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1 Introduction

1.1 Universality in the Fyodorov–Hiary–Keating program. In 2012, Fyodorov, Hiary, and Keating
(FHK) initiated a new line of research on the connection between random matrix theory and the Riemann
zeta function. Motivated by ideas from statistical mechanics, they conjectured that the extremal statistics
for both characteristic polynomials of random matrices and the zeta function on the critical line are identical
to those of logarithmically correlated fields [47]. Such fields arise whenever one superimposes randomness
equally on all length scales, and are characterized by correlations proportional to the logarithm of the inverse
distance between two points. The branching random walk and the two-dimensional Gaussian free field are
paradigmatic examples.

The FHK conjecture states that for a Haar-distributed N ×N unitary matrix UN , the random variable
XN determined by the equality

max
|z|=1

log |det(z −UN )| = logN − 3
4 log logN +XN (1.1)

converges to a variable X∞ in distribution as N → ∞, where X∞ is distributed as the sum of two indepen-
dent Gumbel random variables. Recently, there have been significant advances towards proving (1.1) and
analogous results for certain other random matrix ensembles, as we discuss below. However, all previous
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results have been limited to specific models, which admit representations either as a determinantal point
process or a sparse matrix model

In this paper, we consider the FHK conjecture for a far broader class of random matrices. We study
the following generalization that encompasses real symmetric and complex Hermitian random matrices with
independent entries (Wigner matrices), and systems of interacting particles at inverse temperature β > 0
and governed by a general potential V : R → R (β-ensembles). Under quite general conditions, the limit-
ing spectrum of a Wigner matrix or β-ensemble is deterministic and supported on some compact interval
[A,B]. We make this one-cut hypothesis in the statement below, although similar asymptotics should hold
in the bulk in the complementary multicut case. Fix a small ε > 0 and set I = [A + ε,B − ε]. We let
λ1 ⩽ . . . ⩽ λN denote with the eigenvalues of the matrix or the particles of the β-ensemble, as appropriate,
and set det(E) =

∏N
i=1(E − λi).

Problem 1. Consider any β-ensemble or any Wigner matrix; in the matrix case, set β = 1 if it is real
symmetric or β = 2 if it is complex Hermitian. With the above conventions, show that√

β

2
·max
E∈I

(
log |det(E)| − E

[
log |det(E)|

])
= logN − 3

4 log logN + ZN , where lim
N→∞

ZN
(d)
= Z∞ (1.2)

for a random variable Z∞ satisfying the tail decay asymptotic c ye−2y ⩽ P(Z∞ > y) ⩽ c−1ye−2y as y → ∞,
for some fixed c > 0. (The exact distribution of Z∞ may depend on the matrix entries, or on V and β.)

Such a prediction was made in [49] for the Gaussian Unitary Ensemble (GUE). Both [49] and our paper
focus on the bulk of the spectrum, since this corresponds to the original FHK setting (1.1).

The first contribution of this paper is to establish that the first order term in the conjecture (1.2) is
correct, both for Wigner matrices and β-ensembles defined by a general class of potentials (Theorem 1.2 and
Theorem 1.9). We also establish this conjecture up to tightness for the class of Gaussian-divisible Wigner
matrices, in the sense that the maximum for these ensembles can be coupled with the maximum for the
Gaussian Orthogonal Ensemble (GOE) up to an error of order 1.

Our first order result is new even for the GOE; previous studies were limited to the GUE [63]. Because the
general models identified in Problem 1 are not integrable for β ̸= 2, and do not admit a sparse representation
using independent variables for non-quadratic V , the techniques previously used to prove FHK asymptotics
are not applicable. Instead, we adopt dynamical ideas based around Dyson Brownian motion, which have not
previously been applied to FHK asymptotics due the singular, non-local character of the relevant observable.

The method we develop for Problem 1 also leads to a sharp characterization of a fundamental property
of random matrices, eigenvalue rigidity. This term refers to the observation that eigenvalues of such matrices
behave as repelling particles, with interactions that suppress their fluctuations and trap them near deter-
ministic locations. We fix a small constant c > 0 and consider the following problem.

Problem 2. For general self-adjoint random matrices or β-ensembles, how large is max
cN⩽i⩽(1−c)N

∣∣λi−E[λi]
∣∣?

This can be understood as asking for either of the following two things:

(i) An estimate giving the exact size of the maximum on a set of high probability, i.e. 1− o(1).

(ii) A bound that captures the correct order of this maximum with overwhelming probability, i.e. 1 −
O(N−D) for any D > 0.

The second contribution of this paper is to answer both versions of this question. For (i), we identify the size
of the maximum, including the correct constant prefactor, for Wigner matrices (the first part of Theorem 1.8)
and β-ensembles (Corollary 1.10). These are the first optimal rigidity results for matrix ensembles that are
not unitary invariant. Previous works in this direction relied on reducing the rigidity question to one about
a Riemann–Hilbert problem; such a translation is only possible for integrable ensembles [33, 37]. For (ii),
we obtain the Gaussian decay of the distribution of λi − E[λi] well beyond the fluctuations regime, in the
second part of Theorem 1.8. This solves the longstanding question of rigidity on the scale (logN)/N with
overwhelming probability.

Our results are obtained by a novel combination of methods coming from the study of universality for
random matrices (in particular, heat flow, coupling and homogenization), with ideas coming from the theory
of logarithmically correlated fields. We now give precise statements of our main results, and defer a complete
survey of the existing literature to Section 1.3 below.
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1.2 Results. We begin with the definition of Wigner matrices.

Definition 1.1. A Wigner matrix H = H(N) is a real symmetric or complex Hermitian N × N ma-
trix whose upper-triangular elements {Hij}i⩽j are independent random variables with mean zero and vari-
ances E

[
|Hij |2

]
= N−1 for all i ̸= j, and E

[
|Hii|2

]
= CN−1 for all i, where C > 0 is a constant. We

have Hij = Hji for i > j, and in the case that H is complex Hermitian, we suppose that the variables
{ImHij}i⩾j , {ReHij)}i⩾j are all independent and satisfy E[(ImHij)

2] = E[(ReHij)
2] for all i ̸= j. Further,

there exists a constant c > 0 such that, for all i, j ∈ [[1, N ]] and x > 0,

P
(
|
√
NHij | > x

)
⩽ c−1 exp (−xc) . (1.3)

Moreover, a symmetric Wigner matrix is called Gaussian-divisible if it has the same distribution as
√
1− ε2H+

εG, where H is a Wigner matrix as defined above, independent of the GOE matrix G. Here ε ∈ (0, 1) does
not depend on N .

We recall that the empirical spectral density of a Wigner matrix converges to the semicircle law as
N → ∞, see e.g. [2]. This distribution has density

ρsc(x) =

√
(4− x2)+

2π
, (1.4)

where (x)+ = max(x, 0). We consider the principal branch of the logarithm, extended to the negative real
numbers by continuity from above, given by log(reiθ) = log(r) + iθ for any r > 0 and θ ∈ (−π, π]. As is
usual, we define zα by exp(α log(z)). In particular for real λ and E we have Re log(E − λ) = log |E − λ|
and Im log(E − λ) = π1λ>E Given a probability measure ν with bounded density and a matrix H with
eigenvalues λ1 ⩽ . . . ⩽ λN , for real E we also define

LN (E) =

N∑
j=1

log (E − λj)−N

∫
R
log (E − x) dν(x), (1.5)

which is the logarithm of the characteristic polynomial up to a centering shift. The following theorem is our
main result on the maximum of the characteristic polynomial for Wigner matrices.

Theorem 1.2. Let H be a symmetric Wigner matrix as in Definition 1.1 and set dν(x) = ρsc(x) dx in (1.5).
Then for any ε, κ > 0 we have

P

(
sup

|E|<2−κ

ReLN (E)√
2 logN

∈ [1− ε, 1 + ε]

)
= 1− o(1),

P

(
sup

|E|<2−κ

ImLN (E)√
2 logN

∈ [1− ε, 1 + ε]

)
= 1− o(1).

The same result holds for Hermitian Wigner matrices after replacing the
√
2 factors with 1.

Remark 1.3. For the imaginary part of the logarithm, a similar estimate on the minimum holds, by consid-
ering the sup for the Wigner matrix −H:

P
(

inf
|E|<2−κ

ImLN (E)√
2 logN

∈ [−1− ε,−1 + ε]

)
= 1− o(1).

No such statement holds for the real part, as inf |E|<2−ε ReLN (E) = −∞.

For Gaussian-divisible Wigner matrices, universality actually holds up to tightness.

Theorem 1.4. Let H be a Gaussian-divisible symmetric Wigner matrix as in Definition 1.1. Then for any
κ > 0, there exists a coupling between H and a GOE such that the following sequence of random variables is
tight: (

sup
|E|<2−κ

ReLH
N (E)− sup

|E|<2−κ

ReLGOE
N (E)

)
N⩾1

.
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Corollary 1.5. Conditional on the tightness of the following random variables for H in the integrable
Gaussian orthogonal ensemble,

sup
|E|<2−κ

(
ReLH

N (E)−
√
2(logN − 3

4
log logN)),

tightness also holds for H in the universal class of Gaussian-divisible symmetric Wigner matrices.

Natural analogues of Theorem 1.4 and Corollary 1.5 hold for the Hermitian symmetry class.

Remark 1.6. For the imaginary part of the logarithm, the same statements Theorem 1.4 and Corollary 1.5
are an immediate consequence of the homogenization of the Dyson Brownian motion from [20, Theorem 3.1],
and an elementary bound on macroscopic linear statistics of Wigner matrices. The result is more subtle for
the real part of the logarithm, as it involves a non-local observable of the spectrum.

Remark 1.7. We emphasize that tightness for the Gaussian ensembles is still elusive, despite the proof of
this result for the circular ensembles [34]. Only the first order is established: for the GUE in [63] for the real
part, in [37] for the imaginary part, and for the GOE in Theorem 1.2.

Our second result considers optimal rigidity of the particles. The first part establishes a high probability
rigidity estimate with an optimal deviation including the multiplicative constant. The second establishes a
rigidity estimate with much stronger control on the low probability exceptional set, which is still of optimal
order in N .

For a given probability measure ν as in (1.5), the i-th quantiles of ν, denoted γi = γi(N, ν) for 1 ⩽ i ⩽ N ,
are defined through the relation ∫ γi

−∞
dν =

i− 1
2

N
. (1.6)

Theorem 1.8. Let H be a symmetric Wigner matrix as in Definition 1.1. The following holds.

(i) For every κ, ε > 0, we have

P

(
max

κN⩽k⩽(1−κ)N

π√
2
·
ρsc(γk)N

(
λk − γk

)
logN

∈ [1− ε, 1 + ε]

)
= 1− o(1),

(ii) For any κ, ε,A > 0 there exists C > 0 such that the following holds for all N ∈ N. For all k ∈
[κN, (1− κ)N ] and u ∈ [0, A

√
logN ],

P

(
|λk − γk| > u ·

√
2

πρsc(γk)
·
√
logN

N

)
⩽ Ce−(1−ε)u2

. (1.7)

For Hermitian Wigner matrices, (i) and (ii) also hold after replacing the
√
2 factor with 1.

A union bound in (ii) proves the optimal rigidity scale (logN)/N in the bulk of the spectrum: for every
D > 0 there exists C > 1 such that for all N ∈ N,

P
(

max
κN⩽k⩽(1−κ)N

|λk − γk| ⩾
C logN

N

)
⩽ CN−D. (1.8)

We next turn to our results on β-ensembles. We recall that the β-ensemble of dimension N , inverse tem-
perature β > 0, and potential V : R → R is the probability measure on the subset ∆N = {λ = (λ1, . . . λN ) ∈
RN : λ1 ⩽ λ2 ⩽ . . . ⩽ λN} given by

dµN (λ1, . . . , λN ) =
1

ZN

∏
1⩽k<l⩽N

|λk − λl|β exp

(
−βN

2

N∑
k=1

V (λk)

)
dλ1 . . . dλN , (1.9)

where ZN = Z
(β,V )
N is a normalizing factor. In this paper, β > 0 is fixed and our assumptions on V are the

following.
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(A1) V is analytic on R.

(A2) At least one of the following growth conditions holds for V :

(i) Sub-quadratic:

lim inf
x→±∞

V (x)

2 ln|x|
> 1 and lim sup

x→±∞

|V ′(x)|
|x|

<∞. (1.10)

(ii) Super-linear: There exist constants M0, C, c > 0 such that

V ′(x) ⩾ c and sup
y∈[M0,x]

V ′(y)

y
⩽ CV (x) for all x ⩾M0,

and similar estimates apply for x ⩽ −M0, i.e. the above holds for Ṽ (x) := V (−x).

(A3) Under the previous assumptions, it is known that the expectation of the empirical spectral measure,

given by E[N−1
∑N

i=1 δλi ], converges weakly to an absolutely continuous probability measure µV with
a continuous density, which we denote by ρV (see [26, Theorem 1] and [1, Proposition 1] for details).
We assume that ρV is supported on a single interval [A,B] and is positive on (A,B), with square root
singularities at A and B. This means that there exists a c > 0 and a function r(E) : R → R and

ρV (E) =
1

π

√
(E −A)(B − E)r(E)1[A,B]. (1.11)

Moreover, we assume that r does not vanish on [A,B] and has an analytic extension to C.1

(A4) Let

LV (x) =
V (x)

2
−
∫
R
log|x− t|dµV (t).

There exists a constant ℓV such that LV (x) = ℓV for x ∈ [A,B], and LV (x) > ℓV for x /∈ [A,B].

The following is an analogue of Theorem 1.2 for β-ensembles.

Theorem 1.9. Let (λ1, . . . , λN ) be distributed according to the density (1.9) with a potential V satisfying
the above hypotheses. Take ν = µV in the definition (1.5). Then for any ε, κ > 0 we have

P

(
sup

A+κ<E<B−κ

√
β

2

ReLN (E)

logN
∈ [1− ε, 1 + ε]

)
= 1− o(1),

P

(
sup

A+κ<E<B−κ

√
β

2

ImLN (E)

logN
∈ [1− ε, 1 + ε]

)
= 1− o(1).

We next state the analogue of the first part of Theorem 1.8 for β-ensembles, which follows from the
previous theorem.2

Corollary 1.10. Under the same assumptions as Theorem 1.9 (in particular ν = µV in (1.6)), we have for
every κ > 0 that

P

(
max

κN⩽k⩽(1−κ)N
π

√
β

2
·
ρV (γk)N

(
λk − γk

)
logN

∈ [1− ε, 1 + ε]

)
= 1− o(1).

Remark 1.11. In Theorem 1.8 and Corollary 1.10 the quantiles γk can be replaced by E[λk], therefore
answering the rigidity question as stated in Problem 2. Indeed, the bound |E[λk] − γk| = O(N−1) holds
thanks to [67, Theorems 1.4 and 1.5].

Remark 1.12. All results in this article have direct analogues for maxima on mesoscopic intervals which are
supported in the bulk of the spectrum, and the proofs are the same up to notational changes. For example,
in the case of symmetric Wigner matrices, for any deterministic interval I = I(N) ⊂ [−2 + κ, 2 − κ] such
that log |I|/ logN → −1 + α, α ∈ (0, 1), and any ε > 0 fixed, we have

P
(
sup
E∈I

ReLN (E)√
2 logN

∈ [α− ε, α+ ε]

)
= 1− o(1). (1.12)

1We remark that assumption (A3) is satisfied by a large class of potentials. For example, it suffices for V to be convex and
twice differentiable [26, Example 1].

2An analogue of the rigidity scale with overwhelming probability, i.e. (1.8) was already shown in [25].
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1.3 Related Works. The FHK conjectures were first stated in [47, 48] for Haar-distributed unitary
random matrices and the Riemann zeta function. See [8] for a recent survey. See also [49] for the case of
the GUE. While we do not discuss in this paper relations with ζ, we remark that the FHK conjecture for
it, up to tightness of the analogue of the variable ZN , has been established in [5, 6] after initial progress in
[4, 54,71]; see [55] for a survey.

On the random matrix side, the sharpest results available are for the circular β-ensembles. The leading
and second order terms, for β = 2, were computed in [3] and [75]. For general β, the FHK conjecture up to
tightness of the random variable ZN , was obtained in [34], and the convergence was recently established in
[76]. All these works rely on uncovering hierarchical structures in the spectra of random matrices, permitting
the use of methods originally developed for branching processes [27,28].

For other ensemble of random matrices, much less is known. As demonstrated in [37,59] and also used by
us, obtaining the leading order of the FHK conjectures (more precisely, a lower bound on the leading order)
is closely related to proving convergence of powers of (a rescaled) version of the characteristic polynomial
towards the Gaussian multiplicative chaos (GMC); we refer the reader to [23, 60, 61, 73, 80] for some works
concerning the GMC for random matrices and further results in this direction. For β = 2, convergence
toward the GMC of the characteristic polynomial (using Riemann–Hilbert techniques) was obtained in [17],
in the so-called L2 phase, which is not sufficient for obtaining leading order information on the maximum.
In the context of more general Hermitian matrices, related results on the distribution of the characteristic
polynomial of Gaussian β-ensembles (which again are not sufficient for controlling the maximum) were proved
in [7, 33,64,65].

The fundamental reason one expects extreme values statistics such as (1.1) and a limiting Gaussian
multiplicative chaos from random matrices is that they lie in the class of logarithmically correlated fields.
For β-ensembles and Wigner matrices, this log-correlation has been proved in the sense of distributional
convergence first, as follows e.g. from [57,70], and more recently in the pointwise sense [24,25]. For Gaussian
log-correlated fields, a rich theory concerning the extremes is available, with the same universal scaling as
in (1.1). In particular, the fluctuations of the analogue of ZN are always of the form of two independent
random variables, one being Gumbel and the second depending on the long-range behavior of the covariance.
We refer the reader to [18,19,81] for an account of the theory in the canonical case of the Gaussian free field
(from leading order computation to convergence of the maximum and details on the process of extrema),
and to [42] for the universal description of the limit. Extending the theory beyond the Gaussian case (where
extra tools, including comparison theorems, are available) toward its natural universality class has been a
major challenge and has attracted a lot of recent activity. Beyond the models of random matrices and the
Riemann zeta function already discussed, we mention here the sine-Gordon model [9] (where a renormal-
ization procedures enables coupling to the Gaussian free field, yielding a full convergence result), the cover
time for planar random walk [10,11,40] (where tightness has been proved), the maxima of Ginzburg–Landau
fields [12], the maxima of characteristic polynomials of permutation matrices [38], where at this time only
leading order information is available, and the model of two dimensional random polymers [32, 39], where
not even the leading order convergence has been demonstrated.

We next turn to the topic of rigidity of eigenvalues, which has a long history, going back at least to [26].
The importance of obtaining some a-priori rigidity estimates for Wigner matrices was highlighted in [43], as
part of their celebrated proof of the universality of spacing distribution for the Wigner ensemble. This work
established the upper bound |λk − γk| ⩽ N−1/2−ε for some ε > 0.

Sharper estimates on rigidity for Wigner matrices were obtained in the seminal work [45], which bounded
the fluctuations of the eigenvalues by N−1+ε for every ε > 0, with overwhelming probability. This result was
then refined to show the bound O((logN)C/N) with overwhelming probability for some (potentially large)
constant C > 1 [31,50,79]. To our knowledge, the sharpest result on rigidity prior to this work is contained
in [51], who obtained the rigidity scale (logN)2/N . Our result on Gaussian decay far in the tail distribution,
given in (1.7), is new even for the Gaussian ensembles.

A question related in spirit to the rigidity question is that of the maximal spacing between successive
eigenvalues, going back to a question of Diaconis [41]. For the maximal spacing of GUE and CUE matrices
matrices, the first order of the gap was computed in [13], and convergence of the rescaled maximal gap was
established in [46]. Both of these works use determinantal methods. Universality and comparison results
were obtained more recently in [20] and [66].

Finally, many other aspects of extreme value theory for random matrices have been very active recently.
Notably we refer to important progress on the spectral radius of non-Hermitian random matrices, an example
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where universal fluctuations are known (which are not in the log-correlated universality class, see [35] and
the references therein).

1.4 Proof Ideas. We now describe the main contours of the proofs in this paper. Even though our
presentation of the main results starts with Wigner matrices, we describe the proofs first for β-ensembles
(see Theorem 1.9), since the Wigner case is then based on a comparison which takes as input the results for
the GOE and GUE. For concreteness, we focus on the description of the proofs for ReLN (E).

The standard approach for estimating supA+κ<E<B−κ ReLN (E) from above has two components: first,
one replaces the supremum over the interval [A+ κ,B − κ] by a maximum over a finite collection of Ei’s, of
spacing of order 1/N . That this is enough has already been shown e.g. in [63, Corollary 5.4] (based on an
idea from [34]).3 After achieving this reduction, one uses a union bound together with a tail estimate on the
law of ReLN (E) with E fixed and deterministic. In particular, one needs to control exponential moments
of the latter variable. Unlike the case treated in [63], we do not have at our disposal an integrable structure,
and so explicit computations are not possible. Instead, we would like to use exponential estimates from [25]
(in an improved form described in Theorem B.1).

Unfortunately, the estimates in Theorem B.1 do not apply directly for Ei, but rather only for Ei + iη0
where η0 = (logN)1000/N is as in (3.6). Because of that, we need to modify the above procedure and first
move away from the real axis. Continuity arguments allow one to move to distance 1/N from the real line;
to go beyond that, we need to use the very precise local law with Gaussian tail from [25, Remark 2.4] (which,
after integration, give control on LN (Ei+ iη0)). This recent theorem provides essentially optimal bounds on
the centered moments of the Stieltjes transform on all scales Im z > 0, and is crucial for our work; weaker
estimates, such as those available in the previous literature, would not have sufficed.

For the lower bound, due to the log-correlated structure of the field LN (·), one could follow methods
based on second moment analysis, including the insertion of appropriate barriers, as described e.g. in [81] for
the Gaussian setup. There are several obstacles to that approach, including the need to obtain very precise
decoupling inequalities for pairs of macroscopically separated energies Ei, based on Fourier transforms.
Instead, we use the GMC approach (introduced in similar contexts in [37, 59]). Here again, the proof starts
with the preliminary step of moving the problem off the real line and into the upper half plane (by distance
η0), in order to improve the regularity of LN ; this step is achieved using a Poisson integral representation of
the harmonic function rlogz(x) = Re log(z − x). Then, in the main technical step, we demonstrate that for
every γ ∈ (−

√
2,
√
2), the random field with density

F (E) =
e
√
βγ Re L̃N (E+iη0)

E[e
√
βγ Re L̃N (E+iη0)]

(1.13)

with respect to Lebesgue measure, converges to a Gaussian multiplicative chaos as N grows. Here L̃N is
an appropriate centering of LN . Following the general criteria in [37], this again follows from the controls
provided by Theorem B.1. Once convergence to GMC has been achieved, the required lower bound follows
(essentially because the GMC is supported on points E with ReLN (E + iη0) >

√
βγ/2− δ).

We now turn to the proof of our result on the log-characteristic polynomials of Wigner matrices, Theorem 1.2.
This is fundamentally a universality result, stating that results established in Theorem 1.9 for the GOE/GUE
does not depend on the distribution of the matrix entries. We adopt a dynamical approach to this question,
in line with the general framework that has been developed to resolve the Wigner–Dyson–Mehta conjecture
and other problems regarding the universality of local spectral statistics [44].

Our primary input is a method to couple characteristic polynomials. We consider the matrix-valued
stochastic differential equation

dHt =
1√
N

dBt −
1

2
Ht dt (1.14)

with initial dataH0 given by aWigner matrix, whereBt is a matrix of Brownian motions that are independent
up to the symmetry Bij = Bji. The dynamics are chosen so that ifH0 is a GOE, then its distribution remains
invariant for t > 0. It is well known that if the eigenvalues (λi(t))

N
i=1 of Ht evolve according to the Dyson

Brownian motion, given by Equation (4.2):

dλk =
dβk√
N

+

 1

N

∑
ℓ ̸=k

1

λk − λℓ
− 1

2
λk

 dt, (1.15)

3We will actually use a different method, that applies also to ImLN and also allows one to work with mesoscopic intervals
as in Remark 1.12. Our method builds on local laws up to microscopic scales from [25].
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where the {βk}Nk=1 are independent, standard Brownian motions. To enforce a coupling, we let (µi(t))
N
i=1

be a solution to (1.15) with the same choice of driving Brownian motions with the initial data t = 0 given
by a GOE. Then the process (λi(t) − µi(t))

N
i=1 satisfies a deterministic system of differential equations,

which may be studied in detail using homogenization and the method of characteristics [20, 22]. Our main
result on coupling, Proposition 4.3, is the estimate is that for any z = E + iη with η ∈ (N−1, 1), any time
t > exp(−C̄0(log logN)2) for appropriate C̄0, we have

P
(

max
−2+κ<E<2+κ

∣∣∣∑ log
(
z − µk(t)

)
−
∑

log
(
z − λk(t)

)∣∣∣ > (logN)1/2+ε

)
= o(1). (1.16)

The crucial point here is that while t is relatively large, we are able to approach the real line up to the
microscopic distance 1/N , which is precisely the distance beyond which deterministic arguments do not
yield control on the difference between LN (E) and LN (E + iη). Note that the scale 1/N is below the scale
of rigidity (which is of order logN/N , as we prove in Theorem 1.8). The ability to nevertheless perform the
coupling (using in a crucial way overcrowding estimates from [72] and a-priori suboptimal rigidity estimates
from [45]) goes significantly beyond the earlier dynamics-based coupling of characteristic polynomials. See
e.g. [20] for the existing sharpest result which requires Im z ⩾ N−1+ε.

Recalling that (1.15) is the eigenvalue evolution under (1.14), and that the desired result for the GOE
follows from Theorem 1.9, we see that (1.16) implies matrices of the form

√
1− tH +

√
tW satisfy the

conclusions of Theorem 1.2, where H is Wigner matrix, W is a GOE, and t decays sufficiently slowly. It
remains to extend the result from these weakly Gaussian-divisible matrices to the entire Wigner class. For
this, we use a standard comparison argument based on four-moment matching [78]. It is well known that
this technique shows that weakly Gaussian-divisible matrices are “dense” in the set of all Wigner matrices,
in these sense that universality for sufficiently regular observables follows from establishing the expected
behavior in the weakly Gaussian-divisible case. While the extremal statistic sup|E|<2−κ ReLN (E) is non-
local and not regular enough to directly apply results from the literature, ideas originally developed in [66]
permit the comparison to proceed, and complete the proof of Theorem 1.2.

For Theorem 1.4, no density argument is needed but the relaxation step becomes particularly delicate as it
needs to reach the tightness precision. Even worse, the maximum of the characteristic polynomials differences
considered in (1.16) is probably not tight as N → ∞, even for t ≍ 1. The main insight consists in proving
that

∑
log
(
E−µk(t)

)
is very close to

∑
log
(
E+XN −λk(t)

)
, up to error of order 1 where XN is a random

shift. This shift is small enough so that it only changes the size of the centering of the log-characteristic
polynomial by an order 1. Choosing for E the location of the maximum for GOE completes the relaxation
of the maximum, which actually requires many other ingredients as explained in the proof of Proposition 4.4.

We now turn to the proofs of rigidity. While the best previous rigidity for Wigner matrices was proved
directly by resolvent methods [45], as a precursor to the local study of Dyson Brownian motion, we reverse
this usual logic and derive optimal rigidity as a consequence of refined estimates on the local dynamics.

