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We determine to leading order the maximum of the characteristic polynomial for Wigner matrices and
p-ensembles. In the special case of Gaussian-divisible Wigner matrices, our method provides universality
of the maximum up to tightness. These are the first universal results on the Fyodorov—Hiary—Keating
conjectures for these models, and in particular answer the question of optimal rigidity for the spectrum
of Wigner matrices.

Our proofs combine dynamical techniques for universality of eigenvalue statistics with ideas sur-
rounding the maxima of log-correlated fields and Gaussian multiplicative chaos.
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1 INTRODUCTION

1.1 Unaversality in the Fyodorov—Hiary—Keating program. In 2012, Fyodorov, Hiary, and Keating
(FHK) initiated a new line of research on the connection between random matrix theory and the Riemann
zeta function. Motivated by ideas from statistical mechanics, they conjectured that the extremal statistics
for both characteristic polynomials of random matrices and the zeta function on the critical line are identical
to those of logarithmically correlated fields . Such fields arise whenever one superimposes randomness
equally on all length scales, and are characterized by correlations proportional to the logarithm of the inverse
distance between two points. The branching random walk and the two-dimensional Gaussian free field are
paradigmatic examples.

The FHK conjecture states that for a Haar-distributed IV x N unitary matrix Uy, the random variable
Xn determined by the equality

Imla)ilog|det(z —Un)| =logN — 3loglog N + X (1.1)

converges to a variable X, in distribution as N — oo, where X, is distributed as the sum of two indepen-
dent Gumbel random variables. Recently, there have been significant advances towards proving (1.1]) and
analogous results for certain other random matrix ensembles, as we discuss below. However, all previous



results have been limited to specific models, which admit representations either as a determinantal point
process or a sparse matrix model

In this paper, we consider the FHK conjecture for a far broader class of random matrices. We study
the following generalization that encompasses real symmetric and complex Hermitian random matrices with
independent entries (Wigner matrices), and systems of interacting particles at inverse temperature 5 > 0
and governed by a general potential V: R — R (f-ensembles). Under quite general conditions, the limit-
ing spectrum of a Wigner matrix or S-ensemble is deterministic and supported on some compact interval
[A, B]. We make this one-cut hypothesis in the statement below, although similar asymptotics should hold
in the bulk in the complementary multicut case. Fix a small ¢ > 0 and set I = [A +¢,B —¢]. We let
A1 <... < Ay denote with the eigenvalues of the matrix or the particles of the S-ensemble, as appropriate,
and set det(F) = Hi\;(E —Xi)-

Problem 1. Consider any (-ensemble or any Wigner matrixz; in the matriz case, set f = 1 if it is real
symmetric or 8 = 2 if it is complex Hermitian. With the above conventions, show that

Dz, (2

B 3 .
\/;~%1z€1}<(log|det(E)| —E[log|det(E)|]) =log N — 2loglog N + Zy, where A}gnoo ZN
for a random variable Z,, satisfying the tail decay asymptotic cye™2 < P(Zs > y) < ¢ tye ™ asy — oo,
for some fized ¢ > 0. (The exact distribution of Zs, may depend on the matriz entries, or on V and f3.)

Such a prediction was made in [49] for the Gaussian Unitary Ensemble (GUE). Both [49] and our paper
focus on the bulk of the spectrum, since this corresponds to the original FHK setting .

The first contribution of this paper is to establish that the first order term in the conjecture ([1.2)) is
correct, both for Wigner matrices and S-ensembles defined by a general class of potentials (Theorem [1.2|and
Theorem . We also establish this conjecture up to tightness for the class of Gaussian-divisible Wigner
matrices, in the sense that the maximum for these ensembles can be coupled with the maximum for the
Gaussian Orthogonal Ensemble (GOE) up to an error of order 1.

Our first order result is new even for the GOE; previous studies were limited to the GUE [63]. Because the
general models identified in Problem 1 are not integrable for 5 # 2, and do not admit a sparse representation
using independent variables for non-quadratic V', the techniques previously used to prove FHK asymptotics
are not applicable. Instead, we adopt dynamical ideas based around Dyson Brownian motion, which have not
previously been applied to FHK asymptotics due the singular, non-local character of the relevant observable.

The method we develop for Problem 1 also leads to a sharp characterization of a fundamental property
of random matrices, eigenvalue rigidity. This term refers to the observation that eigenvalues of such matrices
behave as repelling particles, with interactions that suppress their fluctuations and trap them near deter-
ministic locations. We fix a small constant ¢ > 0 and consider the following problem.

Problem 2. For general self-adjoint random matrices or 3-ensembles, how large is max |)\i —E[\] |?
eN<i<(1—c)N

This can be understood as asking for either of the following two things:

(i) An estimate giving the exact size of the maximum on a set of high probability, i.e. 1 — o(1).

(ii) A bound that captures the correct order of this maximum with overwhelming probability, i.e. 1 —
O(N~P) for any D > 0.

The second contribution of this paper is to answer both versions of this question. For (i), we identify the size
of the maximum, including the correct constant prefactor, for Wigner matrices (the first part of Theorem |1.8)
and S-ensembles (Corollary . These are the first optimal rigidity results for matrix ensembles that are
not unitary invariant. Previous works in this direction relied on reducing the rigidity question to one about
a Riemann—Hilbert problem; such a translation is only possible for integrable ensembles [33]37]. For (ii),
we obtain the Gaussian decay of the distribution of A\; — E[)\;] well beyond the fluctuations regime, in the
second part of Theorem [I.§ This solves the longstanding question of rigidity on the scale (log N)/N with
overwhelming probability.

Our results are obtained by a novel combination of methods coming from the study of universality for
random matrices (in particular, heat flow, coupling and homogenization), with ideas coming from the theory
of logarithmically correlated fields. We now give precise statements of our main results, and defer a complete
survey of the existing literature to Section [I.3] below.



1.2 Results. We begin with the definition of Wigner matrices.

Definition 1.1. A Wigner matrix H = H(N) is a real symmetric or complex Hermitian N X N ma-
trix whose upper-triangular elements {H;;}i<; are independent random variables with mean zero and vari-
ances E [|H;;|?] = N7! for all i # j, and E [|H;;|*] = CN~! for all 4, where C' > 0 is a constant. We
have H;; = Fji for ¢ > j, and in the case that H is complex Hermitian, we suppose that the variables
{Im H;;};>;,{Re H;;)}i>; are all independent and satisfy E[(Im H;;)?] = E[(Re H;;)?] for all i # j. Further,
there exists a constant ¢ > 0 such that, for all 4,j € [1, N] and z > 0,

P <|\/NHU| > x) <ctexp (—z9). (1.3)

Moreover, a symmetric Wigner matrix is called Gaussian-divisible if it has the same distribution as v1 — 2 H+
eG, where H is a Wigner matrix as defined above, independent of the GOE matrix G. Here € € (0, 1) does
not depend on N.

We recall that the empirical spectral density of a Wigner matrix converges to the semicircle law as
N — oo, see e.g. [2]. This distribution has density

RACEE (1.4)

Psc (.’L‘) = o ’

where (z) = max(z,0). We consider the principal branch of the logarithm, extended to the negative real
numbers by continuity from above, given by log(rel’) = log(r) + if for any r > 0 and 6 € (—7, 7]. As is
usual, we define z* by exp(alog(z)). In particular for real A and E we have Relog(E — \) = log|E — )|
and Imlog(F — \) = 7l ~g Given a probability measure v with bounded density and a matrix H with
eigenvalues A\; < ... < Ay, for real E we also define

N
Ly(E) = log(E — X;) —N/Rlog (E — z)dv(z), (1.5)
j=1

which is the logarithm of the characteristic polynomial up to a centering shift. The following theorem is our
main result on the maximum of the characteristic polynomial for Wigner matrices.

Theorem 1.2. Let H be a symmetric Wigner matriz as in Definition[1.1] and set dv(z) = psc(z) dz in (L.5).
Then for any €,k > 0 we have

Ly(E
IP( sup Re Ly (F)

RN e e qge] ) =1-0(1),
|El<2-x V2log N [ ]> o
Im Ly (E)

P sup —€|l—¢,1+¢| ] =1-0(1).
(|E|<z_ﬁ V2log N | ]> @

The same result holds for Hermitian Wigner matrices after replacing the \/2 factors with 1.

Remark 1.3. For the imaginary part of the logarithm, a similar estimate on the minimum holds, by consid-
ering the sup for the Wigner matrix —H:

1}»( nf Im Ly (E)

inf ————¢€e|-1—¢,—-14¢]]=1-0(1).
it ) e ) =100

No such statement holds for the real part, as inf|g|<o_. Re Ly (E) = —oo0.

For Gaussian-divisible Wigner matrices, universality actually holds up to tightness.

Theorem 1.4. Let H be a Gaussian-divisible symmetric Wigner matriz as in Definition[I.1. Then for any
Kk > 0, there exists a coupling between H and a GOE such that the following sequence of random variables is
tight:

sup ReLI(E)— sup ReL§CE(E .
<|E|<2—H N( ) |[E|<2—kK N ( )>N>1



Corollary 1.5. Conditional on the tightness of the following random wvariables for H in the integrable
Gaussian orthogonal ensemble,

sup (ReLR(E) - V2(log N — §log log N)),
|E|<2—r 4

tightness also holds for H in the universal class of Gaussian-divisible symmetric Wigner matrices.

Natural analogues of Theorem [I.4] and Corollary [I.5 hold for the Hermitian symmetry class.

Remark 1.6. For the imaginary part of the logarithm, the same statements Theorem and Corollary
are an immediate consequence of the homogenization of the Dyson Brownian motion from |20, Theorem 3.1],
and an elementary bound on macroscopic linear statistics of Wigner matrices. The result is more subtle for
the real part of the logarithm, as it involves a non-local observable of the spectrum.

Remark 1.7. We emphasize that tightness for the Gaussian ensembles is still elusive, despite the proof of
this result for the circular ensembles [34]. Only the first order is established: for the GUE in [63] for the real
part, in [37] for the imaginary part, and for the GOE in Theorem |1.2

Our second result considers optimal rigidity of the particles. The first part establishes a high probability
rigidity estimate with an optimal deviation including the multiplicative constant. The second establishes a
rigidity estimate with much stronger control on the low probability exceptional set, which is still of optimal
order in N.

For a given probability measure v as in (L.5]), the i-th quantiles of v, denoted ~; = v;(N,v) for 1 <i < N,

are defined through the relation
Yi i—
d =
TN

— 00

7 (1.6)

Theorem 1.8. Let H be a symmetric Wigner matrixz as in Definition 1.1l The following holds.

(i) For every k,e > 0, we have

IP’( max T poc((1k) N (A = ) € [1—5,1—1—8]) =1-o0(1),

KNSk (1—K)N /2 ) log N

(ii) For any k,e,A > 0 there exists C' > 0 such that the following holds for all N € N. For all k €
[N, (1 — K)N] and u € [0, Ay/log N|,

P <|>\k — el > V2 10gN> < Ce~ (197, (1.7)

T Psc (fyk ) N

For Hermitian Wigner matrices, (i) and (i) also hold after replacing the /2 factor with 1.

A union bound in (ii) proves the optimal rigidity scale (log N)/N in the bulk of the spectrum: for every
D > 0 there exists C' > 1 such that for all N € N,

Clog N
P — VK| =
<HN<I?%3(J¥I{)N A =l N

) <CNP. (1.8)

We next turn to our results on S-ensembles. We recall that the S-ensemble of dimension N, inverse tem-
perature § > 0, and potential V': R — R is the probability measure on the subset Ay = {A = (A1,...Ay) €
RY : A\ < Ao <... < Ay} given by

N

1 8 BN

dpn (A, ... An) = 7o IIT »e—xl"exp (—2 ZV(AQ) dA;...d\y, (1.9)
1<k<IKN k=1

where Zny = Z;f’v) is a normalizing factor. In this paper, 8 > 0 is fixed and our assumptions on V are the

following.



(Al) V is analytic on R.
(A2) At least one of the following growth conditions holds for V:
(i) Sub-quadratic:

lim inf Viz) and lim sup V=)l < 00. (1.10)
z—+oo 21n|z| s—too T

(ii) Super-linear: There exist constants My, C, ¢ > 0 such that

!
V(z) > ¢ and  sup V') <CV(z) forall z> M,,
y€E[Mo,x] Y

and similar estimates apply for # < —Mj, i.e. the above holds for V() := V(—=z).

(A3) Under the previous assumptions, it is known that the expectation of the empirical spectral measure,
given by E[N~! va:l dy,], converges weakly to an absolutely continuous probability measure py with
a continuous density, which we denote by py (see |26, Theorem 1] and [1, Proposition 1] for details).
We assume that py is supported on a single interval [A, B] and is positive on (A, B), with square root
singularities at A and B. This means that there exists a ¢ > 0 and a function 7(E): R — R and
1
pv(E) = p (E—A)(B— E)r(E) 14,5 (1.11)
Moreover, we assume that r does not vanish on [A, B] and has an analytic extension to (CE|
(A4) Let
V(x
Lv@) = T2~ [ togfe —tlapv (0
R

There exists a constant ¢y such that Ly (z) = ¢y for « € [A, B], and Ly (z) > ¢y for x ¢ [A, B].
The following is an analogue of Theorem [T.2] for 3-ensembles.

Theorem 1.9. Let (A1,...,An) be distributed according to the density (1.9) with a potential V' satisfying
the above hypotheses. Take v = py in the definition (L.5). Then for any e,k > 0 we have

BReLy(E)
P su PREENE) e 146 ) =1—0(1),
<A+K,<EEB—R 2 logN | ] @
BIm Ly(E)
P su ——————€cl|l—¢g1+¢]| =1-0(1).
<A+&<EEB—R 2 logN [ ] M)

We next state the analogue of the first part of Theorem [I.§ for S-ensembles, which follows from the
previous theoremﬂ

Corollary 1.10. Under the same assumptions as Theorem (in particular v = py in @), we have for
every k > 0 that

P ( max 77\/§~ PV(%)lf)Vgg)\\fk — ) eEl—g 1+ E]) =1-o0(1).

