistent with reality?

Developmental Background. Young toddlers predict that
an agent will act on an object based on their beliefs about
where that object is (Onishi & Baillargeon, 2005; Scott &
Baillargeon, 2017), and toddlers prefer agents who intend
to help based on their beliefs about the state of the world,
whether those beliefs are true or false. For example, Woo
& Spelke (2023) showed that 15-month-old toddlers prefer
agents who intend to help other agents even if their intention
is not fulfilled (i.e., the helping agent had a false belief about
the location of the target agent’s preferred object).

Familiarization Trials. In the first trial, an agent moves
toward an observable goal object located in one of two rooms
(Figure 2). In the following trials, the goal object is always
placed within the same room, but depending on the placement
of two grey occluders, the agent may or may not be able to
observe the object’s location (Figure 2a&b). The agent al-
ways moves to the same room to find the object, establishing
that the agent looks for the goal object where it was last seen.

Test Trials. The goal object is initially located within the
same room, but a second agent switches its location to the
other room. In the False Belief Task, the first agent observes

the object change location. In the True Belief Task, the first
agent is not present until after the switch, failing to observe
the object change location. The first agent searches for its
goal in the original location (Expected for False Belief, Un-
expected for True Belief), or the new location (Unexpected
for False Belief, Expected for True Belief).

Figure 3: Schematic of the Helping and Hindering tasks. Arrows
indicate the direction of movements. Where present, numbers show
the sequence of actions. In the depicted scenario, a pentagonal agent
moves toward a spoon-shaped goal (a). In the Helping task (b), a
clover-shaped agent assists by removing an obstacle, facilitating the
pentagonal agent’s goal attainment. Conversely, in the Hindering
task (c), a star-shaped agent impedes the pentagonal agent by placing
an obstacle in its path. In both tasks (e), the pentagonal agent is
expected to approach the clover-shaped agent (red arrow) and it is
unexpected to approach the star-shaped object (blue arrow).



Helping & Hindering
Can AI infer that a goal-directed agent prefers to socially in-
teract with another agent who helps it, as opposed to one that
hinders it, in achieving its goal?

Developmental Background. Infants predict that agents
will approach others who help them achieve their goals
(Fawcett & Liszkowski, 2012; J. Hamlin, 2015; J. K. Ham-
lin & Wynn, 2011; K. J. Hamlin, Wynn, & Bloom, 2010;
Kuhlmeier, Wynn, & Bloom, 2003; Lee, Yun, Kim, & Song,
2015; Premack & Premack, 1997). For example, J. K. Ham-
lin (2013) found that 10-month-old infants were more likely
to reach for a puppet who removed a door blocking a target
puppet’s preferred object instead of reaching for a different
puppet who also removed a door, but one blocking the target
puppet’s nonpreferred object. Moreover, infants showed this
preference only when the two puppets moving the doors saw
which object the target puppet preferred, not when they were
naive of the target puppet’s preference.

Familiarization Trials. During the first four familiariza-
tion trials (Figure 3a), two agents observe a goal-directed
agent approach a goal object which changes color upon con-
tact. In the next four familiarization trials, a barrier is placed
in the environment. In the Helping task (Figure 3b), a helping
agent removes the barrier obstructing the goal-directed agent
from reaching its goal, while the other agent does nothing.
In the Hindering task (Figure 3c), a hindering agent moves
the barrier to obstruct the entrance, preventing the agent from
reaching its goal, while the other agent does nothing.

Test Trials. At test, the goal and barriers are removed.
It is expected that the goal-directed agent moves toward the
helper in the Helping task and moves toward the stationary
agent who does not hinder in the Hindering task.

Background Training Set
Infants bring knowledge to developmental tasks, unlike deep
learning systems that start with much more limited inductive
biases. We provide a background training set to offer ma-
chines a learning opportunity. We will show four example
tasks in this section. See Figure A.1 for the full set. This
set presents elements of the environment and task setup, pro-
viding understanding essential to solve the benchmark, but
irrelevant to social cognition. For example, a rotating spin-
ner that changes the motion of an object it contacts (Fig-
ure 4a&b). The single object collection (Figure 4c) and oc-
cluded goal migration tasks (Figure 4c) demonstrate naviga-
tion constraints.