The estimates with optimal constant, Theorem 1.8 (i) and Corollary 1.10, are equivalent to the corre-
sponding results for ImLN (E), Theorem 1.2 and Theorem 1.9, see (3.25) for this classical equivalence. On
the other hand, obtaining Theorem 1.8 (ii), which asserts rigidity for Wigner matrices with overwhelming
probability, requires further novelties. The traditional four-moment comparison method is effective only for
statements that hold with probability 1−N−c, and therefore does not provide density of weakly Gaussian-
divisible matrices for Theorem 1.8 (ii). However, iterative comparisons of moments of linear statistics have
appeared in random matrix theory in [58,79], which were recently strengthened in the context of eigenvector
statistics towards comparison beyond the order of magnitude, up to optimal constants [15, 16]. We adapt
this method to obtain the sharp Gaussian decay in (1.7) from the case of weakly Gaussian-divisible matrices.
For this ensemble, we use our coupling (1.16), along with estimates specific to the GOE/GUE, to provide
an optimal-order upper bound on the large moments (of order logN) of the eigenvalues counting function
(Lemma 4.5). With this estimate in hand for weakly Gaussian-divisible matrices, we use an inductive mo-
ment comparison (see Lemma 5.14), to obtain a similar estimate on the logN moment for arbitrary Wigner
matrices. The desired rigidity result, and the precise tail bounds in Theorem 1.8, then follow by Markov’s
inequality.

To conclude this section on the developed methods, we mention that the upcoming work [36] obtains the
analogue of Theorem 1.2 for non-Hermitian matrices with independent entries, with an approach relying on
Fourier transforms of linear statistics instead of GMC and dynamics (the special case of Ginibre matrices
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was proved, also at leading order, in [59]). While this approach is particularly robust for the leading order
of the characteristic polynomial and likely applies to Theorem 1.2, the dynamical method seems essential to
our results on tightness (Theorem 1.4) and rigidity with overwhelming probability (Theorem 1.8, part (ii)).

1.5 Further Comments. Since this paper is already long and uses a multitude of tools, we have not
discussed the edge of the spectrum, nor have we treated the case of β-ensembles with non-analytic potential.
These extensions require work but seem within the reach of the tools developed here.

It is natural to expect that (1.2) holds. For Gaussian β-ensembles, the Jacobi representation in terms of
independent variables, used in [7, 64, 65], could potentially be useful, as it was in the CβE case [34, 76]. In
view of Theorem 1.4, any progress in that direction for β = 1, 2 would immediately translate to Gaussian
divisible ensembles, at least at the level of tightness. More generally, we expect that the ideas developed here
will be a useful basis for work on the higher order terms in Problem 1, or for studying FHK-type asymptotics
and rigidity for other ensembles, including matrices of general Wigner type, adjacency matrices of random
graphs, models arising in free probability, and non-Hermitian matrices.

In view of the first universal results on FHK asymptotics for Wigner matrices and β-ensembles, another
natural question concerns universal limiting measures for random characteristic polynomials. We also expect
that some methods from this paper would help towards the convergence of |det(E −H)|γdE to a Gaussian
multiplicative chaos.

1.6 Organization. Section 2 fixes our notation conventions and states essential results from previous
works. In Section 3, we prove Theorem 1.9 and Corollary 1.10. Section 4 studies the short-time relaxation to
equilibrium of Dyson Brownian motion for FHK-type observables, and Section 5 provides moment matching
lemmas for these observables. The results in these sections are then used in Section 6 to prove Theorem 1.2
and Theorem 1.8. Appendix A establishes Proposition A.1, which controls diverging moments of the Stieltjes
transform of Wigner matrices; these are used in Section 4. Appendix B proves Theorem B.1, on the Fourier–
Laplace transform of the log-characteristic polynomial of β-ensembles near the real axis; this is used in
Section 3.

Remark 1.13. Throughout, we suppress the dependence of the constants in our arguments on the constants in
Definition 1.1 and the potential V from (1.9), since this dependence never affects our arguments. One could
give explicit (suboptimal) error bounds in all our results in terms of these parameters, but for simplicity,
we do not pursue this direction. Additionally, for brevity, we prove our results for real symmetric Wigner
matrices, since the complex Hermitian case differs only in notation.

1.7 Acknowledgments. P. B. was supported by the NSF grant DMS-2054851. P. L. was supported by
NSF postdoctoral fellowship DMS-2202891. O. Z. was supported by Israel Science Foundation grant number
421/20.

2 Preliminary Results

We begin by recalling some fundamental concepts and notation. For deterministic sequences X = XN and
Y = YN > 0, we write X = O(Y ) if there exists a constant C > 1 such that |X| ⩽ CY for all N ⩾ 1,
and X = o(Y ) if limN→∞X/Y = 0. We let H = {z : Im z > 0} denote the complex upper half plane, and
often use the notation z = E + iη for z ∈ H, so that E and η stand for the real and imaginary parts of
z, respectively. We often identify the complex plane C with R2, and use the notation [E1, E2] × [η1, η2] to
denote the set {z ∈ C : Re z ∈ [E1, E2], Im z ∈ [η1, η2]}. Our convention is that N denotes the set {1, 2, . . . }.
The function log always denotes the natural logarithm. We write log2(x) = log log x.

We will frequently define constants that depend on some number of parameters. These will be introduced
as C(x1, . . . , xn), for parameters x1, . . . , xn, and subsequently referred to as C (suppressing the dependence
on the parameters in the notation). These constants may change line to line without being renamed (while
retaining the dependence on the same set of parameters). We usually write C > 1 for large constants, and
c > 0 for small constants.

For z = E + iη ∈ H we use the notations

Re log(z − λ) = log |z − λ|, Im log(z − λ) =
π

2
+ arctan

λ− E

η
, (2.1)
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which are coherent with our convention log(reiθ) = log(r) + iθ for any r > 0 and θ ∈ (−π, π].
We recall that Wigner matrices were defined in Definition 1.1. The Gaussian Orthogonal (resp. Unitary)

Ensemble of dimension N , GOEN (resp. GUEN ), is defined as the N ×N Wigner matrix with independent
entries Hij , i ⩽ j, such that

√
NHij is a real (resp. complex) Gaussian random variable with mean zero and

variance 1 + 1i ̸=j (resp. ReHij and ImHij are independent, each with variance (1 + 1i ̸=j)/2).
We say that an event F = F(N) holds with overwhelming probability if for any D > 0, there exists a

constant C(D) > 1 such that P(Fc) ⩽ CN−D.

2.1 Semicircle law. Let MatN denote the set of N ×N real symmetric matrices. Given M ∈ MatN , we
index the eigenvalues λi of M in increasing order: λ1 ⩽ λ2 ⩽ . . . ⩽ λN . The resolvent of M is defined as by
G(z) = (M − zId)−1 for z ∈ H. The Stieltjes transform of M is defined for z ∈ H by

mN (z) =
1

N
TrG =

1

N

∑
i

1

λi − z
, (2.2)

and Stieltjes transform of the semicircle law is given by

msc(z) =

∫
R

ρsc(x) dx

x− z
=

−z +
√
z2 − 4

2
. (2.3)

Here
√
z2 − 4 :=

√
z − 2

√
z + 2 is defined through the principal branch of the square root, extended to

negative real numbers by
√
−x = i

√
x for x > 0.

We now recall some elementary bounds on msc(z).

Lemma 2.1 ([44, Lemma 6.2]). There exists a constant c > 0 such that the following holds. For all z = E+iη
such that E ∈ [−10, 10] and η ∈ (0, 10],

c ⩽ |msc(z)| ⩽ 1− cη. (2.4)

Set κ = ||E| − 2|. If |E| ⩽ 2, then

c
√
κ+ η ⩽ Immsc(z) ⩽ c−1√κ+ η. (2.5)

2.2 Wigner matrices. We recall the following fundamental estimates on Wigner matrices from [45,
Theorem 2.1] and [45, Theorem 2.2]. In this theorem and throughout this paper, we will often use the
control parameter

φ = exp
(
C0(log logN)2

)
, (2.6)

where C0 > 0 is a constant depending only on the constant c from (1.3), whose value is fixed by the following
lemma.

Theorem 2.2. Let H be a Wigner matrix. Then there exists C0 > 0 such that the following claims hold.

(i) There exists c > 0 such that

P

(⋃
z∈H

{
|mN (z)−msc(z)| ⩾

φ

Nη

})
⩽ c−1 exp (−φc) (2.7)

and

P

(⋃
z∈H

{
max

i,j∈[[1,N ]]
|Gij(z)− δijmsc(z)| ⩾ φ

√
Immsc(z)

Nη
+

φ

Nη

})
⩽ c−1 exp (−φc) . (2.8)

(ii) There exists c > 0 such that, defining k̂ = min(k,N + 1− k) and γk as in (1.6) with ν = ρsc,

P
(
∃k ∈ [[1, N ]] : |λk − γk| ⩾ φ k̂−

1
3N− 2

3

)
⩽ c−1 exp (−φc) . (2.9)

Remark 2.3. In [45], (2.7) and (2.8) were shown for z in a compact spectral domain. The extension to all
z ∈ H follows from [14, Section 10].
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2.3 Generic β-ensembles. We recall that β-ensembles were defined above in (1.9), and we retain the
notation from the previous section. For z ∈ H, let

s(z) = sN (z) =
1

N

N∑
k=1

1

λk − z
, mV (z) =

∫
R

dµV (x)

x− z
. (2.10)

The following will be key to the proof of Theorem 1.9. It follows from [25, Remark 2.4]

Theorem 2.4. Under the assumptions (A1), (A.2) (i), (A3) and (A4) there exist constants C, c, η̃ > 0 such
that for any q ⩾ 1, N ⩾ 1 and z = E + iη with 0 < η ⩽ η̃ and A− η ⩽ E ⩽ B + η, we have

E
[
|s(z)−mV (z)|q

]
⩽

(Cq)q/2

(Nη)q
+

Cqe−cN

|z −A|q/2|z −B|q/2
.

We will also use the following rigidity estimate, which directly follows from [25, Lemma 3.8].

Lemma 2.5. There exists c(V ) > 0 such that for any N ⩾ 1 and k ∈ J1, NK we have

µ
(
|λk − γk| > N− 2

3 (k̂)−
1
3 (logN)23

)
⩽ c−1e−c(logN)5 .

2.4 Resolvent identities. For M ∈ MatN and any differentiable f : R → R, we set

∂ijf(H) =
d

dt

∣∣∣∣
t=0

f
(
H + t∆(ij)

)
, (2.11)

where ∆(ij) ∈ MatN is the matrix whose entries are zero except in the (i, j) and (j, i) positions, in which

case they equal one: ∆
(ij)
kl = (δikδjl + δjkδil)(1 + δij)

−1.

Given M,M̃ ∈ MatN , with resolvents G and G̃, respectively, it follows immediately from the definitions
that

G− G̃ = G(M̃ −M)G̃. (2.12)

Additionally, the following resolvent identities are well known. The first can be found as [14, (3.6)]. The
second is a straightforward consequence of (2.12) and the definition (2.11). The third is an immediate
consequence of the spectral decomposition of G(z) [14, (2.1)].

Lemma 2.6. Given M ∈ MatN , let G(z) = (M − zId)−1 denote its resolvent.

(i) For any i ∈ [[1, N ]], ∑
1⩽j⩽N

|Gij |2 =
ImGii

Im z
. (2.13)

(ii) For i, j, k, l ∈ [[1, N ]],
∂klGij = −(GikGlj +GilGkj)(1 + δkl)

−1. (2.14)

(iii) For i, j ∈ [[1, N ]],
|Gij(z)| ⩽ η−1. (2.15)

2.5 Eigenvalue overcrowding. We recall the following overcrowding estimate. It is contained in [72,
Theorem 1.12], which is stated in greater generality for Wigner matrices with subgaussian entries, but we
need only the special case of the Gaussian ensemble.

Theorem 2.7. Let {µi}Ni=1 denote the eigenvalues of GOEN . For any 0 < γ < 1 there exist constants
C(γ), c(γ), γ0(γ) > 0 such that for any k ∈ Jγ−1

0 , γ0NK, ε > 0 and E ∈ R, we have

P
(∣∣∣∣{µi ∈

[
E − εk

N
,E +

εk

N

]}∣∣∣∣ ⩾ k

)
⩽ (Cε)

1
2 (1−γ)k2

+ e−Nc

. (2.16)

A similar bound holds for GUEN , with 1
2 (1− γ)k2 replaced by (1− γ)k2.
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3 Maximum for Log-Gases

This section contains the proofs of Theorem 1.9 and Corollary 1.10. The proof of Theorem 1.9 is contained
in the first three subsections, and the proof of Corollary 1.10 is given in Section 3.4.

We give the proof of Theorem 1.9 here in the case where we suppose (A.2) (i) holds. Under the assumption
(A.2) (ii), some extra care is needed such as working under conditional measures. We explain the necessary
changes in Appendix B.6.

3.1 Upper bound for the real part. By monotonicity of η 7→ log |E + iη − λ|, η > 0, and the estimate∫
log |E − λ|dρV (λ) =

∫
log |E + iε− λ|dρV (λ) + O(ε) uniformly in E, there exists a fixed C > 0 such that

sup
E∈[A+κ,B−κ]

ReLN (E) ⩽ sup
E∈[A+κ,B−κ]

ReLN

(
E +

i

N

)
+ C. (3.1)

Let J = [A+κ,B−κ]∩N−1−cZ, where c > 0 is an arbitrary small constant. For any E ∈ [A+κ,B−κ], let
E′ be the closest point in J , z = E + i

N and z′ = E′ + i
N . Then from log(1 + ε) = ε+O(ε2) and recalling

the definition of s(z) from (2.10), this implies (in this section we abbreviate m = mV )

ReLN (z)− ReLN (z′) = O((z − z′)N(s(z′)−m(z′))) + O

(
(z − z′)2

∑ 1

|z′ − λi|2

)
+O(1)

= N−c O(|s(z′)−m(z′)|) +N−2c O(Im s(z′)) + O(1). (3.2)

Next, Theorem 2.4 (with q = logN) together with Markov’s inequality gives

max
E∈[A+κ,B−κ]

P
(
|s(z)−m(z)| > (logN)7/10

)
⩽ N−200. (3.3)

for large enough N . Together with the boundedness of mV on compact sets of C (see (B.3)), this gives

P
(
∃E′ ∈ J : |s(z′)| ⩾ (logN)7/10

)
⩽ N−100. (3.4)

We conclude that

P

(
sup

E∈[A+κ,B−κ]

ReLN (E) ⩽ sup
E∈J

ReLN (E + iN−1) + (logN)9/10

)
⩾ 1−O(N−100). (3.5)

We now control the increments of LN along the line segment {Re z = E,N−1 < Im z < η0} using
Markov’s inequality, where we set

η0 =
(logN)1000

N
(3.6)

throughout this section. For E ∈ J , we denote z = z(E) = E + i/N and z̃ = E + iη0. Then for any fixed
ε > 0 and p ∈ N, we have by a union bound that

P (∃E ∈ J : ReLN (z) > ReLN (z̃) + ε logN)

⩽ CN1+c(ε logN)−2p max
E∈J

E

∫
[N−1,η0]2p

p∏
i=1

(N(s−mV )(E + iηi))

2p∏
i=p+1

(N(s−mV )(E + iηi))

 dη1 . . . dη2p.

(3.7)

We now suppose that p = O(N(log logN)−1). Theorem 2.4 gives, for E ∈ [A+ κ,B − κ],

E[|(s−mV )(E + iη)|p] ⩽ (Cp)p/2

(Nη)p
+ Cpe−c̃N ⩽

(Cp)p/2

(Nη)p
, (3.8)

for some C = C(V, κ), where the latter inequality holds because we assume η < η0. Equation (3.8) and
Hölder’s inequality give

E

 p∏
i=1

∣∣N(s−mV )(E + iηi)
∣∣ 2p∏
i=p+1

|N(s−mV )(E + iηi)|

 ⩽ (Cp)p
2p∏
i=1

1

ηi
. (3.9)
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Inserting the previous display in (3.7), we obtain

P (∃E ∈ J : ReLN (z) > ReLN (z̃) + ε logN) ⩽
N1+c(Cp)p(log logN)2p

(ε logN)2p
⩽ N1+c (Ap)

p(log logN)2p

(logN)2p
⩽ N−100,

(3.10)
where A is a new constant depending on C and ε, and the latter inequality is obtained by setting p = B logN

log logN

for sufficiently large B. We note that for the above reasoning, the Gaussian-like moment growth (Cq)q/2 in
Theorem 2.4 is crucial (as opposed to an exponential-like growth of (Cq)q) .

Moreover, from Markov’s inequality and Theorem B.1, for any fixed λ > 0 we have

P
(
∃E ∈ J : ReLN (z̃) > (1 + ε)

√
2

β
logN

)
⩽ N1+c e

−λ(1+ε)
√

2
β logN

max
E∈J

E
[
eλReLN (z̃)

]
⩽ C N1+c max

E∈J
e

σ(λ,0,z̃)
2 +µ(λ,0,z̃)−λ(1+ε)

√
2
β logN

,

where we refer to (B.6) and (B.7) for the definitions of σ and µ. From Lemma B.2, we have µ(λ, 0, z̃) = O(1)
and σ(λ, 0, z̃) = (1 + o(1))λ2 logN

β uniformly in N , E ∈ J , and λ in any compact subset of R+. Choosing

λ =
√
2β this implies that

P
(
∃E ∈ J : ReLN (z̃) > (1 + ε)

√
2

β
logN

)
⩽ e−(2ε−c−o(1)) logN → 0. (3.11)

With the choice 0 < c < 2ε, equations (3.5), (3.10), (3.11) conclude the proof that

P
(
∃E ∈ [A+ κ,B − κ] : ReLN (E) > (1 + ε)

√
2

β
logN + 2ε logN

)
→ 0.

3.2 Upper bound for the imaginary part. The proof of the upper bound for ImLN is the same
as the one for the real part up to the following complication: There is no analogue of (3.1), as η 7→∑

i Im log(E + iη − λi) is not monotone. To circumvent this problem, we observe that the error made by
shifting Im log from the real axis to a scale η can be bounded in terms of a linear combination of the real
and imaginary parts of the Stieltjes transform at scale η.

More precisely, note that, from arctan(x)−arctan(+∞) = −
∫∞
x

du
1+u2 = − 1

x +O( 1
x2 ) as x→ ∞, we have

arctan((λ− E)/η)− π

2
· sgn(λ− E) = − η(λ− E)

(λ− E)2 + η2
+O

(
η2

(λ− E)2 + η2

)
.

As a consequence, for z = E + i
N , ∣∣∣ ImLN (E)− ImLN (z)

∣∣∣ ⩽ 10|s(z)|. (3.12)

As in the previous paragraph, let J = [A+ κ,B − κ] ∩N−1−cZ, where c > 0 is an arbitrary small constant.
For any E ∈ [A+ κ,B− κ], let E′ be the closest point in J and z′ = E′ + i

N . Then the mean value theorem
yields

s(z)− s(z′) = O
(
N−1−c max

x∈[A+κ,B−κ]

∣∣s′(x+ iN−1)
∣∣), (3.13)

with an implicit constant uniform in the choice of E.
Note that |s′(z)| ⩽ η−1 Im s(z) ⩽ η−2 (where the last inequality follows from (2.15)), so s(z) is η−2-

Lipschitz continuous. Taking a union bound over a mesh with spacing size O(N−10), with (3.3) we obtain
that

P
(

max
x∈[A+κ,B−κ]

Im s(x+ iN−1) > (logN)7/10
)

⩽ N−100.

Together with (3.12) and (3.13), and again using |s′(z)| ⩽ η−1 Im s(z), this gives

P
(
∀E ∈ [A+ κ,B − κ],

∣∣∣ ImLN (E)− ImLN (z)
∣∣∣ ⩽ 10(|s(z′)|+N−c/2)

)
⩾ 1−N−100. (3.14)
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Moreover, the same estimate as (3.2) holds for ImLN , so that

P
(
∀E ∈ [A+ κ,B − κ],

∣∣∣ ImLN (E)− ImLN (z′)
∣∣∣ ⩽ 100(|s(z′)|+N−c/2)

)
⩾ 1−N−100. (3.15)

Together with (3.4), we conclude that

P

(
sup

E∈[A+κ,B−κ]

ImLN (E) ⩽ sup
E∈J

ImLN (E + iN−1) + (logN)9/10

)
⩾ 1−O(N−100). (3.16)

Further, the analogues of (3.10) and (3.11) hold, with the same proofs up to notational changes, and
together with (3.16) they conclude the proof of the upper bound for the imaginary part in Theorem 1.9.

3.3 Lower bound for the real and imaginary parts. We start with the proof for the real part. The
proof for the imaginary part is essentially the same, and is described at the end of this section.

First step: shift to the upper half plane. For any z = E+iη with η > 0, by harmonicity of z ∈ H 7→ log |z−λ|
we have

log |z − λ| =
∫
R
log |x− λ| · η

η2 + (E − x)2
dx

π
.

This implies

ReLN (z) =

∫
R
ReLN (x) · η0

η20 + (E − x)2
dx

π
(3.17)

for z ∈ R+ iη0, with η0 defined in (3.6). On the other hand,∫
[A+κ,B−κ]c

|ReLN (x)| · η0
η20 + (E − x)2

dx

π
⩽
∑
i

∫
[A+κ,B−κ]c

| log |x−λi| − log |x− γi|| ·
η0

η20 + (x− E)2
dx

π

+

∫
[A+κ,B−κ]c

|N
∫

log |x− λ|dρV (λ)−
∑
i

log |x− γi|| ·
η0

η20 + (x− E)2
dx

π
. (3.18)

For x ∈ [A + κ,B − κ]c and E ∈ [A + 2κ,B − 2κ], we have |x − E| > κ, so for such x and E we have
1

η2
0+(x−E)2

⩽ C
1+x2 . Therefore the first sum on the right-hand side of (3.18) is smaller than

Cη0
∑
i

∫
R

| log |x− λi| − log |x− γi||
1 + x2

dx ⩽ Cη0
∑
i

|λi − γi| · | log |λi − γi||. (3.19)

This implies that on the rigidity event from Lemma 2.5, the first term on the right-hand side of (3.18)
is O((logN)50η0) = o(1); an error o(logN) would be enough for the proof of the leading order of the
maximum, so there is substantial margin here. From rigidity of β-ensembles, Lemma 2.5, we conclude that
with probability 1−O(N−10), for any z ∈ [A+ 2κ,B − 2κ] + iη0 we have∣∣∣∣∣ReLN (z)−

∫
[A+κ,B−κ]

ReLN (x) · η0
η20 + (E − x)2

dx

π

∣∣∣∣∣ ⩽ 1. (3.20)

Note that for E ∈ [A+2κ,B− 2κ] we have
∫
[A+κ,B−κ]

η0

η2
0+(E−x)2

dx
π = 1+O(η0), so from the above equation

we conclude that

P

(
sup

z∈[A+2κ,B−2κ]+iη0

ReLN (z) ⩽ sup
E∈[A+κ,B−κ]

ReLN (E) + 1

)
= 1− o(1). (3.21)

Second step: lower bound for the smoothed field. Similarly to [37] and [61], the proof of the lower bound for
maxz∈[A+2κ,B−2κ]+iη0

ReLN (z) will be an straightforward corollary of the convergence of the corresponding
field to a Gaussian multiplicative chaos measure, in the full subcritical phase.

More precisely, consider a centered Gaussian field Gη defined on [A + 2κ,B − 2κ] with covariance
E[Gη(E1)Gη(E2)] = σ(1, 0, (z1, z2)), where we denote zi = Ei + iη and refer to (B.6) for the definition
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of σ. The existence of this field for η > η0 follows from positivity of the covariance, which is a byproduct of
Theorem B.1 (the limit of positive matrices is positive). From Lemma B.2, and noting that the covariance
σ is defined in terms of the kernel c studied in that lemma, we have

E[Gη(E1)Gη(E2)] = − 1

β
log |z1 − z̄2|+Oκ(1) (3.22)

uniformly for E1, E2 ∈ [A+ 2κ,B − 2κ].
It is well known that for any |γ| <

√
2, there exists a random measure µγ , called the Gaussian multi-

plicative chaos with parameter γ, such that the following holds. For any continuous f : R → R with compact
support in (A+ 2κ,B − 2κ), we have the distributional convergence

lim
η→0+

∫
f(E)

e
√
βγGη(E)

E[e
√
βγGη(E)]

dE =

∫
f dµγ .

The limiting random variable can be written
∫
fdµγ , for a certain random measure µγ , called the Gaussian

multiplicative chaos with parameter γ. We refer for example to [37, Section 2.1] for a modern treatment of
the existence and non-triviality of this limit.

In the following result, we denote L̃N (z) = LN (z)− µ(1, 0, z), with µ defined in (B.7)

Proposition 3.1. For any |γ| <
√
2 and any continuous f with compact support in (A + 2κ,B − 2κ), the

following convergence in distribution holds:

lim
N→∞

∫ B−2κ

A+2κ

f(E)
e
√
βγ Re L̃N (E+iη0)

E[e
√
βγ Re L̃N (E+iη0)]

dE =

∫
fdµγ .

Proof. The proof is a direct application of the general criterion for convergence of a non-Gaussian random field
to a Gaussian multiplicative chaos; see [37, Theorem 2.4] (which is a restatement from [62, Theorem 1.7]), and
the key technical input, the Laplace transform of the log-characteristic polynomial from Theorem B.1. More
precisely, [37, Theorem 2.4] states that a sufficient condition for the conclusion of Proposition 3.1 is that there
is a constant c > 0 such that for any fixed p and ζ1, . . . , ζp ∈ R, uniformly in z ∈ ([A+2κ,B− 2κ]× [η0, c])

p,
we have

Eµ

[
e
∑p

k=1 ζkReL̃N (zk)
]
= E

[
e
∑p

k=1 ζkL(zk)
]
(1 + o(1)) (3.23)

as N → ∞, where L is a centered Gaussian field defined on [A + 2κ,B − 2κ] × [η0, c] characterized by
Var[

∑p
k=1 ζkL(zk)] = σ(ζ, 0, z). Equation (3.23) is a direct consequence of Theorem B.1. Note that we

consider L̃N here instead of LN because [37, Theorem 2.4] does not explicitly cover the possibility of a
limiting shift.

We now apply [37, Theorem 3.4]. The assumptions of this theorem are easily verified: [37, Assumption
3.1] follows from 3.23 and [37, Assumption 3.3] follows from Proposition 3.1 and a standard approximation
argument to allow indicators for f . Then [37, Theorem 3.4] gives, for any fixed ε > 0,

P
(

max
z∈[A+2κ,B−2κ]+iη0

Re L̃N (z) ⩾

(√
2

β
− ε

)
logN

)
= 1− o(1).

From Lemma B.2, µ(1, 0, z) is uniformly bounded, so from the previous equation there exists C > 0 such
that

P
(

max
z∈[A+2κ,B−2κ]+iη0

ReLN (z) ⩾

(√
2

β
− ε

)
logN − C

)
= 1− o(1). (3.24)

Equations (3.21) and (3.24) conclude the proof of the lower bound in Theorem 1.9, for ReLN .

