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Abstract

Categorizing spatial relations is central to the development of
visual understanding and spatial cognition, with roots in the
first few months of life. Quinn (2003) reviews two findings
in infant relation categorization: categorizing one object as
above/below another precedes categorizing an object as be-
tween other objects, and categorizing relations over specific
objects predates abstract relations over varying objects. We
model these phenomena with deep neural networks, including
contemporary architectures specialized for relational learning
and vision models pretrained on baby headcam footage (Sulli-
van et al., 2020). Across two computational experiments, we
can account for most of the developmental findings, suggest-
ing these neural network models are useful for studying the
computational mechanisms of infant categorization.
Keywords: neural networks, spatial categorization, infant rela-
tion learning, developmental computational modeling

Relations are critical to human reasoning capacities (Good-
win and Johnson-Laird, 2005), and our understanding of the
visual world around is mediated by spatial relations, as they
help distinguish individual objects and combine them in order
to understand visual scenes (Piaget, 1954; Johnson, 2010).
Additionally, both relational learning (Newcombe and Hut-
tenlocher, 2007) and analogical reasoning (Yuan et al., 2017)
appear crucial to the development of spatial cognition, which
guides infants’ budding understanding of the world around
them. Despite the importance of relations, little computational
work has examined how infants could learn to categorize spa-
tial relations, and why some categories are acquired before
others over the course of development. This is the goal of our
current article.

Relational learning and reasoning have received substan-
tial recent attention in the artificial intelligence literature (see
Battaglia et al., 2018, for a review). Santoro et al. (2017) and
Shanahan et al. (2019) offer novel neural network architectures
designed for relational reasoning, while Barrett et al. (2018)
and Teodorescu et al. (2020) offer diagnostic task paradigms.
Other literature focuses on applications, such as Hamrick et
al. (2018) and Kipf et al. (2018), exploring physical property
inference through relational reasoning. We turn this recent
attention toward modeling infant categorization of spatial re-
lations to better understand the computational basis of these
early-emerging abilities. We evaluate a wide variety of neural
network architectures trained on both synthetic and real-world
datasets, comparing their performance with key findings from
the developmental literature. Previous work used very simple
connectionist networks to model aspects of infant categoriza-
tion (Mareschal et al., 2000; French et al., 2004) and spatial
language (Regier, 1995). Our contribution is to evaluate the
latest generation of architectures, especially those specialized
for processing spatial relations. Next, we will describe the
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Figure 1: Example Stimuli. In each triplet, the left stimulus is the
familiarization example, the middle is the same relation test, and the
right stimulus is the other relation test. Top: identical target objects.
Bottom: different target objects with alternative reference bar.

developmental findings we model in our computational exper-
iments.

Quinn (2003) surveys the development of infant relation cat-
egorization, including two primary findings. The first finding
is that, by 3-4 months of age, infants can categorize “above
versus below” (or “left versus right”, Quinn, 2004), although
they fail to categorize “between” (Figure 1; top row). By 6-7
months, infants can also categorize “between.” In a representa-
tive experiment, Quinn (1994) familiarized infants with several
stimuli, all containing a dot either above or below a horizontal
bar (Figure 1; Familiarization). After familiarization, infants
were presented with a novel category preference test, finding
that infants look longer at a stimulus with the dot on the other
side of the bar (Figure 1; Other relation) compared to a new
location on the same side (Figure 1; Same relation).

The second finding is that infants categorize spatial relations
comprised of specific objects before categorizing the same re-
lations composed of varying objects. Quinn et al. (1996; 2003)
replicate the previous experiments except that the target object
varies between familiarization and test (Figure 1; bottom row).
In both cases, changing the target object requires the infants
to be older to show the same novelty preference—from 3-4
months to 6-7 months for above versus below, and from 6-7
months to 9-10 months for between versus outside.