Background tasks also introduce the cognitive abilities re-
quired to succeed at the evaluation tasks. These training tasks
are carefully designed to contain low-level visual signals and
movement patterns that are distinct from evaluation, prevent-
ing trivial task solution through pattern matching. For in-
stance, the Occlusion: No-Navigation Preference task (Fig-
ure 4b) demonstrates an agent’s consistent preference for an
object, which it approaches without navigational maneuvers.
The Single Object Collect task illustrates efficient navigation,

avoiding obstacles. Employing this knowledge, a machine
may infer that a goal-driven agent is likely to navigate with
efficiency toward a preferred object among several options.

Figure 4: Selected Background Training Tasks. Models are
trained on 12 background tasks that introduce the environmental dy-
namics and cognitive skills necessary to solve evaluation tasks.

Notably, similar to infants’ experiences, the training set
consists of expected examples only. While it is challenging to
match the complexity of infants’ real-world experiences, we
believe this training set offers a limited yet reasonable foun-
dation for meaningful comparison. We encourage the usage
of additional data sources to enhance machines’ performance.

Baseline Model
We propose a baseline model aimed at predicting the subse-
quent frame in a test trial, given the preceding frames and a
selected familiarization trial as context. We choose a Trans-
former architecture for its efficacy in processing sequential
data, as illustrated in Figure 5 (Vaswani et al., 2017; Doso-
vitskiy et al., 2020; Arnab et al., 2021). The core challenge
for the Transformer is to learn to represent temporal-spatial
continuities, causal relationships, and key concepts in social
reasoning (Zhou, Dong, & El Saddik, 2020; Gandhi et al.,
2021; Hein & Diepold, 2022).

Data Preparation
In the dataset, each task is contained in one video, which
is segmented into nine trials–eight familiarization trials fol-
lowed by one test trial. At inference, each of the eight famil-
iarization trials is paired with its test trial, resulted in eight
predictions. During one training iteration, one pair of a fa-
miliarization trial and a test trial are randomly chosen from
any of the nine trials in a video, providing the model with a
wider range of training data. Frames are sampled from each
trial with a stride of 25 frames, with an upper limit of 20
frames for a single trial.

Model Architecture
As shown in Figure 5, a three-layer CNNs transforms each
video frame into a series of patch embeddings. These embed-
dings are then augmented with sinusoidal temporal-spatial



positional encodings to preserve their original context within
the video. The processed patches from the familiarization
trial are then fed into a Transformer encoder, establishing the
context for subsequent predictions in the test trial. To pre-
dict the tth frame in the test sequence, the Transformer de-
coder receives the patch embeddings from all preceding test
frames up to the (t−1)th frame and uses cross-attention to in-
corporate the encoded patches from the familiarization trial.
Finally, a two-layer deconvolutional network transforms the
decoder output into RGB image. Refer to Appendix B for
comprehensive architectural details and configurations.

Figure 5: Model Architecture and Training Procedure. The
Transformer model predicts the test frame at time t, given the frames
from a familiarization trial and test frames from time 0 to t −1.

Training
The training objective for the network is to minimize the
mean square error (MSE) loss between the predicted frames
and target frames on a pixel-wise basis. The model is trained
with the background training sets in BIB as well as ours. Re-
fer to Appendix B for learning rate, weight decay, and other
hyperparameters. After training for 100 epochs, the model
yields a final loss of 5.5 × 10−4 on the validation set, un-
derscoring the model’s predictive accuracy. For comparison,
the baseline MSE between two successive frames averaged
2.6×10−3. Visualizations of model predictions on the valida-
tion set (Figure 6a) reveal that the model is capable of predict-
ing the color, approximate shape, and step size of an agent. It
also learns some higher-level concepts, including that agent
has object goal instead of location goal. (Figure 6b).

Figure 6: Example Prediction on a Held-out Task. a clover-shaped
agent navigates to the bottle-shaped goal object. Left: previous
frame, Middle: current frame (target), Right: model prediction.