Lower bound for the imaginary part. The proof for ImLN is identical because Theorem B.1 also gives
its joint Laplace transform, with limiting covariance σ(0, ζ, z) = σ(ζ, 0, z) + O(1), a fact easily checked
with (B.6) and Lemma B.2. The only small difference is about the analogue of (3.18), i.e. bounding∫
[A+κ,B−κ]c

| ImLN (x)| · η
η2+(E−x)2

dx
π . By rigidity of the eigenvalues we have | ImLN (E)| ⩽ Nε for all E

(this is a consequence of the implications (3.28) below), with overwhelming probability, and this is enough
to conclude.
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3.4 Proof of Corollary 1.10. From the definition of Im log before (1.5), we have

ImLN (E) = π

(
N∑
i=1

1{λi>E} −N

∫ ∞

E

ρV (s) ds

)
.

Let k ∈ J0, N − 1K, n ∈ N, and M ∈ [n, n + 1] be parameters such that n + 2 < k < N − (n + 2). For
E ∈ [γk, γk+1), the previous display, together with the definition (1.6) of γk, yields the following implications:

ImLN (E) > πM ⇒ λk−n+2 > γk ⇒ λk−n+2 − γk−n+2 > γk − γk−n+2,

ImLN (E) < πM ⇒ λk−n−2 < γk+1 ⇒ λk−n−2 − γk−n−2 < γk+1 − γk−n−2. (3.25)

For the upper bound on the eigenvalue deviations, we take M = π−1
√

2
β (1 + ε) logN . By Theorem 1.9, we

have for any δ > 0 that supA+δ<E<B−δ ImLN (E) ⩽ πM with high probability. Then taking n = ⌊M⌋ and
δ sufficiently small (in a way that depends only on κ), (3.25) implies that for every j ∈ JκN, (1− κ)NK, we
have

λj − γj < γj+n+2 − γj . (3.26)

Further, if we define the quantity εj,m implicitly by

γj+m − γj =
m

NρV (γk)
(1 + εj,m),

then (1.6) implies that
sup

j∈JκN,(1−κ)NK
sup

m⩽(κ/2)
√
N

εj,m = o(1). (3.27)

Combining (3.26) with (3.27) completes the proof of the upper bound. The proof for the lower bound is
similar and hence omitted.

Remark 3.2. The reasoning in this proof of Corollary 1.10 could be reversed to show that Corollary 1.10
implies the bound on the imaginary part in Theorem 1.9, which demonstrates that these statements are
logically equivalent. The relevant implications are now (using the same notation)

λk−n−2 − γk−n−2 > γk+1 − γk−n−2 ⇒ ImLN (E) > πM,

λk+n+2 − γk+n+2 < γk − γk+n+2 ⇒ ImLN (E) < πM. (3.28)

4 Relaxation

This section proves convergence to equilibrium of sup ImLN (subsection 4.1) and supReLN (subsection 4.2)
for the matrix Ornstein–Uhlenbeck dynamics (4.1) defined below. Indeed we will prove that theorems 1.2,
1.4 and 1.8 (i) hold for matrices of type Ht, for large enough t. We will finally prove relaxation of large
moments of ImLN , which corresponds to a proof of Theorem 1.8 (i) for such weakly Gaussian-divisible
random matrices Ht (subsection 4.3).

As explained in the introduction, this is an essential step in the proof for Wigner matrices, which then
proceeds by density of the weakly Gaussian-divisible ensemble in Wigner matrices (the moment matching
from Section 5).

For local statistics in the bulk of the spectrum, relaxation was first proved in [43] by a method based
on entropy dissipation, up to an averaging on the energy level which prevents from considering observables
such as supReLN , sup ImLN . Another method for relaxation was introduced in [22], through a coupling
of the spectrum of Ht with a GOE. In this approach relaxation follows from homogenization of the Dyson
Brownian motion: The difference between both spectra satisfies a deterministic, non-local parabolic equation
at leading order, locally and with probability 1− o(1).

While ergodicity of ImLN is closely related to relaxation of local spectral statistics, ergodicity of ReLN

requires convergence to equilibrium along the full spectrum. Moreover part (ii) of Theorem 1.8 requires
probability bounds stronger than 1 − o(1). Fortunately, the homogenization theory from [22] was greatly
strengthened in [68] and in [20], as it holds with the probability bound 1 − N−D for arbitrary D. For
our paper, the homogenization from [20] is most pertinent as it holds for very large times, a key fact for
our observable LN , which reaches equilibrium only for t = N− o(1). The methods from [20] also directly
cover relaxation of ReLN , another decisive fact as the sum of the errors from the local homogenization in
Proposition 4.1 below exceeds the required o(logN) accuracy to catch the maximum of ReLN .
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4.1 The eigenvalues. We first provide a quantitative relaxation of the eigenvalues (Proposition 4.1),
which is a variant of [20, Theorem 3.1] and relies on this work.

Let H be a Wigner matrix. We first recall the definition of Dyson Brownian motion with initial data
H0 = H. As noted above in Section 1.4, for concreteness we consider just the real symmetric case, as the
complex Hermitian case is analogous.

Let B ∈ MatN be such that the entries {Bij}i<j and Bii/
√
2 are independent standard Brownian motions,

and Bij = Bji. Consider the matrix Ornstein–Uhlenbeck process

dHt =
1√
N

dBt −
1

2
Ht dt. (4.1)

If the eigenvalues of H0 are distinct, it is well known that the eigenvalues λ(t) = (λ1(t), λ2(t), . . . , λN (t)) of
Ht are given by the strong solution of the system of stochastic differential equations

dλk =
dβk√
N

+

 1

N

∑
ℓ ̸=k

1

λk − λℓ
− 1

2
λk

 dt, (4.2)

where the {βk}Nk=1 are independent, standard Brownian motions. (See, for example, [2, Lemma 4.3.3].)
We now let µ(t) = (µ1(t), µ2(t), . . . , µN (t)) be a strong solution of the same SDE (4.2) with initial

condition µ(0) = (µ1, µ2, . . . , µN ), where {µk}Nk=1 are the eigenvalues of a GOEN , denoted GOE:

dµk =
dβk√
N

+

 1

N

∑
ℓ̸=k

1

µk − µℓ
− 1

2
µk

 dt.

For any z ∈ H, we define

zt =
et/2(z +

√
z2 − 4) + e−t/2(z −

√
z2 − 4)

2
, (4.3)

where
√
z2 − 4 is defined using a branch cut in the segment [−2, 2], as with msc in (2.3). For z ∈ R, we

define zt = limη→0+(z + iη)t. The following key estimate on the difference between λ(t) and µ(t) follows
from the main result in [20]. We recall the notations φ from (2.6) and γk from (1.6), and let LH and LGOE

denote the observable (1.5) defined using the eigenvalues of H and GOE, respectively.

Proposition 4.1. Fix κ, ε > 0. Then for any D > 0 there exist C(ε, κ,D) > 0 such that for all t ∈
(φC/N, 1), E ∈ [−2 + κ, 2− κ], and k ∈ [[1, N ]] such that γk ∈ [−2 + κ, 2− κ], we have

P
(∣∣∣λk(t)− µk(t)−

ImLH
N (Et)− ImLGOE

N (Et)

N Immsc(Et)

∣∣∣ > N1+ε max(|E − γk|, N−1)

N2t

)
⩽ CN−D. (4.4)

Proof. The key to the proof is [20, Theorem 3.1], which states that there exists C(D) > 0 such that

P
(∣∣∣(λk(t)− µk(t)

)
− ūk(t)

∣∣∣ > Nε

N2t

)
⩽ CN−D (4.5)

for t ∈ (φC/N, 1), where we define

ūk(t) =
1

N Immsc(γtk)

N∑
j=1

Im

(
1

γj − γtk

)(
λj(0)− µj(0)

)
, γtk = (γk)t. (4.6)

Moreover, from [20, Lemma 3.4], for all γk, γℓ ∈ [−2 + κ, 2− κ] we have

P
(
|ūk(t)− ūℓ(t)| ⩾ Cφ

|k − ℓ|
N2t

)
⩽ CN−D. (4.7)

Let E ∈ [−2 + κ, 2 − κ] be given, and fix some ℓ = ℓ(E,N) such that |E − γℓ| = minj∈[[1,N ]] |E − γj |. The
definition of γk in (1.6) (with ν = ρsc) gives

|k − ℓ| < CN |γk − γℓ| ⩽ CN (|γk − E|+ |E − γℓ|) ⩽ 2CN |γk − E|, (4.8)
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for some constant C > 0. Then equations (4.5) and (4.7) together with the previous line imply that

P
( ∣∣∣(λk(t)− µk(t)

)
− ūℓ(t)

∣∣∣ > CN1+ε max(|E − γk|, N−1)

N2t

)
⩽ CN−D, (4.9)

where we increased C if necessary and used Nε ⩾ φ for sufficiently large N (depending on ε). We therefore

just need to bound
∣∣∣ ImLH

N (Et)−ImLGOE
N (Et)

N Immsc(Et)
− ūℓ(t)

∣∣∣ . We write

ImLH
N (Et)− ImLGOE

N (Et)

N Immsc(Et)
=

1

N Immsc(Et)
Im

N∑
j=1

log

(
1 +

λj(0)− µj(0)

µj(0)− Et

)
. (4.10)

On the rigidity event from (2.9), a Taylor expansion of the logarithm gives, with overwhelming probability,

Im

N∑
j=1

log

(
1 +

λj(0)− µj(0)

µj(0)− Et

)
= Im

N∑
j=1

λj(0)− µj(0)

µj(0)− Et
+O

 N∑
j=1

∣∣∣∣λj(0)− µj(0)

µj(0)− Et

∣∣∣∣2
 . (4.11)

For the error term, on the rigidity event from (2.9) we can write

N∑
j=1

∣∣∣∣λj(0)− µj(0)

µj(0)− Et

∣∣∣∣2 ⩽
Cφ2

Nt
· 1

N

N∑
j=1

ImEt

|µj(0)− Et|2
=
Cφ2

Nt
ImmN (Et) ⩽

Cφ2

Nt
, (4.12)

where we used ct ⩽ ImEt ⩽ Ct to bound ImmN (Et) ⩽ C using (2.7). This estimate on ImmN (Et) also
shows that the second term in (4.11) is negligible when inserted in (4.10).

Finally, we need to bound

1

N Immsc(Et)
Im

N∑
j=1

λj(0)− µj(0)

µj(0)− Et
− ūℓ(t) =

1

N

N∑
j=1

(λj(0)− µj(0))

(
1

Immsc(Et)
− 1

Immsc(γtℓ)

)
Im

1

µj(0)− Et

+
1

N

N∑
j=1

λj(0)− µj(0)

Immsc(γtℓ)
Im

(
1

µj(0)− Et
− 1

γj − γtℓ

)
.

For the first sum, from | Immsc(Et)−Immsc(γ
t
ℓ)| ⩽ C|Et−γtℓ| ⩽ CN−1, Immsc(Et) ⩾ c, and Immsc(γ

t
ℓ) ⩾ c,

on the rigidity event from (2.9) we obtain

1

N

N∑
j=1

|λj(0)− µj(0)|
(

1

Immsc(Et)
− 1

Immsc(γtℓ)

)
Im

1

µj(0)− Et
⩽
Cφ

N3
·
∑ t

|γj − Et|2
⩽
Cφ

N2
.

On the same rigidity event, the second sum is bounded by

1

N

N∑
j=1

|µj(0)− λj(0)|
∣∣∣∣Im Et − γtℓ

(µj(0)− Et)(γj − γtℓ)

∣∣∣∣ ⩽ Cφ

N3

∑
j

(
1

|µj(0)− Et|2
+

1

|γj − γtℓ|2

)
⩽

Cφ

N2t
.

We have thus obtained ∣∣∣∣ ImLH
N (Et)− ImLGOE

N (Et)

N Immsc(Et)
− ūℓ(t)

∣∣∣∣ ⩽ C
φ2

N2t
, (4.13)

which concludes the proof.

Remark 4.2. A stronger result than (4.4) actually holds, in terms of the probability bound: for any κ, ε > 0
there exists C, δ,N0 > 0 (depending on κ and ε) such that for any t ∈ (φC/N, 1), E ∈ [−2 + κ, 2 − κ],
k ∈ [[1, N ]] satisfying γk ∈ [−2 + κ, 2− κ] and N ⩾ N0, we have

P
(∣∣∣λk(t)− µk(t)−

ImLH
N (Et)− ImLGOE

N (Et)

N Immsc(Et)

∣∣∣ > N1+ε max(|E − γk|, N−1)

N2t

)
⩽ e−δφδ

.

Indeed the proof of (4.5) from [20] relies on the rigidity estimate (2.9), which holds with probability e−cφc

,

so that the probability bound N−D in [20, Theorem 3.1] can be strengthened to e−δφδ

for a fixed, small
enough δ, by elementary changes in the proof.

This improved probability bound is not necessary for the proofs of Theorem 1.2 and Theorem 1.8 (i). It
will be used in the proof of Theorem 1.8 (ii).
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4.2 The characteristic polynomial. After the relaxation of individual eigenvalues in the previous
subsection, we study the relaxation of LN , an a priori more intricate problem as ReLN depends on the
full spectrum. Our results are of two types: relaxation of the full characteristic polynomial in the rectangle
[−2 + κ, 2− κ]× [N−1, 1] and t ∈ [φ−K , 1], up to an error (logN)1/2 (Proposition 4.3), and relaxation of its
maximum on [−2 + κ, 2− κ] for t = Ω(1), up to tightness (Proposition 4.4) .

Proposition 4.3. For all K > 10, ε, κ > 0, the following holds. For z = E + iη, uniformly in η ∈ (N−1, 1)
and t ∈ [φ−K , 1], we have

P
(

max
−2+κ<E<2+κ

∣∣∣∑ log
(
z − µk(t)

)
−
∑

log
(
z − λk(t)

)∣∣∣ > (logN)1/2+ε

)
= o(1). (4.14)

Proof. If φ100/N < η < 1, this follows from [20] and Corollary A.4. Indeed, by integrating over the parameter
ν ∈ [0, 1] in [20, Proposition 2.11], we have

max
−2+κ<E<2+κ

∣∣∣∣∣
N∑

k=1

log
z − µk(t)

z − λk(t)
−

N∑
k=1

log
zt − µk(0)

zt − λk(0)

∣∣∣∣∣ < 1 (4.15)

with overwhelming probability. Together with Corollary A.4 (noting zt ⩾ C−1t for some C(κ) > 0 by an
explicit computation using (4.3)), it implies that

max
−2+κ<E<2+κ

∣∣∣∑ log
(
z − µk(t)

)
−
∑

log
(
z − λk(t)

)∣∣∣ < (logN)ε (4.16)

with probability 1− o(1).
We now consider the case where N−1 < Im η < φ100/N , and denote z̃ = E + iφ100/N . Given that (4.16)

holds for z̃, we only need to prove that

max
−2+κ<E<2+κ

∣∣∣∣∣
N∑

k=1

log
z − µk(t)

z − λk(t)
−

N∑
k=1

log
z̃ − µk(t)

z̃ − λk(t)

∣∣∣∣∣ < (logN)1/2+ε (4.17)

with probability 1− o(1) to complete the proof.
We divide the sum in (4.17) into two parts, depend on whether |γk − E| > N−1/2 or not. For the terms

such that |γk − E| > N−1/2, by the rigidity bound (2.9) and the Taylor expansion for x 7→ log(1 + x) we
have ∑

|γk−E|>N−1/2

∣∣∣∑ log(z̃ − µk(t))−
∑

log(z − µk(t))
∣∣∣ = ∑

|γk−E|>N−1/2

∣∣∣∣log(1 + z̃ − z + µk(t)− λk(t)

z − λk(t)

)∣∣∣∣
⩽ C

∑
|γk−E|>N−1/2

∣∣∣∣ z̃ − z

z − γk

∣∣∣∣+ ∣∣∣∣µk(t)− λk(t)

z − γk

∣∣∣∣ ⩽ Cφ200

N

1

|z − γk|
⩽

φ300

N1/2
= o(1).

The same holds when replacing µ with λ. Hence to prove (4.17) we only need to obtain the following bounds
for the terms such that |γk − E| < N−1/2:

max
−2+κ<E<2+κ

∣∣∣∣∣∣
∑

|γk−E|<N−1/2

log(z − µk(t))−
∑

|γk−E|<N−1/2

log(z − λk(t))

∣∣∣∣∣∣ < (logN)1/2+ε, (4.18)

and the same bound with z replaced by z̃. In the following we prove only (4.18), as the proof for z̃ is the
same. For this, we now bound∣∣∣∣ ∑

|γk−E|<N−1/2

log(z − µk(t))−
∑

|γk−E|<N−1/2

log(z − λk(t))

∣∣∣∣ (4.19)

⩽
∑

|γk−E|<N−1/2

|µk(t)−E|⩽(logN)εN−1

∣∣∣∣log z − µk(t)

z − λk(t)

∣∣∣∣+ ∑
|γk−E|<N−1/2

(logN)εN−1⩽|µk(t)−E|⩽φ3N−1

∣∣∣∣log z − µk(t)

z − λk(t)

∣∣∣∣ (4.20)

+

∣∣∣∣∣ ∑
|γk−E|<N−1/2

φ100N−1⩽|µk(t)−E|

log
z − µk(t)

z − λk(t)

∣∣∣∣∣. (4.21)
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We begin by considering the contribution from the first sum in (4.20). First, suppose that |z−µk| ⩾ |z−λk|.
Using | log |1 + z|| < log(1 + |z|) for |1 + z| > 1 and Proposition 4.1, we obtain that with high probability∣∣∣∣log |z − µk(t)|

|z − λk(t)|

∣∣∣∣ ⩽ log

(
1 +

∣∣∣∣µk(t)− λk(t)

z − µk(t)

∣∣∣∣)
⩽ log

(
1 +

∣∣∣∣ ImLH
N (Et)− ImLGOE

N (Et)

N Immsc(Et) (z − µk(t))
+ O

(
N1+ε max(|E − γk|, N−1)

N2t|z − µk(t)|

)∣∣∣∣) . (4.22)

By Corollary A.4, we have for all η′ ∈ (0, 1) that P(Gη′) = 1− o(1), where

Gη′ =

{
max

−2+κ<E<2+κ

∣∣∣∑ log
(
z′t − µk(0)

)
−
∑

log
(
z′t − λk(0)

)∣∣∣ ⩽ (logN)ε
}
, z′ = E + iη′ (4.23)

and the implicit constant in the o(1) term depends only on the choices of K, ε, and κ. On Gη, using
Im z ⩾ N−1 and |N(z − µk(t))| ⩾ 1 in (4.22), we obtain∣∣∣∣log |z − µk(t)|

|z − λk(t)|

∣∣∣∣ ⩽ log

(
1 + 2(logN)ε +

Nε max(|E − γk|, N−1)

t

)
< Cε log logN. (4.24)

In (4.24), we used that |µk(t) − E| ⩽ (logN)ε/N implies |E − γk| < Cφ/N when rigidity (2.9) holds. The
same bound as (4.24) naturally holds for |z − µk| > |z − λk|. Thus for the first sum in (4.20) we conclude
that ∑

|γk−E|<N−1/2

|µk(t)−E|⩽(logN)εN−1

∣∣∣∣log |z − µk(t)|
|z − λk(t)|

∣∣∣∣ ⩽ Cε log logN

∣∣∣∣{|µk − E| ⩽ (logN)ε

N

}∣∣∣∣ . (4.25)

Theorem 2.7 applied with k = (logN)1/2 gives

P
(∣∣∣∣{|µk − E| ⩽ (logN)ε

N

}∣∣∣∣ > (logN)1/2
)

= o(1). (4.26)

Then (4.25) and (4.26) together imply that, with probability 1− o(1),∑
|γk−E|<N−1/2

|µk(t)−E|⩽(logN)εN−1

∣∣∣∣log z − µk(t)

z − λk(t)

∣∣∣∣ ⩽ C(logN)1/2+ε. (4.27)

We next consider the second sum on the left side of (4.20), and work on the event Gη. By Taylor expansion
and Proposition 4.1,∣∣∣∣log z − µk(t)

z − λk(t)

∣∣∣∣ ⩽ ∣∣∣∣log(1 + LH(E, t)− LGOE(E, t)

N(z − µk(t))
+ O

(
N1+ε max(|E − γk|, N−1)

N2t|z − µk(t)|

))∣∣∣∣ (4.28)

= O

(
LH(E, t)− LGOE(E, t)

N(z − µk(t))

)
+O

(
N1+ε max(|E − γk|, N−1)

N2t|z − µk(t)|

)
(4.29)

=
C(logN)ε/2

N |z − µk(t)|
+
CN−1+εt−1φ

N |z − µk(t)|
⩽

C(logN)ε/2

N |z − µk(t)|
. (4.30)

In the second term in (4.29), we used rigidity and |µk(t)− E| < φN−1 to show that |E − γk| ⩽ 2φN−1.
We now bound∑
(logN)ε/N<|µk−E|<φ100/N

1

|z − µk(t)|
⩽

∑
1⩽j⩽A(log logN)2

1

(2j/N)

∣∣{|µk − E| ∈ [2j/N, 2j+1/N ]
}∣∣ , (4.31)

where A > 0 is a constant depending only on the constant C0 used to define φ in (2.6). Set τ = (logN)−1/2

and define the event

AE
j =

{∣∣{|µk − E| ∈ [2j/N, 2j+1/N ]}
∣∣ ⩽ 2j

τ

}
. (4.32)
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From Theorem 2.7 applied with γ = 1/2 and k = τ−12j , we have

P
((

AE
j

)c)
⩽ exp

(
1

4
log(Cτ)(2j/τ)2

)
+ exp (−N c) (4.33)

for all j ⩽ A(log logN)2. Define

A =
⋂

1⩽k⩽N
0⩽j⩽A(log logN)2

Aγk

j . (4.34)

From (4.33), we obtain using a union bound that

P(A) = 1− o(1). (4.35)

On the event where both A and the rigidity estimate (2.9) hold, by (4.31) we have

1

N

∑
(logN)ε/N<|µk−E|<φ100/N

1

|z − µk(t)|
⩽ A(logN)1/2(log logN)2 ⩽ (logN)1/2+ε/4. (4.36)

Combining (4.30), and (4.36), we find∑
|γk−E|<N−1/2

(logN)εN−1⩽|µk(t)−E|⩽φ100N−1

∣∣∣∣log z − µk(t)

z − λk(t)

∣∣∣∣ ⩽ (logN)1/2+ε. (4.37)

Finally, we consider the sum in (4.21). By Taylor expansion and rigidity (2.9), we have

∑
|γk−E|<N−1/2

φ100N−1⩽|µk(t)−E|

log

(
z − µk(t)

z − λk(t)

)

=
∑

|γk−E|<N−1/2

φ100N−1⩽|µk(t)−E|

(λk(t)− µk(t))
1

z − λk
+O

 ∑
|γk−E|<N−1/2

φ100N−1⩽|µk(t)−E|

|λk(t)− µk(t)|2

|z − λk(t)|2

 . (4.38)

The above error term is again bounded by rigidity, as it is of order φ2

N2

∑
k⩾φ100

N2

k2 = o(1). For the first
term on the left side of (4.38), we use Proposition 4.1 to write it as

LH(E, t)− LGOE(E, t)

N

∑
|γk−E|<N−1/2

φ100N−1⩽|µk(t)−E|

1

z − λk
+O

(
Nε

N3/2t

) ∑
|γk−E|<N−1/2

φ100N−1⩽|µk(t)−E|

1

|z − γk|
, (4.39)

with overwhelming probability. The second error term above is again o(1) by rigidity. For the first term in
(4.39), we work on Gη to obtain the high-probability bound

(logN)ε

N

∣∣∣∣ ∑
|γk−E|<N−1/2

φ100N−1⩽|µk(t)−E|

1

z − λk

∣∣∣∣ ⩽ (logN)ε

N

∣∣∣∣ ∑
|γk−E|<N−1/2

φ100N−1⩽|µk(t)−E|

1

z − γk

∣∣∣∣ (4.40)

+
(logN)ε

N

∣∣∣∣ ∑
|γk−E|<N−1/2

φ100N−1⩽|µk(t)−E|

|λk − γk|
|z − γk|2

∣∣∣∣. (4.41)

The second term above is again negligible by rigidity. Let k0 be the index that minimizes |E−γk| for k ⩽ N .
In the right side of (4.40), the contribution from |k−k0| > N1/4 is negligible by rigidity. In this term, we may
then replace the summation over indices such that |γk − E| < N−1/2 and φ100N−1 ⩽ |µk(t) − E| with one
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over indices k such that Nφ2 < |k−k0| < N1/4. In this replacement, any indices with |µk(t)−E| ⩽ φ100N−1

may be restored as necessary using the arguments leading to (4.37).
Note that Im 1

z−γk
= η

|z−γk|2 and

c|k − k0|
N

⩽ |E − γk| ⩽
c−1|k − k0|

N
(4.42)

for k ⩾ φ2N by rigidity and |γk0 − E| ⩽ CN−1. Then

∑
|γk−E|<N−1/2

φ100N−1⩽|µk(t)−E|

Im
1

z − γk
⩽

∑
Nφ2<k−k0<N1/4

CN2η

|k − k0|2
⩽
CNη

φ2
. (4.43)

Further,

Re
∑

Nφ2<k−k0<N1/4

(
1

z − γk
+

1

z − γ2k0−k

)
=

∑
φ2N<k−k0<N1/4

(
2E − γk − γ2k0−k

|z − γk|2
+ (E − γ2k0−k)

(
1

|z − γk|2
− 1

|z − γ2k0−k|2

))
. (4.44)

By a direct computation, we have

2E − γk − γ2k0−k = O
(
(k − k0)

2/N2
)
. (4.45)

Together with (4.42) this gives ∑
φ2N<k−k0<N1/4

2E − γk − γ2k0−k

|z − γk|2
= O(N1/4). (4.46)

Also, using (4.45) and (4.42), we compute

1

|z − γk|2
− 1

|z − γ2k0−k|2
=

(|z − γ2k0−k| − |z − γk|)(|z − γ2k0−k|+ |z − γk|)
|z − γk|2|z − γ2k0−k|2

(4.47)

= O

(
CN−3|k − k0|3

N−4(k − k0)4

)
= O

(
N

|k − k0|

)
. (4.48)

Putting (4.46) and (4.47) into (4.44), and combining this with (4.43) and our previous bounds, we find∣∣∣∣∣ ∑
|γk−E|<N−1/2

φ100N−1⩽|µk(t)−E|

log

(
z − µk(t)

z − λk(t)

) ∣∣∣∣∣ = o(1). (4.49)

We finish the proof by combining (4.27), (4.37), and (4.49).

The following Proposition directly implies Theorem 1.4. In the statement and its proof, we abbreviate

Lx
N (z) =

N∑
k=1

log(z − xk)−N

∫
log(z − λ)ρsc(λ)dλ. (4.50)

Note that the proposition below uses Theorem 1.2 in its proof, but there is no circularity in the sense that
the proposition is not used in proof of Theorem 1.2.

Proposition 4.4. Let κ, t > 0 be fixed. Then tightness holds for the sequence of random variables(
sup

|E|<2−κ

ReLµt

N (E)− sup
|E|<2−κ

ReLλt

N (E)
)
N⩾1

.
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Proof. For the proof we define
mN = sup

|E|<2−κ

ReLµt

N (E).