KN<LkL(1—k)N

Remark 1.11. In Theorem and Corollary the quantiles v; can be replaced by E[A;], therefore
answering the rigidity question as stated in Problem 2. Indeed, the bound |E[A;] — vx| = O(N~1) holds
thanks to [67, Theorems 1.4 and 1.5].

Remark 1.12. All results in this article have direct analogues for maxima on mesoscopic intervals which are
supported in the bulk of the spectrum, and the proofs are the same up to notational changes. For example,
in the case of symmetric Wigner matrices, for any deterministic interval I = I(N) C [-2 + k,2 — k] such
that log |I|/log N — —1 + a, a € (0,1), and any € > 0 fixed, we have

Re LN E
P (sup A
Eel V2 log N
1We remark that assumption is satisfied by a large class of potentials. For example, it suffices for V' to be convex and

twice differentiable |26 Example 1].
2An analogue of the rigidity scale with overwhelming probability, i.e. l} was already shown in [25].

€ [a—e,a—i—s]) =1-o0(1). (1.12)




1.8 Related Works. The FHK conjectures were first stated in [47,/48] for Haar-distributed unitary
random matrices and the Riemann zeta function. See [8] for a recent survey. See also [49] for the case of
the GUE. While we do not discuss in this paper relations with ¢, we remark that the FHK conjecture for
it, up to tightness of the analogue of the variable Zy, has been established in [5,/6] after initial progress in
[4,54,/71]; see [55] for a survey.

On the random matrix side, the sharpest results available are for the circular S-ensembles. The leading
and second order terms, for 8 = 2, were computed in [3] and [75]. For general /3, the FHK conjecture up to
tightness of the random variable Zy, was obtained in [34], and the convergence was recently established in
[76]. All these works rely on uncovering hierarchical structures in the spectra of random matrices, permitting
the use of methods originally developed for branching processes [27}28].

For other ensemble of random matrices, much less is known. As demonstrated in [37,/59] and also used by
us, obtaining the leading order of the FHK conjectures (more precisely, a lower bound on the leading order)
is closely related to proving convergence of powers of (a rescaled) version of the characteristic polynomial
towards the Gaussian multiplicative chaos (GMC); we refer the reader to [23,/60,61L73]/80] for some works
concerning the GMC for random matrices and further results in this direction. For § = 2, convergence
toward the GMC of the characteristic polynomial (using Riemann—Hilbert techniques) was obtained in [17],
in the so-called L? phase, which is not sufficient for obtaining leading order information on the maximum.
In the context of more general Hermitian matrices, related results on the distribution of the characteristic
polynomial of Gaussian S-ensembles (which again are not sufficient for controlling the maximum) were proved
in [7}33}/641/65].

The fundamental reason one expects extreme values statistics such as and a limiting Gaussian
multiplicative chaos from random matrices is that they lie in the class of logarithmically correlated fields.
For B-ensembles and Wigner matrices, this log-correlation has been proved in the sense of distributional
convergence first, as follows e.g. from [57,70], and more recently in the pointwise sense [24125]. For Gaussian
log-correlated fields, a rich theory concerning the extremes is available, with the same universal scaling as
in . In particular, the fluctuations of the analogue of Zx are always of the form of two independent
random variables, one being Gumbel and the second depending on the long-range behavior of the covariance.
We refer the reader to |18,[19,/81] for an account of the theory in the canonical case of the Gaussian free field
(from leading order computation to convergence of the maximum and details on the process of extrema),
and to [42] for the universal description of the limit. Extending the theory beyond the Gaussian case (where
extra tools, including comparison theorems, are available) toward its natural universality class has been a
major challenge and has attracted a lot of recent activity. Beyond the models of random matrices and the
Riemann zeta function already discussed, we mention here the sine-Gordon model [9] (where a renormal-
ization procedures enables coupling to the Gaussian free field, yielding a full convergence result), the cover
time for planar random walk [10,/11,/40] (where tightness has been proved), the maxima of Ginzburg-Landau
fields [12], the maxima of characteristic polynomials of permutation matrices [38], where at this time only
leading order information is available, and the model of two dimensional random polymers [32,/39], where
not even the leading order convergence has been demonstrated.

We next turn to the topic of rigidity of eigenvalues, which has a long history, going back at least to [26].
The importance of obtaining some a-priori rigidity estimates for Wigner matrices was highlighted in [43], as
part of their celebrated proof of the universality of spacing distribution for the Wigner ensemble. This work
established the upper bound |\, — x| < N~/27¢ for some £ > 0.

Sharper estimates on rigidity for Wigner matrices were obtained in the seminal work [45], which bounded
the fluctuations of the eigenvalues by N ~1*¢ for every € > 0, with overwhelming probability. This result was
then refined to show the bound O((log N)/N) with overwhelming probability for some (potentially large)
constant C' > 1 [31L50L(79]. To our knowledge, the sharpest result on rigidity prior to this work is contained
in [51], who obtained the rigidity scale (log N)?/N. Our result on Gaussian decay far in the tail distribution,
given in , is new even for the Gaussian ensembles.

A question related in spirit to the rigidity question is that of the maximal spacing between successive
eigenvalues, going back to a question of Diaconis [41]. For the maximal spacing of GUE and CUE matrices
matrices, the first order of the gap was computed in [13], and convergence of the rescaled maximal gap was
established in [46]. Both of these works use determinantal methods. Universality and comparison results
were obtained more recently in [20] and [66].

Finally, many other aspects of extreme value theory for random matrices have been very active recently.
Notably we refer to important progress on the spectral radius of non-Hermitian random matrices, an example



where universal fluctuations are known (which are not in the log-correlated universality class, see [35] and
the references therein).

1.4 Proof Ideas. We now describe the main contours of the proofs in this paper. Even though our
presentation of the main results starts with Wigner matrices, we describe the proofs first for S-ensembles
(see Theorem 7 since the Wigner case is then based on a comparison which takes as input the results for
the GOE and GUE. For concreteness, we focus on the description of the proofs for Re Ly (E).

The standard approach for estimating sup 4, . p<p_, Re Ly (E) from above has two components: first,
one replaces the supremum over the interval [A + k, B — k] by a maximum over a finite collection of E;’s, of
spacing of order 1/N. That this is enough has already been shown e.g. in |63 Corollary 5.4] (based on an
idea from |34])E| After achieving this reduction, one uses a union bound together with a tail estimate on the
law of Re Ly (E) with E fixed and deterministic. In particular, one needs to control exponential moments
of the latter variable. Unlike the case treated in [63], we do not have at our disposal an integrable structure,
and so explicit computations are not possible. Instead, we would like to use exponential estimates from [25]
(in an improved form described in Theorem [B.1J).

Unfortunately, the estimates in Theorem do not apply directly for F;, but rather only for E; + ing
where 19 = (log N)1°0/N is as in . Because of that, we need to modify the above procedure and first
move away from the real axis. Continuity arguments allow one to move to distance 1/N from the real line;
to go beyond that, we need to use the very precise local law with Gaussian tail from [25, Remark 2.4] (which,
after integration, give control on Ly (FE; 4+1inp)). This recent theorem provides essentially optimal bounds on
the centered moments of the Stieltjes transform on all scales Im z > 0, and is crucial for our work; weaker
estimates, such as those available in the previous literature, would not have sufficed.

For the lower bound, due to the log-correlated structure of the field Ly (-), one could follow methods
based on second moment analysis, including the insertion of appropriate barriers, as described e.g. in [81] for
the Gaussian setup. There are several obstacles to that approach, including the need to obtain very precise
decoupling inequalities for pairs of macroscopically separated energies FE;, based on Fourier transforms.
Instead, we use the GMC approach (introduced in similar contexts in [37,/59]). Here again, the proof starts
with the preliminary step of moving the problem off the real line and into the upper half plane (by distance
o), in order to improve the regularity of Ly ; this step is achieved using a Poisson integral representation of
the harmonic function rlog,(z) = Relog(z — ). Then, in the main technical step, we demonstrate that for
every v € (—v/2,v/2), the random field with density

VB Re Ly (E+ino)
F(E) =

E[e\/ﬁ'y Re EN(E'Jring)]
with respect to Lebesgue measure, converges to a Gaussian multiplicative chaos as N grows. Here Ly is
an appropriate centering of Ly. Following the general criteria in [37], this again follows from the controls
provided by Theorem Once convergence to GMC has been achieved, the required lower bound follows
(essentially because the GMC is supported on points E with Re Ly (E + ing) > /B7/2 — §).

(1.13)

We now turn to the proof of our result on the log-characteristic polynomials of Wigner matrices, Theorem 1.2
This is fundamentally a universality result, stating that results established in Theoremfor the GOE/GUE
does not depend on the distribution of the matrix entries. We adopt a dynamical approach to this question,
in line with the general framework that has been developed to resolve the Wigner—Dyson—Mehta conjecture
and other problems regarding the universality of local spectral statistics [44].
Our primary input is a method to couple characteristic polynomials. We consider the matrix-valued
stochastic differential equation 1
dHt = =
VN
with initial data Hy given by a Wigner matrix, where By is a matrix of Brownian motions that are independent
up to the symmetry B;; = Bj;. The dynamics are chosen so that if Hy is a GOE, then its distribution remains
invariant for ¢+ > 0. It is well known that if the eigenvalues (\;(t))X; of H; evolve according to the Dyson
Brownian motion, given by Equation :

_ dB 1 1 1

1
dB, — S H, dt (1.14)

3We will actually use a different method, that applies also to Im Ly and also allows one to work with mesoscopic intervals
as in Remark Our method builds on local laws up to microscopic scales from [25].



where the {fj}_, are independent, standard Brownian motions. To enforce a coupling, we let (u;(t))N;
be a solution to with the same choice of driving Brownian motions with the initial data t = 0 given
by a GOE. Then the process (\;(t) — p;(t))}Y, satisfies a deterministic system of differential equations,
which may be studied in detail using homogenization and the method of characteristics [20,22]. Our main
result on coupling, Proposition is the estimate is that for any 2 = E +in with n € (N~1, 1), any time
t > exp(—Cp(loglog N)?) for appropriate C, we have

P (mE+ > log (= = juelt) = Y log (= = Me(t)| > aogN)l/%s) —o(1).  (116)

The crucial point here is that while ¢ is relatively large, we are able to approach the real line up to the
microscopic distance 1/N, which is precisely the distance beyond which deterministic arguments do not
yield control on the difference between Ly (F) and Ly (E + in). Note that the scale 1/N is below the scale
of rigidity (which is of order log N/N, as we prove in Theorem . The ability to nevertheless perform the
coupling (using in a crucial way overcrowding estimates from [72] and a-priori suboptimal rigidity estimates
from [45]) goes significantly beyond the earlier dynamics-based coupling of characteristic polynomials. See
e.g. |20] for the existing sharpest result which requires Imz > N—17¢,

Recalling that (|1.15) is the eigenvalue evolution under , and that the desired result for the GOE
follows from Theorem h we see that implies matrices of the form /1 — tH + /tW satisfy the
conclusions of Theorem where H is Wigner matrix, W is a GOE, and ¢ decays sufficiently slowly. It
remains to extend the result from these weakly Gaussian-divisible matrices to the entire Wigner class. For
this, we use a standard comparison argument based on four-moment matching [78]. It is well known that
this technique shows that weakly Gaussian-divisible matrices are “dense” in the set of all Wigner matrices,
in these sense that universality for sufficiently regular observables follows from establishing the expected
behavior in the weakly Gaussian-divisible case. While the extremal statistic sup|gj<s_, ReLn(E) is non-
local and not regular enough to directly apply results from the literature, ideas originally developed in [66]
permit the comparison to proceed, and complete the proof of Theorem [I-2}

For Theorem[I.4] no density argument is needed but the relaxation step becomes particularly delicate as it
needs to reach the tightness precision. Even worse, the maximum of the characteristic polynomials differences
considered in is probably not tight as N — oo, even for ¢ < 1. The main insight consists in proving
that 3 log (E — ux(t)) is very close to 3 log (E + Xy — Ax(t)), up to error of order 1 where Xy is a random
shift. This shift is small enough so that it only changes the size of the centering of the log-characteristic
polynomial by an order 1. Choosing for E the location of the maximum for GOE completes the relaxation
of the maximum, which actually requires many other ingredients as explained in the proof of Proposition |4.4

We now turn to the proofs of rigidity. While the best previous rigidity for Wigner matrices was proved
directly by resolvent methods [45], as a precursor to the local study of Dyson Brownian motion, we reverse
this usual logic and derive optimal rigidity as a consequence of refined estimates on the local dynamics.

The estimates with optimal constant, Theorem (i) and Corollary are equivalent to the corre-
sponding results for Im Ly (FE), Theorem and Theorem see for this classical equivalence. On
the other hand, obtaining Theorem (ii), which asserts rigidity for Wigner matrices with overwhelming
probability, requires further novelties. The traditional four-moment comparison method is effective only for
statements that hold with probability 1 — N~¢, and therefore does not provide density of weakly Gaussian-
divisible matrices for Theorem (ii). However, iterative comparisons of moments of linear statistics have
appeared in random matrix theory in [58}(79], which were recently strengthened in the context of eigenvector
statistics towards comparison beyond the order of magnitude, up to optimal constants [15,/16]. We adapt
this method to obtain the sharp Gaussian decay in from the case of weakly Gaussian-divisible matrices.
For this ensemble, we use our coupling , along with estimates specific to the GOE/GUE, to provide
an optimal-order upper bound on the large moments (of order log N) of the eigenvalues counting function
(Lemma [4.5). With this estimate in hand for weakly Gaussian-divisible matrices, we use an inductive mo-
ment comparison (see Lemma , to obtain a similar estimate on the log N moment for arbitrary Wigner
matrices. The desired rigidity result, and the precise tail bounds in Theorem then follow by Markov’s
inequality.