Alternative Models
To demonstrate the capacity of our baseline Transformer
model, we first compare its performances with models pre-
viously tested on BIB. These models employ different archi-
tectures, training approaches, oracle information and built-in
knowledge (Table 1). BC-MLP and BC-RNN are behavioral
cloning models with the training objective to predict future
coordinates of the main agent (Gandhi et al., 2021). Con-
versely, Video-RNN processes and constructs a pixel image
of the next frame. The VT model uses Transformer-like at-
tention mechanisms to predict both the next frame and coor-
dinates (Hein & Diepold, 2022). Finally, HBToM predicts the
coordinates of the agent by leveraging a hierarchical Bayesian
approach to construct relevant cognitive functions in a proba-
bilistic model (Zhi-Xuan et al., 2022). Prediction accuracies
of these models are shown in Table 2.

Notably, Video-RNN and Transformer use only video
frames as input. This provides versatility facilitating easy
adaptation to new tasks (Cholakov & Kolev, 2021; Girdhar &
Grauman, 2021). The increased complexity in our tasks poses
a challenge to models tailored for specific, predefined tasks in
BIB. For example, BC-MLP, BC-RNN, HBToM, and VT rely
on input or predictions based on coordinates of one agent,
making it difficult to adapt to a multi-agent environment. Ad-
ditionally, the VT model in Hein and Diepold (2022) limits
its processing to only three patches with the most significant
changes to manage its computational demands. However, this
method falls short of capturing multiple dynamic elements
within a frame. Finally, to solve the new tasks, HBToM in
Zhi-Xuan et al. (2022) requires a new set of built-in common
sense knowledge related to the new tasks.

Evaluation
Each of a task’s eight familiarization trials is paired with its
test trial, resulting in eight prediction losses. A prediction is
deemed successful if the average loss for the expected video
is lower than that for the unexpected video. The performance
of the baseline model on the new tasks is recorded in Table 3,
alongside its performance on BIB in Table 2. We discuss the
predictions of the baseline model in detail to illustrate its ca-
pabilities and limitations.

Goal Preference. VT and the baseline model significantly
outperform MLP- and RNN-based models in goal preference
and inaccessible goal tasks. As shown in Table 2, VT scores
accuracies of 82.1% and 89.8%, respectively, and our Trans-
former model recorded accuracies of 73.7% and 78.8%. This
underscores the strength of the attention mechanism in repre-
senting element-wise relations.

Efficiency. All models successfully predicted that agents
efficiently navigate to their goals, with accuracy above 90%.
However, the Irrational Agent task is much more challenging
for many models. Notably, the transformer baseline achieves
an accuracy of 80.4% on this task, far surpassing the other
data-driven models including the Video-RNN (50.1%) and
VT (29.5%). One explanation is that many models learn to



Table 1: Oracle information used by different models.

Deep Learning Models Bayesian Principled Model
Privileged Information BC-MLP BC-RNN Video-RNN VT Transformer (Ours) HBToM
Environment meta-data

(element type, coordinates, etc.) x x x x

Built-in inductive biases x x

Table 2: Comparisons of model prediction accuracy (%) on BIB.

Deep Learning Models Bayesian Principled Model
Task Name BC-MLP BC-RNN Video-RNN VT Transformer (Ours) HBToM

Preference 26.3 48.3 47.6 82.1 73.7 99.7
Multi-Agent 48.7 48.3 50.3 49.1 50.2 99.2
Inaccessible Goal 73.3 80.7 71.8 78.9 78.9 99.7
Efficiency: Path Control 94.0 92.8 99.2 96.0 96.0 94.9
Efficiency: Time Control 99.1 99.1 99.9 99.0 99.9 97.2
Efficiency: Irrational Agent 73.3 55.7 50.1 29.5 80.4 96.6
Instrumental: No Barrier 98.8 98.8 99.7 98.7 97.9 98.8
Instrumental: Inconseq Barrier 55.2 78.2 77.0 96.9 57.3 97.0
Instrumental: Blocking Barrier 47.2 56.6 62.5 82.1 21.4 99.7

Table 3: Baseline prediction accuracy (%) on the new social cog-
nition tasks.