We will prove that for any ε > 0 there exists C > 0 such that for all N we have

P

(
sup

|E|<2−κ

ReLλt

N (E) ⩾ mN − C

)
⩾ 1− ε,

and the same result holds when permuting µ and λ. The claimed tightness then follows directly.
In the following, we denote

ℓE =
ImLλ0

N (Et)− ImLµ0

N (Et)

N Immsc(Et)
, η =

1

N
, η̃ =

φ100

N
.

Consider the following events depending on N and sometimes additional parameters M, δ > 0:

A = A(M) =
⋂

|E|<2−κ

{∣∣ReLµt

N (E + iη̃)− ReLλt

N (E + iη̃)
∣∣ ⩽M

}
, (4.51)

B = B(M) (4.52)

=
⋂

|E|<2−κ

{∣∣(ReLµt

N (E+iη)− ReLµt

N (E+iη̃))−(ReLλt

N (E+iη+ℓE)−ReLλt

N (E+iη̃+ℓE))
∣∣ ⩽M

}
, (4.53)

C = C(M) =
⋂

|E|<2−κ

{∣∣ReLλt

N (E + iη̃ + ℓE)− ReLλt

N (E + iη̃)
∣∣ ⩽M

}
, (4.54)

D = D(M) =

{
sup

E∈[−2+κ,2−κ]

(|Lλ0

N (Et)|+ |Lµ0

N (Et)|) ⩽M

}
, (4.55)

E = E(δ) =

{
sup

E∈[−2+κ−δ,2−κ+δ]

ReLλt

N (E + iη) ⩽ (1 +
10

Nδ
)| sup

E∈[−2+κ−2δ,2−κ+2δ]

ReLλt

N (E)|+ 3

}
, (4.56)

F = F (δ) =

{
sup

E∈[−2+κ−2δ,−2+κ]∪[2−κ,2−κ+2δ]

ReLλt

N ⩽
logN

10

}
, (4.57)

G =

{
sup

E∈[2+κ,2−κ]

ReLλt

N ⩾
logN

2

}
∩

{
sup

E∈[2+κ
2 ,2−

κ
2 ]

ReLλt

N ⩽ 10 logN

}
. (4.58)

From (3.1), there is some fixed C1 > 0 such that, for any N , there exists |E0| < 2− κ such that

ReLµt

N (E0 + iη) ⩾ mN − C1.

Therefore, on A we have

ReLµt

N (E0 + iη)− ReLµt

N (E0 + iη̃) + ReLλt

N (E0 + iη̃) ⩾ mN − C1 −M,

and on A ∩B we can write

ReLλt

N (E0 + iη + ℓE0)− ReLλt

N (E0 + iη̃ + ℓE0) + ReLλt

N (E0 + iη̃) ⩾ mN − C1 − 2M.

On A ∩B ∩ C we therefore have

ReLλt

N (E0 + iη + ℓE0) ⩾ mN − C1 − 3M.

Assuming our parameters satisfy M/N = o(δ) and logN
Nδ = o(1), on A ∩B ∩ C ∩D ∩ E ∩G this yields

sup
|E|<2−κ+2δ

ReLλt

N (E) ⩾ mN − C1 − 4M − 10.

Finally on A ∩B ∩ C ∩D ∩ E ∩ F ∩G we obtain

sup
|E|<2−κ

ReLλt

N (E) ⩾ mN − C1 − 4M − 10.
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The proof will therefore be complete if we obtain that, for fixed ε > 0, each one of the ensemblesA,B,C,D,E, F,G
has probability larger than 1 − ε for large enough N . For A(M), C(M), D(M), E(δ) and F (δ) this will be
true for the choice δ = N−1+θ, θ ∈ (0, 1

10 ) arbitrary, and M fixed, large enough.
First, Corollary A.4 gives P(D(M)) > 1− ε for some fixed M =M(ε, κ) and large enough N . Then from

(4.15) we have P(A(M + 1)) ⩾ P(A(M + 1) ∩D(M)) ⩾ 1− ε for large enough N .
To bound P(C), note that inf |E|<2−κ Immsc(Et) > c(κ) > 0 so that on D(M) we have ℓE = O(1/N).

Therefore on the rigidity event from (2.9) and on D(M), a Taylor expansion gives

∣∣∣ReLλt

N (E + iη̃ + ℓE)− ReLλt

N (E + iη̃)
∣∣∣ ⩽ ℓE

∣∣∣∣∣∑
i

1

E + iη̃ − λi(t)

∣∣∣∣∣+O

(
ℓ2E
∑
i

1

|E + iη̃ − λi(t)|2

)
⩽ C2NℓE . (4.59)

for some fixed C2 = C2(κ). Hence there exists M̃ = M̃(κ, ε) such that P(C(M̃)) > 1− ε for large enough N .
Moreover, Theorem 1.2 implies P(G) ⩾ 1−ε for large enough N , and similarly (1.12) implies P(F ) ⩾ 1−ε

for θ < 1/10.
We now prove that for θ > 0 we have P(E) > 1 − ε for large enough N . First, similarly to (3.20), with

probability 1−O(N−20) we have, for any |E| < 2− κ+ δ, for our choice δ = N−1+θ,∣∣∣∣∣ReLλt

N (E + iη)−
∫
[−2+κ

2 ,2−
κ
2 ]

ReLλt

N (u) · η

η2 + (E − u)2
du

π

∣∣∣∣∣ ⩽ 1.

Moreover, from Theorem 1.2, with probability 1− o(1) we have∫
[−2+κ

2 ,−2+κ−2δ]∪[2−κ+2δ,2−κ
2 ]

ReLλt

N (u) · η

η2 + (E − u)2
du

π
⩽ 10 logN · η

δ
⩽ 1

for any |E| < 2−κ+δ. With above two equations we obtain, with probability 1−o(1), for any |E| < 2−κ+δ,

ReLλt

N (E + iη) ⩽
∫
[−2+κ−2δ,2−κ+2δ]

ReLλt

N (u) · η

η2 + (E − u)2
du

π
+ 2

⩽ sup
|u|<2−κ+2δ

ReLλt

N (u) ·
∫
[−2+κ−δ,2−κ+δ]

η

η2 + (E − u)2
du

π
+ 2 ⩽ (1 + 10

η

δ
)| sup

|u|<2−κ+2δ

ReLλt

N (u)|+ 2,

which concludes the proof that P(E) > 1− ε for large enough N .
Finally, we prove that P(B) > 1−ε for large enough N . First, we can easily ignore the contribution from

eigenvalues close to the edge, because for any |E| < 2− κ, we have∑
j:||γj |−2|< κ

10

|(log(E+iη−µj(t))−log(E+iη̃−µj(t)))−(log(E+iη+ℓE−λj(t))−log(E+iη̃+ℓE−λj(t)))|

⩽
∑

j:||γj |−2|< κ
10

η̃

∣∣∣∣ 1

E + iη − µj(t)
− 1

E + iη + ℓE − λj(t)

∣∣∣∣
+ C

∑
j:||γj |−2|< κ

10

η̃2
∣∣∣∣ 1

|E + iη − µj(t)|2
+

1

|E + iη + ℓE − λj(t)|2

∣∣∣∣
⩽ N−1+ε̃,

where the last inequality holds on D and the rigidity event, for any fixed ε̃ > 0 and N large enough.
Now fix α such that γα − 2 < κ/10. From Proposition 4.1, with high probability we have, for any

k ∈ JαN, (1− α)NK , ∣∣∣λk(t)− µk(t)− ℓγk

∣∣∣ < N−2+ε̃.

Thus choosing k0 such that |E − γk0
| ⩽ C3

N , C3 = C3(κ), and ℓγk
− ℓE = O(φ2(|k− k0|+1)/N2) (from (4.7)

and (4.13)) we have ∣∣∣λk(t)− µk(t)− ℓE

∣∣∣ < C4
N ε̃ + |k − k0|

N2
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for some C4 = C4(κ). Note that for k close to k0, the above error term is much smaller than the regularization
scale η, so that by Taylor expansion we obtain

∑
ĵ⩾αN

|log(E + iη − µj(t))− log(E + iη + ℓE − λj(t))| ⩽
C5

N2

∑
ĵ⩾αN

∣∣∣∣∣N ε̃ + |j − k0|
|j−k0|+1

N

∣∣∣∣∣ ⩽ C6

for some constants C5(κ, ε), C6(κ, ε). This concludes the proof with the choice M = C6 + 1.

4.3 Large moments. We now prove quantitative relaxation for large moments of ImLN . We denote
Trh(M) = Trh(M)−N

∫
h(x)ρsc(x)dx

Lemma 4.5. Let H = H0 be a symmetric Wigner matrix and κ, ε,A > 0. Then there exists N0 = N0(κ, ε,A)
such that for any E ∈ [−2 + κ, 2− κ], 1 ⩽ p ⩽ A logN and t ∈ [φA, 1] we have

E
[
(Tr1[E,∞)(Ht))

2p
]
⩽

(
2

eπ2
+ ε

)p

pp(logN)p.

The same bound holds for Hermitian Wigner matrices, with the prefactor ( 1
eπ2 + ε)p.

Proof. We first prove an equivalent concentration result for the Gaussian ensembles, and then extend it to
the Gaussian divisible ensemble thanks to our results on relaxation of the Dyson Brownian motion.

First step: Concentration for GUE and GOE. The proof first requires some concentration estimates for the
GUE and GOE. From [56, Theorem 1.1], there is a C1 such that uniformly in γ in any compact set and
x ∈ [−2 + κ, 2− κ] we have

EGUE[e
γπTr1[x,∞)(G)] ⩽ C1e

γ2

4 logN . (4.60)

With Markov’s inequality, optimization in γ gives

PGUE(|Tr1[E,∞)(G)| > x) ⩽ C1e
γ2

4 logN−γπx ⩽ C1e
−π2x2

log N 1x⩽B log N
2

+ C1e
B2π2

4 logN−Bπ2x
1x⩾B log N

2
(4.61)

for any fixed, arbitrarily large B, uniformly in −2 + κ ⩽ E ⩽ 2− κ, with C1 = C1(B, κ).
For the GOE, we follow [74, Proof of Lemma 23] and write the equality in law

Tr1[x,∞)(G2) =
1

2
[Tr1[x,∞)(G1) + Tr1[x,∞)(G

′
1)] +X (4.62)

where G2 is a GUE, G1 and G′
1 are independent GOE, and X is a random variable satisfying |X| ⩽ 2 almost

surely. Together with (4.60) this implies(
EGOE[e

γπTr1[x,∞)(G)]
)2

⩽ e4γπEGUE[e
2γTr1[x,∞)(G)] ⩽ C2e

γ2 logN .

Similarly to (4.61), we conclude that

PGOE(|Tr1[E,∞)(G)| > x) ⩽ C2e
− π2x2

2 log N 1x⩽B logN + C2e
B2π2

2 logN−Bπ2x
1x⩾B logN (4.63)

for any fixed, arbitrarily large B, uniformly in −2 + κ ⩽ E ⩽ 2− κ, with C2 = C2(B, κ).

Second step: The weakly Gaussian-divisible ensemble. We only consider the symmetric universality class (the
proof for the Hermitian one is identical from now), a weakly Gaussian divisible matrix Ht with spectrum
λ(t) coupled with the spectrum ν(t) of G, a GOE matrix. Define the good set

G =
⋂

κN⩽k⩽(1−κ)N

{∣∣∣λk(t)− µk(t)−
ImLH

N (γtk)− ImLG
N (γtk)

N Immsc(γtk)

∣∣∣ ⩽ Nε

N2t

}
⋂

1⩽j⩽N,s∈{0,t}

{
|λj(s)− γj |+ |µj(s)− γj | ⩽ 2φ ĵ−

1
3N− 2

3

}
.
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From Remark 4.2 and (2.9) we have P(G ) ⩾ 1− e−δφδ

for a fixed δ > 0. For p = O(logN) this implies

E
[
|Tr1[x,∞)(Ht)|2p1G c

]
⩽ N2p · e−δφδ/2 ≪ 1.

We now bound

E[|Tr1[x,∞)(Ht)|2p1G ] = 2p

∫ 100φ

0

u2p−1
(
P
(
Tr1[x,∞)(Ht) > u,G

)
+ P

(
Tr1[x,∞)(Ht) < −u,G

))
du.

We only consider P
(
Tr1[x,∞)(Ht) > u,G

)
, as the same proof applies to the other term. We define γk the

quantile closest to x, n = ⌊u/π⌋ and j = k − n + 2. With (3.25) and the definition of G , there is some
c = c(κ) > 0 such that for any θ ∈ [0, 1/10] (eventually we will choose θ → 0) we have,

P
(
Tr1[x,∞)(Ht) > u,G

)
⩽ P (λj(t)− γj > γk − γj ,G )

⩽ PGOE (µj(t)− γj > (1− θ)(γk − γj)) + P(| ImLH
N (γtj)| > cθu) + P(| ImLG

N (γtj)| > cθu).

We first bound the above GOE probability for different ranges of u (remember j = j(u)). From (3.28)
and (4.63) we have the following: For any ε, κ,B > 0 there exists C3(ε, κ,B) > 0 such that for any
x ∈ [−2 + κ, 2− κ] and u ∈ [0, 100φ] we have

PGOE (µj(t)− γj > (1− θ)(γk − γj)) ⩽ C3e
−(1−ε)(1−θ)2 u2π2

2 log N 1u<B logN+C3e
B2π2

2 logN−B(1−θ)(1−ε)π2u
1u⩾B logN .

This implies

2p

∫ 100φ

0

u2p−1PGOE (µj(t)− γj > (1− θ)(γk − γj)) du

⩽ C32p

∫ ∞

0

u2p−1e−(1−ε)(1−θ)2 u2π2

2 log N du+ C32p

∫ ∞

B logN

u2p−1e
B2π2

2 logN−B(1−θ)(1−ε)π2u
1x⩾B logNdu.

(4.64)

The first term is bounded with C4(B, κ, ε)
(

2
eπ2 + α(ε, θ)

)p
pp(logN)p by induction on p, where α(ε, θ) → 0

as ε, θ → 0.
For the second term, if p < B(logN)/10 it is bounded with

C32pe
−B2π2(1−θ)(1−ε) log N

2 (B logN)2p ⩽ 2C3

( 2

eπ2
+ ν(θ, ε)

)p
pp+1(logN)p,

where ν(θ, ε) → 0 as θ, ε→ 0, and we have used supx>0 x
pe−

xπ2

2 = pp(2/(eπ2))p. We have therefore proved
that for any α > 0, for ε ⩽ ε0(κ, α) and θ ⩽ θ0(κ, α), p < B(logN)/10 and N ⩾ N1(α, κ,B) we have

2p

∫ 100φ

0

u2p−1PGOE (µj(t)− γj > (1− θ)(γk − γj)) du ⩽
( 2

eπ2
+ α

)p
pp(logN)p.

We now consider 2p
∫ 100φ

0
u2p−1P(| ImLGOE

N (γtj)| > cθu)du. Note that this could not be directly interpreted
as a moment because j = j(u). A direct calculation based on (A.3) gives, for any p < D(logN)/10,

2p

∫ 100φ

0

u2p−1P(| ImLGOE
N (γtj)| > cθu)du ⩽

Cp
7

θ2p
(log logN)2pp

3p
2 ,

where C7 = C7(κ,D). The same estimate holds for 2p
∫ 100φ

0
u2p−1P(| ImLH

N (γtj)| > cθu)du.We choose θ → 0

satisfying θ ⩾ (logN)−1/100, so that for any p < D(logN)/10 and N ⩾ N2(κ, α,D) we have

Cp
7

θ2p
(log logN)2pp

3p
2 ⩽

( 2

eπ2
+ α

)p
pp(logN)p.

This concludes the proof.
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5 Moment Matching

This section contains moment matching lemmas that are used in the next section to establish our main
results for Wigner matrices. Section 5.1 provides a comparison result for the real part of the log-characteristic
polynomial. Section 5.2 establishes results for the deviations of the eigenvalues from their classical locations.

5.1 Real part of log-characteristic polynomial. Given parameters r > 0 and x ∈ [N−1, 1], we define
the line segment

Lr,x = {z = E + iη ∈ H : |E| < 2− r, η = x}. (5.1)

Given M ∈ MatN with eigenvalues {λi}Ni=1, we will study the observable

max
i∈J

∑
j

log |zi − λj | −N

∫
R
log |zi − λ|dρsc(λ)

 , (5.2)

where J is an index set satisfying |J | ⩽ CN for some constant C > 0 and the points {zi}i∈J satisfy zi ∈ Lr,x.
We set

αi =
∑
j

log |zi − λj | −N

∫
R
log |zi − λ| dρsc(λ), α = (αi)i∈J . (5.3)

Using the fundamental theorem of calculus, we write

log |zi − λj | = log |λj − E − iN100| − Im

∫ N100

x

dη

λj − E − iη
. (5.4)

Then

αi =
∑
j

log |λj − E − iN100| − Im

∫ N100

x

NmN (E + iη) dη −N

∫
R
log |zi − λ| dρsc(λ). (5.5)

We also define a regularized version of αi:

α̃i =
∑
j

log | − E − iN100| − Im

∫ N100

x

NmN (E + iη) dη −N

∫
R
log |zi − λ| dρsc(λ).

(Of course, the first sum is simply N log | − E − iN100|, but for comparison with (5.5), we write it in this
form.) As before, we write α̃ = (α̃i)i∈J , and suppress the dependence of α̃ on x and r in the notation. The
following lemma shows that maxi∈J α̃i is a good substitute for maxi∈J αi (that is, (5.2)).

Lemma 5.1. Let H be a Wigner matrix and fix r > 0. Then there exists C(r) > 0 such that for all
x ∈ [N−1, 1],

sup
z∈Lr,x

P
(
∥α− α̃∥∞ > CN−10

)
⩽ CN−D. (5.6)

Proof. This follows from differentiating y 7→ log |y − E − iN100| in y, then using the eigenvalue rigidity
estimate (2.9) and the fundamental theorem of calculus.

Given a vector w ∈ R|J| and parameters δ, ν > 0, we introduce the regularized maximum observable
denoted

F (w) = Fδ,ν(w) =
1

δ
log

(∑
i∈J

exp (δνwi)

)
. (5.7)

The unusual notation δ for an inverse temperature aims at avoiding confusion with the β-ensembles. The
following lemma is elementary and its proof is omitted.

Lemma 5.2. For any w ∈ R|J|, we have∣∣∣∣sup
i∈J

νwi − Fδ(w)

∣∣∣∣ < 2 logN

δ
. (5.8)
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For the rest of this section, we fix δ = (logN)2 and ν = 1/ logN , so that

F (α̃) =
1

δ

(∑
i∈J

exp(δνα̃i)

)
(5.9)

approximates (5.2) with O
(
(logN)−1

)
error, with high probability, by (5.8) and (5.6).

Definition 5.3. For any w ∈ [0, 1], M = (mij)1⩽i,j⩽N ∈ MatN , and indices a, b ∈ [[1, N ]], we define

Θ
(a,b)
w M ∈ MatN as follows. If (i, j) /∈ {(a, b), (b, a)}, let the (i, j) entry of Θ

(a,b)
w M be equal to mij . If (i, j) ∈

{(a, b), (b, a)}, then let the (i, j) entry equal wma,b = wmb,a. We also set Θ
(a,b)
w G(z) = (Θ

(a,b)
w M − z)−1.

We recall that φ was defined in (2.6).

Lemma 5.4. Let H be a Wigner matrix and fix D, r > 0. There exists C(D, r) > 0 such that

sup
x∈[N−1,1]

sup
z∈Lr,x

P

(
sup

w∈[0,1]

sup
a,b,i∈[[1,N ]]

|Θ(a,b)
w Gii(z)| > Cφ10

)
⩽ CN−D. (5.10)

Proof. For the unperturbed matrices, w = 1, this is an immediate consequence of (2.8). The statement for a
general rank-one perturbations can be deduced from the unperturbed case using a resolvent expansion; see
[66, (4.54)] and the following material for details.

Lemma 5.5. Let H be a Wigner matrix and fix D, r > 0. There exists C(D, r) > 0 such that for all
x ∈ [N−1, 1],

P

(
sup

w∈[0,1]

sup
k∈[[1,5]]

sup
a,b,c,d∈[[1,N ]]

∣∣∣∂kabα̃i(Θ
(c,d)
w H)

∣∣∣ > Cφ11k

)
⩽ CN−D, (5.11)

and

sup
w∈[0,1]

sup
k∈[[1,5]]

sup
a,b,c,d∈[[1,N ]]

∣∣∣∂kabα̃i(Θ
(c,d)
w H)

∣∣∣ ⩽ CNC (5.12)

almost surely for all N .

Proof. The first and third terms in the definition of α̃i are constants and have derivative zero. For the
second, we see using (2.14) that

∂abNmN = ∂ab
∑
i

Gii = −
∑
i

GiaGbi. (5.13)

Therefore

N |∂abmN | ⩽
∑
i

|GiaGbi| ⩽ C
∑
i

(
|Gia|2 + |Gbi|2

)
⩽
C

η
(|Gaa|+ |Gbb|) , (5.14)

where we used (2.13) in the last inequality. Similarly, for the higher derivatives we have

N
∣∣∂kabmN

∣∣ ⩽ C

η
(|Gaa|+ |Gbb|+ |Gab|)k ⩽

Cφk10

η
(5.15)

by (5.10). Then

∣∣∂kabα̃i

∣∣ = ∣∣∣∣∣∂kab Im
∫ N100

N−1

NmN (E + iη) dη

∣∣∣∣∣ ⩽ Cφk10

∫ N100

N−1

1

η
dη ⩽ Cφ1+k10, (5.16)

where we increased the value of C. The remaining claim is similar and uses the trivial bound |Gij | ⩽ η−1

from (2.15). This completes the proof.
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Lemma 5.6. Let H be a Wigner matrix and fix D, r > 0. Then there exist C(D, r) > 0 such that for all
x ∈ [N−1, 1]

P

(
sup

k∈[[1,5]]

sup
a,b,c,d∈[[1,N ]]

sup
w∈[0,1]

∣∣∣∂kabF (α̃(Θ(c,d)
w H)

)∣∣∣ > Cφ12k

)
⩽ CN−D. (5.17)

Also, we have almost surely that for all x ∈ [N−1, 1]

sup
k∈[[1,5]]

sup
a,b,c,d∈[[1,N ]]

sup
w∈[0,1]

∣∣∣∂kabF (α̃(Θ(c,d)
w H)

)∣∣∣ ⩽ CNC . (5.18)

Proof. First, we claim that the partial derivatives of Fδ(w) with respect to the entries of the vector w ∈ RN

satisfy ∑
j

∣∣∣∣ ∂dFδ(w)

∂j1 . . . ∂jd

∣∣∣∣ ⩽ Cδd−1, (5.19)

for any d ∈ N. Here the sum runs over all multi-indices j = (j1, · · · , jd) with values in [1, N ]d, ∂j = ∂wj , and
C = C(d) > 0 is a constant. This inequality follows by straightforward differentiation, and complete details
are given in [66, Lemma 3.4].

Using the chain rule, (5.19) and (5.11) imply (5.17). Similarly, (5.19) and (5.12) imply (5.18).

Theorem 5.7. Fix r > 0. Let H and M be Wigner matrices such that E[Hk
11] = E[mk

11] for 1 ⩽ k ⩽ 3
and

∣∣E[H4
11]− E[m4

11]
∣∣ ⩽ K1N

−2φ−K2 for some K1,K2 ⩾ 0. Let S : R → R be a smooth function satisfying

∥S(k)∥∞ ⩽ K1 for k ∈ [[0, 5]]. Then there exists C(K1) > 0 such that if K2 > C, then for all x ∈ [N−1, 1] we
have

|EHS (Fδ(α̃))− EMS (Fδ(α̃))| ⩽ Cφ−K2/2. (5.20)

Proof. We fix z ∈ Lr,x and omit it from the notation. Fix any bijection

ψ : {(i, j) : 1 ⩽ i ⩽ j ⩽ N} → [[1, γN ]], (5.21)

where γN = N(N + 1)/2, and define the matrices H1, H2, . . . ,HγN by

Hγ
ij =

{
Hij if ψ(i, j) ⩽ γ

mij if ψ(i, j) > γ
(5.22)

for i ⩽ j.
Fix some γ ∈ [[1, γN ]] and consider the indices (i, j) such that ψ(i, j) = γ. Define T : MatN → R by

T (X) = S (Fδ(α̃(X))). We Taylor expand T (Hγ) in the (i, j) entry and write ∂ = ∂ij to find

T (Hγ)− T
(
Θ

(i,j)
0 Hγ

)
= ∂T

(
Θ

(i,j)
0 Hγ

)
Hij +

1

2!
∂2T

(
Θ

(i,j)
0 Hγ

)
H2

ij +
1

3!
∂3T

(
Θ

(i,j)
0 Hγ

)
H3

ij

+
1

4!
∂4T

(
Θ

(i,j)
0 Hγ

)
H4

ij +
1

5!
∂5T

(
Θ

(i,j)
w1(γ)

Hγ
)
H5

ij ,

where w1(γ) ∈ [0, 1] is a random variable depending on Hij . Similarly, we expand T
(
Hγ−1

)
in the (i, j)

entry to obtain

T
(
Hγ−1

)
− T

(
Θ

(i,j)
0 Hγ

)
= ∂T

(
Θ

(i,j)
0 Hγ

)
mij +

1

2!
∂2T

(
Θ

(i,j)
0 Hγ

)
m2

ij +
1

3!
∂3T

(
Θ

(i,j)
0 Hγ

)
m3

ij (5.23)

+
1

4!
∂4T

(
Θ

(i,j)
0 Hγ

)
m4

ij +
1

5!
∂5T

(
Θ

(i,j)
w2(γ)

Hγ
)
m5

ij , (5.24)

where w2(γ) ∈ [0, 1] is a random variable depending on mij . Subtracting the previous two equations and
taking expectation, we obtain

E [T (Hγ)]− E
[
T
(
Hγ−1

)]
=

1

4!
E
[
∂4T

(
Θ

(i,j)
0 Hγ

)
H4

ij

]
− 1

4!
E
[
∂4T

(
Θ

(i,j)
0 Hγ

)
m4

ij

]
(5.25)

+
1

5!
E
[
∂5T

(
Θ

(i,j)
w1(γ)

Hγ
)
H5

ij

]
− 1

5!
E
[
∂5T

(
Θ

(i,j)
w2(γ)

Hγ
)
m5

ij

]
, (5.26)
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where we used that Θ
(i,j)
0 Hγ is independent from Hij and mij , and that E[hkij ] = E[mk

ij ] for k ∈ [[1, 3]].

Because Hij and mij are independent from Θ
(i,j)
0 Hγ , we have

E
[
∂4T

(
Θ

(i,j)
0 Hγ

)
H4

ij

]
− E

[
∂4T

(
Θ

(i,j)
0 Hγ

)
m4

ij

]
= E

[
∂4T

(
Θ

(i,j)
0 Hγ

)]
E
[
H4

ij −m4
ij

]
. (5.27)

By (5.17), (5.18), and the assumptions on S, there exists C(K1) > 0 such that∣∣∣E [∂4T (Θ(i,j)
0 Hγ

)]∣∣∣ ⩽ Cφ50. (5.28)

We conclude using (5.25) and the assumption on the fourth moments of Hij and mij that∣∣∣E [∂4T (Θ(i,j)
0 Hγ

)
H4

ij

]
− E

[
∂4T

(
Θ

(i,j)
0 Hγ

)
m4

ij

]∣∣∣ ⩽ CK1N
−2φ50−K2 . (5.29)

The fifth order terms may be bounded similarly, and in fact are lower order since the fifth powers h5ij and

m5
ij contribute an additional factor of N−1/2. Summing the Taylor expansions over all O(N2) indices (i, j),

we conclude that ∣∣E[T (H)
]
− E

[
T (M)

]∣∣ ⩽ CK1φ
50−K2 . (5.30)

This completes the proof.