When infants discriminate between categories in a labora-
tory study, it is often unclear whether these abilities reflect
top-down processing of categories acquired outside the lab,
or bottom-up processing of categories developed during the
familiarization phase (Thelen and Smith, 1994; Murphy, 2002,
ch. 9; French et al., 2004, Newcombe et al., 2005). In this
paper, we examine neural networks as a tool for studying both
types of processing. In experiment 1, we report a supervised
learning paradigm examining learning different relations from
simplified object vectors. We view this as analogous to the
first possibility, evaluating the difficulty of learning relation
concepts from numerous varied examples, as infants might
acquire these categories over an extended period outside the



lab. We compare five neural network architectures, instantiat-
ing different inductive biases, to observe which show similar
patterns to the results discussed in the first finding above.
In experiment 2, we appraise the second possibility, evalu-
ating whether objects arranged in the same spatial relation
are encoded more similarly than objects that are not, based
entirely on general purpose, high-level perceptual features. To
do so, we utilize learned features from large-scale computer
vision architectures as a proxy for prior visual experience,
pretrained on either a developmentally-realistic visual corpus
or a popular computer vision benchmark, neither of which
explicitly requires relational categorization.1 Our results show
that both experiments account for the primary findings, sug-
gesting that neural networks can serve as useful models for
both types of categorization processes. The variation between
training architectures (both experiments) and pretraining meth-
ods (experiment 2) suggests that some networks better model
the development of relation learning, and gaps in the results
highlight promising approaches for developing more compre-
hensive models of categorization in infancy.

Experiment 1: Relations from Scratch
In this experiment, we model the first finding discussed, that
infants acquire the capacity to represent “above or below” (a
target object relative to a single reference object) before they
develop the ability to represent “between” (a target relative
to two references). In two studies (Quinn, 1994; Quinn et
al., 1996), 3-4 months old infants familiarized with stimuli
depicting a single relation (either above or below) exhibit a
looking-time preference to a stimulus showing the opposite
relation, compared to a new stimulus showing the familiarized
relation. Quinn et al. (1999) followed up on those experiments,
using examples of a target object between two reference ob-
jects, using both horizontal and vertical reference objects. 3-4
months old infants did not display a preference towards test
stimuli containing an object outside the references, but infants
6-7 months old did. The ability to reason relative to two ref-
erence objects develops after the ability to reason relative to
a single reference, consistent with the notion that infants first
encode with respect to a single landmark, and later encode
in a “local spatial framework” (Huttenlocher and Newcombe,
1984).

Methodology
Our simulations evaluate the relative ease of learning two
different classes of relations, both cast as binary classifica-
tion problems: above/below (learning to classify above versus
below), and between (learning to classify between versus out-
side).

Objects. To model relation learning independently from
learning to represent objects, we provide the models with

1If the pretrained models demonstrate categorical perception, it’s
possible that they acquired perceptual features akin to abstract re-
lational categories. A more likely possibility is that they acquired
perceptual features that implicitly promote relational similarity more
than the alternative, of acquiring perceptual features that promote
relational opposition.
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Figure 2: Experiment 1 Stimuli. Top: Left two panels: a sample
location of the reference object(s) (in blue), with the entire grid of
possible target object locations visualized (in orange). Middle two
panels: example above/below stimuli. Right two panels: example be-
tween stimuli. Bottom: the vector object representations associated
with the Below example—as the models receive only these vectors,
the choice colors and shapes here is arbitrary. We do not mark which
coordinate is X and which is Y, so the models are agnostic to this
fact (and above/below is identical to left/right), other than the CNN
model, which receives a spatial input. The borders signify each object
vector, so the blue reference object is comprised of nine vectors.

minimal object representations as inputs. Each object is repre-
sented as a vector of length 4, with integer x and y positions,
and a one-hot encoding marking the object as target or refer-
ence (Figure 2 bottom). The objects are implicitly understood
to be occupying a 1x1 unit square. The reference objects,
which we take to be 9 units long, are represented as a collec-
tion of 9 adjacent identically-sized objects. We also explored
an alternative representation that treats the reference bar as a
single object, where each object vector has an additional inte-
ger dimension specifying its length (as all objects we use have
a height of 1 unit, we omit a height dimension). Results with
the alternative representation were qualitatively similar, even
though the task is easier (as the models receive fewer object
vectors as their input), so we focus on describing the results
with the first representation (without the length dimension).

Dataset Generation. Figure 2 visualizes stimuli from the
different relation categories. To create stimuli, we sample
locations for the reference object (series of blue cells) and
then sample the target object’s location uniformly from the
‘target grid’ above and below the reference object(s). In the
above/below condition, we split the eight rows of the target
grid evenly between above and below. In the between condi-
tion, we split the locations evenly between the between and
outside relations. We only consider cases where the target
object occupies the same horizontal space as the reference
object(s), avoiding having the target object off to the side. To
create training and test sets, we randomly split the reference
object locations (in the large canvas, 90% training, 10% test)
and the target object locations (relative to the reference object,
80% training, 20% test). We then set aside 10% of the training
set as a validation set. This process creates a maximal training
set of 3628 examples, a validation set of 404 examples, and
a test set of 1800 examples. We also evaluate models trained
on randomly sampled subsets of the training sets, using 8, 32,
128, 512, 1024, or 2048 items.