Task Name Baseline
Approach: Social 38.6
Approach: Instrumental 50.2
Goal Attribution: Agent 40.8
Goal Attribution: Object 53.5
True Belief 97.5
False Belief 2.4
Helping 60.7
Hindering 58.3

solve the Efficiency tasks independently of the familiariza-
tion trials (Gandhi et al., 2021; Hein & Diepold, 2022). Given
the set of background training tasks we provide, it is possible
for the model to learn efficient navigation as a general knowl-
edge, applying it to all predictions without context. This strat-
egy, while effective for background training trials, fails for the
Irrational Agent task where the context is critical. One pos-
sible explanation for the relative success of our Transformer
model is in the way the background training trials are sam-
pled: During training, any trial, including the first eight trials,
can be treated as the “test trial,” potentially guiding the model
to learn a more complete representation of the familiarization
trials.

Instrumental Action. The baseline model makes accu-
rate predictions (97.9%) in the No Barrier task, slightly above
chance (57.3%) in the Inconsequential Barrier task and below
chance (21.4%) in the Blocking Barrier task. An examination
of these complementary tasks suggests that the model fails to
capture the sequential and causal relations in the actions. For
example, in the model predictions of an Instrumental: Block-
ing Barrier task (Figure 7), the green wall starts fading before
the key insertion. This is because the model fails to capture

the causal relations during background training, instead asso-
ciating the fading of the green wall with frame numbers. This
heuristic fails in evaluation because the agent is generated far-
ther away from the key, which is inserted in later frames. This
results show the weakness of Transformer to understand and
represent causal relations.

Figure 7: Example Predictions on an Instrumental: Blocking
Barrier Task. In the second predicted frame of this trial (left), a
cloved-shape agent moves towards the triangular key; In the third
frame (middle), the agent picks up the key, and the lower-right cor-
ner of the green wall is gone; In the fifth frame (right), the agent and
the key get closer to the lock but the key has not been inserted yet.
The lower-right corner of the green wall is again missing.

Helping & Hindering. As shown in Table 3, in the Help-
ing and Hindering tasks, the model achieves an accuracy of
60.7% and 58.3%, respectively. A closer examination of the
frame prediction suggests that the model might be capable of
identifying the target agent, but fails to render it correctly to
match the target frame. As shown in Figure 8a, in the tar-
get frame (center), the blue pentagonal agent is at the lower-
right corner of the orange circular agent, because the pen-
tagonal agent approaches from below (left). In the predicted
frame (right), the model correctly renders the blue pentago-
nal agent near the orange circular agent, but at the upper-right
corner instead of the lower-right corner in the target. This
discrepancy can be traced back to the lack of variety in some
background training tasks. In the Trapped Agent: Hinder-
ing task from the training set, for example, a goal-directed



agent always starts from the top part of the grid world and ap-
proach one of the two social agents from above (Figure 8b).
This shows a lack of diversity in the background training set,
as well as Transformer’s challenges with generalization from
limited data.

Figure 8: Example Prediction on a Hindering Task. In a Hinder-
ing task in evaluation (a), a pentagonal agent starts from the lower
part of the grid world (a, left), moves towards and finally collides
with a circular agent from below (a, center). In the model predic-
tion (a, right), the pentagonal agent appears near the upper-left cor-
ner of the circular target agent. In a similar training episode of the
Trapped Agent: Hindering task (b), a clove-shaped agent starts from
the upper-right room of the grid world (b, left) and approach a cir-
cular target agent from above (b, right).

True & False Belief. The baseline Transformer achieves
accuracy of 97.5% and 2.4% respectively, indicating that it
expects the agent to always approach the goal behind the wall,
regardless of its knowledge about the relocation. This could
be attributed to either a genuine ignorance of false belief, or
a failure to understand the role of the occluder to create an
environment with only partial knowledge.

Discussion
Machine benchmarks focusing on human social cognition
create valuable opportunities to develop AI systems with
human-like and human-compatible competencies. By com-
paring the predictions of AI and infants, we can align the
goals of AI systems with the foundational cognitive build-
ing blocks of human cognition. Our present work builds on
previous work, in particular on the Baby Intuitions Bench-
mark (Gandhi et al., 2021; Stojnić et al., 2023), by intro-
ducing eight new evaluation tasks that explore various social-
cognitive abilities present from human infancy, including rea-
soning about agency, affiliation, belief, and intention. We also
generated twelve background training tasks to provide ma-
chines an opportunity to learn the environmental dynamics
and necessary social cognitive groundwork.