5.2 Maximal deviation from classical location. Using the rigidity and local law from Theorem 2.2,
the proof of the following lemma is nearly identical to [66, Lemma 3.2].

Lemma 5.8. Fix κ > 0. For all i ∈ [[κN, (1− κ)N ]], there exist smooth functions λ̃i : MatN → R such that
the following holds. Suppose that H is a real symmetric Wigner matrix. There exist constants C1, C2 > 0
such that, uniformly in i and k ∈ [[1, 5]],

∣∣λ̃i(H)− λi(H)
∣∣ ⩽ 1

NφC2
, sup

w∈[0,1]

sup
a,b,c,d∈[[1,N ]]

∣∣∂kabλ̃i(Θ(c,d)
w H)

∣∣ ⩽ φC1

N
(5.31)

with probability at least 1− c−1 exp(−cφ). Here ∂ab = ∂Xab
denotes the partial derivative with respect to the

(a, b)-th matrix element.
Further, uniformly in i and k ∈ [[1, 5]], we have the deterministic bound

sup
w∈[0,1]

sup
a,b,c,d∈[[1,N ]]

∣∣∂kabλ̃i(Θ(c,d)
w H)

∣∣ ⩽ C1N
C1 . (5.32)

We write λ = (λi)i∈[[1,N ]] and λ̃ = (λi)i∈[[κN,(1−κ)N ]], using the notation of the previous lemma. Set

J ⊂ [[κN, (1 − κ)N ]] and define the smoothed maximal deviation of a vector v ∈ R|J| from the classical
eigenvalue locations γi by

F̂δ(v) =
1

δ
log

(∑
i∈J

exp (δνi(vi − γi)) + exp (δνi(γi − vi))

)
, (5.33)

where we set

νk =

√
π

2
· kρsc(γk)

logN
, δ = (logN)2. (5.34)

We omit the proof of the following derivative bounds, since it is similar to the proof of Lemma 5.6.

Lemma 5.9. Let H be a Wigner matrix and fix D, r > 0. Then there exist C(D, r) > 0 such that

P

(
sup

k∈[[1,5]]

sup
a,b,c,d∈[[1,N ]]

sup
w∈[0,1]

∣∣∣∂kabF̂ (λ̃(Θ(c,d)
w H)

)∣∣∣ > CφCj

)
⩽ CN−D. (5.35)

Also, we have almost surely that

sup
k∈[[1,5]]

sup
a,b,c,d∈[[1,N ]]

sup
w∈[0,1]

∣∣∣∂kabF̂ (λ̃(Θ(c,d)
w H)

)∣∣∣ ⩽ CNCj . (5.36)
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Using the observable Fδ(λ̃) and Lemma 5.9, the proof of the following comparison result is similar to
Lemma 5.7.

Theorem 5.10. Fix κ > 0. Let H and M be Wigner matrices such that E[Hk
11] = E[mk

11] for 1 ⩽ k ⩽ 3
and

∣∣E[H4
11]− E[m4

11]
∣∣ ⩽ K1N

−2φ−K2 for some K1,K2 ⩾ 0. Let S : R → R be a smooth function satisfying

∥S(k)∥∞ ⩽ K1 for k ∈ [[0, 5]]. Then there exists C(K1) such that, if K2 > C, then∣∣∣EHS
(
F̂δ(λ̃)

)
− EMS

(
F̂δ(λ̃)

)∣∣∣ ⩽ Cφ−K2/2, (5.37)

and for any i ∈ [[κN, (1− κ)N ]].

5.3 Large moments. For some parameter η1 > 0 we define the function f = fE by

f = 0 on (−∞, E] ∪ [3,∞), f = 1 on [E + η1, 2.5] (5.38)

∥f (k)∥L∞(−∞,2) ⩽ 100 · η−k
1 , ∥f (k)∥L∞(2,∞) ⩽ 100, (5.39)

for k = 1, 2. All results in this section hold for η1 ∈ [1/N, c], but we now fix

η1 =

√
logN

N
,

which will be enough to prove part (ii) of Theorem 1.8, in Subsection 6.4.
Moreover, given M ∈ MatN we define

X(M) =

N∑
i=1

fE(λ̃i)−N

∫
R
fE(x) dρsc(x), Xp(M) = X(M)2p. (5.40)

Lemma 5.11. Let H be a Wigner matrix, and fix A, κ > 0. Then there exists C(A, κ) > 0 such that

P

(
sup

k∈[[1,5]]

sup
a,b,c,d∈[[1,N ]]

sup
w∈[0,1]

∣∣∣∂kabX(Θ(c,d)
w H

)∣∣∣ > CφCk

)
⩽ C exp(−C−1φ). (5.41)

Also, we have

sup
k∈[[1,5]]

sup
a,b,c,d∈[[1,N ]]

sup
w∈[0,1]

∣∣∣∂kabX(Θ(c,d)
w H

)∣∣∣ ⩽ CNC . (5.42)

Proof. Since the proof is similar to previous estimates, we give details only in the j = 2 case to illustrate
the general principles involved. We have

∂2abf(λ̃) = f ′′(λ̃)(∂abλ̃)
2 + f ′(λ̃)∂2abλ̃. (5.43)

The f ′′ term is the most dangerous. As in the proof of the previous lemma, there are at most Nη1(logN)C

eigenvalues in the interval IA where f ′ is nonzero. By Lemma 5.8 we have

f ′′0 (λ̃)(∂abλ̃)
2 ⩽ η−2

1 N−2φ2C ⩽ Cφ4C . (5.44)

where we used logN ⩽ φ and increased the constant C if necessary. The claim then follows after redefining
C. This shows (5.41) for j = 2; the other j are similar. The bound (5.42) follows from the second inequality
in (5.39).

Lemma 5.12. Let H be a Wigner matrix, and fix A, κ > 0. There exists c(A, κ) > 0 such that for all
E ∈ [−2 + κ, 2− κ],

sup
c,d∈[[1,N ]]

sup
w∈[0,1]

P
(∣∣∣X(Θ(c,d)

w H
)∣∣∣ ⩾ c−1φ

)
⩽ c−1 exp(−c(logN)c log logN ) (5.45)

Proof. We give the details only for w = 0, since the case of general w follows by a straightforward perturbation
argument. By Equation 5.46, it suffices to bound

∑N
i=1 f(λi) − N

∫
R f dρsc, and this is immediate from

(2.9).
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Lemma 5.13. Let H be a Wigner matrix, and fix A, κ > 0. There exists c(κ) > 0 such that, for all
E ∈ [−2 + κ, 2− κ],

P

(∣∣∣∣∣
N∑
i=1

fE(λ̃i)−
N∑
i=1

fE(λi)

∣∣∣∣∣ > (logN)1/2

)
⩽ c−1 exp(−cφc). (5.46)

Proof. Note that f ′ is supported on the interval IA = [E,E + η1]. For λi outside the support of f ′, it

is straightforward to replace λi with λ̃i. There are at most N such eigenvalues, and f0(λi) − f0(λ̃i) =
O(N−1φ−c) by Lemma 5.8, so the overall error from all such λi is O(φ−c).

For the other eigenvalues, we know that f ′ can be as large as η−1
1 = N(A logN)−1. In the interval

IA there are at most Nη1(logN)C eigenvalues with probability at least 1 − c−1 exp(−cφc) by the rigidity

estimate (2.9). We have |λ̃− λ| ⩽ N−1φ−c. Then the accumulated error is

N−1φ−cη−1
1 Nη1(logN)C = φ−c(logN)C = o(1). (5.47)

which is acceptable.

The next lemma considers a moment-matching argument for diverging moments. Such estimates for large
moments appeared first in random matrix theory in [58, 79]. For the application to the accurate Gaussian
decay exponent in Theorem 1.8 (ii), optimal upper bounds sharper than in [58, 79] are required, which
correspond to the best possible θ below. A similar result in this direction was obtained in the context of
eigenvectors in [15].

Lemma 5.14. There exists M0 > 0 such that the following holds. Let H and R be two Wigner matrices
satisfying E[Hk

ij ] = E[Rk
ij ] for k ∈ [[1, 3]] and

∣∣E[H4
ij ]− E[R4

ij ]
∣∣ ⩽ N−2s where s < φ−M0 . Assume that there

is N0(A, κ) and θ(A, κ) such that
E
[
Xp(R)

]
⩽ θp(logN)ppp

for all E ∈ [−2 + κ, 2 − κ], p ⩽ A logN and N ⩾ N0. Then there is N1(A, κ) such that for all N ⩾ N1 we
have

E
[
Xp(H)

]
⩽ (1 + φ−5)pθp(logN)ppp ⩽ 3θp(logN)ppp. (5.48)

Proof. Fix any bijection
φ : {(i, j) : 1 ⩽ i ⩽ j ⩽ N} → [[1, γN ]], (5.49)

where γN = N(N + 1)/2, and define the matrices H1, H2, . . . ,HγN by

Hγ
ij =

{
Hij if φ(i, j) ⩽ γ

Rij if φ(i, j) > γ
(5.50)

for i ⩽ j. We also fix z throughout the argument.
Fix some γ ∈ [[1, γN ]] and consider the indices (i, j) such that φ(i, j) = γ. For any m ⩾ 1, we may Taylor

expand Xm (Hγ) in the (i, j) entry, write ∂ = ∂ij , and find

Xm (Hγ)−Xm

(
Θ

(i,j)
0 Hγ

)
= ∂Xm

(
Θ

(i,j)
0 Hγ

)
Hij +

1

2!
∂2Xm

(
Θ

(i,j)
0 Hγ

)
H2

ij +
1

3!
∂3Xm

(
Θ

(i,j)
0 Hγ

)
H3

ij

(5.51)

+
1

4!
∂4Xm

(
Θ

(i,j)
0 Hγ

)
H4

ij +
1

5!
∂5Xm

(
Θ

(i,j)
w1(γ)

Hγ
)
H5

ij , (5.52)

where w1(γ) ∈ [0, 1] is a random variable depending on Hij . Similarly, we may expand Xm

(
Hγ−1

)
in

the (i, j) entry to obtain a similar expansion with w2(γ) ∈ [0, 1], a random variable depending on Rij .
Subtracting the expansion of Xm (Hγ) from (5.51) and (5.52), and taking expectation, we find

E [Xm (Hγ)]− E
[
Xm

(
Hγ−1

)]
=

1

4!
E
[
∂4Xm

(
Θ

(i,j)
0 Hγ

)
H4

ij

]
− 1

4!
E
[
∂4Xm

(
Θ

(i,j)
0 Hγ

)
R4

ij

]
(5.53)

+
1

5!
E
[
∂5Xm

(
Θ

(i,j)
w1(γ)

Hγ
)
H5

ij

]
− 1

5!
E
[
∂5Xm

(
Θ

(i,j)
w2(γ)

Hγ
)
R5

ij

]
, (5.54)
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where we used that Θ
(i,j)
0 Hγ is independent from Hij and Rij , and that E[hkij ] = E[rkij ] for k ∈ [[1, 3]].

We now proceed by induction, with the induction hypothesis at step m ∈ N being that

EXn

(
Θ(a,b)

w Hγ
)
⩽ (1 + φ−5)nθn(logN)nnn (5.55)

holds for all 0 ⩽ n ⩽ m and choices of w ∈ [0, 1] and (a, b) ∈ [[1, N ]]2.

The base case m = 0 is trivial. Assuming the induction hypothesis holds for m− 1, we will show it holds

for m. Using the independence of Hij and Rij from Θ
(i,j)
0 Hγ , we may rewrite the first two terms terms on

the right side of (5.53) as

E
[
∂4Xm

(
Θ

(i,j)
0 Hγ

)
H4

ij

]
− E

[
∂4Xm

(
Θ

(i,j)
0 Hγ

)
R4

ij

]
= E

[
∂4Xm

(
Θ

(i,j)
0 Hγ

)]
E
[
H4

ij −R4
ij

]
. (5.56)

For the second factor, we recall that
∣∣E [H4

ij

]
− E

[
R4

ij

]∣∣ ⩽ N−2s = N−2φ−M . For the first, we abbreviate

Xm = Xm

(
Θ

(i,j)
0 Hγ

)
, write X

(ℓ)
m for the ℓth derivative of Xm with respect to the (i, j) coordinate, and

compute

∂4Xm = ∂4
(
X2m

)
= 2mX2m−1X(4) + 3(2m)(2m− 1)X2m−2(X(2))2 (5.57)

+ 2m(2m− 1)(2m− 2)(2m− 3)X2m−4(X(1))4

+ 4(2m)(2m− 1)X2m−2X(1)X(3) + 6(2m)(2m− 1)(2m− 2)X2m−3(X(1))2X(2).

The terms with even powers of X may be bounded using the induction hypothesis (5.55) for n ⩽ m− 1 and
Lemma 5.11. The bound the odd powers, we additionally use (5.45) to show

E|X2p−1| ⩽ φEX2p−2 + (N)2p−1c−1 exp(−c(logN)c log logN ), (5.58)

where we observe that the second term is o(1) for p ⩽ A logN . Let B be the set where (5.41) holds. We
find4

E
∣∣∣1B∂

4Xm

(
Θ

(i,j)
0 Hγ

)∣∣∣ ⩽ CφCθm(logN)mmm. (5.59)

Here C > 0 is a constant that is independent of m. We also have by Lemma 5.11 that∣∣∣E [1Bc∂4Xm

(
Θ

(i,j)
0 Hγ

)]∣∣∣ ⩽ C̃N−100. (5.60)

for some C̃ which does not depend on m ⩽ A logN , i, j,N .

It follows from (5.59), (5.60), and m ⩽ φ that, if M0 is chosen large enough relative to C, then∣∣∣∣ 14!E [∂4Xm

(
Θ

(i,j)
0 Hγ

)
H4

ij

]
− 1

4!
E
[
∂4Xm

(
Θ

(i,j)
0 Hγ

)
R4

ij

]∣∣∣∣ ⩽ φ−10N−2θm(logN)mmm (5.61)

holds uniformly in N ⩾ N0 and m ⩽ A logN , where N0 does not depend on m.

Let D be the event where supi,j |Rij | + |Hij | ⩽ N−1/2+δ1 holds. Since the variables Rij and Hij are
subexponential, we have

P (Dc) ⩽ D1 exp
(
−d1(logN)d1 log logN

)
, (5.62)

for some constants D1(δ1), d1(δ1) > 0.

For the terms in (5.54), we compute∣∣∣E [∂5Xm

(
Θ

(i,j)
w1(γ)

Hγ
)
H5

ij

]∣∣∣ ⩽ ∣∣∣E [1D∂
5Xm

(
Θ

(i,j)
w1(γ)

Hγ
)
H5

ij

]∣∣∣+ ∣∣∣E [1Dc∂5Xm

(
Θ

(i,j)
w1(γ)

Hγ
)
H5

ij

]∣∣∣ (5.63)

⩽ CN−5/2+5δ1
(
E
[∣∣∣∂5Xm

(
Θ

(i,j)
w1(γ)

Hγ
)∣∣∣]+ 1

)
, (5.64)

4We note that the constants in the probability bound given by Lemma 5.11 do not depend on γ, since the matrices Hγ

verify Definition 1.1 simultaneously for the appropriate choice of constants. Therefore, the C in (5.60) is uniform in γ.
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where in the last line we used (5.62) and the constant C comes from Lemma 5.11. Then repeating the
previous argument for the fourth order term given in (5.59) and (5.60), we find that there exists N1(A) such
that, for δ1 < 1/100, m ⩽ A logN and N ⩾ N1 we have∣∣∣∣∣ 15!E [∂5Xm

(
Θ

(i,j)
w1(γ)

Hγ
)
H5

ij

] ∣∣∣∣∣ ⩽ Cm5N−5/2+5δ1φCθm(logN)mmm

⩽ CN−2−1/4θm(logN)mmm ⩽ N−2−1/8θm(logN)mmm. (5.65)

Combining (5.61) and (5.65) yields∣∣E [Xm (Hγ)]− E
[
Xm

(
Hγ−1

)]∣∣ ⩽ φ−5N−2θm(logN)mmm, (5.66)

and summing (5.66) over all γN pairs (i, j), we find

|E [Xm (R)]− E [Xm (Hγ)]| ⩽ φ−5θm(logN)mmm (5.67)

for any γ. Together with our hypothesis on E
[
Xp(R)

]
this gives

E [Xm (Hγ)] ⩽ (1 + φ−5)mθm(logN)mmm. (5.68)

This verifies the induction hypothesis (5.55) when w = 1.
To address other values of w, we consider the following expansion:

Xm (Hγ)−Xm

(
Θ(a,b)

w Hγ
)
=

4∑
ℓ=1

1

ℓ!
∂ℓXm

(
Θ

(a,b)
0 Hγ

)
Hℓ

ij(1− wℓ) (5.69)

+
1

5!
∂5Xm

(
Θ(a,b)

τ1 Hγ
)
H5

ij −
1

5!
∂5Xm

(
Θ(a,b)

τw Hγ
)
H5

ijw
5. (5.70)

Here τ1, τw ∈ [0, 1] are random variables. The same argument that gave the bound (5.61) shows that the
expectation of the right side of (5.69) is bounded with 1

2θ
m(logN)mmm. Note this bound holds because of

the additional factors of N−1/2 coming from moments of Hij , which are enough even for ℓ = 1, 2, 3 as we
don’t sum over N2 terms. The expectation of (5.70) is also bounded by (1 + φ−5)mθm(logN)mmm by the
reasoning leading to (5.65).

This proves

sup
w∈[0,1]

sup
a,b∈[[1,n]]

E
[
Xm

(
Θ(a,b)

w Hγ
)]

⩽ (1 + φ−5)
m
θm(logN)mmm. (5.71)

and completes the induction. The second inequality in (5.48) follows because p ⩽ A logN .

6 Maximum for Wigner Matrices

This section proves Theorem 1.2 and Theorem 1.8 by combining the dynamics from Section 4 and the moment
matching results from Section 5. It also relies heavily on Section 3, both its results (as the GOE serves as
the base point of our comparison), and for methods used there to smooth the corresponding fields.

As we proceed by comparison, we will need to specify the matrix ensembles related to the characteristic
polynomials: We will write LH

N for the quantity (1.5), when considering Wigner matrices as in Definition 1.1,
and we will write LGOE

N for the same quantity when the eigenvalues of H are replaced by those of GOEN .
We will first prove Theorem 1.2 for the real part, and then part (i) of Theorem 1.8 on the deviations

of λi − γi, which is equivalent to Theorem 1.2 for the imaginary part (see Section 3.4). Indeed, while the
proof for ReLN will go through a regularization similarly to the proof of Theorem 1.9 in Section 3, we
cannot directly follow the same path for ImLH

N : for the upper bound, a priori smoothing ImLN (E) into
ImLN (E+ i

N ) as in (3.5) is not possible because a local law allowing (3.4) is not known in the case of Wigner
matrices.

In all the following proofs, we will need an intermediate weakly Gaussian-divisible random matrix en-
semble as in the following result, which is an immediate consequence of [44, Lemma 16.2].
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Lemma 6.1. Let H be a Wigner matrix. Then there exist constants C, c > 0 such that the following holds
for any t ∈ (0, c). There exists a Wigner matrix H̃ such that

H̃(t) =
√
1− tH̃ +

√
tW (6.1)

is a Wigner matrix satisfying

E
[
H̃ij(t)

k
]
= E

[
Hk

ij

]
,

∣∣∣E [H̃ij(t)
4
]
− E

[
H4

ij

]∣∣∣ ⩽ CtN−2 (6.2)

for k ∈ [[1, 3]]. Here W ∈ MatN is a Wigner matrix and each Wij is a mean zero Gaussian random variable

(independent from H̃).

6.1 Upper bound for the real part in Theorem 1.2. We start with the deterministic bound (3.1) in
the particular case ν = ρsc(x)dx, so that

sup
E∈[A+κ,B−κ]

ReLH
N (E) ⩽ sup

E∈J
ReLH

N

(
E +

i

N

)
+ C1 (6.3)

where J ⊂ [A+ κ,B − κ] has cardinality at most C2N , and C1, C2 are absolute constants.

Set t = φ−K , where K > 0 is a parameter. Let H̃(t) be the matrix (6.1) given by Lemma 6.1. For any
ε > 0, let fε be a smooth function such that 0 ⩽ fε(x) ⩽ 1 for x ∈ R, fε(x) = 0 for x ⩽

√
2 + ε/2, and

fε(x) = 1 for x ⩾
√
2+ε. By Theorem 5.7, Lemma 5.1 and Lemma 5.2, if K is chosen large enough, we have

E

[
fε

(
(logN)−1 sup

z∈J+ i
N

ReL
H̃(t)
N (z)

)]
− E

[
fε

(
(logN)−1 sup

z∈J+ i
N

ReLH
N (z)

)]
= O

(
1

logN

)
. (6.4)

By Proposition 4.3, there exists a coupling of H̃(t) and GOEN such that

P

(
sup

z∈J+ i
N

∣∣∣LH̃(t)
N (z)− LGOE

N (z)
∣∣∣ > (logN)

1
2+ε

)
= o(1). (6.5)

Finally, from (3.10) and (3.11), and recalling that the GOE is a β-ensemble with β = 1 and a quadratic
potential (see, e.g., [44, (4.4)]), we have

P

(
(logN)−1 sup

z∈J+ i
N

ReLGOE
N (z) >

√
2 +

ε

2

)
= o(1). (6.6)

To conclude, we observe that from (6.3), (6.4), (6.5), (6.6) we have

P

(
(logN)−1 sup

E∈[A+κ,B−κ]

ReLH
N (E) >

√
2 + 2ε

)
= o(1).

6.2 Lower bound for the real part in Theorem 1.2. Let I = [−2 + 2κ, 2 − 2κ] ∩ N−1Z. We start
with a direct analogue of (3.21), with identical proof:

P
(

sup
z∈I+iη0

ReLH
N (z) ⩽ sup

E∈[−2+κ,2−2κ]

ReLH
N (E) + 1

)
= 1− o(1), (6.7)

where η0 is defined in (3.6). We take t = φ−K , where K > 0 is a parameter, and H̃(t) as in Lemma 6.1. Let
fε be a smooth function such that 0 ⩽ fε(x) ⩽ 1 for x ∈ R, fε(x) = 0 for x ⩾ 1 − ε/2, and fε(x) = 1 for
x ⩽ 1− ε. By Theorem 5.7 and Lemma 5.2, if K is chosen large enough, we have

E
[
fε

(
(logN)−1 sup

z∈I+iη0

ReL
H̃(t)
N (z)

)]
− E

[
fε

(
(logN)−1 sup

z∈I+iη0

ReLH
N (z)

)]
= O

(
1

logN

)
. (6.8)

By Proposition 4.3, there exists a coupling of H̃(t) and GOEN such that

P
(

sup
z∈I+iη0

∣∣∣LH̃(t)
N (z)− LGOE

N (z)
∣∣∣ > (logN)

1
2+ε

)
= o(1). (6.9)
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Assuming that

P
(
(logN)−1 sup

z∈I+iη0

LGOE
N (z) <

√
2− ε

2

)
= o(1), (6.10)

the desired lower bound follows from (6.7), (6.8), (6.9), (6.10):

P

(
(logN)−1 sup

E∈[2+κ,2−κ]

ReLH
N (E) <

√
2− 2ε

)
= o(1).

We now prove (6.10). Equation (3.24) yields

P
(
(logN)−1 max

z∈[−2+2κ,2−2κ]+iη0

ReLGOE
N (z) ⩽

√
2− ε

4

)
= o(1). (6.11)

Moreover,

P
(
∃z, w ∈ [−2 + 2κ, 2− 2κ] + iη0 : |z − w| < 1

N
, |LGOE

N (z)− LGOE
N (w)| > (logN)9/10

)
⩽ P

(
∃z ∈ [−2 + 2κ, 2− 2κ] + iη0 : |s(z)| > (logN)7/10

)
= o(1), (6.12)

where the last inequality follows from a union bound, Theorem 2.4, Markov’s inequality, and a straightforward
mesh argument (similar to the one before (3.14)). Equations (6.11) and (6.12) give (6.10) and conclude the
proof.

6.3 Extremal deviation with optimal constant. We now prove part (i) of Theorem 1.8.

As before, set t = φ−K , where K > 0 is a large parameter and H̃(t) be the matrix (6.1) given by
Lemma 6.1. Let fε be a smooth function such that 0 ⩽ fε(x) ⩽ 1 for x ∈ R, fε(x) = 0 for |x| ∈
[
√
2 − ε

2 ,
√
2 + ε/2], and fε(x) = 1 for x ∈ [0,

√
2 − ε] ∪ [

√
2 + ε,∞). By Theorem 5.10, Lemma 5.8 and

Lemma 5.2, we have(
EH̃(t) − EH

)[
fε

(
πN

logN
max

k∈JκN,(1−κ)NK
ρsc(γk)|λk − γk|

)]
= O

(
1

logN

)
. (6.13)

By Proposition 4.1 and Corollary A.4, there exists a coupling of H̃(t) (with eigenvalues λ) and GOEN (with
eigenvalues µ) such that

P

(
max

k∈JκN,(1−κ)NK
|λk − µk| >

(logN)
1
2+ε

N

)
= o(1). (6.14)

Finally, from Corollary 1.10 we have

PGOE

(
πN

logN
max

k∈JκN,(1−κ)NK
ρsc(γk)|λk − γk| ̸∈

[√
2− ε

2
,
√
2 +

ε

2

])
= o(1). (6.15)

From (6.13), (6.14), and (6.15) we have

PH

(
πN

logN
max

k∈JκN,(1−κ)NK
ρsc(γk)|λk − γk| ̸∈ [

√
2− ε,

√
2 + ε]

)
= o(1).

6.4 Rigidity with optimal order. We finally prove part (ii) of Theorem 1.8, building on the key relax-
ation and moment matching results, namely lemmas 4.5 and 5.14.

First step: smoothed indicator for Gaussian divisible ensemble. We specify f = fE from (5.38) to be of type
f =

∫
η−1
1 h((x − E)/η1)1[x,∞)dx where h is positive, smooth, compactly supported on [0, 1] and

∫
h = 1.

Then f satisfies the bounds (5.39). Moreover, for t and H as in Lemma 4.5, we have

E[|Trf(Ht)|2p] ⩽
∫
η−1
1 h((x− E)/η1)E[|Tr1[x,∞)(Ht)|2p]dx ⩽

(
2

eπ2
+ ε

)p

pp(logN)p, (6.16)
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where we have used convexity of x 7→ x2p in the first inequality and the result of Lemma 4.5 in the second
inequality.

Second step: smoothed spectrum for Gaussian divisible ensemble. We now prove that the actual spectrum λ
can be replaced by the smoothed one λ̃ in (6.16).

Let A = {
∣∣∣∑N

i=1 f(λ̃i)−
∑N

i=1 f(λi)
∣∣∣ > √

logN}, and remember the notation (5.40). From Cauchy

Schwarz and Lemma 5.46 we have

E [Xp(Ht)1A] ≪ N2 logN exp(−cφ/2) → 0.