Architectures. We evaluated five different neural networks,
each incorporating a distinct inductive bias. To the extent
possible, the architectures were chosen to gracefully handle
varying numbers of objects present in a scene. Other than the
convolutional neural network, all models begin with an object-
wise embedding function, a single layer with ReLU activations.
We denote the input collection of objects as O = {o1, ...,oN},
the embedding function as eω, and the embedded objects as
E = eω(O) : {ei = eω(oi)}. All models have two softmax
output units (the two classes learned), and are trained using the
cross-entropy loss to maximize the probability of the correct
class.

‘Bag of objects’ MLP: this architecture is the simplest we
could conceive of that would be invariant to the number of
objects. It treats the embedded vectors as a single vector by
taking their mean, and passes it into a standard feedforward
network with ReLU activations. Denoting the MLP as fφ:

MLP(O) = fφ

( 1
N

N

∑
i=1

eω(oi)
)

Convolutional Neural Network (CNN): this model encodes
a translation invariance bias, receiving the objects as a 2D
grid S rather than as an unordered list of vectors. As the
objects’ positions are represented by their placement in the
grid, we use two channels in the spatial input, one marking
the target object’s location and another marking the locations
of all reference objects. We use a standard convolutional
architecture (conv) followed by global average pooling and an
MLP:

CNN(S) = fφ(average pool(conv(S)))

Relation Net: Santoro et al. (2017) offer a compact way of
modeling relations between pairs of objects, using two func-
tions: a function gθ that acts on object pairs and a global MLP
fφ acting on their combined representation:

RN(O) = fφ

(
N

∑
i=1

N

∑
j=1

gθ (eω(oi),eω(o j))

)
Transformer: a simplification of the Transformer (see Vaswani
et al., 2017 for details), this network reasons about all objects
jointly rather than through object pairs. The self-attention
(‘SelfAttn’ below) operator acts on the entire set of objects
simultaneously to capture their interactions. We pass the input
through one or more such Encoders, and the transformed
representations are averaged and passed through a MLP:

Encoder(E) = E +SelfAttn(E)+ fφ (E +SelfAttn(E))

T (O) = fφ

( 1
N

N

∑
i=1

One or more times︷ ︸︸ ︷
Encoder(eω(O)))

)
PrediNet: this model is explicitly designed to learn different
relations between objects, making for a task-optimized com-
parison architecture. It uses a modified form of self-attention,
combining global information over the entire set of objects
with information from each individual object, and treats the
difference between object representations in a latent space as
capturing different relations between them. See Shanahan et al.
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Figure 3: Smaller model test set accuracy by training set size.
Left: above/below. Right: between. Average over ten random seeds,
shaded regions mark the SEM. Dashed line indicates chance (50%).

(2019) for the full details.
Implementation and Training. To test the effect of model

size, we created two configurations of each model, a smaller
one (using around 2000 parameters) and a larger one (using
around 8000 parameters). We report results from ten random
seeds for each simulation, varying three factors: above/below
or between, smaller or larger models, and the number of train-
ing examples. We terminated each run when performance on
the validation set plateaued. All models were optimized using
Adam Kingma and Ba (2015) with a learning rate of 1e-3 and
a batch size of 256. All models were implemented in PyTorch
(Paszke et al., 2017) using PyTorch Lightning (Falcon, 2019).

Results
We focus our analysis on two measures of learning difficulty:
Sample complexity: how many examples does it take to learn
each concept? Number of epochs: how many passes through
the training set does it take to learn each concept? We evaluate
all five models on their ability to capture the developmental
phenomena described above, including which architectures
may be too powerful (learning both conditions trivially) or too
weak (failing to learn either condition) when compared with
competencies in infancy.

To evaluate the sample complexity, Figure 3 depicts the
test set accuracy attained by each architecture as a function
of the size of the training set used, using the smaller (2000
parameter) configurations. We plot only the test set accuracies,
as the networks generalize well above a reasonable sample
size: the maximal difference between the training and test
accuracy, averaged over the replications of each network, is
12.7% with 128 samples, 2.4% with 512 samples, and < 0.1%
with the full training set. At all training set sizes, the networks
perform better in the above/below condition than they do in
the between condition, unless they fail to learn both. This
is true from the most successful network (PrediNet) to the
simplest (MLP) one, using both the smaller and larger network
configurations. The RelationNet is the only network which
fails to learn a relation, never reaching much above chance
accuracy in the between condition; the MLP also struggles
with between, rising above chance only with the full dataset.
Results using the larger model configurations showed the same
qualitative patterns.