We supply a lower-bound for machine performance with a
Transformer baseline. The encoder-decoder model is trained
with a self-supervised learning paradigm. Its non-task-
specific architecture and training procedure provide an adapt-
able pipeline for future datasets structured around the VOE
paradigm. Despite showing promise on the existing BIB with

minimal oracle guidance (Table 1), its performance on our
new tasks highlights the necessity for more powerful AI sys-
tems capable of reasoning about complex environments and
nuanced social dynamics.

What can we learn from existing models of social cogni-
tion, and how do we create AI that can identify agency, affil-
iation, belief, and intention like infants do? Our results point
to two complemetary strategies: creating more realistic train-
ing data and integrating cognitive inductive biases into model
architectures. The disparity between the simplistic, passive
learning environment we provided and the rich, multi-modal,
and interactive experiences that shape infant learning is pro-
nounced. Efforts to bridge this gap have included capturing
infants’ sensory experiences through head-mounted cameras
(Vong, Wang, Orhan, & Lake, 2024; Emin Orhan, Wang,
Wang, Ren, & Lake, 2024; Orhan, Gupta, & Lake, 2020;
Sullivan, Mei, Perfors, Wojcik, & Frank, 2021), eye-tracking
(Sheybani, Hansaria, Smith, & Tiganj, n.d.; Mendez, Yu,
& Smith, n.d.; Candy et al., 2023), and simulating interac-
tion with the environment via embodied agents (Wykowska,
Chaminade, & Cheng, 2016). Our benchmark is poised to
serve as a critical testing ground for models trained on these
datasets.

Moreover, the innate knowledge and biases that infants
possess facilitate flexible adaptation and efficient generaliza-
tion, a balance that existing models of commonsense rea-
soning struggle to achieve. Existing models fall into two
categories: structured Bayesian models, such as BIPaCK
and HBToM in Shu et al. (2021), and deep learning mod-
els, such as neural networks for behavioral cloning (Gandhi
et al., 2021) and video prediction(Gandhi et al., 2021; Hein
& Diepold, 2022). Structured Bayesian models can perform
very well on synthetic benchmarks, but they usually rely on
task-specific inductive biases and features that would gener-
alize poorly to the fully complexity of real applications. On
the other hand, deep learning models adopt an end-to-end
approach, offering greater robustness in noisy environments,
but they are data intensive and generally under-perform when
confronted with out-of-distribution data, as we find in our
study (Table 2). With the long-term goal of developing ma-
chines that have infant-like social reasoning, we hope that
our benchmark stimulates new work that expands both mod-
eling approaches, as well as new approaches that combine the
strengths of existing ones.
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A. Full Set of Background Training Tasks
Like the evaluation tasks, each background training task is
consisted of eight familiarization trials and one test trial. Each
task type is described below.

a. Occlusion: Object Collection As shown in Figure A.1a,
an agent navigates efficiently, avoiding walls and a rotating
spinner, to reach a goal object, which changes color at impact.
A grey square-shaped occluder appears under all elements in
familiarization and above at the last trial.

b. Occlusion: Bouncing Object As shown in Figure A.1b,
a spinner rotates and comes into contact with a passive object.
At impact, the object which was previously still begins mov-
ing in a straight line perpendicular to the spinner. The object
stops moving when it hits a wall or when it contacts another
goal object, which changes color at impact. A grey square-
shaped occluder lays under all elements in familiarization and
on top of them at test time.

c. Occlusion: No-Navigation Preference As illustrated
in Figure A.1c, an agent consistently reaches one of two
proximal target objects, with varying locations across trials,
demonstrating a preference to a goal object, instead of a goal
location. Upon contact, both objects change color, eliciting
cues for causal efficacy that distinguish goal-approach behav-
ior from a pro-social approach. A spinning object is in the
scene and do not interact with other elements. A grey square-
shaped occluder lays under all elements in familiarization and
on top of them at test time.

d. Occlusion: No-Navigation Bouncing Object As shown
in Figure A.1d, a rotating spinner propels an element toward
one of two target objects, which change color upon contact.
The target object varies between trials, depending on the spin-
ner’s initial rotation and the element’s position, illustrating
that passive movement driven by another object does not nec-
essarily signify goal preference.