Moreover, by definition of A, for any ε > 0 and λ > 0 to be chosen we bound

E [Xp(Ht)1Ac ] ⩽ E
[
(|Trf(Ht)|+

√
logN)2p

]
⩽ E

[
(|Trf(Ht)|+

|Trf(Ht)|
λ

)2p1|Trf(Ht)|>λ
√
logN

]
+ E

[
(λ
√

logN +
√
logN)2p1|Trf(Ht)|⩽λ

√
logN ]

]
⩽ (1 + λ−1)2p

(
2

eπ2
+ ε

)p

pp(logN)p + (λ+ 1)2p(logN)p ⩽

(
2

eπ2
+ 2ε

)p

pp(logN)p

for N ⩾ N0(ε, κ,A). We have used the definition of A in the first inequality, (6.16) in the third one and the
choice λ = p1/10 in the third one.

We have therefore proved that for any ε, κ,A > 0 there is a N1(ε, κ,A) such that

E [Xp(Ht)] ⩽

(
2

eπ2
+ ε

)p

pp(logN)p (6.17)

for any p ⩽ A logN , E ∈ [−2 + κ, 2− κ], and t > exp(−(logN)1/10).

Third step: moment matching. Let H be the Wigner matrix of interest in part (ii) of Theorem 1.8. Consid-
ering the dynamics (4.1), the moment matching lemma [44, Lemma 16.2] gives existence of a Wigner matrix
H0 such that the matrix R = Ht satisfies E[Hk

ij ] = E[Rk
ij ] for k ∈ [[1, 3]] and

∣∣E[H4
ij ]− E[R4

ij ]
∣∣ ⩽ CN−2t,

where C > 0 depends only on the constants from Definition 1.1.
We choose t = φ−M for a fixed M > M0, with M0 the constant from Lemma 5.14. Note that t >

exp(−(logN)1/10) so that (6.17) holds. We can therefore apply Lemma 5.14 with R = Ht and obtain that
there is a N2(ε, κ,A) such that

E [Xp(H)] ⩽

(
2

eπ2
+ ε

)p

pp(logN)p (6.18)

for any p ⩽ A logN , E ∈ [−2 + κ, 2 − κ] and N ⩾ N2. As in the previous step but in the reverse direction
now, with Lemma 5.46 we obtain that the same property holds for the actual eigenvalues: for any choice of
the parameters, there is a N3(ε, κ,A) such that

E
[
|Trf(H)|2p

]
⩽

(
2

eπ2
+ ε

)p

pp(logN)p (6.19)

for any p ⩽ A logN , E ∈ [−2 + κ, 2− κ] and N ⩾ N3.
To conclude, note that for any fixed ε there is a N4(ε, κ) such that for any u > 1, the inequality λk−γk >

u ·
√
2

πρsc(γk)
·
√
logN
N implies that for E = γk +u · (

√
2

πρsc(γk)
− 1) ·

√
logN
N we have TrfE(H) > (1− ε)u

√
2

π

√
logN .

With (6.19) this gives

P

(
λk − γk > u ·

√
2

πρsc(γk)
·
√
logN

N

)
⩽

(
2

eπ2
+ ε

)p

pp(logN)p · ((1−ε)u
√
2

π

√
logN)−2p ⩽ (

p

e
+10ε)pu−2p.

Optimization in p then concludes the proof.

6.5 Gaussian divisible ensemble: universality up to tightness. Theorem 1.4 follows immediately
from Proposition 4.4.
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A High Moments of Linear Statistics for Wigner Matrices

The main goal of this appendix is to prove Proposition A.1, which provides estimates on large moments
(growing in N) of the semicircle law. This proposition is used in the proof of Proposition 4.3, via its
Corollary A.4, and Lemma 4.5. While a weaker result would suffice for the proof of Proposition 4.3, for
example a bound on a fixed but large moment, it is indeed necessary to control growing moments for the
application in Lemma 4.5.

Proposition A.1. Let H be a real symmetric Wigner matrix. Fix K,κ,A > 0. For every E ∈ [−2+κ, 2−κ],
η ∈

[
φ−K , φK

]
, and p ∈ N with p ⩽ A logN , there exists a constant C(K,κ,A) > 0 such that

E
[∣∣mN (z)−msc(z)

∣∣p] ⩽ ( C

Nη

)p

p3p/4. (A.1)

Remark A.2. A natural approach to bounds such as (A.1) relies on concentration for random matrices.
However, even on close-to-macroscopic scales and for bounded or log-concave matrix entries, this method
would not give accurate enough bounds for Proposition 4.3 and Lemma 4.5. Indeed the concentration from
[52] yields P (N |mN (z)− E[mN (z)]| > λ) ⩽ c−1e−cλ2/η4

(η = Imz), so that

E
[∣∣mN (z)− E[mN (z)]

∣∣p] ⩽ ( C

Nη2

)p

pp/2.

Integration of |mN −E[mN (z)]| ≲ C/(Nη2) gives |LN | ≲ φC for η ≍ φ−C , an error bigger than the order of
magnitude max|E|<2−ε LN ≍ logN that we aim at.

Remark A.3. For our application to Lemma 4.5, it is critical that the exponent 3/4 in (A.1) is smaller than

1, i.e. one could not afford the exponential tail error
(

C
Nη

)p
pp.

We defer the proof of Proposition A.1 to Appendix A.4, after establishing various preliminary results in
the following subsections. Throughout, we use the notations defined in Section 4.1.

A.1 High-probability bound on the log-characteristic polynomial. We begin with an application of
Proposition A.1 that provides estimates on the maximum of the log-characteristic polynomial smoothed at
almost-macroscopic scale.

Corollary A.4. Let λ be the spectrum of a N ×N Wigner matrix and remember the notation (4.50). Let
κ > 0 and denote z = E + iη.

(i) Fix C1 > 10. There exists a constant c(C1, κ) > 0 such that for every N ⩾ 1 and u ∈ [1, c (logN)3/4],
we have

P
(

max
|E|<2−κ,η∈[φ−C1 ,1]

∣∣Lλ
N (z)

∣∣ > u

)
⩽ c−1ec

−1(log logN)2−c( u
log2 N )4/3 . (A.2)

Moreover, for any u ⩽ C1φ, denoting q = C1 log n we have

P
(∣∣Lλ

N (z)
∣∣ > u

)
⩽ c−1e−c( u

log2 N )4/3
1u<c−1(logN)3/4 + c−qq

3
2 qu−2q

1u>c−1(logN)3/4 (A.3)

(ii) Let 0 < η1 < η2 < 0 be fixed and C be a fixed smooth path in [−2 + κ, 2− κ]× [η1, η2], of finite length.
Then for every ε > 0 there exists M > 0 such that for any N ⩾ 1,

P
(
max

C

∣∣Lλ
N (z)

∣∣ > M

)
⩽ 1− ε. (A.4)

Proof. We start with (i). By the local semicircle law (2.7) we have

∂z

(
N∑

k=1

log(z − λk)

)
=

N∑
k=1

1

z − λk
= −NmN (z) = O(φC1+4), (A.5)

with probability 1−O(exp(−φc)), uniformly in |E| < 2− κ and η ∈ [φ−C1 , 1].
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Let δ = φ−C1−4, and let M = Mδ = {mi}⌊4φ
4δ−1⌋

i=1 be a collection of points in [−2 + κ, 2− κ]× [φ−C1 , 1]
such that any z ∈ [−2 + κ, 2 − κ] × [φ−C1 , 1] there exists mi such that |z −mi| ⩽ 10δ. By (A.5) and the
definition of M, we have

max
E∈[−2+κ,2−κ],η∈[φ−C1 ,1]

|Lλ
N (z)| = max

z∈M
|Lλ

N (z)|+O(δφC1+4). (A.6)

Since δφC1+4 = O(1), to establish (A.2), it therefore suffices to show that, for any z ∈ M,

P
(∣∣Lλ

N (z)
∣∣ > u

)
⩽ c−1e−c( u

log2 N )4/3 , (A.7)

and then use a union bound on |M| = O(φC1+8) points (where we recall log2(x) = log log x and the choice
of φ in (2.6)). To prove (A.7), for some parameter η1 > η we first write

Lλ
N (z) = N

∫ η1

s=η

(mN (E + is)−msc(E + is))ds+ Lλ
N (E + iη1).

To bound the above terms, we compute using the rigidity bound (2.9) and Taylor expansion of log that∣∣∣∣∣
N∑
i=1

log(E + iη1 − λi)−
N∑
i=1

log(E + iη1 − γi)

∣∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

log

(
1 +

λi − γi
E + iη1 − γi

)∣∣∣∣∣ ⩽
N∑
i=1

C|λi − γi|/η1

⩽ Cφ1−C2

N∑
i=1

min(i,N + 1− i)−1/3N−2/3 ⩽ Cφ1−C2 , (A.8)

where we choose η1 = φC2 for some C2 > 0. Similar reasoning shows that∣∣∣∣∣N
∫

log(E + iη1 − u)ρsc(u)du−
N∑
i=1

log(E + iη1 − γi)

∣∣∣∣∣ ⩽ Cφ1−C2 ,

where C = C(C1, κ) > 0 may change from line to line below. The previous three equations give (for fixed,
large enough C2), for arbitrary D > 0 and N ⩾ N0(D),

P
(
|Lλ

N (z)−
∫ η1

η

N
(
mN (E + is)−msc(E + is)

)
ds| > 1

)
⩽ N−D.

We denote ∆N (z) = N(mN (z)−msc(z)). By Markov’s inequality, for any p ⩾ 1,

P
(∣∣∣∣∫ η1

η

∆N (E + is)ds

∣∣∣∣ > u

)
⩽ u−2pE

[∣∣∣∣∫ η1

η

∆N (E + is)ds

∣∣∣∣2p
]

⩽ u−2p

∣∣∣∣∫ η1

η

(
E |∆N (E + is)|2p

) 1
2p

ds

∣∣∣∣2p ⩽ u−2pC2pp
3p
2

(∫ η1

η

dη

η

)2p

, (A.9)

where the second inequality is obtained by expansion and Hölder’s inequality, and the third inequality relies
on Proposition A.1 for p = O(logN). We now recall that logφ = O

(
(log logN)2

)
, so that the above

probability is also bounded with

u−2pC2pp
3p
2 (C log logN)

2p
.

The choice p = e−1(u/ log2N)4/3 proves (A.7) and concludes the proof of (A.2). The proof of (A.3) is the
same, with no need of discretization.

The proof of (ii) is simpler as it does not need any discretization and only requires finite moment estimates.
Indeed it follows from the following the following two facts. First, (LN (z0))N is tight, where z0 ∈ [−2 +
κ, 2−κ]× [η1, η2] is fixed. This follows from convergence in distribution of this linear statistic (see e.g. [70]).
Then maxC |LN (z) − LN (z0)| is also tight because it is dominated by

∫
C |∆N (w)| · |dw|, which is tight by

Proposition A.1 with p = 2.
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A.2 Preliminaries. We first list some preliminary results necessary for the proof of Proposition A.1. We
begin with a power counting lemma for resolvent entries. Given a parameter A > 0, we set

DA =
{
z = E + iη ∈ H : |E| < 2−A−1, η ⩾ φ−A

}
. (A.10)

Throughout, we let H be a Wigner matrix and let G denote its resolvent.

Lemma A.5. Fix A > 0. There exists C(A) > 0 and N0(A) > 0 such that the following holds for all z ∈ DA

and N ⩾ N0. For any i, k ∈ [[1, N ]] and random variable F (z) such that |F | ⩽ (Aη−1)A logN almost surely,

E

|F | · 1

N

N∑
j=1

|Gij |

 ⩽

(
C

Nη

)1/2

E
[
|F |
]
+N−A logN , E

|F | · 1

N

N∑
j=1

|Gij ||Gjk|

 ⩽
C

Nη
E
[
|F |
]
+N−A logN ,

(A.11)
where we set G = G(z), F = F (z), and z = E + iη. More generally, for any n ⩽ A logN ,

E

|F | · 1

Nn

N∑
j1,...,jn=1

|Gij1 · · ·Gjnk|

 ⩽

(
C

Nη

)n/2

E |F |+N−A logN . (A.12)

Proof. We give only the proof of (A.12), as the proofs of the remaining statements are similar. Suppose that
n is odd. We apply the elementary inequality

N∑
j=1

|GajGjb| ⩽
1

2

N∑
j=1

|Gaj |2 + |Gjb|2 (A.13)

for j = j1, j3, j5 . . . and the Ward identity (2.13) to show that the left side of (A.12) is bounded by

E

|F | · 1

Nn

∑
j2,j4,j6,...

1

2η
(ImGii + ImGj2j2) · · ·

1

2η
(ImGjn−1jn−1 + ImGkk)

 , (A.14)

where there are (n+ 1)/2 factors in the sum.
Let A be the high-probability set from (2.8). For η > N−1/2, we have ImGjj < C on A, which implies

E

1A |F | · 1

Nn

∑
j2,j4,j6,...

1

2η
(ImGkk + ImGj2j2) ·

1

2η
(ImGj2j2 + ImGj4j4) . . .

 (A.15)

⩽
N (n−1)/2

Nn

(
C

η

)(n+1)/2

E
[
|F |
]
=

(
C

Nη

)(n+1)/2

E
[
|F |
]
. (A.16)

using C(Nη)−1 ⩽ 1. On Ac we use the trivial bound ImGii < η−1 and the strong probability estimate on
P(Ac) from (2.8). This gives

E

|F | · 1Ac

1

Nn

∑
j2,j4,j6,...

1

2η
(ImGkk + ImGj2j2) ·

1

2η
(ImGj2j2 + ImGj4j4) . . .

 (A.17)

⩽
N (n+1)/2

Nnηn+1
· (Aη−1)A logN · c−1 exp(−c(logN)C0 log logN ) ⩽ N−A logN , (A.18)

by the assumptions on η and n (recall z ∈ DA), for sufficiently large N . The claim follows by combining
(A.15) and (A.17).

The proof for even n is similar, using |Gjnk| ⩽ C on A to bound the left side of (A.12) by

E

|F | · 1

Nn

∑
j2,j4,j6,...

1

2η
(ImGii + ImGj2j2) · · ·

1

2η
(ImGjn−2jn−2

+ ImGjnjn)|Gjnk|

 . (A.19)
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Given a random variable X, we let κ(j)(X) denote the j-th cumulant of X. The following lemma is
[69, Lemma 3.2]. Known as a cumulant expansion, it provides an extension of the well-known Gaussian
integration by parts formula to non-Gaussian random variables. (Observe that (A.20) reduces to a single
term when Y is Gaussian, as all higher cumulants of Y vanish in this case.)

Lemma A.6. Fix ℓ ∈ N, Q > 0, and F ∈ Cℓ+1(R;C+). Let Y be a random variable such that E[Y ] = 0
with finite moments to order ℓ+ 2. Then

E
[
Y F (Y )

]
=

ℓ∑
r=1

κ(r+1)(Y )

r!
E
[
F (r)(Y )

]
+ E

[
Ωℓ

(
Y F (Y )

)]
, (A.20)

where Ωℓ(Y F (Y )) is an error term that satisfies∣∣∣E[Ωℓ

(
Y F (Y )

)]∣∣∣ ⩽ CℓE
[
|Y |ℓ+2

]
sup
|t|⩽Q

∣∣∣F (ℓ+1)(t)
∣∣∣+ CℓE

[
|Y |ℓ+2

1(|Y | > Q)
]
sup
t∈R

∣∣∣F (ℓ+1)(t)
∣∣∣ . (A.21)

The constant Cℓ satisfies Cℓ ⩽ (Cℓ)ℓ/ℓ! for some C > 0 that does not depend on Q, F , or ℓ.

Lemma A.7. Let H be a Wigner matrix in the sense of Definition 1.1. Then there exists a constant C > 0
such that ∣∣κ(k)(Hij)

∣∣ ⩽ (Ck)Ck

Nk/2
, k ⩾ 3 (A.22)

for all i, j ∈ [[1, N ]].

Proof. The claim follows by expressing the cumulants in terms of moments, and using the moment bound

E
[
|Hij |k

]
⩽

(Ck)Ck

Nk/2
, k ⩾ 3. (A.23)

The bound (A.23) follows from the subexponential decay hypothesis (1.3).

A.3 Main Calculation. Let H = H(N) be a N × N Wigner matrix. We introduce the shorthand
m = mN (z), where mN denotes the Stieltjes transform of H. The proof of Proposition A.1 proceeds by
bounding the moments

E
[
|1 + zm+m2|2D

]
, D ∈ N. (A.24)

To explain this strategy, observe that by the explicit form of msc in (2.3), we have 1 + zmsc + m2
sc = 0.

Then, since m ≈ msc for large N (by (2.8)), we have 1 + zm +m2 ≈ 0. We will see later that the reverse
implication also holds, so that sufficiently strong bounds on the moments in (A.24) imply the bounds on the
moments of |msc −m| claimed in Proposition A.1. Therefore, we focus for now on (A.24).

Let G = (H − z)−1 be the resolvent of H. To bound the moments (A.24), we use the definition of m in
(2.2) to write

E
[
|1 + zm+m2|2D

]
= E

[(
1

N

N∑
i=1

(1 + zGii) +m2

)
(1 + zm+m2)D−1(1 + zm+m2)D

]
, (A.25)

which holds for any D ∈ N. Set
P = P (m) = 1 + zm+m2. (A.26)

By the definition of the resolvent, we have 1 + zGii = (HG)ii, which implies

E
[
|P |2D

]
= E

 1

N

N∑
i,k=1

HikGki

PD−1P
D

+ E
[
m2PD−1P

D
]
. (A.27)

Let ℓ ∈ N be a parameter, which will be fixed later. By a cumulant expansion using Lemma A.6 (setting
Y = Hik), we find that

E

 1

N

∑
i,k

HikGki

PD−1P
D

 =
1

N

ℓ∑
r=1

κr+1

r!
E

∑
i,k

(1 + δik∆r+1)∂
r
ik

(
GkiP

D−1P
D
)+ E[Ωℓ]. (A.28)
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Here Ωℓ = Ωℓ(z) is an error term that we will examine later, ∂ik is the partial derivative in the matrix entry
Hik, κr+1 is the (r + 1)-th cumulant of Hij for i ̸= j, and ∆r is equal to (κ(r)(H11)− κr)/κr.

We introduce the notation Ir,s to denote the component of the r-th term of (A.28) where r−s derivatives
fall on Gik and s derivatives fall on PD−1P

D
:

Ir,s =
κr+1

N
E

∑
i,k

(1 + δik∆r+1)
(
∂r−s
ik Gki

)
∂sik

(
PD−1P

D
) . (A.29)

Then (A.28) becomes
ℓ∑

r=1

r∑
s=0

wr,sE[Ir,s] + E[Ωℓ], wr,s =
1

r!

(
r

s

)
. (A.30)

We begin by bounding E[Ωℓ], then proceed to the Ir,s terms.

A.3.1 Truncation.

Let E[ik] denote the N ×N matrix with entries

(E[ik])a,b = δiaδkb + δibδka if i ̸= k, (E[ik])a,b = δiaδib if i = k. (A.31)

For i, k ∈ [[1, N ]], we define H(ik) = H −HikE
[ik], which sets the (i, k) and (k, i) entries of H to zero.

Lemma A.8. Suppose i, k ∈ [[1, N ]], D ⩽ logN , A > 0, and z ∈ DA. Define the function F : MatN → C by

Fki(M) = Rki(M)PD−1P
D
, (A.32)

where here R(M) denotes the resolvent ofM . Choose ℓ ∈ N such that ℓ < A logN . Then there exist constants
C,C1(A) > 0 such that

E

[
sup

x∈R,|x|⩽N−1/4

∣∣∣∂ℓikFki

(
H(ik) + xE[ik]

)∣∣∣] ⩽ (4D + 2ℓ)ℓC4D+ℓ + C1N
−2 logN . (A.33)

Proof. Fix index pairs (a, b) and (i, k). By resolvent expansion (2.12), we have

G̃ab = Gab + xHikG̃aiGkb + xHikG̃akGib, (A.34)

where G̃ is the resolvent of H(ik) + xE[ik]. By (1.3), we have |Hik| ⩽ 1 with probability at least 1 −
c−1 exp(−N c/2). Combining this bound with (2.8) and (A.34), we obtain uniformly in z ∈ DA, with high
probability, that

sup
|x|⩽N−1/4

max
a,b

∣∣∣G̃ab

∣∣∣ ⩽ C. (A.35)

Since P is a quadratic polynomial in m, Fki is a polynomial of degree 4D−1 in Gki and m, with at most
22D−1 terms. When ∂jk acts on P or P it generates a new factor

2N−1
∑
il

GjilGilk, (A.36)

with a new summation index il. Then ∂ℓikFki has degree 4D − 1 + ℓ when considered as a polynomial in
Green’s function entries Gii, Gkk, Gik, m, and terms of the form (A.36). The number of such terms in ∂ℓikFki

is bounded by 22D−1 × (4D − 1 + 2ℓ)ℓ. Using (A.35), the contribution to the left side of (A.33) from the
expectation on the set where (2.8) holds is bounded by the first term of (A.33) (after increasing C). On the
low probability set where (A.35) does not hold, we use the trivial bound |Gij | ⩽ η−1 (from (2.15)) and the
assumed lower bound η > φ−A, which produces the second term of (A.33).

Lemma A.9. Let A > 0, 4 logN ⩽ ℓ ⩽ A logN , D ⩽ logN , and z ∈ DA. There exists a constant C(A) > 0
such that the term Ωℓ from (A.28) satisfies supz∈DA

∣∣E[Ωℓ]
∣∣ ⩽ CN−ℓ/4 .
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Proof. By Lemma A.6 with Q = N−1/4,∣∣∣E[Ωℓ(HikFki)
]∣∣∣ ⩽ CℓE

[
|Hik|ℓ+2

]
E

[
sup

|x|⩽N−1/4

∣∣∣F (ℓ+1)(H(ik) + xE[ik])
∣∣∣] (A.37)

+ CℓE
[
|Hik|ℓ+2

1
(
|Hik| > N−1/4

)]
E
[
sup
x∈R

∣∣∣F (ℓ+1)
ik (H(ik) + xE[ik])

∣∣∣] . (A.38)

The first term may be bounded using Lemma A.8, Lemma A.6, and the moment bound (A.23):

CℓE
[
|Hik|ℓ+2

]
E

[
sup

|x|⩽N−1/4

∣∣∣F (ℓ+1)(H(ik) + xE[ik])
∣∣∣] ⩽

(Cℓ)Cℓ

ℓ!N ℓ/2

(
(4D + 2ℓ)ℓC4D+ℓ + CN−2 logN

)
. (A.39)

For the second term, we use the trivial bound |Gij | ⩽ η−1 (from (2.15)) to obtain the deterministic bound

sup
x∈R

∣∣∣F (ℓ+1)
ik (H(ik) + xE[ik])

∣∣∣ ⩽ 22D(4D + 2ℓ)ℓ
(
C

η

)4D+ℓ

, (A.40)

and using Hölder’s inequality and (1.3) we have

E
[
|Hik|ℓ+2

1(|Hik| > N−1/4)
]
⩽

(Cℓ)Cℓ

N ℓ/2
exp(−cN c/4). (A.41)

Combining our estimates for the first and second terms of Ωℓ yields the conclusion after using ℓ ⩾ 4 logN .

A.3.2 Main Terms.

We will need to analyze the terms Ir,s from (A.29) explicitly for s ⩽ 1. For the others, we can proceed
on general combinatorial grounds. The following lemma collects our estimates on these terms. We set
P ′ = P ′(m) = 2m+ z.

Lemma A.10. Fix A > 0 and suppose D ⩽ logN . For all z ∈ DA, we have

E[I1,0] + E[I1,1] = −E[m2PD−1P
D
] + Ω, (A.42)

where Ω = Ω(z) ⩾ 0 is an error term satisfying

Ω ⩽

(
C

Nη

)
E
[
|P |2D−1

]
+D

(
C

Nη

)2

E
[
|P |2D−2

]
+ CN−2 logN . (A.43)

Further, we have ∣∣E[I2,0]∣∣ ⩽ C(logN)N−1/2
2D∑
a=1

(
1

Nη

)a

E
[
|P |2D−a

]
+N−2 logN (A.44)

and ∣∣E[I2,1]∣∣ ⩽ C(logN)N−1/2
2D∑
a=1

(
1

Nη

)a

E
[
|P |2D−a

]
+N−2 logN . (A.45)

For r ⩾ 3 we have∣∣E[Ir,0]∣∣+ ∣∣E[Ir,1]∣∣ ⩽ (Cr)Cr

N (r−1)/2
E
[
|P |2D−1

]
+DCr (Cr)Cr

N (r−1)/2

C

Nη
E
[
|P |2D−2

]
+ CN−2 logN . (A.46)

Finally, for r ⩾ 2,

∣∣E[Ir,r]∣∣ ⩽ (Cr)Cr

N (r−1)/2

r+1∑
s0=2

(
C

Nη

)1/2(
CD

Nη

)s0−1

E
[
|P |2D−s0

]
+ CN−2 logN , (A.47)

and for pairs (r, s) such that r > s ⩾ 2,

∣∣E[Ir,s]∣∣ ⩽ (Cr)Cr

N (r−1)/2

r+1∑
a=2

(
CD

Nη

)a−1

E
[
|P |2D−a

]
+ CN−2 logN . (A.48)
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For clarity we prove the claims (A.42), (A.44), (A.45), (A.46), (A.47), and (A.48) separately.

Proof of (A.42). We write, using κ2 = N−1,

E[I1,0] =
1

N2
E

∑
i,k

(1 + δik∆r+1) (∂ikGki)P
D−1P

D

 . (A.49)

We first bound the terms with i = k, which are sub-leading. Using Theorem 2.2, we have

1

N2

∣∣∣∣∣E
[∑

i

(1 + ∆r+1) (∂iiGii)P
D−1P

D

]∣∣∣∣∣ ⩽ CN−1E
[
|P |2D−1

]
+ CN−2 logN . (A.50)

For i ̸= k, we have

(∂ikGki)P
D−1P

D
= −GiiGkkP

D−1P
D −GkiGkiP

D−1P
D
. (A.51)

Considering the first term, we have

1

N2

∑
i,k

−GiiGkkP
D−1P

D
= −m2PD−1P

D
, (A.52)

which matches the first term of (A.42). Considering the second term of (A.51) and using (A.11), we have

1

N2

∣∣∣∣∣∣
∑
i,k

GkiGkiP
D−1P

D

∣∣∣∣∣∣ ⩽ C

Nη
E
[
|P |2D−1

]
+N−2 logN . (A.53)

This completes the analysis of I1,0. Next, we have

E[I0,1] =
1

N2
E

∑
i,k

(1 + δik∆r+1)Gki · ∂ik
(
PD−1P

D
) , (A.54)

and

∂ik

(
PD−1P

D
)
= −2(D − 1)

N
GkiP

′
∑
j=1

GjkGijP
D−2P

D − 2D

N
GkiP

′
N∑
j=1

GjkGijP
D−1P

D−1
. (A.55)

As in (A.50), we can remove the i = k terms with negligible error. For the first term of (A.55), we use (2.8)
and (A.12) to get

1

N3

∣∣∣∣∣∣E
∑

i̸=k

GkiP
′
∑
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GjkGijP
D−2P

D

∣∣∣∣∣∣ ⩽
(
C

Nη

)2

E
[
|P ′||P |2D−2

]
+N−2 logN . (A.56)

The bound on the second term of (A.55) is similar.