To explore how long it takes the networks to acquire the



concepts, Figure 4 illustrates the learning curves using a 1024-
item training set. Unsurprisingly, the models that reach a
higher test accuracy (Figure 3) also tend to require fewer train-
ing epochs to reach high performance. All architectures reach
peak accuracy faster in the above/below condition than in the
between condition. At this dataset size, both the RelationNet
and the MLP networks fail to learn in the between condition.

Discussion
Most of the architectures examined are consistent with the
basic developmental phenomenon: learning to spatially cat-
egorize above versus below is easier than between versus
outside. This holds both when we take the sample complex-
ity as a proxy for experience, and when we take the number
of training epochs as the measure of experience. The Rela-
tionNet model struggled with learning the between relation,
suggesting it may be an inadequate model of infant relation
learning. In our alternative object formulation (see “Objects”
in the Methodology subsection), which adds a length entry
and hence reduces the number of input vectors, the Relation-
Net succeeded to learn this relation, performing closer to the
Transformer. We therefore attribute this failure to the fact that
learning to reason using a pairwise function over the objects
is harder to scale to higher numbers of entities. Models that
natively reason over the entire collection struggle less with the
between relation, which requires comparing three objects, the
“local spatial framework” discussed by Huttenlocher and New-
combe (1984). The CNN and the Transformer both recover
patterns qualitatively resembling the developmental findings,
as does the PrediNet, even though it requires substantially
less data than the other architectures to reach perfect accuracy.
Conversely, the MLP might be overly generic, as it strug-
gles with the between condition, only reaching above-chance
performance with the full training set. We take these results
to imply that any compelling computational model of infant
reasoning should flexibly allow for variation in the number
of objects reasoned over, being neither entirely generic (the
MLP) nor restricted to pairwise interactions (the RelationNet).
Beyond these constraints and considerations, the data does not
help us distinguish the other architectures as potential cogni-
tive models. The finding that learning above/below is easier
than between/outside appears to be a fairly general property
of the neural architectures we evaluated.
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Figure 4: Smaller model learning curves using 1024 training
items. Left: above/below. Right: between. Average over ten random
seeds for each model. Dashed line indicates chance accuracy (50%).

Experiment 2: Pretrained Vision Models
In this experiment, in addition to the finding modeled in ex-
periment 1, we also model the second finding discussed, that
infants can encode relations for specific objects earlier than
they can encode abstract spatial categories over different ob-
jects. Quinn et al. (1996) extended the above/below relation
experiment of Quinn (1994), using different target objects in
each familiarization and test example. As before, the two test
stimuli displayed a target object that either matched or dif-
fered from the habituation stimuli in terms of spatial relation.
Infants 3-4 months old did not display a preference to either
of the new stimuli; infants 6-7 months old demonstrated a sig-
nificant preference of the novel spatial category. Quinn et al.
(2003) performed a similarly modified version of the between
experiment reported by Quinn et al. (1999), and found simi-
lar results. Whereas 6-7 month old infants did not appear to
construct a spatial category abstract of the particular stimulus,
9-10 months old infants reproduce the novelty preference to
the stimuli depicting the target outside the references.

Methodology

We examine these developmental phenomena through a dif-
ferent class of models: large pretrained convolutional neural
networks. In the previous experiment, we trained small models
directly on learning to classify relations, as a proxy for infants
learning spatial categories outside the lab over an extended
number of examples. In this experiment, we use pretrained
models to examine which phenomena could arise absent ex-
plicit training on relations; instead the ability to discriminate
different relations in the lab could emerge from high-level
visual representations developed for other purposes. In each
triplet (Figure 5), one image (left column) corresponds to a
familiarization example while the other two are test probes:
one (middle column) presents the same relation with the target
object in a different location, and the other (right column)
presents a different relation. During evaluation, we do not
explicitly task the models with predicting which relation holds
in each image. Instead, we extract latent representations of
the stimuli to see if stimuli with the same relation are repre-
sented more similarly, as an emergent consequence of training
a network on broad visual experience (in one case, of the sort
one baby would actually experience). Specifically, we take the
cosine similarity between vector embeddings of the familiar-
ization example and each of the other two images. We consider
a triplet to be accurately classified when the model embeds
the two congruent images (depicting the same relation) more
similarly than the two incongruent images (depicting different
relations).