To conclude this section on the developed methods, we mention that the upcoming work [36] obtains the
analogue of Theorem for non-Hermitian matrices with independent entries, with an approach relying on
Fourier transforms of linear statistics instead of GMC and dynamics (the special case of Ginibre matrices



was proved, also at leading order, in [59]). While this approach is particularly robust for the leading order
of the characteristic polynomial and likely applies to Theorem the dynamical method seems essential to
our results on tightness (Theorem and rigidity with overwhelming probability (Theorem part (ii)).

1.5 Further Comments. Since this paper is already long and uses a multitude of tools, we have not
discussed the edge of the spectrum, nor have we treated the case of S-ensembles with non-analytic potential.
These extensions require work but seem within the reach of the tools developed here.

It is natural to expect that holds. For Gaussian 8-ensembles, the Jacobi representation in terms of
independent variables, used in [7,[641|65], could potentially be useful, as it was in the CSE case [34,|76]. In
view of Theorem any progress in that direction for 8 = 1,2 would immediately translate to Gaussian
divisible ensembles, at least at the level of tightness. More generally, we expect that the ideas developed here
will be a useful basis for work on the higher order terms in Problem 1, or for studying FHK-type asymptotics
and rigidity for other ensembles, including matrices of general Wigner type, adjacency matrices of random
graphs, models arising in free probability, and non-Hermitian matrices.

In view of the first universal results on FHK asymptotics for Wigner matrices and S-ensembles, another
natural question concerns universal limiting measures for random characteristic polynomials. We also expect
that some methods from this paper would help towards the convergence of |det(E — H)|"dE to a Gaussian
multiplicative chaos.

1.6 Organization. Section [2| fixes our notation conventions and states essential results from previous
works. In Section 3] we prove Theorem [I.9]and Corollary[1.10} Section [f]studies the short-time relaxation to
equilibrium of Dyson Brownian motion for FHK-type observables, and Section [5| provides moment matching
lemmas for these observables. The results in these sections are then used in Section [] to prove Theorem
and Theorem [I.8 Appendix[A]establishes Proposition[A:I]} which controls diverging moments of the Stieltjes
transform of Wigner matrices; these are used in Section[d] Appendix [B]proves Theorem on the Fourier—
Laplace transform of the log-characteristic polynomial of S-ensembles near the real axis; this is used in
Section [3l

Remark 1.13. Throughout, we suppress the dependence of the constants in our arguments on the constants in
Definition and the potential V' from , since this dependence never affects our arguments. One could
give explicit (suboptimal) error bounds in all our results in terms of these parameters, but for simplicity,
we do not pursue this direction. Additionally, for brevity, we prove our results for real symmetric Wigner
matrices, since the complex Hermitian case differs only in notation.

1.7 Acknowledgments. P. B. was supported by the NSF grant DMS-2054851. P. L. was supported by
NSF postdoctoral fellowship DMS-2202891. O. Z. was supported by Israel Science Foundation grant number
421/20.

2 PRELIMINARY RESULTS

We begin by recalling some fundamental concepts and notation. For deterministic sequences X = Xy and
Y =Yn > 0, we write X = O(Y)) if there exists a constant C' > 1 such that |X| < CY for all N > 1,
and X = o(Y) if limy 00 X/Y = 0. We let H= {2z : Imz > 0} denote the complex upper half plane, and
often use the notation z = F + in for z € H, so that E and 7 stand for the real and imaginary parts of
z, respectively. We often identify the complex plane C with R?, and use the notation [E, F3] x [n1,72] to
denote the set {z € C: Rez € [Ey, Es],Imz € [n1,12]}. Our convention is that N denotes the set {1,2,...}.
The function log always denotes the natural logarithm. We write log,y(x) = log log .

We will frequently define constants that depend on some number of parameters. These will be introduced
as C(z1,...,2,), for parameters 1, ..., z,, and subsequently referred to as C' (suppressing the dependence
on the parameters in the notation). These constants may change line to line without being renamed (while
retaining the dependence on the same set of parameters). We usually write C > 1 for large constants, and
¢ > 0 for small constants.

For z = E + in € H we use the notations

Relog(z — ) =log|z — A|, Imlog(z—\) = g + arctan _ (2.1)




which are coherent with our convention log(rel?) = log(r) + if for any r > 0 and 6 € (-, 7).

We recall that Wigner matrices were defined in Definition The Gaussian Orthogonal (resp. Unitary)
Ensemble of dimension N, GOEy (resp. GUEy), is defined as the N x N Wigner matrix with independent
entries H;;, ¢ < j, such that VN H,; is areal (resp. complex) Gaussian random variable with mean zero and
variance 1+ 1,.; (resp. Re H;; and Im H;; are independent, each with variance (1 + 1,2;)/2).

We say that an event F = F(N) holds with overwhelming probability if for any D > 0, there exists a
constant C(D) > 1 such that P(F¢) < CN—D.

2.1 Semicircle law. Let Maty denote the set of N x N real symmetric matrices. Given M € Maty, we
index the eigenvalues \; of M in increasing order: A\; < Ao < ... < Any. The resolvent of M is defined as by
G(z) = (M — 21d)~! for 2 € H. The Stieltjes transform of M is defined for z € H by

1 1 1
mN(Z):NTrG:NZ)\i—Z’ (2.2)

and Stieltjes transform of the semicircle law is given by

= po— 5 (2.3)

Mee(2) _/Rf"sc(f) dv _ —2+ V=4

Here V22 — 4 := \/z — 2y/2 + 2 is defined through the principal branch of the square root, extended to
negative real numbers by /—x = i\/x for z > 0.
We now recall some elementary bounds on mg.(2).

Lemma 2.1 (|44, Lemma 6.2]). There exists a constant ¢ > 0 such that the following holds. For all z = E+in
such that E € [—10,10] and n € (0,10],

c< Imee(2) <1 —en. (2.4)
Set k = ||E| —2|. If |E| <2, then

eV + 1 <Immee(z) < ¢ 'WeF . (2:5)

2.2 Wigner matrices. We recall the following fundamental estimates on Wigner matrices from [45]
Theorem 2.1] and [45] Theorem 2.2]. In this theorem and throughout this paper, we will often use the
control parameter

¢ = exp (Co(loglog N)Q) , (2.6)

where Cy > 0 is a constant depending only on the constant ¢ from (|1.3), whose value is fixed by the following
lemma.

Theorem 2.2. Let H be a Wigner matriz. Then there exists Cy > 0 such that the following claims hold.
(i) There exists ¢ > 0 such that
P (L{H {imte) ~ meto) = @}) <o (—¢) (2.7

and

L 5. > i ST <ec !t —°). .
P (U {i,jrélﬁ},(]\l]] Gij(2) — diymse(2)| = ¢ N + N??}) < exp(—¢°) (2.8)

zeH

(ii) There ezists ¢ > 0 such that, defining k = min(k, N + 1 — k) and vy as in with v = pge,

P (Hk € [1,N] : | Mg — | = @I%_%N_%) <clexp(—¢°). (2.9)

Remark 2.3. In [45], (2.7) and (2.8]) were shown for z in a compact spectral domain. The extension to all
z € H follows from |14} Section 10].
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2.3 Generic B-ensembles. We recall that -ensembles were defined above in (|1.9), and we retain the
notation from the previous section. For z € H, let

N
_ [ dpv(z)
s(z) = sn(z kz)\kiz (z)—/]R o (2.10)

The following will be key to the proof of Theorem It follows from |25 Remark 2.4]

Theorem 2.4. Under the assumptions (A1), (A.2) (i), (A3) and (A4) there exist constants C,c,7] > 0 such
that for any g =21, N> 1 and z=FE+in with 0 <n <1 and A—n < E < B+ n, we have

(Cqy* ,  CieeN
(Nm)e " [z = [0z = BJs/>"

E[]s(2) —my(2)]] <

We will also use the following rigidity estimate, which directly follows from [25, Lemma 3.8].

Lemma 2.5. There ezists ¢(V') > 0 such that for any N > 1 and k € [1, N| we have
,u (\)\k — Y| > Nfg(E)*%(logN)%) < ¢ lemellos N)®,

2.4 Resolvent identities. For M € Maty and any differentiable f : R — R, we set

d

8i_jf(H):$

f (H + tA(ij)) , (2.11)
t=0
where A(¥) € Maty is the matrix whose entries are zero except in the (i,4) and (j,4) positions, in which
case they equal one: Al(d] = (0051 + 0j103) (1 + 5”)_

Given M, M € Mat N, with resolvents G and G respectively, it follows immediately from the definitions

that B . B
G-G=GM - M)G. (2.12)

Additionally, the following resolvent identities are well known. The first can be found as [14, (3.6)]. The
second is a straightforward consequence of (2.12)) and the definition (2.11)). The third is an immediate
consequence of the spectral decomposition of G(z) [14, (2.1)].

Lemma 2.6. Given M € Maty, let G(z) = (M — 21d)~! denote its resolvent.

(i) For anyi € [1, N],

ImGy;
12 i
Z 1G] T (2.13)
1<GSN
(i) Fori,j,k,l€[l,N]J,
8leij = —(GikGlj + Gile]’)(l + 5kl)_1~ (2.14)
(i11) Fori,j € [1,N],
|Gij(2)] <. (2.15)

2.5 Eigenvalue overcrowding. We recall the following overcrowding estimate. It is contained in [72,
Theorem 1.12], which is stated in greater generality for Wigner matrices with subgaussian entries, but we
need only the special case of the Gaussian ensemble.

Theorem 2.7. Let {y;}Y, denote the ezgenvalues of GOEyN. For any 0 < v < 1 there exist constants
C(y),c¢(7);7v(y) >0 such that for any k € [v5*,7N], € > 0 and E € R, we have

P(H’” © {E N iﬂ}’ g ’“) < (CepbmF e, (2.16)

A similar bound holds for GUEy, with (1 —~)k? replaced by (1 — )k
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3 MAXIMUM FOR LOG-GASES

This section contains the proofs of Theorem [I.9) and Corollary The proof of Theorem [I.9]is contained
in the first three subsections, and the proof of Corollary [I.10]is given in Section [3.4}

We give the proof of Theoremhere in the case where we suppose (A.2) (i) holds. Under the assumption
(A.2) (ii), some extra care is needed such as working under conditional measures. We explain the necessary

changes in Appendix

3.1 Upper bound for the real part. By monotonicity of n — log|E + in — A|, n > 0, and the estimate
Jlog|E — X dpy(X) = [log|E +ie — A|dpy (A) + O() uniformly in E, there exists a fixed C' > 0 such that

sup ReLn(E) < sup Re Ly (E + 1) +C. (3.1)
E€[A+k,B—K] E€[A+k,B—K] N

Let J = [A+ £, B—K]NN~'7¢Z, where ¢ > 0 is an arbitrary small constant. For any E € [A+ r, B — ], let
E’ be the closest point in J, z = F + + and 2/ = E' + &. Then from log(1 +¢) = € + O(e?) and recalling
the definition of s(z) from (2.10)), this implies (in this section we abbreviate m = my)

1
_ 2
ReLn(z) —ReLn(2") =O((z — 2')N(s(z') —m(z"))) + O ((z -2 Z |Z/_)\12> +0(1)
= N°0(|s(2") = m(2)]) + N"2¢O(Im s(z")) + O(1). (3.2)
Next, Theorem (with ¢ = log N) together with Markov’s inequality gives

_ 7/10) < p—200
Ee[AIE?(B—m]P (|s(z) m(z)| > (log N) ) <N (3.3)

for large enough N. Together with the boundedness of my on compact sets of C (see (B.3])), this gives

P (EIE’ € J:|s(2)| = (log N)7/10) < N0, (3.4)
We conclude that
P < sup Re Ly (F) < sup Re Ly (E +iN™1) + (log N)g/w) >1-—O(N100), (3.5)
E€[A+k,B—K] EeJ

We now control the increments of Ly along the line segment {Rez = E,N=! < Imz < 1} using
Markov’s inequality, where we set
(log ')1000
N =—">
N
throughout this section. For F € J, we denote z = z2(E) = E+i/N and z = E +iny. Then for any fixed
€ > 0 and p € N, we have by a union bound that

(3.6)

P(3E € J:ReLn(z) > ReLy(Z2) +elog N)

p 2p
< ON"(clog N)~2 maxE / [TV — mo)(E +in) [ (NG —mn) (B +in)) | dn .. sy,
V-1 o2

EeJ ,
i=p+1
(3.7)
We now suppose that p = O(N(loglog N)~1!). Theorem gives, for E € [A+ Kk, B — K],
C'p)P/2 _ Cp)p/2
Ell(s — my) (B + in)p] < T 4 oremev < D) (3.5

) 7

for some C' = C(V, k), where the latter inequality holds because we assume 7 < 9. Equation (3.8) and
Holder’s inequality give

p 2p 2p
E|[TING—mv)(E+in)| T ING—my)(E+im)l| < (Cp)pH% (3.9)
i=1 i=p+1 i=1 "
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Inserting the previous display in (3.7]), we obtain

N+¢(Cp)P(loglog N)?P 1. (Ap)P(loglog N)?P B
P(3E € J:Rel Re L log N) < < N¥e < 100
( S € N(Z) > he N(z) + e log ) (E lOg N)Qp (IOg N)Qp )
(3.10)
log N

where A is a new constant depending on C and ¢, and the latter inequality is obtained by setting p = B Toglog ¥
for sufficiently large B. We note that for the above reasoning, the Gaussian-like moment growth (C'q)?/? in
Theorem is crucial (as opposed to an exponential-like growth of (Cq)?) .