e. Single Object Collect An agent navigates through ob-
stacles to reach a single target object, which changes color
upon contact (Figure A.1e). This task demonstrates obstacle
navigation and goal pursuit. In some but not all episodes, the
agent returns to the starting point after interacting with the
object.

f. Moving Object As shown in Figure A.1f, an agent ap-
proaches a goal object and picks it up, which appears as the
agent above and in the center of the object. The agent and
object pair then travel together to a different location. After
they stop moving, the agent drops off the object. This task
shows how an object can be picked up and moved around by
an agent in the environment.

g. & j. No-Navigation Approach: Instrumental & Social
This task involves three agents and a goal object. In the famil-
iarization phase, an agent consistently approaches one of two
stationary agents in proximity, demonstrating a social affili-
ation (left panels of Figure A.1g&j). At test time, the two
previously stationary agents each move in a unique move-
ment. Following that, the previously approaching agent also
performs a movement. In No-Navigation Approach: Instru-
mental (right panel of Figure A.1g, the movement is identical
to one of the other two agents which might or might not have
been approached before. In addition, the agent interact with a
goal object at the end of the move, causing it to change color.
The route taken is the only efficient path to the goal object,
cueing a goal-directed behavior. In No-Navigation Approach:
Social (right panel of Figure A.1j), the previously approach-
ing agent moves in the same way as the approached agent in
familiarization.

h. & k. No-Relocation: True & False Belief This task
features an occluder that might or might not appear between
a goal-directed agent and its goal (Figure A.1h&k). Specifi-
cally, it is always in between on the first familiarization trial,
obstructing the agent from identifying the side of the room
where the goal is located. The agent randomly enters a room
and either succeeds in or fails to find the goal object, giving
machines an opportunity to learn that the occluder interferes
with the perception of the rational goal-directed agent. If the
agent finds the goal object in the first familiarization trial, it
would consistently go to the same side of the room to find the
object in the later familiarization trials, where the occluder
randomly shows up between the agent and object or behind
the environment. If the agent did not find the goal object
in the first familiarization, it would later consistently go to
the other side of the room to find the goal object. This task
communicates two assumptions: 1) the agent believes a goal
object is always at where it was last seen. 2) if the goal object
is absent on one side of the room, it must be on the other side.
At test time, a different agent moves the goal object around
within the same room, either in the absence (False Belief, Fig-
ure A.1h) or the presence (True Belief, Figure A.1k ) of the
first agent. The task then shows the initial agent returning to
the same room to retrieve the goal object.

j. & l. Trapped Agent: Helping & Hindering This task
(Figure A.1j&l) employs a similar setup as the Helping task
and the Hindering task in evaluation (Figure 3). However, the
locations of the goal-directed agent and the goal object are
swapped. In Helping (Figure A.1j), a social agent move away
an obstacle to help the main agent approach its goal object
while the other social agent does nothing. In Hindering (Fig-
ure A.1l), a social agent blocks the goal-directed agent from
approaching its goal while the other social agent watches. At
test, the goal-directed agent approaches the agent who helps,
or the agent who does nothing when the other agent hinders.



Figure A.1: Overview of All Background Training Tasks. AI models undergo training across various tasks to capture environmental
dynamics and essential cognitive abilities for solving the benchmark. This figure illustrates the schematics of both familiarization and test
trials. For tasks (a)-(f), a single panel depicts each task, where the familiarization trials and a test trial are drawn from the same distribution.
For tasks (g)-(l), the left panel represents a familiarization trial, while the right panel illustrates a test trial. Red arrows indicate the direction
of movement, and, where applicable, numbers indicate the orders at which the actions take place.

B. Model Hyperparameters
Each video frame is resized to 84 x 84 pixels and then split
into 49 patches of 12 x 12 pixels. A three-layer CNN cre-
ates a 256-dimensional embedding for each patch, with sinu-
soidal positional encoding. The row, column, frame, and trial
numbers are separately encoded and each takes up 64 dimen-
sions of the positional encoding. The Transformer encoder
and decoder each has eight attention heads and five layers.
The model is trained on two A100 GPUs for 100 epochs with
a batch size of 32. The learning rate and weight decay are
both set at 1×10−4