Proof of (A.44). We write I2,0 = I
(1)
2,0 + I

(3)
2,0 +R1, where I

(1)
2,0 contains all terms with exactly one off-diagonal

resolvent entry, I
(1)
2,0 contains all terms with three off-diagonal resolvent entries, and R1 contains all other

terms. Reasoning as in (A.50), we see that R1 is negligible:∣∣E[R1]
∣∣ ⩽ N−1E

[
|P |2D−1

]
+ CN−2 logN . (A.57)

By Theorem 2.2, we get

∣∣∣E[I(3)2,0 ]
∣∣∣ = κ3

N

∣∣∣∣∣∣E
∑
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(Gik)
3PD−1P

D

∣∣∣∣∣∣ ⩽ N−1/2

(
C

Nη

)3/2

E
[
|P |2D−1

]
+ CN−2 logN . (A.58)

44



To study I
(1)
2,0 , we perform another cumulant expansion using (A.20):

zE[I(1)2,0 ] =

ℓ′∑
r=1

r∑
s=0

wr,sE[Îr,s] + Ω̂ℓ′ , (A.59)

where

E[Îr,s] = Nκr+1Nκ3E

 1

N3

∑
i ̸=k,j

(
∂r−s
kj (GjiGkkGii)

)(
∂skj

(
PD−1P

D
)) . (A.60)

We take ℓ′ = 20 logN and see that
|Ω̂ℓ′ | ⩽ CN−2 logN (A.61)

by a straightforward modification of the proof of Lemma A.9.

We begin with the terms Îr,0 for r ⩾ 1. When r = 1, we define terms Î
(i)
1,0 for i = 1, 2, 3 by the

decomposition

E[Î1,0] =−Nκ3E

N−3
∑

i1 ̸=i2,i3

Gi2i1Gi3i3Gi2i2Gi1i1P
D−1P

D

 (A.62)

− 3Nκ3E

N−3
∑

i1 ̸=i2,i3

Gi2i3Gi3i1Gi2i2Gi1i1P
D−1P

D

 (A.63)

− 2Nκ3E

N−3
∑

i1 ̸=i2,i3

Gi1i2Gi2i3Gi3i1Gi2i2P
D−1P

D

 (A.64)

= E[Î(1)1,0 ] + 3E[Î(2)1,0 ] + 2E[Î(3)1,0 ]. (A.65)

where we have decomposed the sum according to the number of off-diagonal resolvent entries in each product,
Using Lemma A.5 on the off-diagonal resolvent entries, we find∣∣E[Î(2)1,0 ]

∣∣+ |E[Î(3)1,0 ]| ⩽ N−1/2

(
C

Nη

)
E |P |2D−1

+N−2 logN . (A.66)

Further, by using (2.8) and incurring a negligible error, we may replace E[Î(1)1,0 ] by

−mscE

N−2
∑
i1 ̸=i2

Gi2i1Gi2i2Gi1i1P
D−1P

D

 = −mscE[I(1)2,0 ]. (A.67)

We now turn to terms Îr,0 with r > 1. We observe that Lemma A.7 implies

(Nκr+1) (Nκ3) ⩽ (Cr)CrN−r/2 (A.68)

and recall that |wr,0| ⩽ 1. Since every product in Îr,0 has at least one off-diagonal entry, by (2.8) we have
the bound

wr,0

∣∣∣E[Îr,0]∣∣∣ ⩽ (Cr)CrN−r/2

(
1

Nη

)1/2

E |P |2D−1
+N−2 logN . (A.69)

We next consider the terms Îr,s with s = 1. In this case, we first note that the order r − 1 derivative of the

product of resolvent entries in Îr,1 contributes at least one off-diagonal resolvent entry. Next, we see that

each ∂ij

(
PD−1P

D
)
contains either two factors of (A.36), or the derivative of (A.36). Using (A.68), this

leads to the bound ∣∣∣E[Îr,1]∣∣∣ ⩽ D(Cr)CrN−r/2

(
1

Nη

)3/2

E
[
|P ′||P |2D−2

]
. (A.70)

We absorbed the combinatorial factor corresponding to the number of terms coming from the derivatives,
which is bounded by Cr, into the prefactor.
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Now we consider the case of Îr,s with 2 ⩽ s ⩽ r. We begin by noting that (2.8) gives

∣∣∣E[Îr,s]∣∣∣ ⩽ (Cr)CrN−r/2

∣∣∣∣∣∣E
 1

N3

∑
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(
∂r−s
jk (GjiGkkGii)

)(
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(
PD−1P

D
))∣∣∣∣∣∣ (A.71)

⩽ (Cr)CrN−r/2

(
1

Nη

)1/2

E

 1

N2

∑
k,j

∣∣∣∂sjk (PD−1P
D
)∣∣∣
 . (A.72)

Here we used the fact that ∂r−s
jk (GjiGkkGii) always contains at least one off-diagonal resolvent entry, and

again absorbed the combinatorial factor corresponding to the number of terms in this derivative into the
prefactor.

For s ⩾ 2, the derivative ∂sjk

(
PD−1P

D
)
is a sum of terms that may contain factors of P and P ′, and

their conjugates. Any such term is a constant times a product of the form PD−s1P
D−s2

(P ′)s3
(
P ′
)s4

, with

si ⩾ 0 for i ∈ [[1, 4]]. A term with such a product came from ∂jk acting s1− 1 times on P and s2 times on P ,
so we must have s1 − 1 ⩾ s3, s2 ⩾ s4, and s1 − 1 + s2 ⩽ s. We further see that ∂jk acted s1 − 1− s3 times
on P ′ and s2 − s4 times on P ′.

When ∂jk acts on a power of P , P , or their derivatives, it generates a new factor of ∂jkm = 2N−1
∑

il
GjilGilk,

where il is a new summation index (not appearing elsewhere), and a constant prefactor no greater than D
(by the chain rule applied to P k and analogous terms for k ⩽ D). The number of new summation indices is
then

s1 − 1 + s2 + (s1 − 1− s3) + (s2 − s4) = 2s1 + 2s2 − s3 − s4 − 2. (A.73)

Further, this number does not decrease when ∂jk acts on resolvent entries instead of P , P , or their derivatives.
We introduce a = s1 + s2 and b = s3 + s4. Then, using a ⩽ s+ 1, (A.73) yields∣∣∣E[Îr,s]∣∣∣ ⩽ (Cr)CrDrN−r/2
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+ (Cr)CrDrN−r/2
s+1∑
a=2

(
1

Nη

)1/2+2a−1

E
[
|P ′|a−1|P |2D−a

]
, (A.75)

where the second term comes from terms such that b = a− 1. After increasing C, we obtain∣∣∣E[Îr,s]∣∣∣ ⩽ (Cr)CrDrN−r/2
r+1∑
a=2

(
1

Nη

)a

E
[
|P |2D−a

]
+ CN−5 logN . (A.76)

Combining the definition of I2,0, (A.58), (A.59), (A.61), and the estimates on the Îr,s terms, we obtain

∣∣∣(z +msc)E[I(1)2,0 ]
∣∣∣ ⩽ 8 logN∑
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(A.77)

+

8 logN∑
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(A.78)

+

8 logN∑
r=2
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(
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)1/2

E |P |2D−1
(A.79)

+N−1/2

(
C

Nη

)
E |P |2D−1

+N−2 logN . (A.80)

After some simplification and increasing the value of C, this implies∣∣∣(z +msc)E[I(1)2,0 ]
∣∣∣ ⩽ C(logN)N−1/2

2D∑
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(
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Nη
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E
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|P |2D−a

]
+N−2 logN . (A.81)

Using |z +msc(z)| > c(A) > 0 on DA (see (2.3)), we obtain the conclusion.
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Proof of (A.45). We have

E[I2,1] = Nκ3E

N−2
∑
i,k

(1 + δik∆3) (∂ikGki) ∂ik

(
PD−1P

D
) . (A.82)

Using the logic of the previous proof, it is straightforward to see that the leading-order contribution is given
by

J =Nκ3E

2(D − 1)
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+Nκ3E
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P ′PD−1P

D−1

 . (A.84)

For the first term, we use the resolvent expansion to write it as

2(D − 1)Nκ3E

 1

N3

∑
i1 ̸=i2,i3,i4

Hi2i4Gi4i3Gi1i1Gi2i2Gi3i1P
′PD−2P

D

 . (A.85)

As in the previous proof, we now use the cumulant expansion (A.20) to calculate this term (expanding each
term in the sum in the variable Hi2i4). The leading term in the expansion is

2(D − 1)Nκ3E

 1

N3

∑
i1 ̸=i2,i3

mGi2i3Gi2i2Gi3i1P
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 , (A.86)

and we obtain

|z +msc(z)| |2(D − 1)Nκ3|E
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]
+N−2 logN . (A.87)

This controls the first term of J . By nearly identical reasoning, a similar bound holds for the second term
of J . Using |z +msc(z)| ⩾ c for z ∈ DA in (A.87), we obtain the result.

Proof of (A.46). By Theorem 2.2 we have

|E[Ir,0]| =

∣∣∣∣∣∣Nκr+1E
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∑
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(1 + δik∆r+1) (∂
r
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⩽
(Cr)Cr

N (r−1)/2
E
[
|P |2D−1

]
+ CN−2 logN . (A.89)

We absorbed the combinatorial factor 4r representing the number of different terms coming from the deriva-
tives of Gki into the constant.

For Ir,1, we have

|E[Ir,1]| ⩽
(Cr)Cr

N (r−1)/2
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∑
i,k

(1 + δik∆r+1)
(
∂r−1
ik Gki

)
∂ik

(
PD−1P

D
)∣∣∣∣∣∣ . (A.90)

From the derivative on PD−1P
D

we get |P ′||P |2D−2, a factor of 2N−1
∑

aGiaGak, a factor of D, and some
constant that is bounded uniformly in r. For the terms with at least 3 off-diagonal Gab, we can use Theorem
2.2 and Lemma A.5 to get the bound

47
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+ CN−5 logN (A.92)
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]
+ CN−5 logN . (A.93)

For terms with only two off-diagonal entries, we have
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⩽ DCr (Cr)Cr
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C
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[
|P |2D−2

]
+ CN−2 logN (A.95)

and the same bound for the term where the derivative falls on P
D
. This completes the proof.

Proof of (A.47) and (A.48). We treat all terms Ir,s with 2 ⩽ s ⩽ r the same way. From the order s
derivatives in Ir,s, we get a sum of monomials of the form

PD−s1PD−s2 (P ′)
s3 (P ′)

s4
n∏

d=1

Qd, (A.96)

with 1 ⩽ s1 ⩽ D and 0 ⩽ s2 ⩽ D depending on how the derivatives fall, and we have omitted the constant
prefactor. Each Qd represents a “fresh summation index” id in the following way. Any derivative on P , P
generates a new summation index a with a factor ∂ikm = 2N−1

∑
aGiaGak. Similarly a derivative on P ′ or

P
′
gives 4N−1

∑
aGiaGak. Each Qd represents a sum corresponding to one of these new indices, potentially

differentiated further. For example, Q1 could be 2N−1
∑

aGiaGak, or (applying a derivative ∂ik)

2N−1
∑
a

(GiiGakGak +GikGiaGak +GiaGiaGkk +GiaGakGik) , (A.97)

or any higher derivative. We consider any constant factors that are produced when a new index is generated,
or when a Qd term is differentiated, as part of the corresponding Qd term. For example, in (A.97), we
consider the factor 2 as part of Qd.

We see that the monomial (A.96) came from PD−1PD because s1 − 1 derivatives ∂ik derivatives fell on
P and s2 on P . This implies s3 ⩽ s1 − 1 and s4 ⩽ s2. The number of derivatives on P ′ was s1 − 1− s3, and
on P ′ it was s2 − s4. Then the total number of new indices is

n = 2s1 + 2s2 − s3 − s4 − 2. (A.98)

Let the number of derivatives that fall on some on some Q-type term be s5. Note that n+ s5 = s.
We next consider the constant factor associated to (A.96). There are two contributions to this: the

number of times such a monomial appears through differentiation, and a factor from the derivatives of
powers of P , P ′, and their conjugates. We bound the first contribution by the total number of monomials
produced, which is crudely bounded by (s+ 4)s, because a derivative of a term of the form (A.96) produces
n+4 ⩽ s+4 new monomials of the same form, one for each choice of factor to differentiate. For the second,
we see that the P -type terms appear with power at most D, and there are n total derivatives applied to
them, so this contribution is bounded by Dn. We therefore see that the constant factor is no larger than
(Cr)CrDn.

Now consider bounding each monomial. We will bound the P and P ′ terms (and their conjugates) by
their absolute values. For the Q terms, we will use Theorem 2.2 to bound the Gab terms with no new index,
and then invoke (A.12) in the m = 2 case. We must further track the constant pre-factors coming from
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derivatives of Q terms. Each Q term starts as 2N−1
∑

aGiaGak or 4N−1
∑

aGiaGak, and each successive
derivative multiplies the number of terms by 4. Recall there are s5 such derivatives. Combining the bound
on the number of new terms and the semicircle law bound, we get a Cs5 factor, which we bound by Cr.

We first consider the case r = s. Set s0 = s1 + s2 and s′ = s3 + s4. We recall there are n = 2s0 − s′ − 2
new indices. Using power counting (A.12) and noting the isolated off-diagonal Gik term, which is not
differentiated, we get

|EIr,r| ⩽
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]
+ CN−2 logN , (A.100)

where we increased C in the second line.
For s ̸= r we get
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+
(Cr)Cr

N (r−1)/2
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E
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|P ′|s0−1|P |2D−s0

]
(A.102)

The second term bounds the terms with s0 − 1 = s′ that come from when ∂ik lands s1 − 1 times on P and
s2 times on P , and their derivatives are not hit. By Theorem 2.2, we obtain the desired bound
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A.4 Proof of Moment Bound.

Proof of Proposition A.1. We proceed by induction to bound the powers E
[
|P |p

]
, with P as in (A.26). The

base case p = 0 is trivial. For the induction step, suppose D ⩽ (logN)/2, and that there exists C1(K,κ) > 0
such that

E [|P |p] ⩽
(
C1

Nη

)p

p3p/4 (A.104)

for all p ⩽ 2D − 2. We will show that if C1 is chosen large enough, in a way that does not depend on D,
then (A.104) also holds for p = 2D and p = 2D − 1.

Set ℓ = 20 logN . Combining (A.27), (A.28), Lemma A.9, and Lemma A.10, we have
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+ C(logN)N−1/2
2D∑
a=1

(
1

Nη

)a

E
[
|P |2D−a

]
(A.106)

+
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+
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We now use (A.104) in the above inequality. After increasing C, and choosing C1 > C in a way that only
depends on C, K, and κ, we obtain

E
[
|P |2D

]
⩽

(
C1

Nη

)2D

(2D)3D/2. (A.110)

Further, from Hölder’s inequality, we obtain as desired that

E
[
|P |2D−1

]
⩽ E

[
|P |2D

] 2D−1
2D =

(
C1

Nη

)2D−1

(2D)3(2D−1)/4, (A.111)

which completes the induction step.
We now recall the stability of the defining equation u2 = zu+ 1 = 0 for msc (see [14, Lemma 5.5]). Set

Az = {|P (z)| ⩽ 1}. Then m satisfies 1Az

∣∣m(z)−msc(z)
∣∣ ⩽ C

∣∣P (z)∣∣ for some C(κ) > 0. The claimed result
follows from (A.104) and the bound |m(z)−msc(z)| ⩽ 2η−1 on the set Ac

z, which has negligible probability
by Markov’s inequality and (A.104).

B Mesoscopic Fluctuations for β-ensembles

This appendix considers β-ensembles as defined in (1.9). We follow Johansson’s loop equations method from
[57] to establish Gaussian fluctuations of the characteristic polynomial at any mesoscopic scale larger than
(logN)C/N . The main result is Theorem B.1 below. It is used in Section 3.

Compared to [57], our work presents two novelties. First, [57] considered macroscopic scales, while
we prove a result for all mesoscopic scales. Second, [57] considers the Laplace transform, while we give
asymptotics of the mixed Fourier–Laplace transform. We note that for the proof on the leading order of
the maximum in Section 3, only the Laplace transform is needed, but the Fourier transform may be of
independent interest (for example for future finer estimates).

We face the following difficulties in proving these generalizations.

(i) For the Laplace transform, to prove rigidity of the measures (1.9) perturbed on mesoscopic scales, we
need precise a priori bounds. Our main tool is the local law with Gaussian tail from [25], as stated in
Theorem 2.4.

(ii) For the Fourier transform, the loop equation method requires handling complex measures and the
partition function may vanish. Despite this difficulty, asymptotics of characteristic functions were
obtained in [22, Appendix A]. We follow the argument developed there, which proceeds through a
Gronwall lemma.

B.1 Preliminary facts and notations. We consider the probability density (1.9), with V satisfying the
assumptions of Section 1.2, i.e. (A1), (A2) (i), (A3) and (A4) (see Subsection B.6 regarding the Assumption
(A2) (ii)). In this section we abbreviate the corresponding probability measure by µ = µN . We recall that
the equilibrium density (1.11) is assumed to lie on a single interval [A,B] and defines a function r(E).We
will also need the notations

τ(s) =
√

(s−A)(B − s), b(z) =
√
z −A

√
z −B, (B.1)

where we use the principal branch of the square root, extended to negative real numbers by
√
−x = i

√
x for

x > 0. We will use the formula ∫ B

A

τ(s)

s− z
ds = π

(
A+B

2
− z + b(z)

)
, (B.2)

which is just the usual formula for the Stieltjes transform of the semicircle law from (2.3), up to an affine
change of variables. Then the Stieltjes transform mV from (2.10) satisfies the equation

2mV (z) + V ′(z) = 2r(z)b(z) (B.3)

for any z ̸∈ [A,B], where we recall that r from (1.11) is assumed to admit an analytic extension to C.
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Given a function g : R → R, we consider the linear statistics

SN (g) :=

N∑
k=1

g(λk)−N

∫
g dµV .

The functions g considered in this appendix are

rlogz(λ) = Re log(z − λ), ilogz(λ) = Im log(z − λ), (B.4)

where Re log and Im log are defined in (2.1). The limiting covariance for these test functions will be written
in terms of

v(z) =
1

2

(
A+B

2
− z + b(z)

)
, γ =

(A−B)2

16
, c(z, w) = log

(
1− v(z)v(w)

γ

)
,

where log is the usual complex logarithm.
The mesoscopic central limit theorem proved in this section will hold on any scale greater than a parameter

η0 ∈
[ (logN)1000

N
, η̃
]
, (B.5)

where η̃ is given by Theorem 2.4.

B.2 Mixed Fourier-Laplace transform. Given points z = (zi)
p
i=1 in C \ R, we define the following

quadratic form in complex vectors ζ = (ζi)
p
i=1, ξ = (ξj)

p
j=1, which will represent an asymptotic covariance:

σ(ζ, ξ, z) = − 1

2β

p∑
i,j=1

[
(ζj − iξj)(ζi − iξi)c(zj , zi) + (ζj − iξj)(ζi + iξi)c(zj , z̄i)

+ (ζj + iξj)(ζi − iξi)c(z̄j , zi) + (ζj + iξj)(ζi + iξi)c(z̄j , z̄i)
]
. (B.6)

We also define the following function, which will represent an asymptotic shift:

µ(ζ, ξ, z) =

p∑
j=1

(ζj − iξj)

∫ zj+i∞

zj

(
1

4
− 1

2β

)(
(b′(z)− 1) +

∫ B

A

r′(s)τ(s)

r(s)(s− z)

ds

π

)
dz

b(z)

−
p∑

j=1

(ζj + iξj)

∫ zj+i∞

zj

(
1

4
− 1

2β

)(
(b′(z̄)− 1) +

∫ B

A

r′(s)τ(s)

r(s)(s− z̄)

ds

π

)
dz

b(z̄)
. (B.7)

Note that µ depends on the external potential V through r, while σ is independent of V .

Theorem B.1. With the notation (B.4), let

h =

p∑
i=1

(ζi rlogzi +ξi ilogzi), (B.8)

where p ⩾ 1 is fixed. Let κ,M > 0. Then, uniformly in Re(ζ, ξ) ∈ [−M,M ]2p, Im(ζ, ξ) ∈
√
β · [− 1

10p ,
1

10p ]
2p,

and z ∈ ([A+ κ,B − κ]× [η0, η̃])
p, we have

Eµ

[
eSN (h)

]
= e

σ(ζ,ξ,z)
2 +µ(ζ,ξ,z) ·

(
1 + Oκ,M,p

(
1√
Nη0

))
.

We now state an elementary lemma about the size of the variance and shift terms occurring in the above
central limit theorem.

Lemma B.2. Fix M,κ > 0 and p ∈ N. Then uniformly in |ζ|, |ξ| ∈ [−M,M ]p, z ∈ ([A+ κ,B− κ]× [0, 1])p

we have µ(ζ, ξ, z) = O(1).
Moreover, uniformly in z, w ∈ [A+ κ,B − κ]× [0, 1], we have c(z, w) = Oκ(1), while for z ∈ [A+ κ,B −

κ]× [0, 1], and w ∈ [A+ κ,B − κ]× [−1, 0], we have

c(z, w) = log(z − w) + f(z, w),

where f is a continuous function that satisfies f(z, w) = Oκ(1) uniformly for such z, w.
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Proof. We start with the asymptotics for (B.7), which is a linear combination of terms of type∫ w+i∞

w

b′(z)− 1

b(z)
dz, (B.9)∫ w+i∞

w

(∫ B

A

r′(s)

r(s)(s− z)
ds

)
· 1

b(z)
dz, (B.10)

with bounded coefficients. Since Rew ∈ [A+κ,B−κ], we have
∫ w+i

w
b′(z)−1
b(z) dz = O(1). Moreover b′(z)−1 =

O(1/|z|) and b(z) ∼ |z| as Im z → ∞, so
∫ w+i∞
w+i

b′(z)−1
b(z) dz = O(1). We have proved that (B.9) is O(1) as

expected.
For the term (B.10), from our non-vanishing assumption on r it is of order at most∫ w+i∞

w

(∫ B

A

ds

|s− z|

)
· 1

|b(z)|
d|z| ⩽ C

∫ w+i

w

log ηz
|b(z)|

d|z|+ C

∫ wj+i∞

wj+i

1

|z| · |b(z)|
d|z|.

The first term is O(1), since we have |b(z)| ⩾ c for some c > 0 by Rewj ∈ [A+ κ,B − κ]. The second term
is O(1) because of the quadratic decay at i∞.

For the asymptotics of c(z, w), to simplify notations we can assume without loss of generality that A = −2

and B = 2. Note that v(z) = −z+
√
z2−4

2 conformally maps C∪{∞}\ [−2, 2] into D, so c(z, w) is well-defined.
Moreover, the image of [2 + κ, 2− κ]× [0, 1] by v is a subset of H∩D which has positive distance to −1 and
1. Then for any z, w ∈ [2 + κ, 2 − κ] × [0, 1] we have |v(z)v(w)| < 1 − ε for some fixed ε > 0, and hence
c(z, w) = O(1).

For the case Im z > 0, Imw < 0, we denote v(E+) = limη→0+ v(E + iη) = −E+
√
4−E2i
2 and similarly

v(E−) = −E−
√
4−E2i
2 . We have v′(z) = −v(z)

b(z) = − 1
2 +

z
2
√
z2−4

. We therefore denote v′(E+) = − 1
2 −

E
2
√
4−E2

i

and v′(E−) = − 1
2 + E

2
√
4−E2

i.

Note that v(E+)v(E−) = 1 and v(E+)v′(E−) = −v(E−)v
′(E+) = 1

b(E+) = − i√
4−E2

. This implies, for

Im ε1 > 0 and Im ε2 < 0, that v(E + ε1)v(E + ε2) is equal to(
v(E+) + v′(E+)ε1 +O(ε1)

)
·
(
v(E−) + v′(E−)ε2 +O(ε2)

)
= 1 +

i√
4− E2

(ε1 − ε2) + O(|ε1|2 + |ε2|2),

which implies log(1− v(z)v(w)) = log(z−w) +O(1) for z ∈ [A+ κ,B − κ]× [0, 1], and w ∈ [A+ κ,B − κ]×
[−1, 0].

B.3 Rigidity under biased measures. We start with an important preliminary bound on the Laplace
transform, relying on [25].

Lemma B.3. For any fixed κ, β > 0, there exist N0(V, κ, β) ∈ N and C(V, κ, β) > 0 such that the following
holds. Let η̃ be given by Theorem 2.4, and fix any M > 0. For any z ∈ C such that Re z ∈ [A + κ,B − κ]
and Im z ∈ [N−1, η̃], and any N > N0 and ζ ∈ [−M,M ],

logEµ

[
eζ(

∑N
k=1 rlogz(λk)−N

∫
rlogz dρV )

]
∈ [−CM(logN)2, CM2(logN)2]. (B.11)

Moreover, the same estimate holds when considering ilog instead of rlog.

Proof. For the lower bound, by Jensen’s inequality and the hypothesis ζ ∈ [−M,M ] we have

logEµ

[
eζ(

∑N
k=1 rlogz(λk)−N

∫
rlogz dρV )

]
⩾ ζ Eµ

[
N∑

k=1

rlogz(λk)−N

∫
rlogz dρV

]

⩾ −M
N∑

k=1

Eµ

[∣∣ rlogz(λk)− rlogz(γk)
∣∣]−M

∣∣∣∣∣N
∫

rlogz dρV −
N∑

k=1

rlogz(γk)

∣∣∣∣∣ . (B.12)

The first summand above is easily bounded on the good set

G =
⋂

k̂>(logN)2

{|λk − γk| ⩽ C(logN)N−2/3k̂−1/3}
⋂

k̂⩽(logN)2

{|λk − γk| ⩽ C(logN)10N−2/3}
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as follows. For k̂ ⩽ (logN)2, we use that λk, γk are near A or B, where rlogz is C1-Lipschitz continuous for

some constant C1 > 0 by the assumptions on Re z and Im z. For the other values of k̂, we use the mean
value theorem. Then setting E = Re z and η = Im z, and recalling that E is in the bulk of the spectrum, we
have

N∑
k=1

Eµ

[∣∣ rlogz(λk)− rlogz(γk)
∣∣1G

]
⩽ C1

∑
k̂⩽(logN)2

|λk − γk|1G +
∑

k̂⩾(logN)2

|λk − γk| max
|λ−γk|⩽C(logN)N−2/3(k̂)−1/3

| rlog′z(λ)|1G

⩽ CN−1/2 +
∑

|E−γk|>(logN)/N

C(logN)

|E − γk|
N− 2

3 (k̂)−
1
3 +

∑
|E−γk|<(logN)/N

C(logN)

η
N−1 ⩽ C(logN)2. (B.13)

Moreover, for large enough N we have
P(Gc) ⩽ N−100

from [25, Corollary 1.5] for k̂ > (logN)2, and [21, Corollary 1.5 and Corollary 1.6] for k̂ ⩽ (logN)2. This
implies

N∑
k=1

Eµ

[∣∣ rlogz(λk)− rlogz(γk)
∣∣1Gc

]
⩽ N−10E[| rlogz(λ1)|]1/2 ⩽ N−2

where we used that the latter expectation is finite, from the estimate P(|λ1| > x) ⩽ (x−L)N for some fixed
L [26, Equation (3.3)].