Moreover, from Markov’s inequality and Theorem for any fixed A > 0 we have

2 _ 2
P (EIE €J:ReLy(3) > (1+e), /ﬁlogN) < N'™ee *“*8)%?10%1\’%?;E[emcw@]

205 4 1(X,0,2)~A(1+e) /2 log N
< CN'Ye maxe * FH02) A +) /5 los ;
EcJ

where we refer to and ([B.7)) for the definitions of o and p. From Lemma[B.2] we have p(),0,2) = O(1)
and (A, 0,2) = (1 + 0(1)))\2%]\[ uniformly in N, E € J, and X in any compact subset of R;. Choosing
A = /2 this implies that

P (EIE €J:ReLy(2)>(1+ s)\/glog N) < e~ (@FEmemo)loe N _y g, (3.11)

With the choice 0 < ¢ < 2¢, equations (3.5)), (3.10), (3.11) conclude the proof that
2
P (EIE €[A+k,B—k]:ReLy(E)> (1 —l—s)\/;logN—&— 2610gN> — 0.

3.2 Upper bound for the imaginary part. The proof of the upper bound for Im Ly is the same
as the one for the real part up to the following complication: There is no analogue of , as n —
> ; Imlog(E +in — A;) is not monotone. To circumvent this problem, we observe that the error made by
shifting Im log from the real axis to a scale n can be bounded in terms of a linear combination of the real
and imaginary parts of the Stieltjes transform at scale 7.

More precisely, note that, from arctan(z) — arctan(4o00) = — ;o % =-140(%) as ¢ — oo, we have
m n( - E) Uk
tan((A — E - —- A—FE)=— 0] .
arc an(( )/77> 2 Sgn( ) (/\ — E)Q + ,’72 + ()\ — E)2 + ,’72
As a consequence, for z = E + %,
’ImLN(E) —Im LN(z)‘ < 10/s(2)]. (3.12)

As in the previous paragraph, let J = [A + k, B — k] N N~17¢Z, where ¢ > 0 is an arbitrary small constant.
For any E € [A+ K, B — k], let E’ be the closest point in J and 2z’ = E’ + 5. Then the mean value theorem
yields

s(z) —s(2') =0 (Nflfc e |s'(x + iN*1)|>, (3.13)

with an implicit constant uniform in the choice of E.

Note that |s'(2)] < n7'Ims(z) < 772 (where the last inequality follows from (2.15))), so s(z) is n~2-
Lipschitz continuous. Taking a union bound over a mesh with spacing size O(N~19), with (3.3) we obtain
that

P ( max  Ims(z +iN"') > (10gN)7/10> < N0,
z€[A+kK,B—kK]|

Together with (3.12) and (3.13)), and again using |s'(2)| < 7! Im s(z), this gives

IP’(VEG[A+/<;,B—/<;],

Im Ly (E) — Im Ly (2)] < 10(]s(")| + N*C/Q)) >1- N0, (3.14)
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Moreover, the same estimate as (3.2)) holds for Im L, so that

P (VE €[A+k B -k, (E) — Im Ly (2')| < 100(]s(')| + N~ 0/2)) — N0, (3.15)
Together with (3.4), we conclude that
P sup  ImLy(E) < supIm Ly(E +iN71) + (log N)¥0 | > 1 — O(N~19), (3.16)
Ec[A+k,B—K] EcJ

Further, the analogues of (3.10) and (3.11) hold, with the same proofs up to notational changes, and
together with (3.16)) they conclude the proof of the upper bound for the imaginary part in Theorem

3.3 Lower bound for the real and imaginary parts. We start with the proof for the real part. The
proof for the imaginary part is essentially the same, and is described at the end of this section.

First step: shift to the upper half plane. For any z = E+in with n > 0, by harmonicity of z € H + log |z — A|

we have d
N x
1 —Al= /1 AN
oglz =M = [ Togle =N b
This implies
Re L /ReL de (3.17)
N ~( ( gy .

for z € R +ing, with 7y defined in . On the other hand,

7o de Mo dzx
|Re Ly (z)]- / |log |z — Al =log |z — il 55—
/[A+N,Bn]c 770 + ( - ‘T Z [A+kK,B—K]° 778 + (.Z' - E)2 ™

7o dz
+/ N/log x — Ndpy(A) — log|lz — || - ——F———=5—. (3.18
[A+r,B— | | | N ; | I mw+@@—E?n (3.18)

FOI‘;E € [A—&—n B — k]¢ and E € [A + 2k, B — 2k], we have \x—E| > K, so for such « and E we have
Therefore the first sum on the right-hand side of ( is smaller than

FTEER S T

|log |z — Aif —log |z — il
Cn Z/ sz d$<0ﬂo;l/\ﬁ%\~|10g|/\1-~n-||. (3.19)

This implies that on the rigidity event from Lemma the first term on the right-hand side of
s O((log N)*%19) = o(1); an error o(log N) would be enough for the proof of the leading order of the
maximum, so there is substantial margin here. From rigidity of $-ensembles, Lemma we conclude that
with probability 1 — O(N~19), for any z € [A + 2k, B — 2k] + ing we have

d
ReLN(z)f/ Re Ly (2) - ——— 0 &
[A+k,B—K]

—_— < 1. 2
o+ (E—x)?n (3.20)

Note that for E € [A+ 2k, B — 2k] we have f[AJm Bon] 7 =1+ 0O(no), so from the above equation
) 0

2+ (E 93)2 S
we conclude that

P sup ReLy(z) < sup ReLy(E)+1| =1-0(1). (3.21)
z€[A+2k,B—2K]+ing E€[A+k,B—K]

Second step: lower bound for the smoothed field. Similarly to [37] and [61], the proof of the lower bound for
MaX,e[A42x, B—2k]+in, Re L (2) will be an straightforward corollary of the convergence of the corresponding
field to a Gaussian multiplicative chaos measure, in the full subcritical phase.

More precisely, consider a centered Gaussian field G, defined on [A + 2k, B — 2k] with covariance
E[G, (E1)Gy(E2)] = 0(1,0,(z1,22)), where we denote z; = E; + in and refer to for the definition
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of 0. The existence of this field for n > 1y follows from positivity of the covariance, which is a byproduct of
Theorem (the limit of positive matrices is positive). From Lemma and noting that the covariance
o is defined in terms of the kernel ¢ studied in that lemma, we have

1
——log |zl — Zgl + On(l) (3.22)

E[GU(El)GU(EQ)] = 3

uniformly for Ey, Es € [A + 2k, B — 2k].

It is well known that for any |y| < v/2, there exists a random measure i, called the Gaussian multi-
plicative chaos with parameter v, such that the following holds. For any continuous f: R — R with compact
support in (A + 2k, B — 2k), we have the distributional convergence

) (VBIGy (E)
nl{g* f(E) [@\F’YGN(E) /fd/-l/",/

The limiting random variable can be written | fdu., for a certain random measure y., called the Gaussian
multiplicative chaos with parameter . We refer for example to |37, Section 2.1] for a modern treatment of
the existence and non-triviality of this limit.

In the following result, we denote Ly (z) = Ly(z) — (1,0, 2), with p defined in (B.7)

Proposition 3.1. For any |y| < V2 and any continuous f with compact support in (A + 2r, B — 2k), the
following convergence in distribution holds:

B—2x e\/B'yReZN(E—H'r]O)
li = = d
N fayon E[ev/B Re Ly (B+im)| /f Ho

Proof. The proofis a direct application of the general criterion for convergence of a non-Gaussian random field
to a Gaussian multiplicative chaos; see |37, Theorem 2.4] (which is a restatement from |62, Theorem 1.7]), and
the key technical input, the Laplace transform of the log-characteristic polynomial from Theorem More
precisely, [37, Theorem 2.4] states that a sufficient condition for the conclusion of Propositionis that there
is a constant ¢ > 0 such that for any fixed p and (3, ...,¢, € R, uniformly in z € ([A+ 2k, B —2k] X [no, ])?,
we have

E, [622:1 CkReZWk)} —E [eZi’-:l GeL(=)] (1 4 o(1)) (3.23)

as N — oo, where L is a centered Gaussian field defined on [A + 2k, B — 2K] X [no, ¢] characterized by
Var[> ¥ _, CeL(z;)] = 0(¢,0,2z). Equation (3.23) is a direct consequence of Theorem Note that we

consider Ly here instead of Ly because |37, Theorem 2.4] does not explicitly cover the possibility of a
limiting shift. O

We now apply |37, Theorem 3.4]. The assumptions of this theorem are easily verified: [37, Assumption
3.1] follows from and |37, Assumption 3.3] follows from Proposition and a standard approximation
argument to allow indicators for f. Then [37, Theorem 3.4] gives, for any fixed £ > 0,

~ 2
> = — =1- :
v <z€[A+2£r7lg}—(2ﬁ]+ino ReLul(e) 2 (\/; E) o2 N) el

From Lemma (1,0, z) is uniformly bounded, so from the previous equation there exists C' > 0 such

that
2
P Re L > — —¢gllogN —-C ) =1-0(1). 3.24
(s, Relw(@) > (/5 —2) 1oy =) =1-0) (3:24)
Equations (3.21]) and (3.24) conclude the proof of the lower bound in Theorem for Re L.

Lower bound for the imaginary part. The proof for Im Ly is identical because Theorem also gives
its joint Laplace transform, with limiting covariance o¢(0,¢,z) = 0(¢,0,2z) + O(1), a fact easily checked
with and Lemma The only small difference is about the analogue of (3.1§), i.e. bounding
f[A+K,Bfn]c |Im Ly ()] - mdﬂl By rigidity of the eigenvalues we have |Im Ly (F)| < N¢ for all E
(this is a consequence of the implications (3.28)) below), with overwhelming probability, and this is enough
to conclude.
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3.4  Proof of Corollary From the definition of Im log before (|1.5]), we have

N oo
ImLy(E) = (Z Loy — N/ pv (s) ds) .
i=1 2
Let £k € [O,N — 1], n € N, and M € [n,n + 1] be parameters such that n +2 < k < N — (n + 2). For
E € [k, Vk+1), the previous display, together with the definition (|1.6]) of ~yx, yields the following implications:

ImLy(E)>7M = Xe—py2 > = Me—ni2 = Vh-nt2 > Yk — Vh—n+2,
ImLy(E) <mM = Apop—2 <Vet1 = Ab—n-2 — Ye—n—2 < Vit1 — Vh—n—2- (3.25)

For the upper bound on the eigenvalue deviations, we take M = Tl'_l\/%(l + ¢)log N. By Theorem , we
have for any 6 > 0 that sup 4, 5. pep_sIm Ly(E) < 7M with high probability. Then taking n = | M| and
d sufficiently small (in a way that depends only on k), implies that for every j € [N, (1 — k)N, we
have

Aj =% < Vjtnt2 = Vi (3.26)
Further, if we define the quantity ¢; ,,, implicitly by

m
Yi+m — V= W(l +€j,m)a

Vk)

then implies that

sup sup €., = o(1). (3.27)

JE[LN,(1=K)N] m< (k/2)VN

Combining with completes the proof of the upper bound. The proof for the lower bound is
similar and hence omitted.
Remark 3.2. The reasoning in this proof of Corollary [I.10] could be reversed to show that Corollary [I.10]
implies the bound on the imaginary part in Theorem which demonstrates that these statements are
logically equivalent. The relevant implications are now (using the same notation)

Me—n—2 = Vh—n-2 > Vk+1 — Vh—n—2 = ImLy(E)>mM,
>\k+n+2 — Ye4+n+2 < Ve — Vkd4nt+2 = Im LN(E) <7mM. (328)

4 RELAXATION

This section proves convergence to equilibrium of sup Im Ly (subsection and sup Re Ly (subsection [4.2))
for the matrix Ornstein—Uhlenbeck dynamics defined below. Indeed we will prove that theorems
and (i) hold for matrices of type Hy, for large enough ¢t. We will finally prove relaxation of large
moments of Im Ly, which corresponds to a proof of Theorem (i) for such weakly Gaussian-divisible
random matrices H; (subsection .

As explained in the introduction, this is an essential step in the proof for Wigner matrices, which then
proceeds by density of the weakly Gaussian-divisible ensemble in Wigner matrices (the moment matching
from Section .

For local statistics in the bulk of the spectrum, relaxation was first proved in [43] by a method based
on entropy dissipation, up to an averaging on the energy level which prevents from considering observables
such as supRe Ly,supIm Ly. Another method for relaxation was introduced in [22], through a coupling
of the spectrum of H; with a GOE. In this approach relaxation follows from homogenization of the Dyson
Brownian motion: The difference between both spectra satisfies a deterministic, non-local parabolic equation
at leading order, locally and with probability 1 — o(1).

While ergodicity of Im Ly is closely related to relaxation of local spectral statistics, ergodicity of Re Ly
requires convergence to equilibrium along the full spectrum. Moreover part (ii) of Theorem requires
probability bounds stronger than 1 — o(1). Fortunately, the homogenization theory from [22] was greatly
strengthened in [68] and in [20], as it holds with the probability bound 1 — N~ for arbitrary D. For
our paper, the homogenization from [20] is most pertinent as it holds for very large times, a key fact for
our observable Ly, which reaches equilibrium only for ¢ = N~°(1). The methods from [20] also directly
cover relaxation of Re Ly, another decisive fact as the sum of the errors from the local homogenization in
Proposition below exceeds the required o(log N) accuracy to catch the maximum of Re Ly.
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4.1 The eigenvalues. We first provide a quantitative relaxation of the eigenvalues (Proposition ,
which is a variant of [20, Theorem 3.1] and relies on this work.

Let H be a Wigner matrix. We first recall the definition of Dyson Brownian motion with initial data
Hy = H. As noted above in Section [[.4] for concreteness we consider just the real symmetric case, as the
complex Hermitian case is analogous.