Architectures. We evaluate two computer vision architec-
tures: MobileNetV2: this model aims to offer competitive per-
formance with fairly limited computational resources, offering
state of the art trade-off between compute resources required
and performance attained (Sandler et al., 2018). ResNeXt: this
architecture does not strive for performance over efficiency
and is considered one of the best-performing vision backbones
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Figure 5: Experiment 2 Stimuli. Similar in structure to Figure 1.
Left columns: above/below. Right columns: between. Top row:
Geometric shapes. Bottom row: Colors. For the Quinn-like rendering,
see Figure 1; bottom row. We visualize vertical examples (left/right)
in the first row and horizontal ones (above/below) in the second row.

(Xie et al., 2017).
Pretraining Datasets. As a baseline, we test the embed-

dings created by randomly initialized models, examining
whether or not the inductive biases conveyed by the archi-
tecture are sufficient to embed objects in the same relation
more similarly. We then then compare these results to models
trained on the following datasets: SAYCam: this dataset offers
longitudinal headcam video from a small number of babies
(Sullivan et al., 2020). We use models trained on a single
child’s footage (child S), approximately two hours per week
while the child was between 6-30 months old, a total of 221
hours. This offers the opportunity to train vision models on a
subset of the experience a child receives in development, albeit
ranging to older ages than the infants studied in the experi-
ments modeled. We utilize a pretrained network from Orhan
et al. (2020) that uses temporal classification, a self-supervised
approach that requires no category labels. ImageNet: a land-
mark computer vision dataset, offering 1.2M images in 1000
object classes (Russakovsky et al., 2015). ImageNet does not
resemble an infant’s experience in development, but it is often
used for general computer vision pretraining, offering a use-
ful comparison. The ImageNet models were pretrained using
the standard classification task as described in the torchvision
documentation.

Stimulus Generation. We synthesize custom stimuli to
probe the model in this task (Figure 5). As in experiment 1,
we sample locations for the reference object(s) and then place
the target objects relative to them. Similarly to Quinn (1994;
1996; 1999), we place the target object in one relation relative
to the reference object in the familiarization example, and then
place it in a different location in the same relation (first test
probe) or in the other relation (second test probe). The target
objects in the test probes are both equidistant from the target
object in the familiarization probe, controlling for any effect of
distance on the representational similarity. We examine triplets
where the target object matches between the familiarization
and probe stimuli (“same target”; Quinn, 1994; Figure 1; top)
and triplets where the probe stimuli use a different target object
(“different target”; Quinn et al., 1996; Figure 1; bottom).

We explore a few ways to render the reference and target
objects: Quinn-like: Most similar to Quinn et al. (1996), we
render the reference object as a sequence of squares and the
target object as one of the symbols used in that paper (a trian-

gle, ‘s’, ‘E’, +, and →), all colored black (Figure 1; bottom
row). Geometric shapes: we render the reference as an elon-
gated ellipse and the target as either a square, a circle, or a
triangle, all colored black (Figure 5; top row). Colors: again
we render the reference as an elongated ellipse and the target
as a circle, sampling perceptually distinct colors for both using
the glasbey method (Glasbey et al., 2007; Kovesi, 2015, Fig-
ure 5, bottom row). The latter deviates most from the original
formulations, but allows programmatically sampling a larger
variety of stimuli to verify result robustness. We experimented
with slightly blurring the stimuli to make them less perceptu-
ally perfect; this did not substantially impact any results. We
render these stimuli to 224x224 pixel images.

To summarize, we evaluate models from both architectures,
either randomly initialized or pretrained on one of the vi-
sual datasets, in two horizontal conditions (above/below and
between) and two vertical conditions (left/right and vertical-
between). In each condition and object rendering method, we
sample 1024 triplets and report the average accuracy for each
model and pretraining fashion—how often are the embeddings
for the congruent pair of stimuli are more similar (using cosine
similarity) than the embeddings for the incongruent pair. With
the colors rendering, we repeat this 10 times with different
colors.