For the second, deterministic, term in (B.12), we have by the intermediate value theorem thatN
∫
rlogz dµV −∑

rlogz(γk) =
∑

(rlogz(δk)− rlogz(γk)) for some δk ∈ [γk−1, γk+1]. Then the same reasoning as (B.13) ap-
plies, giving an analogous bound. This completes the proof of the lower bound in (B.11).

For the upper bound, let η′ be a parameter to be fixed later. For all x ∈ [η, η′], we define

g(x) =

N∑
k=1

rlogE+ix(λi)−N

∫
rlogE+ix dρV , δ(x) = N

∣∣s(E + ix)−mV (E + ix)
∣∣.

From the local law, Theorem 2.4, we have for η′ ∈ [η, η̃] that

E
[
eξ(g(η)−g(η′))

]
⩽ 2

∑
p⩾0

|ξ|2p

(2p)!
E

(∫ η′

η

δ(x)

)2p


⩽ 2
∑
p⩾0

|ξ|2p

(2p)!

∫
[η,η′]2p

E[δ(η1) . . . δ(η2p)]dη1 . . . dη2p

⩽ 2
∑
p⩾0

|ξ|2p

(2p)!

∫
[η,η′]2p

(E(δ(η1)2p)
1
2p . . . (E(δ(η2p)2p)

1
2p )dη1 . . . dη2p

⩽ 2
∑
p⩾0

|ξ|2p

(2p)!

(∫
[η,η′]

(
(Cp)p

x2p
+ (CN)2pe−cN

) 1
2p

dx

)2p

⩽
∑
p⩾0

|2ξ|2p

(2p)!

(∫
[η,η′]

(Cp)1/2

x
dx

)2p

+
∑
p⩾0

|2ξ|2p

(2p)!

(∫
[η,η′]

CNe−c N
2p dx

)2p

, (B.14)

where we successively used Hölder’s inequality, the inequality (a+ b)c ⩽ ac + bc for a, b > 0, c ∈ [0, 1] (with
c = 1/(2p) above), and (x+ y)2p ⩽ 22p−1(x2p + y2p). The first sum above is of order∑

p⩾0

|Cξ|2p

pp
(logN)2p ⩽ exp(C|ξ|2(logN)2), (B.15)

while the second one is bounded by∑
p⩾0

|Cξ|2p

(2p)!
(η′N)2pe−cN ⩽ eC|ξ|η′N−cN , (B.16)
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where on the right-hand sides of (B.15) and (B.16), C, c > 0 are constants that depend on V but not on
η′. We now fix η′ small enough, as a function of M , so that these upper bound in (B.16) is o(1) when
|ξ| < 2M . In conclusion, we have shown (recalling (B.14)) that there exist constants C, η′ > 0 such that for
any |ξ| < 2M we have

E
[
eξ(g(η)−g(η′))

]
⩽ exp(CM2(logN)2). (B.17)

Moreover, as ξg(η′) is a smooth linear statistic on a macroscopic scale, uniformly in |ξ| < 2M we have (see
e.g. [77, Theorem 1(i)])

E
[
eξg(η

′)
]
= O(1), (B.18)

where the implicit constant depends only on the choice of g and V . Equations (B.17) and (B.18) conclude
the proof of the upper bound when η < η′, after combining them with the Cauchy–Schwarz inequality to
estimate the left side of (B.11). For η ∈ [η′, η̃], we can directly use E

[
eξg(η)

]
= O(1), as explained before the

previous equation.

For fixed ζ, ξ, and a function h : R → R, we will need the following (complex) measures. They are
modifications of the measure (1.9) and depend on the parameter 0 ⩽ t ⩽ 1:

dµt
h(λ) :=

etSN (h)

Zh(t)
dµ(λ),

where we assumed
Zh(t) := Eµ[e

tSN (h)] ̸= 0. (B.19)

In the next section we will use rigidity under biased measures under the following form.

Lemma B.4. For any t such that Zh(t) ̸= 0, and any function f : R → R and measurable set G ,

|Eµt
h
[f1G ]| ⩽

ZReh(t)

|Zh(t)|
sup
G

|f |. (B.20)

Moreover, any integer 1 ⩽ k ⩽ N , we define G = Gk = {|λk − γk| < N− 2
3 (k̂)−

1
3 (logN)100}. Then for all

M,p > 1 there exists c(M,p) > 0 such that for any (ζ, ξ) ∈ C2p such that Re(ζ, ξ) ∈ [−M,M ]2p, t ∈ [0, 1]
such that Zh(t) ̸= 0, and N ⩾ 1, we have

|Eµt
h
[f1G c

k
]| ⩽ Eµ[|f |2]1/2

|Zh(t)|
· e−(logN)4 . (B.21)

Proof. The first statement follows directly from

|Eµt
h
[f1G ]| ⩽

∫
etSN (Reh)|f |1G dµ

|Zh(t)|
.

For the second statement, we use the Cauchy–Schwarz inequality twice, writing

|Eµt
h
[f1G c ]| ⩽ Eµ[|f |1G cetSN (Reh)]

|Zh(t)|
⩽

Eµ[|f |2]1/2

|Zh(t)|
Pµ(G

c)1/4Eµ[e
4tSN (Reh)]1/4.

One concludes with lemmas B.3 and 2.5.

B.4 Analysis of the loop equation. To prove Theorem B.1 we start with the identity d
dt logZ(t) =

Eµt
h
(SN (h)), and therefore want to estimate expectation of general linear statistics for the measure µt

h. The
starting point for the proof of Theorem B.1 will be the first order loop equation (B.28) below.

Let ρ
(N,t)
1 (s) be the 1-point correlation function for the measure µt

h (see e.g. [44, Definition 2.4]), and let

mN,t(z) be the Stieljes transform of ρ
(N,t)
1 (s). We introduce

φ(z) = φN,t(z) := mN,t(z)−m(z). (B.22)

For z ∈ C \ R, we define

φ̃(z) :=
1

2πb(z)

(
2t

β

∫ B

A

h′(s)

s− z
τ(s) ds−

(
2

β
− 1

)(
π(b′(z)− 1) +

∫ B

A

r′(s)τ(s)

r(s)(s− z)
ds

))
. (B.23)

The main result of this subsection is the following one.
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Lemma B.5. For any κ,M > 0 and p ⩾ 1 the following holds. Uniformly in any z = E + iη, with
η0 ⩽ η ⩽ N10 (see (B.5)) and A+ κ ⩽ E ⩽ B − κ, (ζ, ξ) ∈ C2p such that Re(ζ, ξ) ∈ [−M,M ]2p, and t such

that |Zh(t)| ⩾ e−(logN)2 , we have

φ(z) =
φ̃(z)

N
+Oκ,M,p

(
(∥ξ∥∞ + ∥ζ∥∞)(logN)500

N2η0η
· ZReh(t)

2

|Zh(t)|2

)
. (B.24)

We now prove two lemmas which will be used as input to the proof of Lemma B.5.

Lemma B.6. For any κ,M > 0, p ⩾ 1, we have uniformly in Re(ζ, ξ) ∈ [−M,M ]2p and z = E + iη such
that η ̸= 0, A+ κ ⩽ E ⩽ B − κ, that

φ(z) = Oκ,M,p

(
(logN)200

Nη
· ZReh(t)

|Zh(t)|

)
, Varµt

h
(sN (z)) = Oκ,M,p

(
(logN)400

(Nη)2
· ZReh(t)

2

|Zh(t)|2

)
.

Proof. These bounds are immediate consequences of Lemma B.4. Indeed, rewriting (B.22) gives

φ(z) = Eµt
h

[
1

N

∑
k

(
1

λk − z
− 1

γk − z

)]
+

1

N

∑
k

1

γk − z
−
∫

dρV (λ)

λ− z
.

The deterministic sum in the second term is easily seen to be O((Nη)−1) by definition of the γk’s. Denoting

Gk = {|λk − γk| < N− 2
3 (k̂)−

1
3 (logN)100}, the expectation in the first term is bounded by

Eµt
h

[
1

N

∑
k

∣∣∣ 1

λk − z
− 1

γk − z

∣∣∣1∩kGk

]
+
∑
k

Eµt
h

[
1

N

∑
k

∣∣∣ 1

λk − z
− 1

γk − z

∣∣∣1G c
k

]

⩽
(logN)200

Nη
· ZReh(t)

|Zh(t)|
+
Ne−(logN)4

η|Zh(t)|
,

where we have used Lemma 2.5, (B.20) and (B.21). The second term is negligible because ZReh(t) ⩾
exp(−CM(logN)2) from Lemma B.3. This concludes our estimate on φ, after using the elementary estimate
|Zh(t)| ⩽ ZReh(t).

The bound on Varµt
h
(sN (z)) proceeds similarly, starting with

|Varµt
h
(sN (z)) | ⩽ 2

∣∣Eµt
h
[|sN (z)−m(z)|2]

∣∣+ 2|φ(z)|2.

One applies the same reasoning as before to Eµt
h
[|sN (z)−m(z)|2] and obtains the bound (logN)300

(Nη)2 · ZReh(t)
|Zh(t)| ,

so that the bound on φ(z)2 dominates.

Lemma B.7. For any M > 0, p ⩾ 1, uniformly in z = E + iη with η ̸= 0, A ⩽ E ⩽ B, A > 0,
Re(ζ, ξ) ∈ [−M,M ]2p, and uniformly in h ∈ C 2(R) we have∫

R

h′(s)

s− z

(
ρ
(N,t)
1 (s)− ρV (s)

)
ds =

(logN)200

N
· ZReh(t)

|Zh(t)|
OM,p

(∫
|h′′(s)|
|z − s|

ds+

∫
|h′(s)|
|z − s|2

ds+
e−(logN)2

η2
(∥h′∥∞ + ∥h′′∥∞)

)
. (B.25)

Proof. We apply Lemma B.4, and the proof is almost the same as Lemma 5.3 in [22], so we omit the details.
The only differences are that the rigidity estimate is now known with multiplicative error (logN)100 instead

of Nξ, the probability error is now e−(logN)2 instead of e−Nξ

.

Proof of Lemma B.5. We closely follow some steps in the proof of [25, Lemma 4.6], with the difference that
we now work under complex measures. We first define

ψ(z) :=
2t

βN

∫ B

A

h′(s)

s− z
ρV (s) ds−

1

N

(
2

β
− 1

)
m′

V (z)−
∫
R

V ′(s)− V ′(z)

s− z

(
ρ
(N,t)
1 (s)− ρV (s)

)
ds (B.26)

Err(z) := φ(z)2 − 2t

βN

∫
R

h′(s)

s− z

(
ρ
(N,t)
1 (s)− ρV (s)

)
ds+

1

N

(
2

β
− 1

)
φ′(z) + Varµt

h
(sN (z)) . (B.27)
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Then, by the same proof as [25, Equation (4.7)] but with complex measures, we have(
2mV (z) + V ′(z)

)
φ(z)− ψ(z) + Err(z) = 0. (B.28)

For the proof, we also need to work under the rigidity event R :=
⋂

1⩽k⩽N{|λk−γk| < (logN)100N− 2
3 (k̂)−

1
3 },

by introducing the new probability measure

dµt,R
h (λ1, . . . , λN ) =

1R

Pµt
h
(R)

dµt
h(λ1, . . . , λN ).

Moreover, let ρ
(N,t,R)
1 (s) be the 1-point function under µt,R

h , φR(z) := Eµt,R
h

[sN (z)] −mV (z), and ErrR(z)

be defined as Err(z) but with µt,R
h , ρ

(N,t,R)
1 (s) and φR(z) instead of µt

h, ρ
(N,t)
1 (s) and φ(z). Note that

Pµt
h
(R) = 1 + O

(
N |Zh(t)|−1e−(logN)4

)
= 1 +O(e−(logN)4/2) (B.29)

by (B.21) and our assumption on Zh(t). This easily implies that lemmas B.6 and B.7 still hold under µt,R
h ,

giving

φR(z) = O

(
(logN)200

Nη
· ZReh(t)

|Zh(t)|

)
, Varµt,R

h
(sN (z)) = O

(
(logN)400

(Nη)2
· ZReh(t)

2

|Zh(t)|2

)
,∫

R

h′(s)

s− z

(
ρ
(N,t,R)
1 (s)− ρV (s)

)
ds

=
(logN)200

N
· ZReh(t)

|Zh(t)|
O

(∫
|h′′(s)|
|z − s|

ds+

∫
|h′(s)|
|z − s|2

ds+
e−(logN)2

η2
(
∥h′∥∞ + ∥h′′∥∞

))
. (B.30)

Fix some z = E + iη with η0 ⩽ η and A − κ ⩽ E ⩽ B + κ. We also assume η < κ first. We consider
the rectangle with vertices A− κ± ie−(logN)3 , B+ κ± ie−(logN)3 , and denote by C the corresponding closed
contour with positive orientation. We decompose this contour into Chor, which consists only in the horizontal
pieces, and Cver, which consists only in the vertical pieces. By the loop equation (B.28) and (B.3), we have∫

Chor

2r(w)b(w)φ(w)− ψ(w) + Err(w)

r(w)(z − w)
dw = 0.

Using (B.29), the hypothesis that |Zh(t)| > e−(logN)2 , and (B.21), on Chor we have

φR(w) = φ(w) + O
(
e−(logN)4/5

)
, (B.31)

and similarly ErrR(w) = Err(w) + O
(
e−(logN)4/5

)
. Together with the facts that |z − w| > η/2 and

c ⩽ r, b ⩽ C on Chor (remember that r is continuous and has no zero on [A,B]) this implies∫
Chor

2r(w)b(w)φR(w)− ψ(w) + ErrR(w)

r(w)(z − w)
dw = O

(
e−(logN)4/10

)
. (B.32)

On the other hand, for w on Cver, we have 2r(w)b(w)φR(w) − ψ(w) + ErrR(w) = O(e(logN)5/2), an easy

estimate based on the following facts: (1) by the definition of, µt,R
h , all particles are at a distance larger than

κ/2 from Cver), (2) c ⩽ r, b ⩽ C on Cver, (3) |Zh(t)| > e−(logN)2 by assumption, (4) ZReh(t) ⩽ eCM(logN)2 by
Lemma B.3. This implies∫

Cver

2r(w)b(w)φR(w)− ψ(w) + ErrR(w)

r(w)(z − w)
dw = O

(
e−(logN)3/2

)
. (B.33)

Combining (B.32) and (B.33), we get∫
C

2r(w)b(w)φR(w)− ψ(w) + ErrR(w)

r(w)(z − w)
dw = O

(
e−(logN)3/2

)
. (B.34)
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We now estimate each term in the integral in (B.34) successively.

We start with the part involving φR(w). The function w 7→ 2b(w)φR(w)/(z − w) is analytic on and
outside C, except for the pole at z, and it behaves as O(w−2) as |w| → ∞ because b(w) = O(w) and
φR(w) = O(w−2). Therefore, by the Cauchy integral formula with residue at infinity, we get

∫
C

2b(w)φR(w)

(z − w)
dw = 4iπb(z)φR(z). (B.35)

Now we evaluate the part involving ψ(w). Recall the definition of ψ(w) in (B.26) and note that the third
term there is analytic in w ∈ C. Moreover from (B.3) we have m′

V (w) = − 1
2V

′′(w) + (rb)′(w), where V ′′(w)
is also analytic in w ∈ C. Since z is exterior to C and r has no zero inside C for κ chosen small enough, these
analytic terms disappear in (B.34) and we get

∫
C

ψ(w)

r(w)(z − w)
dw =

∫
C

(
2t

βN

∫ B

A

h′(s)

s− w
ρV (s) ds−

1

N

(
2

β
− 1

)
(rb)′(w)

)
dw

r(w)(z − w)
(B.36)

= − 4πt

βN

∫ B

A

h′(s)

r(s)(z − s)
ρV (s) ds−

1

N

(
2

β
− 1

)∫ B

A

−2i(rτ)′(s)

r(s)(z − s)
ds,

where, for the first term, we applied Cauchy’s integral formula and, for the second term, we let the contour
approach the segment [A,B] and used limy→0+(rb)

′(x ± iy) = ±i(rτ)′(x) for all x ∈ (A,B), recalling

τ(x) =
√
(x−A)(B − x). Recalling the definition of φ̃(z) and that ρV = 1

π rτ (recall (1.11) and (B.1)), we
get

∫
C

ψ(w) dw

r(w)(z − w)
= −2

(
2t

βN

∫ B

A

h′(s)

s− z
τ(s) ds+

i

N

(
2

β
− 1

)∫ B

A

(
τ ′(s)

s− z
+

r′(s)τ(s)

r(s)(s− z)

)
ds

)
=

4iπb(z)

N
φ̃(z),

(B.37)

where we used that
∫ B

A
τ ′(s)
s−z ds =

∫ B

A
τ(s)

(s−z)2 ds = π(b′(z)− 1), which follows from differentiating the identity

(B.2).

Finally, we deal with the part involving ErrR(w). We deform the contour C into C′, the positively oriented
rectangle with vertices A− κ± iη/2, B + κ± iη/2, which does not change the value of the integral because
the deformation does not cross any poles. The function w 7→ ErrR(w)/(r(w)(z − w)) is analytic on and
between these contours (remember we assume η < κ first, and κ is fixed and small enough), so

∫
C

ErrR(w)

r(w)(z − w)
dw =

∫
C′

ErrR(w)

r(w)(z − w)
dw = O

(
(logN)400

(Nη)2
· ZReh(t)

2

|Zh(t)|2

)
+O

(
(logN)200

N2

m∑
ℓ=1

1

ηℓ(ηℓ ∨ |z − zℓ|)
· ZReh(t)

|Zh(t)|

)
, (B.38)

where we used that |r(w)| is uniformly lower bounded and we applied (B.30) on the horizontal pieces of
C′, and on the vertical pieces we used that the same estimates hold substituting η with κ. Coming back to
(B.34) and combining (B.35), (B.37) and (B.38), for η ⩽ κ we have proved that

φR(z) =
φ̃(z)

N
+O

(
(logN)400

N2η0η
· ZReh(t)

2

|Zh(t)|2

)
. (B.39)

For η ⩾ κ, the result follows from the Cauchy formula 1
s−z = 1

2πi

∫
C′′

dw
(w−z)(w−s) where C′′ is the rectangle

with vertices A − κ ± iκ/10 and B + κ ± iκ/10. More precisely we use (B.39) in the portion |Imz| > η0 of
C′′ and the estimates from (B.30) with η replaced by 1 on the part |Imz| ⩽ η0.

Finally, the result follows from (B.39) and (B.31).
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B.5 Proof of Theorem B.1. Let Ẑj = zj + iN9. With Zh as in (B.19), we can write

d

dt
logZh(t) = Eµt

h

[
p∑

i=1

(ζi rlogzi +ξi ilogzi)

]

= N

p∑
j=1

ζj − iξj
2

∫ Ẑj

zj

φ(z)dz −N

p∑
j=1

ζj + iξj
2

∫ Ẑj

zj

φ(z̄)dz + Eµt
h

 p∑
j=1

(ζj rlogẐj
+ξj ilogẐj

)

 , (B.40)

where we have used dz = i dy and

d

dy
log
∣∣(x+ iy)− λ

∣∣ = − 1

2i

(
1

λ− (x+ iy)
− 1

λ− (x− iy)

)
,

d

dy
Im log

(
(x+ iy)− λ

)
= −1

2

(
1

λ− (x+ iy)
+

1

λ− (x− iy)

)
.

To bound the last term in (B.40), we note that the inequality log(1 + ε) = O(ε) for |ε| < 1/2 gives

Eµt
h

[∑
i

log(Ẑj − λi)−N

∫
log(Ẑj − λ)dρV (λ)

]

= Eµt
h

[∑
i

log(1− λi/Ẑj)

]
−N

∫
log(1− λ/Ẑj)dρV (λ) = O(N−7).

We now insert the asymptotics from Lemma B.5 in (B.40). The error term in (B.24) contributes

ZReh(t)
2

|Zh(t)|2
p∑

j=1

|ζj |+ |ξj |
2

∫ Ẑj

zj

(∥ξ∥∞ + ∥ζ∥∞)(logN)500

Nη0ηz
|dz| ⩽ C

ZReh(t)
2

|Zh(t)|2
(∥ξ∥2∞ + ∥ζ∥2∞)(logN)600

Nη0
.

Moreover, one easily checks that
∫ Ẑj+i∞
Ẑj

φ̃(z) dz = O(N−6), so that denoting

p(z) =
1

b(z)

(
1

4
− 1

2β

)(
(b′(z)− 1) +

∫ B

A

r′(s)τ(s)

r(s)(s− z)

ds

π

)

we have proved that, as long as |Zh(t)| ⩾ e−(logN)2 (necessary to apply Lemma B.5) we have

d

dt
logZh(t) =

p∑
j=1

ζj − iξj
2

∫ zj+i∞

zj

t

πβb(z)

∫ B

A

h′(s)

s− z
τ(s) dsdz

−
p∑

j=1

ζj + iξj
2

∫ zj+i∞

zj

t

πβb(z̄)

∫ B

A

h′(s)

s− z̄
τ(s) dsdz

+

p∑
j=1

(ζj − iξj)

∫ zj+i∞

zj

p(z)dz −
p∑

j=1

(ζj + iξj)

∫ zj+i∞

zj

p(z̄)dz

+O

(
ZReh(t)

2

|Zh(t)|2
(∥ξ∥2∞ + ∥ζ∥2∞)(logN)600

Nη0

)
. (B.41)

While the third line above cannot be simplified for general V , for our particular choice

h =

p∑
i=1

(ζi rlogzi +ξi ilogzi),

the first and second lines can. Indeed,

h′(s) =
1

2

∑
i

(
ζi − iξi
s− zi

+
ζi + iξi
s− z̄i

)
,
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so that∫ B

A

h′(s)

s− z
τ(s)ds =

1

2

∑
i

∫ B

A

(
ζi − iξi
z − zi

(
1

s− z
− 1

s− zi

)
+
ζi + iξi
z − z̄i

(
1

s− z
− 1

s− z̄i

))
τ(s)ds.

From (B.2) and the definition of v, we can write

1

2π

∫ B

A

h′(s)

s− z
τ(s)ds =

1

2

∑
i

(
(ζi − iξi)(v(z)− v(zi))

z − zi
+

(ζi + iξi)(v(z)− v(z̄i))

z − z̄i

)
.

Note that v′(z) = −v(z)/b(z) and v2 + (z − A+B
2 )v + 1

4

(
A−B

2

)2
= 0 , so that, abbreviating vi = v(zi) and

γ = ((A−B)/2)2/4 we obtain∫ w+i∞

w

v(z)− v(zi)

z − zi

dz

b(z)
=

∫ 0

v(w)

v − vi
v + γ

v − (vi +
γ
vi
)

dv

v
=

∫ 0

v(w)

1

v − γ
vi

dv = − log(1− v(w)v(zi)

γ
)

and similarly ∫ w+i∞

w

v(z̄)− v(zi)

z̄ − zi

dz

b(z̄)
= − log

(
1− v(w̄)v(zi)

γ

)
.

We have therefore proved, using the notations (B.6) and (B.7),

d

dt
logZh(t) = t σ(ζ, ξ, z) + µ(ζ, ξ, z) + O

(
ZReh(t)

2

|Zh(t)|2
(logN)600

Nη0

)
where here and below, we abbreviate O = OM,p,κ. From this equation we first conclude about the case of
real-valued h. Then trivially ZReh(t) = Zh(t) so integrating the above equation gives

Zh(t) = exp

(
t2

2
σ(ζ, ξ, z) + tµ(ζ, ξ, z) + O

(
(logN)600

Nη0

))
.

From our assumption on η0 the above error term is O(1). For the general complex case, we now have

d

dt
logZh(t) = t σ(ζ, ξ, z) + µ(ζ, ξ, z) + O

(
(logN)600

Nη0
· e

t2

2 σ(Re ζ,Re ξ,z)

|Zh(t)|

)
, (B.42)

so that, taking the real part above, we have

d
dt |Zh(t)|
|Zh(t)|

= t σ(Re ζ,Re ξ, z)− t σ(Im ζ, Im ξ, z) + Reµ(ζ, ξ, z) + O

(
(logN)600

Nη0
· e

t2σ(Re ζ,Re ξ,z)

|Zh(t)|2

)
.

Defining g(t) = |Zh(t)|2et
2σ(Im ζ,Im ξ,z)−t2 σ(Re ζ,Re ξ,z)−tµ(ζ,ξ,z), the above equation implies

g′(t) = O

(
(logN)600

Nη0
· et

2σ(Im ζ,Im ξ,z)

)
.

From the assumption Im(ζ, ξ) ∈
√
β · [− 1

10p ,
1

10p ]
2p, we have σ(Im ζ, Im ξ, z) ⩽ 1

5 log(Nη0), so that g′(t) =

O
(

1√
Nη0

)
and we have proved that

|Zh(t)| = e−
t2

2 σ(Im ζ,Im ξ,z)+ t2

2 σ(Re ζ,Re ξ,z)+tReµ(ζ,ξ,z) ·
(
1 +

1√
Nη0

)
.

Inserting this estimate in (B.42) finally gives

Zh(t) = e
t2

2 σ(ζ,ξ,z)+tµ(ζ,ξ,z) ·
(
1 +

1√
Nη0

)
,

We note that all equations since (B.41) hold only provided that |Zh(s)| ⩾ e−(logN)2 for s ∈ [0, t], which

is necessary to apply Lemma B.5. Therefore, denoting t0 = max{t ∈ [0, 1] : Zh(t) > e−(logN)2}, for large
enough N we have

Zh(t0) = e
t20
2 σ(ζ,ξ,z)+t0µ(ζ,ξ,z) · (1 + 1√

Nη0
) > e−(logN)2 ,

where we have used in the above inequality the easy estimates σ(ζ, ξ, z) = O(logN) and µ(ζ, ξ, z) = O(1).
By continuity this implies t0 = 1. The expected result therefore holds by taking t = 1.
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B.6 Generalization to further potentials. The proof of the local law Theorem 2.4 is the only place
requiring the sub-quadratic growth assumption from (1.10). Theorem 1.9 also holds for V growing at least
linearly, as in Assumption (A2) (ii) through the following steps.

(i) Denoting E[A−δ,B+δ] for the expectation conditional on all particles remaining in [A − δ,B + δ], by
[25, Equations (2.25), (2.14)], the following local law holds:

E[A−δ,B+δ]
[
|sN (z)−mV (z)|2q

]
⩽

(Cq)q

(Nη)2q
+

Cqe−cN

|z −A|q|z −B|q
.

When compared to [25, Theorem 1.1], note the exponentially small second error term, possible thanks
to working under the conditioned measure. This improvement is essential to the proof of Theorem 1.9.

(ii) Based on this local law for the conditioned measure, an analogue of the previous quantitative central

limit theorem, Theorem B.1, can be proved under E[A−δ,B+δ] for a function L̃N coinciding with LN

on [A− δ/2, B + δ/2] but compactly supported on [A− δ,B + δ]. This gives Theorem 1.9 for L̃N , and
then for LN as the probability of a particle outside [A− δ/2, B + δ/2] is o(1) by rigidity.
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[43] L. Erdős, B. Schlein, and H.-T. Yau, Universality of random matrices and local relaxation flow, Invent. Math. 185 (2011),
no. 1, 75–119.
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