Let B € Maty be such that the entries {Bij}i< j and B;;/ V2 are independent standard Brownian motions,
and B;; = Bj;. Consider the matrix Ornstein—Uhlenbeck process

1 1

VN
If the eigenvalues of Hy are distinct, it is well known that the eigenvalues A(t) = (A1(t), Aa(¢), ..., An(t)) of
H; are given by the strong solution of the system of stochastic differential equations

dBk
dhe=TE+ § e | at, (4.2)
é;ék >\k — )\g 2

where the {8 }1_, are independent, standard Brownian motions. (See, for example, [2, Lemma 4.3.3].)
We now let w(t) = (p1(t), u2(t),...,un(t)) be a strong solution of the same SDE (4.2) with initial
condition p(0) = (p1, pi2, ., un), where {ug}&_, are the eigenvalues of a GOEy, denoted GOE:

d
d,uk—ﬂ-i— NZ
VN £k

*Mk dt.
M — [

For any z € H, we define
PR VR e V) (13)
t = ) .
2
where V22 — 4 is defined using a branch cut in the segment [—2,2], as with mg. in (2.3). For z € R, we
define z; = lim,_,o+ (2 +in)¢. The following key estimate on the difference between A(t) and p(t) follows
from the main result in [20]. We recall the notations ¢ from (2.6) and v, from (T.6)), and let L7 and LEOF

denote the observable (|1.5)) defined using the eigenvalues of H and GOE, respectively.

Proposition 4.1. Fiz k,e > 0. Then for any D > 0 there exist C(e,k,D) > 0 such that for all t €
(¢Y/N,1), E € [-2+ k,2 — K], and k € [1, N] such that v € [~2 + k,2 — K], we have

Im LAE(Ey) —ImL%OE(Et)‘ N max(|E — |, N 7!

) )
N Immg.(E}) NZ%t ) SONTT (44)

P(|Aw(t) - palt) -
Proof. The key to the proof is [20, Theorem 3.1], which states that there exists C'(D) > 0 such that
- N© )
P ‘(Ak(t) — () — uk(t)‘ > 157 ) <ON (4.5)

for t € (¢“/N, 1), where we define

) (X (0) = 1(0), vk = (e (4.6)

— Y%

ug (t) NTmme () Im . Z Im <
bC -1

Moreover, from [20, Lemma 3.4], for all v, v, € [-2 + &, 2 — k] we have

k=]
N2t

P <|uk.<t> C w0 > Cp ) <COND, (4.7)

Let £ € [-2+ K,2 — k] be given, and fix some £ = ((E, N) such that |E — v,| = minjcp ny |E — v;|. The
definition of 7y in ((1.6)) (with v = ps.) gives

|k =] <CN|y —vel < ON (lve — E| + |E = y|) < 20Ny, — El, (4.8)
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for some constant C' > 0. Then equations (4.5) and (4.7 together with the previous line imply that
_ CN'temax(|E — |, N~!
P( \(mt)—uk(t)) —ue(t)\ > B =

N2t
where we increased C' if necessary and used N¢ > ¢ for sufficiently large N (depending on £). We therefore
Im L (Be) —Im LOP () _ ﬁz(t)’ . We write

)> <CN D, (4.9)

just need to bound ’

N Im mg.(Ey)
N
I LOP) I ESORE) 1 SN0 0 o)
N Imms.(Ey) NImmg(E) pi(0)—Ey ) '

On the rigidity event from (2.9)), a Taylor expansion of the logarithm gives, with overwhelming probability,

N N N ,
A (0) — p;(0) A;(0) — u;(0) ;(0) = 11;(0)
Im » log (H—H =S N TR AiU) = 15 Y) 411
; 15(0) — E ; 11;(0) — E; ; 1;(0) — E, (4.11)
For the error term, on the rigidity event from (2.9) we can write
N
X(0) = ()7 C? 1 ImE,  Cy? Co?
S ‘N = I E : 4.12
1;(0) — Ey Nt N ; 1 (0) — E|2 Nt mmy(E) < Ni (4.12)

j=1

where we used ¢t < Im F; < Ct to bound Immy(FE;) < C using (2.7). This estimate on Immy (E;) also
shows that the second term in (4.11)) is negligible when inserted in (4.10))
Finally, we need to bound

N
1 0 1 1 1
NIm mSC(Et) = u] (O) — E; N j:l Im my. Et "~ Im mge(VF) w;i(0) — E,
N
1 A;(0) 1
+—= Z s(0) Im ( t) .
N = Immg ’Yz (0 R
For the first sum, from | Im mg.(Ey) —Immgc (7)) < C|E:—v| < CN7Y, Immgc(Er) = ¢, and Immg. (7)) > ¢,
on the rigidity event from (2.9) we obtain
N
1 1 1 1 Cg@
— A;(0) — (0 - Im < —
¥ 20 = 0) (e~ Ted) ™ 50 F <N SR EE
On the same rigidity event, the second sum is bounded by
N
1 E, — At 1 Cy
— 15(0 ‘Im < + ) < —-.
N 2 150 = MOl e Z 0 —EF =) < v

We have thus obtained (g, GOE () 2
ImLN E; —ImLN E; = b
()| <o, 4.13
’ N Immg.(Ey) el )‘ N2t -

which concludes the proof. O

Remark 4.2. A stronger result than (4.4]) actually holds, in terms of the probability bound: for any x,e > 0
there exists C,8, Ny > 0 (depending on x and ¢) such that for any t € (p“/N,1), E € [-2 + ,2 — &],
k € [1, N] satisfying v € [-2 4+ &,2 — k] and N > Ny, we have

ImL%(Et) —ImL%OE(Et) NYemax(|E — v|, N71)
HEMORTOR N Im mu (Er) > N7t )

Indeed the proof of from [20] relies on the rigidity estimate , which holds with probability e=¢#°,
so that the probability bound N~ in [20, Theorem 3.1] can be strengthened to e for a fixed, small
enough J, by elementary changes in the proof.

This improved probability bound is not necessary for the proofs of Theorem and Theorem (i). It
will be used in the proof of Theorem (ii).

—50°
<e %%,
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4.2 The characteristic polynomial. After the relaxation of individual eigenvalues in the previous
subsection, we study the relaxation of Ly, an a priori more intricate problem as Re Ly depends on the
full spectrum. Our results are of two types: relaxation of the full characteristic polynomial in the rectangle
[~24K,2 — K] x [N~ 1] and t € [, 1], up to an error (log N)'/? (Proposition , and relaxation of its
maximum on [—2 + k,2 — k] for t = Q(1), up to tightness (Proposition .

Proposition 4.3. For all K > 10, ¢,k > 0, the following holds. For z = E + in, uniformly in n € (N=1,1)
and t € [p~ %, 1], we have

_ _ 1/24e | _
P(_2+£r<1%x<2+ﬁ Zlog (z — et Zlog (2 — et ‘> (log N) > o(1). (4.14)

Proof. If %0 /N < n < 1, this follows from [20] and Corollary Indeed, by integrating over the parameter
v € [0,1] in |20, Proposition 2.11], we have

N
2 — ik (0)
210 — 22:1 P wo)

t

<1 (4.15)

max
—24+k<E<L24K

with overwhelming probablhty Together with Corollary - (noting z; > C~'t for some C(x) > 0 by an
explicit computation using ) it implies that

Zlog z— i (t Zlog (2 — et ’< (log N)* (4.16)

max
—2+Kk<E<2+k

with probability 1 — o(1).
We now consider the case where N=1 < Imn < p'%/N, and denote z = E +ip!%/N. Given that (4.16)
holds for z, we only need to prove that

N N ~
z—pe(t) Z — p(t)
E log Y E log — <

PSP — — (1)

(log N)Y/2+e (4.17)

with probability 1 — o(1) to complete the proof.
We divide the sum in (£.17) into two parts, depend on whether |y, — E| > N~'/2 or not. For the terms
such that |yx — E| > N~1/2_ by the rigidity bound (2.9) and the Taylor expansion for x ~ log(1 + z) we

have
~ B — 2+ p(t) — A(t)
> [l m) - Cos-mt)| = X fog (14 TS
|y —E|>N—1/2 |[yx—E|>N—1/2 g
Z—z| ) =) Cp** 1 @3
< < < =o(1).
c ¥ ||| N el < i =W

[y —E[>N~—1/2

The same holds when replacing pu with A. Hence to prove (4.17) we only need to obtain the following bounds
for the terms such that |y, — E| < N~1/2:

o _ . 1/2+e
_p max Z log(z — ug(t)) Z log(z — Ak (t))| < (log N) ) (4.18)
[y —EB|<N—1/2 [ve—E|<N—1/2

and the same bound with z replaced by z. In the following we prove only (4.18)), as the proof for Z is the
same. For this, we now bound

> o) - X s w0 (4.19)

|y —E|<N—1/2 [yx—E|<N—1/2

z — ug(t) z — px(t)

< log Z— &Y log Z— &Y 4.20
2 ‘ngAuw‘+ 2 W0l

Iy —E|<N /2 |y —E|<N /2

|k (t)—E|<(log N)* N1 (log N) N~ Jur(t)—E|<p®N~!
z — pu(t)
log ————%]. 4.21
+ > B ) (4.21)
[y —E|<N /2

P ON T ()~ B
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We begin by considering the contribution from the first sum in (4.20)). First, suppose that |z — ug| = |z — Agl.
Using |log |1 + z|| < log(1 + |z|) for |1 + z| > 1 and Proposition [4.1} we obtain that with high probability

s =] <o ()
v ([t 0 (o)) e

By Corollary we have for all n € (0,1) that P(G,/) =1 — o(1), where

Gy = { max

—24+Kk<E<2+k

Zlog (21 — i (0)) — Zlog (2 — )\k(O))‘ < (log N)E} , Z=E+iy (4.23)

and the implicit constant in the o(1) term depends only on the choices of K, ¢, and x. On G,, using
Imz > N~!and [N(z — ux(t))| =1 in ([4.22)), we obtain

Nemax(|E — x|, N71)
t

og =201

< lo 1+ 2(log N)¢ +
BRSO g( (log )

> < Celoglog N. (4.24)

In (4.24)), we used that |ux(t) — E| < (log N)¢/N implies |E — v;| < Cp/N when rigidity (2.9) holds. The
same bound as (4.24) naturally holds for |z — pk| > |z — Ag|. Thus for the first sum in (4.20) we conclude
that

— et log N)®
Z logpw‘ngloglogNHWk—Eé(og)H. (4.25)
lve—E|<N~1/2 2= A(®)] N
-
| (8)— B|<(log N)* N ~*
Theorem [2.7| applied with k = (log N)'/? gives
(log N)* 1/2
P(Hpk—ﬂ <[> (log N) =o(1). (4.26)

Then (4.25) and (4.26]) together imply that, with probability 1 — o(1),

3 ’log Z_“’“(t)‘ < C(log N)V/2+e. (4.27)
lve—E|<NT1/? 2= Mlt)
lpr ()~ E|< (log N)*N~*

We next consider the second sum on the left side of (4.20)), and work on the event G,,. By Taylor expansion
and Proposition

2z — pp(t) o LH(E,t) — LSCE(E, ) N max(|E — x|, N71)
oo S5t | < Jos (1 + 5t o (e ) e
(LM(E,t) — LEOF(E, 1) N max(|E — 7|, N°1)
o (S o (R ) 29
_ C(log N)=/? N CN-*tet-1lyp . C(log N)=/? (4.30)

~ Nlz—pr(t)]  Nlz—pr(t)] ~ Nlz— ()]

In the second term in ([4.29)), we used rigidity and |ux(t) — E| < ¢ N~! to show that |E — ;| < 2pN 1.
We now bound

1 1 . .
m< Z WHmk—fﬂE[QJ/NQ]JA/N}H: (4.31)
(log N)¢ /N<lpn—E|<groo/n 1=~ HE 1<j< A(log log N)?
where A > 0 is a constant depending only on the constant Cj used to define ¢ in ([2.6)). Set 7 = (log N)~/2
and define the event ,
. . 27
a2 ={ |t - B e 22w | < 2 (1.32)
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From Theorem applied with v = 1/2 and k = 77127, we have

P ((Af)c) <exp Cl log(CT)(Qj/T)Q) + exp (—N°) (4.33)
for all j < A(loglog N)2. Define
A= N ATE (4.34)
1<k<N

0<j<A(log log N)?

From (4.33)), we obtain using a union bound that
P(A)=1-0(1). (4.35)

On the event where both A and the rigidity estimate (2.9) hold, by (4.31]) we have

! 1
— Z == < A(log N)1/2(log log N)2 < (log N)1/2+g/4' (4.36)
(log N)¢ /N<|pup—E|<@'00 /N |2 — g (t)]

Combining (4.30), and (4.36)), we find

lve—E|<N~1/2
(log N)*N~'<|ux (1) —E|<p N~}

z — pug(t)
log )

‘ < (log N)Y/2+e, (4.37)

Finally, we consider the sum in (4.21]). By Taylor expansion and rigidity (2.9)), we have

— g (t
)
-y —
lyk—E|<NT1/? g
PO NI e (£)— |

- Y WO-m)— 0 v om0 g

—1/2 —1/2 |Z_/\k(t)‘2
|[ve—E|<N [ve—E|<N
NI ()~ B NI ()~ E)|

The above error term is again bounded by rigidity, as it is of order ]f,—z D k100 ]IX—; = o(1). For the first
term on the left side of (4.38]), we use Proposition [4.1| to write it as

LH(E,t) — LGOE(E, t) 1 N 1
’ . g —— + 0 —~ g _ 4.39
N O\ |z = Y|’ (439)
|y —E|<N /2 [y —E|<N~1/2
e N g (1) - E| e N |y (1) - E|

with overwhelming probability. The second error term above is again o(1) by rigidity. For the first term in
(4.39), we work on G, to obtain the high-probability bound

(log N)® Z 1

(log N)® 1
< 4.40
N Z— Ak N Z Z— Vi ( )
|y —E|<N~1/2 |y —E|<N /2
e O NI g (1) - B e ONTI g (1) - E|

(log N)* |A\e — V|
+ — —_— . 4.41
N 2 2 — 7l @4

|y —EB|<NT/?
@ ONT I k(1) —E|

The second term above is again negligible by rigidity. Let kg be the index that minimizes |E — ;]| for k < N.