Results
Without pretraining, the models perform effectively at chance—
the ResNeXts range between 40.5% to 66.5%, and the Mo-
bileNetV2s between 37.8% to 53.3%, suggesting that any
inductive bias conferred by the architecture alone in insuf-
ficient for this task. We therefore focus on the ImageNet
and SAYCam-pretrained models. Figure 6 summarizes the
results in the two conditions with horizontal reference objects,
above/below and between. As observed patterns were similar
between the three rendering methods used, we average over
them in both result figures. We find a higher accuracy in each
above/below group than in the corresponding between group,
with differences ranging from 0.9% to 15%. We also observe
higher accuracies with an identical target object between the
familiarization and the probe stimuli (without hatches) than
in the conditions with different target objects (with hatches).
These two findings are consistent with the two main devel-
opmental results discussed. Lastly, we see that SAYCam
pretraining results in higher accuracies than ImageNet pre-
training, and that the MobileNetV2 models outperform the
ResNeXt models.

Figure 7 similarly summarizes results in the conditions with
vertical references, left/right and vertical-between. Surpris-
ingly, the accuracy levels are much worse overall, with most
conditions either near or below chance. The only pattern that
holds from the previous results is the advantage of the Mo-
bileNetV2 models over the ResNeXt ones. Other findings
do not replicate—the models reach higher accuracy in the
vertical-between condition than in the left/right condition, and
we mostly see slightly higher accuracies when using different
target objects than with the same target objects.



Discussion
At first, we found the results in the horizontal conditions quite
compelling: both main developmental findings we model repli-
cated clearly, across two different models and pretraining
datasets. We then found the discrepancy between the vertical
conditions and the horizontal conditions, which is inconsistent
with the developmental findings modeled. Quinn et al. (1999)
found similar results with vertical and horizontal references,
and Quinn (2004) replicated the findings of Quinn et al. (1996)
using left versus right instead of above versus below, although
Landau and Hoffman (2005) offer evidence that left versus
right can be harder than above versus below. One hypothesis
that could account for some of this deviation arises from the
use of data augmentation. The standard suite of data aug-
mentation transformations for computer vision, used during
pretraining for the ResNeXt models (but not the MobileNet
models) by both Orhan et al. (2020) and the torchvision li-
brary, includes horizontal flipping but not vertical flipping.
This influences the models to learn representations invariant
to horizontal flipping (as an image and its horizontally flipped
counterpart are assigned the same class), without instilling a
similar bias toward vertical flipping, potentially accounting for
the difference between the conditions. We find it compelling
that the SAYCam models, trained from the perspective of a
single child, outperform the models trained on over a million
ImageNet images. Although the difference could arise from
the naturalistic, egocentric perspective of images in the SAY-
Cam dataset, it could also result from the different procedures
used. Orhan et al. (2020) employed a self-supervised temporal
classification procedure for training on SAYCam, compared to
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the supervised learning procedure for training on ImageNet.

General Discussion
We report results from two computational experiments model-
ing infant relation learning. In experiment 1, we train small-
scale deep neural networks from scratch, as a proxy for acquir-
ing more explicit representations for relations outside the lab.
In experiment 2, we probe large-scale, pretrained computer
vision models as a proxy for using features acquired for other
purposes to quickly construct a category representation dur-
ing familiarization trials. As both experiments are consistent
with the key developmental findings surveyed, we view this
as evidence that a range of different neural network models
can account for these findings, regardless of whether infants
acquire their knowledge of relations before or during the lab
session.

In future work, we hope to extend the from-scratch
paradigm from experiment 1 to engage with the sorts of ab-
stract relations studied in experiment 2, perhaps using a meta-
learning setup, to observe if models trained from scratch can
account for these additional findings. In this proposed setup,
we would examine whether models that learn to classify a rela-
tion with a variety of target objects, can learn to classify novel
objects in the same relation in a few-shot or zero-shot fashion.
We also plan to investigate the discrepancy between catego-
rization relations with horizontal stimuli (above/below and
between) versus relations with vertical stimuli (left/right and
vertical-between) in experiment 2, by examining the roles
of vertical and horizontal flipping used in data augmenta-
tion. We will also examine using multiple familiarization
examples, represented by the mean of their embeddings or
through another method of aggregation, to more closely imi-
tate the developmental experiments. Additionally, the role of
the pretraining dataset (ImageNet or SAYCam) is currently
confounded with the choice of pretraining procedure used
(supervised learning or temporal classification), which we
hope to dissociate. Finally, recent work identified modifica-
tions to convolutional neural network architectures that better
model the visual stream (Kar et al., 2019; Dapello et al., 2020).
It would be interesting to compare more biologically-driven
models to the more standard architectures we used, examin-
ing whether neural plausibility associates with the ability to
capture behavioral findings.
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