In the right side of (4.40)), the contribution from |k—ko| > N'/* is negligible by rigidity. In this term, we may
then replace the summation over indices such that |y, — E| < N=%/2 and ¢'%N~! < |ux(t) — E| with one
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over indices k such that N¢? < |[k—kq| < N'/%. In this replacement, any indices with | (t) — E| < p'®°N~!
may be restored as necessary using the arguments leading to (4.37)).

Note that Im —— = —2— and
2=k [z=7k]
c|k — kol ¢ Mk — kol
<IE -l < 4.42
—Hol g < (1.42)
for k > p?N by rigidity and |y, — E| < CN~1. Then

1 CN?p CNn
Im < < . 4.43
Y omle oy oo w1

|ve—E|<N~1/? Np2<k—ko<N1/4

PONTIL (1) —E|
Further,

Rez<1+1>=

N2 <h—ko<N1/4 2=k Z = V2ko—k

2F — Yk — Yoko—k 1 1
E — _ — . (4.44
2 ( |z — ]2 (B = ako—) |z — l? (4

2
z ol
P2 N<k—ko<N1/4 | 2ko k‘

By a direct computation, we have

2E — vk — Yarg—k = O((k — ko)*/N?). (4.45)
Together with (4.42) this gives
2E — Vi — Voko—k 1/4
= O(NY%), 4.46
> i (N4 (1.46)

P2IN<k—ko<N1/4

Also, using (4.45)) and (4.42]), we compute

1 1 _ Uz =ako—kl = |2 = WD (2 = Yookl + 2 = )
2 2= 2 3 (4.47)
|2 = vl |z — Yoko—kl |2 = 22 — Yaro—k]
CN73|k — ko|? N
=0(—+——-)=0 . 4.48
( N=4(k = ko)* |k — kol (1.48)
Putting (4.46]) and (4.47) into (4.44)), and combining this with (4.43]) and our previous bounds, we find
— t
3 log (2= | _ o). (4.49)
z— )\k(t)
|lye—E|<N~1/2
o1 N 1< (1)
We finish the proof by combining (4.27)), (4.37), and (4.49). O

The following Proposition directly implies Theorem In the statement and its proof, we abbreviate

N
L} (2) = Z log(z — xy) — N/log(z — A)psc(A)dA. (4.50)
k=1

Note that the proposition below uses Theorem in its proof, but there is no circularity in the sense that
the proposition is not used in proof of Theorem |1.2

Proposition 4.4. Let k,t > 0 be fized. Then tightness holds for the sequence of random variables

sup ReLX(E)— sup ReL)(E )
(|E\<2—n N( ) |E|<2—k N( )>N21
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Proof. For the proof we define
my = sup ReLk!(E).
|E|<2—k

We will prove that for any € > 0 there exists C' > 0 such that for all N we have
P( sup ReLM(E)>my—C|>1—c¢,
|E|<2—kK

and the same result holds when permuting g and A. The claimed tightness then follows directly.
In the following, we denote

o Im L (E) —ImIRO(Ey) 1 ol
E= N Imme.(Er) =N TN
Consider the following events depending on N and sometimes additional parameters M, > 0:
A=A = {|ReL’J(;(E+i?7)7ReL;\Vt(E+im|<M}, (4.51)
|[E|<2—kK
B = B(M) 4.52)
=N {y(Re LK (E+in) — Re L (BE+i7)) — (Re LY (E+in+{g) —Re LY (E+if+(g))| < M} , (4.53)
|E|<2—k
c=con= {} Re L (E + i + £g) — Re LY (E + i)| < M}, (4.54)
|E|<2—kK
D =D(M) = { sup  (|LN (Ex)| + [LR (B)]) < M} , (4.55)
Ee€[—2+k,2—K]
10
E=E() = sup Re LN (E +1in) < (1 + —=) sup Re LN (E)| +3p, (4.56)
Ee[—2+K—08,2—Kk+4] N6 Ee[—2+k—28,2—Kk+26)
log N
F=F(@)= sup Re LY < 222 4 (4.57)
Ee[—2+k—26,—2+K]U[2—K,2—Kk+20] 10
by log N by
G= sup RelLly > N sup Re Ly <10logN ». (4.58)
E€[2+r,2—K] 2 Be[2+5,2— %]

From , there is some fixed C7 > 0 such that, for any N, there exists |Ey| < 2 — k such that
Re LK (Ep + in) = my — Ch.
Therefore, on A we have
Re L% (Eo + in) — Re LK (Eo + i) + Re LY (Eo + i7) > my — C1 — M,
and on AN B we can write
Re LY (Eo + in + £g,) — Re LN (Eo + i + {5, ) + Re LY (Eo +i7j) = my — Cy — 2M.
On AN BN C we therefore have

Re LY (Eo + in + £g,) = my — Cy — 3M.

Assuming our parameters satisfy M/N = o(d) and l(}\g,év =o(l),on ANBNCNDNENG this yields

sup ReL?G(E)}mN—Cl—ZLM—lO.
|E|<2—Kk+28

Finally on ANBNCNDNENFNG we obtain

sup Re LN (E) = mpy — Cy —4M — 10.

|[E|<2—kK
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The proof will therefore be complete if we obtain that, for fixed e > 0, each one of the ensembles A, B,C, D, E, F,G
has probability larger than 1 — e for large enough N. For A(M),C(M),D(M), E(§) and F(§) this will be
true for the choice 6 = N~1+% 9 € (0, %) arbitrary, and M fixed, large enough.

First, Corollary [A-4] gives P(D(M)) > 1 —¢ for some fixed M = M (e, ) and large enough N. Then from
(4.15) we have P(A(M + 1)) > P(A(M +1)ND(M)) > 1 — ¢ for large enough N.

To bound P(C'), note that inf|g|<o_, Immge.(E£;) > ¢(k) > 0 so that on D(M) we have {r = O(1/N).
Therefore on the rigidity event from and on D(M), a Taylor expansion gives

1
2 —
*O<%§ﬁE+m—MwP>

< CyNlp. (4.59)

‘ReL’R,‘(EJri?;JrEE) fReth(EqLiﬁ)’ <l

1
zi: B+ 17 — A (t)

for some fixed Cy = Cy(k). Hence there exists M = M(H, ¢) such that IP’(C(M)) > 1 — ¢ for large enough N.
Moreover, Theorem [1.2]implies P(G) > 1—¢ for large enough N, and similarly implies P(F) > 1—¢
for 6 < 1/10.
We now prove that for > 0 we have P(E) > 1 — ¢ for large enough N. First, similarly to , with
probability 1 — O(N~2%) we have, for any |E| < 2 — k + 6, for our choice § = N1,

n v

At . P

-2+ 2-3]

Moreover, from Theorem with probability 1 — o(1) we have

d
Re LY (u) - L i‘gmlogjv.ggl

/[2+'5,2+n25]u[2n+26,2’;] n”?+(E—-u)? 7

for any |E| < 2—x+4d. With above two equations we obtain, with probability 1—o(1), for any |E| < 2—k+9,

. n du
ReL*t(Eer)g/ ReL*f(u)~7—+2
N [—24k—26,2— r+25] N "+ (E—-u?
Ul du 7 A
< sup Re LY (u / —_—— —— +2< (1 +10= sup Re Ly (u)| + 2,
u|<2—r+26 v () [—24n—0.2—nto] TP+ (B —u)? ( 5)| u|<2—r+26 v (vl

which concludes the proof that P(E) > 1 — ¢ for large enough N.
Finally, we prove that P(B) > 1 —¢ for large enough N. First, we can easily ignore the contribution from
eigenvalues close to the edge, because for any |E| < 2 — k, we have

Y (og(E+in—p;(t)) —log(E-+i—pu;(t))) — (log(E+in+Lp—X; () —log(E+if+Lp—A;(1)))]

Jllvil=21<1y

< Y ilp w0l
= E+in—p:(t) E+in+lg— Nt
Jillvs—2l< & +in — p;(t) +in+Le ;(t)
1 1

+C E Th . + :
_ o ‘|E—|—1n—uj(t)|2 [E+in+ (g — X\ ()2
Jllvil—=21< {5

71 =
<NTHE

where the last inequality holds on D and the rigidity event, for any fixed £ > 0 and N large enough.

Now fix « such that 7, — 2 < k/10. From Proposition with high probability we have, for any
k€ [aN,(1—a)NJ,
< N_2+g.

k) = aet) = £,

Thus choosing ko such that |E — v, | < %, C3 = C3(k), and £, — g = O(p?(|k — ko| + 1)/N?) (from (4.7)

and (4.13))) we have -
N¢ + |k‘ — ki0|

Ant) = () = €] < Crm——
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for some Cy = Cy(k). Note that for k close to kg, the above error term is much smaller than the regularization
scale 1, so that by Taylor expansion we obtain

. . Cs N& + |7 — kol
Z log(E +in — pj(t)) — log(E +in+ {g — A;(1))] < N2 Tk d | S Cs
jzaN jzaN N
for some constants Cs(k, ), Cs(k,€). This concludes the proof with the choice M = Cg + 1. O

4.3 Large moments. We now prove quantitative relaxation for large moments of Im Ly. We denote
Trh(M) = Trh(M) — N [ h(z)psc(z)dz

Lemma 4.5. Let H = Hy be a symmetric Wigner matriz and k,e, A > 0. Then there exists Ng = Ny(k,e, A)
such that for any E € [-2+ k,2 — k], 1 <p < Alog N and t € [p?,1] we have

E [(T71 o0y ()] < (;Q +e) pP(log N)P.

The same bound holds for Hermitian Wigner matrices, with the prefactor (# +e)P.

Proof. We first prove an equivalent concentration result for the Gaussian ensembles, and then extend it to
the Gaussian divisible ensemble thanks to our results on relaxation of the Dyson Brownian motion.

First step: Concentration for GUE and GOE. The proof first requires some concentration estimates for the
GUE and GOE. From [56, Theorem 1.1], there is a C; such that uniformly in « in any compact set and
x € [-2+ K,2 — K] we have
J— 2
Egugle?™ e (@]  Crem o8N, (4.60)

With Markov’s inequality, optimization in ~y gives

Pus ([Tl g oo (G)] > @) < Cre’t 8N =7 < 0o~ v O log N=Br?aq (4.61)
GUE [E,00) r)x L€ S %1 wg BlogN 1€ oy BlogN .

=

for any fixed, arbitrarily large B, uniformly in =2+ x < E < 2 — &, with C; = C1(B, k).
For the GOE, we follow |74}, Proof of Lemma 23] and write the equality in law

__ 1 __

where G5 is a GUE, G and G are independent GOE, and X is a random variable satisfying | X| < 2 almost
surely. Together with (4.60) this implies

— 2 o
(Eonle™™ ™o (D))" < 1™ Equgle e (9]  Cper* 18V,
Similarly to (4.61]), we conclude that

. 2.2 2.2
Peon ([TrL g, 00y (G)] > 2) < Coe TN Lycpiogn + Coe” 2 108 N=BT’%] - Blog N (4.63)

for any fixed, arbitrarily large B, uniformly in =2+ x < F < 2 — &, with Cy = Cy(B, k).

Second step: The weakly Gaussian-divisible ensemble. We only consider the symmetric universality class (the
proof for the Hermitian one is identical from now), a weakly Gaussian divisible matrix H; with spectrum
A(t) coupled with the spectrum v(t) of G, a GOE matrix. Define the good set

~ ImL%(vZ)—ImL%(vi)‘ - NE}

o= N {0 - REAGD-ROD| T

KN<EL(1—K)N

ALl o2
N e =i+l =l < 2057583
1<GSN,s€{0,t}
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From Remark [4.2) and (2.9) we have P(%) > 1 — ¢%°" for a fixed § > 0. For p = O(log V) this implies
E [[Te0y o0 (Hy)[Pge] < N 7972 < 1.

We now bound
o 100¢ o o
E[|Trly o0) (He) [P 1g] = 2p/ WP (P (Trll o) (Hy) > 0, 9) + P (Tl o) (Hy) < —u, %)) du
0

We only consider P (ﬁ]l [2,00) (Ht) > u,g), as the same proof applies to the other term. We define ~; the
quantile closest to z, n = |u/7] and j = k —n + 2. With (3.25) and the definition of ¢, there is some
¢ = ¢(k) > 0 such that for any 6 € [0,1/10] (eventually we will choose § — 0) we have,

P (Trlljp o) (He) > u,9) <P (X;(t) =5 > 1 —75,9)
< Poor (5(t) =75 > (1= 0)(y — 73)) + B(IIm LY (7)) > cfu) + P(| Im LG (7})] > chu).

We first bound the above GOE probability for different ranges of u (remember j = j(u)). From (3.28)
and (4.63) we have the following: For any e,x, B > 0 there exists C3(e,x,B) > 0 such that for any
€ [-2+4+ k,2 — k] and u € [0,100¢] we have

‘U.27T

2
Pcor (1;(t) —v; > (1 — 0)(y — ;) < Cge” 17900 21°gN11u<BlogN+Cse # log N=B(1-0)(1-2)x* “Lu>Blog N-

This implies

100
2 / WP P (5(t) — 7 > (1 - 0)(k — 7)) du
0

S w22 oo 2 2
< Cs2p / w21~ (00 35 4y 4 Cy2p / e UL )
0 Blog N
(4.64)

The first term is bounded with Cy(B, k,¢) (32 + afe, 0))" p?(log N)P by induction on p, where a(e,6) — 0
as e,0 — 0.
For the second term, if p < B(log N)/10 it is bounded with

B272(1-0)(1—¢)log N

2
C32pe™ 2 (Blog N)?" < 2C; (? +v(0, 5))ppp+1(log N)P,

where v(6,¢) — 0 as 6, — 0, and we have used sup, wPe=F = pP(2/(er?))P. We have therefore proved
that for any a > 0, for € < eg(k, ) and 0 < Oy(k, ), p < B(log N)/10 and N > Ni(«, k, B) we have

1004 2
219/ u ™ Paop (45(t) = 75 > (1= 0) (v = 5)) du < (5 + @) P (log N)”.
0

We now consider 2p foloow u?P~1P(| Im L%OE(’y;)\ > cfu)du. Note that this could not be directly interpreted
as a moment because j = j(u). A direct calculation based on (A.3) gives, for any p < D(log N)/10,

3p

100¢ Cp
2p/ uzp_l]P(HmL%OE('y;ﬂ > cfu)du < 0—7(log log N)?p=
0

where C7 = C7(k, D). The same estimate holds for 2p foloow w?P~P(| Im LY (v4)] > cfu)du. We choose 6 — 0
satisfying 6 > (log N)~1/19 5o that for any p < D(log N)/10 and N > Ny (k, , D) we have

07 2p,, % 2 PP P
eTp(loglogN) D2 S(Q—i-a) pP(log N)P.
This concludes the proof. O
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5 MOMENT MATCHING

This section contains moment matching lemmas that are used in the next section to establish our main
results for Wigner matrices. Section[5.I]provides a comparison result for the real part of the log-characteristic
polynomial. Section [5.2] establishes results for the deviations of the eigenvalues from their classical locations.

5.1 Real part of log-characteristic polynomial. Given parameters r > 0 and x € [N~1, 1], we define
the line segment
Lry={2=FE+incH:|E|<2—-rn==c} (5.1)

Given M € Maty with eigenvalues {\;},, we will study the observable

max glog |zi — Aj] — N/Rlog |zi — Al dpsc(A) |, (5.2)

where J is an index set satisfying |J| < CN for some constant C' > 0 and the points {z; },cs satisty z; € L, 5.
We set

oy = E log |z; — Aj| — N/ log |z; — Al dpsc(N), o= (ai)ies- (5.3)
» R
j

Using the fundamental theorem of calculus, we write

NlOO d/r]
Then
NlOO
_ : 77100 .
a; =Y log|); — E—iN'"| - Im/ Nmy(E + in) dn — N/ log |z — A dpse(N). (5.5)
- x R

J

We also define a regularized version of a;:
NlOO
q; = Zlog| — E—iN'09 — Im/ Nmy(E + in) dn — N/ log |2; — M| dpsc(N).
; T R
J

(Of course, the first sum is simply Nlog| — E — iN1%|, but for comparison with (5.5, we write it in this
form.) As before, we write & = (&;);e, and suppress the dependence of & on z and r in the notation. The
following lemma shows that max;c s &; is a good substitute for max;e s a; (that is, (5.2)).

Lemma 5.1. Let H be a Wigner matriz and fix v > 0. Then there exists C(r) > 0 such that for all
r e [N"1H1],
sup P (|la— alloc > CN7) < CN—P. (5.6)

2€Lr o

Proof. This follows from differentiating y + log|y — E — iN'%| in y, then using the eigenvalue rigidity
estimate (2.9) and the fundamental theorem of calculus. O

Given a vector w € R/l and parameters 6, > 0, we introduce the regularized maximum observable
denoted

1

F(w) = Fs,(w) = = log (Z exp (5uwi)> . (5.7)

) ,
i€

The unusual notation ¢ for an inverse temperature aims at avoiding confusion with the S-ensembles. The

following lemma is elementary and its proof is omitted.

Lemma 5.2. For any w € RI’!, we have

2log N
5

sup vw; — Fg(w)‘ < (5.8)

i€

27



For the rest of this section, we fix § = (log N)? and v = 1/log N, so that
F(@) =~ 3 exp(éva) (5.9)
=52 i .
i€J
approximates (5.2 with O ((log N )’1) error, with high probability, by (5.8) and (5.6).

Definition 5.3. For any w € [0,1], M = (mij)1<ij<1\i € Maty, and indices a,b € [1,N], we define
Ol M € Maty as follows. If (1,7) ¢ {(a,b), (b,a)}, let the (4, j) entry of 0P M be equal to mi;. If (4,7) €
{(a,b), (b,a)}, then let the (7,7) entry equal wmg, = wmy . We also set @g’b)G(z) = (@g’b)M —z)7L

We recall that ¢ was defined in (2.6]).

Lemma 5.4. Let H be a Wigner matriz and fix D,r > 0. There exists C(D,r) > 0 such that

sup sup P| sup sup 0D G(2)] > Cpt® | <ONTP. (5.10)
2€[N-11]2€Ls o wel0,1] a,b,i€[1,N]

Proof. For the unperturbed matrices, w = 1, this is an immediate consequence of (2.8]). The statement for a
general rank-one perturbations can be deduced from the unperturbed case using a resolvent expansion; see
[66, (4.54)] and the following material for details. O

Lemma 5.5. Let H be a Wigner matriz and fix D,r > 0. There exists C(D,r) > 0 such that for all
ze [N 1],

P( sup sup sup ‘8§b&i(@$’d)H)‘ > Optth | <ONTP, (5.11)
we(0,1] k€[1,5] a,b,c,de[1,N]
and
sup  sup sup lafb&i(@ff’d)H)’ < ON¢ (5.12)

we(0,1] k€[1,5] a,b,c,de[1,N]

almost surely for all N.

Proof. The first and third terms in the definition of &; are constants and have derivative zero. For the
second, we see using (2.14) that

aabNmN = 8ab Z Gii = — Z Gmei. (5.13)

Therefore

N [Oapmn| <D 1GiaGril <C Y (1Gial® + 1Guil*) < = (IGaal + 1Gusl) , (5.14)

=1Q

where we used ([2.13)) in the last inequality. Similarly, for the higher derivatives we have

C C k10
N|affme|<5<|Gaa|+\abb|+|eab|>k< d (5.15)
by (5.10). Then
NIOO NlOO 1
‘afb&i‘ = 8§b1m/ ) Nmy(E +in) dn <Capk10/ ) HdngCgonlO, (5.16)
N- N-

where we increased the value of C. The remaining claim is similar and uses the trivial bound |G;;| < n~*

from (2.15)). This completes the proof. O

28



Lemma 5.6. Let H be a Wigner matriz and fix D,r > 0. Then there exist C(D,r) > 0 such that for all
r €[N 1]

P ( sup sup sup |0%F (&(Gg’d)H))‘ > C(pmk) <CONP. (5.17)

ke[1,5] a,b,c,de[1,N] we[0,1]

Also, we have almost surely that for all z € [N~1,1]

sup sup sup |0FF (&(@fﬂc’d)H)ﬂ < CON°©. (5.18)

ke[1,5] a,b,c,de[1,N] wel0,1]

Proof. First, we claim that the partial derivatives of Fs(w) with respect to the entries of the vector w € RN

satisfy
Z.
J

for any d € N. Here the sum runs over all multi-indices j = (j1, -+ , ja) with values in [1, N]%, 9; = 8,,,, and
C = C(d) > 0 is a constant. This inequality follows by stralghtforward differentiation, and complete detalls
are given in [66, Lemma 3. 4]

Using the chain rule, ) and (5.11)) imply - Similarly, (5.19) and (5.12)) imply (5.18)). O

Theorem 5.7. Fiz r > 0. Let H and M be Wigner matrices such that E[H},] = E[m%,] for 1 < k < 3
and |E[H{,] — E[m{,]| < KiN~207%2 for some K1, Ky > 0. Let S: R — R be a smooth function satisfying
1S®)||oo < Ky for k € [0,5]. Then there exists C(K1) > 0 such that if Ko > C, then for all x € [N~ 1] we
have

ang(’w)

<Csit, (5.19)
0j, ... 0},

|ExS (F5(a)) — EprS (Fs(@))| < Cp K272, (5.20)

Proof. We fix z € L, , and omit it from the notation. Fix any bijection

Y {(4,5) 1 <i<j <N} = [Lw], (5.21)
where vy = N(N + 1)/2, and define the matrices H', H?,..., H'~ by
Hy if 4(i)) <
I A (5.22)
mi; i P(i, ) > v

for i < 7.
Fix some v € [1,vn] and consider the indices (i,5) such that ¢(i,j) = . Define T: Maty — R by
T(X) =S (Fs(a(X))). We Taylor expand T'(H") in the (4, ) entry and write 0 = 0;; to find

(1) - T (6§ H) = or (60 HY ) Hyy + l(’)QT (6§ 1) 12 + l63T (6§ 1) 1,

1
+Ia4 (@(’h] H'y) H4 _|_ 65 ( (4,9) H’y) H5

w1 () i’
where w1 (y) € [0,1] is a random variable depending on H,;. Similarly, we expand T (H?~!) in the (4, )

entry to obtain

T () =T (6§ H) = o1 (00 H7 ) my; + %aZT (667 H) m2 + 1'33T (667 m)mi; (5.23)

t]

Loy (i.9) 4 Losp (gl
+ 0T (@0 i HV> ml + 0T (@w;(,y)m) ms,, (5.24)

where wy(v) € [0,1] is a random variable depending on m;;. Subtracting the previous two equations and
taking expectation, we obtain

E[T (HY)] -E [T (H")] = l1E [84T (@ff*”m) H;*j} —IEI [84 (9 ’J)HV) } (5.25)
+ S'E oo (e i) 13| - —]E oo (e 1 ) m3y (5.26)
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where we used that @(()i’j)H"Y is independent from H;; and m,;, and that E[hfj] = E[mfj] for k € [1,3].

Because H;; and m;; are independent from @(()i’j JH 7, we have
E[o'T (0 1) Y| — B |0'T (6§ 1) miy| =B [T (0§ 1) | E (1Y —mi]. (5.27)
By , , and the assumptions on S, there exists C'(K7) > 0 such that
‘]E [84T (@gmm)} ‘ < O™, (5.28)
We conclude using and the assumption on the fourth moments of H;; and m;; that

& (o' (6§ 1) mS| B [o'T (6§ ) ml|| < RNk, (5.29)

The fifth order terms may be bounded similarly, and in fact are lower order since the fifth powers h?j and

my; contribute an additional factor of N~*/2. Summing the Taylor expansions over all O(N?) indices (i, j),
we conclude that

|E[T(H)] —E[T(M)]| < CK19°7 . (5.30)
This completes the proof. O

5.2 Mazimal deviation from classical location. Using the rigidity and local law from Theorem [2.2]
the proof of the following lemma is nearly identical to |66, Lemma 3.2].

Lemma 5.8. Fiz k> 0. For all i € [&N, (1 — k)N], there exist smooth functions Xi: Maty — R such that
the following holds. Suppose that H is a real symmetric Wigner matriz. There exist constants C1,Co > 0
such that, uniformly in i and k € [1,5],

~ 1 ~ SDCl
N(H) = N(H)| € ——, sup sup R N(OLDH)| < T~ 5.31
[Ai(H) (#)| Np©: we[0,1] a,b,c,d€[1,N] [P i ) N (5:31)

with probability at least 1 — ¢~ L exp(—cyp). Here g, = Ox,, denotes the partial derivative with respect to the
(a,b)-th matriz element.
Further, uniformly in i and k € [1,5], we have the deterministic bound

sup sup lafbxi(Ggf’d)H)’ < O N9, (5.32)
we[0,1] a,b,c,de[1,N]

We write A = (A\i);ep,ny and A= (Xi)ie[xN,(1—r)N], using the notation of the previous lemma. Set
J C [kN, (1 — k)N] and define the smoothed maximal deviation of a vector v € RI’I from the classical
eigenvalue locations v; by

Fs(v) = %log (Z exp (dv;(v; — i) + exp (6v; (i — vl))> , (5.33)

icJ

where we set

T kpsc( Yk) 2
=4/ = — = (log N)~. .34
Vi B) logN 3 (5 ( 0og ) (5 3 )

We omit the proof of the following derivative bounds, since it is similar to the proof of Lemma [5.6

Lemma 5.9. Let H be a Wigner matriz and fiz D,r > 0. Then there exist C(D,r) > 0 such that

P sup sup sup |0FF (X(@gj’d)H))‘ > Cp® | <CNP. (5.35)
ke[1,5] a,b,c,de[1,N] we[0,1]
Also, we have almost surely that
sup sup sup ‘afbl:“\ (X(@S’d)H))’ < ONY, (5.36)
]

ke[1,5] a,b,c,de[1,N] welo0,1
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Using the observable Fg(X) and Lemma the proof of the following comparison result is similar to
Lemma

Theorem 5.10. Fiz x > 0. Let H and M be Wigner matrices such that E[H}] = E[m%,] for 1 <k <3
and |E[H{,] — E[m},]| < KiN~20=%2 for some K1, K3 > 0. Let S: R — R be a smooth function satisfying
8™ ||oo < Ky for k € [0,5]. Then there exists C(K,) such that, if Ko > C, then
‘IEHS (ﬁa(i)) _EunS (ﬁ;(?\))‘ < CpKa/2, (5.37)
and for any i € [kN, (1 — k)N].
5.3 Large moments. For some parameter 1; > 0 we define the function f = fg by
f=0on (—oo, E]U[3,00), f=1on [E+mn,2.5] (5.38)
17N o (—oe2) 1007, ] 2.00) <100, (5:39)
for k =1,2. All results in this section hold for n; € [1/N,c], but we now fix

_ logN
= N )
which will be enough to prove part (ii) of Theorem in Subsection
Moreover, given M € Maty we define

N
M) =) fe(\) —N/ fe(@)dpse(@),  Xp(M) = X (M) (5.40)
i=1 R
Lemma 5.11. Let H be a Wigner matriz, and fix A,k > 0. Then there exists C(A, k) > 0 such that
P|( sup sup sup ‘abe(@q(f’d)H)‘ > Cp®* | < Cexp(—C ). (5.41)
ke[1,5] a,b,c,de[1,N] we[0,1]
Also, we have

sup sup sup
k€[1,5] a,b,c,de[1,N] we[0,1]

asz(eggd)H)] < CNC. (5.42)

Proof. Since the proof is similar to previous estimates, we give details only in the 7 = 2 case to illustrate
the general principles involved. We have

02, f(N) = f"(\)(0apN)? + f'(N) 02 (5.43)

The f” term is the most dangerous. As in the proof of the previous lemma, there are at most N, (log N)¢
eigenvalues in the interval 4 where f’ is nonzero. By Lemma we have

() (QapN)? < 2N 72070 < Opic. (5.44)

where we used log N < ¢ and increased the constant C' if necessary. The claim then follows after redefining
C. This shows (5.41)) for j = 2; the other j are similar. The bound (5.42) follows from the second inequality

in (539). 0

Lemma 5.12. Let H be a Wigner matriz, and fit A,k > 0. There exists ¢(A,k) > 0 such that for all
Ee[-2+k,2—k],

sup sup P (‘X ol d)H)’ 1@) < e lexp(—c(log N)cloglos V) (5.45)
c,d€[1,N] we(0,1]

Proof. We give the details only for w = 0, since the case of general w follows by a straightforward perturbation
argument. By Equation , it suffices to bound vazl f(Xi) = N [ fdpse, and this is immediate from

29). O
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Lemma 5.13. Let H be a Wigner matriz, and fir A,k > 0. There exists ¢(k) > 0 such that, for all

Ee€[-24+k,2—K],
N
P( ZfE
=1

Proof. Note that f’ is supported on the interval 14 = [E,E + n;]. For )\; outside the support of f’, it
is straightforward to replace \; with XZ There are at most N such eigenvalues, and fo(\;) — fo(Xi) =
O(N~1¢=¢) by Lemma so the overall error from all such A; is O(¢°).

For the other eigenvalues, we know that f’ can be as large as 77{1 = N(Alog N)~1. In the interval
I4 there are at most Nn;(log N)© eigenvalues with probability at least 1 — ¢! exp(—cy®) by the rigidity
estimate (2.9). We have A — Al < N~Lo¢. Then the accumulated error is

> (log N)1/2> < e texp(—cp©). (5.46)

N~ ' N (log N)© = o~ (log N)“ = o(1). (5.47)
which is acceptable. O

The next lemma considers a moment-matching argument for diverging moments. Such estimates for large
moments appeared first in random matrix theory in [58}|79]. For the application to the accurate Gaussian
decay exponent in Theorem (ii), optimal upper bounds sharper than in [58,79] are required, which
correspond to the best possible # below. A similar result in this direction was obtained in the context of
eigenvectors in [15].

Lemma 5.14. There exists My > 0 such that the following holds. Let H and R be two Wigner matrices
satisfying B[H};] = E[RE] for k € [1,3] and |]E[HZ4J] - E[R?j]‘ < N72s where s < o~Mo. Assume that there
is No(A, k) and 6(A, k) such that

E[X,(R)]| < 6”(log N)"p?

forall E € [-2+4 k,2 — k], p < Alog N and N > Ny. Then there is N1(A, k) such that for all N > Ny we
have

E[X,(H)] < (1+¢°)P07(log N)7p” < 367 (log N)"p". (5.48)
Proof. Fix any bijection
@:{(1,5) : 1<i<j< N} = [1,], (5.49)
where vy = N(N + 1)/2, and define the matrices H', H2, ..., H'N by
He: if o(i.f) <
= i w(f j) ot (5.50)
Rij if (i, 5) >

for i < j. We also fix z throughout the argument.
Fix some v € [1,vn] and consider the indices (i, j) such that (4, j) = . For any m > 1, we may Taylor
expand X,, (H7) in the (¢, j) entry, write 0 = 0,5, and find

Xon (H) = X (0§ HY) = 0, (057 ) Hij + %82Xm (66 m) 1Y + %a%m (6w 13,
' ' (5.51)
- %a‘lxm (0§ m) i + %af’ G (5.52)

25

where wq(y) € [0,1] is a random variable depending on H;;. Similarly, we may expand X,, (H7*1) in
the (¢,j) entry to obtain a similar expansion with wa(y) € [0,1], a random variable depending on R;;.
Subtracting the expansion of X,, (H”) from (.51) and (5.52), and taking expectation, we find

E[X,, (H")] - E [X,, (H"})] = 43153 [a‘*xm (@“’”HW) H%*.] - lE [a‘*xm (@g’”m) R?]} (5.53)
+ 5'E [65 (@“Qwﬂv) HE] - —E [85 (@< (>)H7) Rﬂ (5.54)
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where we used that @(()i’j)H"Y is independent from H;; and R;;, and that E[hfj] = E[rfj] for k € [1,3].
We now proceed by induction, with the induction hypothesis at step m € N being that

EX, (@ggawm) < (1+ ¢~5)"0"(log N)"n™ (5.55)

holds for all 0 < n < m and choices of w € [0,1] and (a,b) € [1, N]*.
The base case m = 0 is trivial. Assuming the 1nduct10n hypothesis holds for m — 1, we will show it holds

for m. Using the independence of H;; and R;; from @ D 7, we may rewrite the first two terms terms on
the right side of (5.53 - as

E [0 X, (057 17) | —E[0'X,, (6§ 1) RY| = [0°X,, (6§ 1) | E (1}~ R]. (5.56)

For the second factor, we recall that ‘IE [Hfj] —E [R?j” < N7%25 = N72¢p~M_ For the first, we abbreviate
Xom = X (GSi’j)HV), write X,gf) for the ¢th derivative of X, with respect to the (7,j) coordinate, and

compute
Xy = 0" (XP™) = 2mX P X @ 4 3(2m)(2m — 1) X2 2(X@)? (5.57)
+ 2m(2m — 1)(2m — 2)(2m — 3) X2~ x )4
+4(2m)(2m — 1) X>™ 2 XD XG) 1 6(2m)(2m — 1)(2m — 2) X2 3(X D)2 X3,

The terms with even powers of X may be bounded using the induction hypothesis (5.55)) for n < m — 1 and
Lemma The bound the odd powers, we additionally use ([5.45)) to show

E| X7 < pEX P72 4 (N)*P~1e ™ exp(—c(log N)© o818 ), (5.58)

where we observe that the second term is o(1) for p < Alog N. Let B be the set where ) holds. We
findf]

E ‘]1384Xm (@g’v”m) ’ < o™ (log N)™m™. (5.59)
Here C > 0 is a constant that is independent of m. We also have by Lemma that

‘]E {113084Xm (eg’*j)m)] ‘ < ON-10, (5.60)

for some C' which does not depend on m < Alog N, 4,5, N.
It follows from ([5.59) , -, and m < ¢ that, if M is chosen large enough relative to C', then

(04X, (007 1) 1| - 1k 04, (007 1) R@H <@ ONT20"(log N)"m™ (5.61)

‘4' 4!

holds uniformly in N > Ny and m < Alog N, where Ny does not depend on m.
Let D be the event where sup, ; |Ri;| + [Hi;| < N~'/27% holds. Since the variables R;; and H;; are
subexponential, we have
P (D°) < Dy exp (—dy (log N)?loslos Ny | (5.62)

for some constants Dj(d1),d1(d1) > 0
For the terms in ([5.54)), we compute

B [0° X, (050, 17) 13| < B [100° X, (007 1) B3] | + |E [1pe0° X, (€57 1) B3] | (5.63)
< ON~5/2+56 (]E Ha5 (@g%m) H n 1) : (5.64)

4We note that the constants in the probability bound given by Lemma do not depend on ~, since the matrices HY
verify Definition simultaneously for the appropriate choice of constants. Therefore, the C' in (5.60)) is uniform in ~.
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where in the last line we used (5.62) and the constant C' comes from Lemma Then repeating the
previous argument for the fourth order term given in (5.59) and (5.60)), we find that there exists N;(A) such
that, for §; < 1/100, m < Alog N and N > N; we have

1 i _
L e (e )] < oot 55

< ON727V49m (log N)™m™ < N~27Y/8¢9™ (log N)™m™.  (5.65)
Combining and yields
|E [Xom (H")] —E [ X (H1)]| <9 °N720™(log N)™m™, (5.66)
and summing ([5.66) over all yx pairs (7, 7), we find
[E [Xom (R)] — E [Xon (H)]| < ¢~26™ (log N)™m"™ (5.67)
for any . Together with our hypothesis on E[XP(R)] this gives
E (X, (H")] < (14 ¢7%)m0™(log N)™m™. (5.68)

This verifies the induction hypothesis ((5.55) when w = 1.
To address other values of w, we consider the following expansion:

4
X (HY) = X (@ggmm) = %afxm (@g“)m) H(1— ') (5.69)
=1 "
+ %85Xm (@5‘3’7)1{7) HY, — %af’xm (e)gg’ﬂm) HY . (5.70)

Here 71,7, € [0,1] are random variables. The same argument that gave the bound shows that the
expectation of the right side of is bounded with %Hm(log N)™m™. Note this bound holds because of
the additional factors of N~'/2 coming from moments of H;;, which are enough even for £ = 1,2,3 as we
don’t sum over N2 terms. The expectation of is also bounded by (1 + ¢=5)™0™(log N)™m™ by the
reasoning leading to .

This proves

sup sup E [Xm (@Eff’b)H“’)} < (147%™ (log N)™m™. (5.71)
we[0,1] a,be[1,n]
and completes the induction. The second inequality in (5.48)) follows because p < Alog N. O

6 MAXIMUM FOR WIGNER MATRICES

This section proves Theorem[I.2]and Theorem[I.8|by combining the dynamics from Section[fand the moment
matching results from Section |5 It also relies heavily on Section 3] both its results (as the GOE serves as
the base point of our comparison), and for methods used there to smooth the corresponding fields.

As we proceed by comparison, we will need to specify the matrix ensembles related to the characteristic
polynomials: We will write LE for the quantity 7 when considering Wigner matrices as in Deﬁnition
and we will write L§OF for the same quantity when the eigenvalues of H are replaced by those of GOE .

We will first prove Theorem for the real part, and then part (i) of Theorem on the deviations
of \; — ~;, which is equivalent to Theorem for the imaginary part (see Section Indeed, while the
proof for Re Ly will go through a regularization similarly to the proof of Theorem in Section [3| we
cannot directly follow the same path for Im L: for the upper bound, a priori smoothing Im Ly (E) into
ImLy(E+ ﬁ) as in is not possible because a local law allowing is not known in the case of Wigner
matrices.

In all the following proofs, we will need an intermediate weakly Gaussian-divisible random matrix en-
semble as in the following result, which is an immediate consequence of |44, Lemma 16.2].
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Lemma 6.1. Let H be a Wigner matriz. Then there exist constants C,c > 0 such that the following holds
for any t € (0,¢). There exists a Wigner matriz H such that

H(t) =1 —tH + VtW (6.1)
is a Wigner matriz satisfying
E [f[,(t)ﬂ —E[H}], ‘E {ﬁij(t)ﬂ ~E [H;*j}’ < CtN~2 (6.2)

for k € [1,3]. Here W € Maty is a Wigner matriz and each Wij is a mean zero Gaussian random variable
(independent from H ).

6.1 Upper bound for the real part in Theorem . We start with the deterministic bound ({3.1)) in
the particular case v = pg.(z)dz, so that

sup Re LY (F) < sup Re LY (E + l> +Cy (6.3)
E€[A+r,B—r] EEJ N
where J C [A + k, B — k] has cardinality at most CoN, and C7, Cy are absolute constants.
Set t = & where K > 0 is a parameter. Let H (t) be the matrix (6.1) given by Lemm For any
e > 0, let f. be a smooth function such that 0 < f.(x) < 1 for z € R, f.(z) = 0 for x < V2 +¢/2, and
fo(x) =1for x > +/2+e. By Theorem Lemmaand Lemma if K is chosen large enough, we have

E

fe ((logN)_1 sup ReL%(z))} =0 (loglN) . (6.4)

zEJ+ 4

fe <(logN)_1 sup ReLg(t)(z)>1 —E

zEJ+4

By Proposition there exists a coupling of H(t) and GOEy such that

P ( sup. ‘Lf,(t)(z) - LJ%OE(Z)( > (log N)é+6> = o(1). (6.5)
z€J+ﬁ

Finally, from (3.10)) and (3.11), and recalling that the GOE is a f-ensemble with 8 = 1 and a quadratic
potential (see, e.g., [44, (4.4)]), we have

P | (logN)™! sup ReL§O%(z) > V2 + °) = o(1). (6.6)
zeJ+4 2
To conclude, we observe that from (6.3), (6.4), (6.5), we have

P ( (logN)~! sup Re LE(E) > V2 +2¢ | =o(1).
E€[A+k,B—K]

6.2 Lower bound for the real part in Theorem . Let I = [-2+ 2k,2 — 26] N N~'Z. We start
with a direct analogue of (3.21]), with identical proof:

]P’( sup ReLE(2) < sup Re LE(E) + 1) =1-o0(1), (6.7)
zel+ing Ee[—2+k,2—2k]

where 1) is defined in |D We take t = =% where K > 0 is a parameter, and IAi:(t) as in Lemma Let
fe be a smooth function such that 0 < fo(x) < 1forz € R, fo(z) =0for x > 1 —¢/2, and f.(x) =1 for
z < 1—¢. By Theorem [5.7] and Lemma if K is chosen large enough, we have

]E[fe ((1ogN)—1 sup ReLﬁ(t)(Z))]—E{fg ((ng)—l sup ReLﬁ(z))] :O<1og1N)‘ (6.8)

zE€I+ing z€I+ino

By Proposition there exists a coupling of ﬁ](t) and GOEy such that

P < sup
zel+ing

LY (2) = L§OR(2)| > (o Nﬁ“) =o(1). (©9)

35



Assuming that

P ((log Nt sup L§OE(2) < V2 - ;) =o(1), (6.10)

z€I+ing

the desired lower bound follows from (6.7]), , , (6.10)):
P <(logN)_1 sup ReLi(F) < \/5—25) =o(1).

E€[2+4k,2—kK]

We now prove (6.10). Equation (3.24)) yields

P ( (log N) ! LSOE() < v2— 2 ) = o). 11
(s, max,  ReZSO(2) < va-5) =o) (6.11)

Moreover,

P (Elz,w €[-2+2kr,2—-26]+in: |z —w| < —, |LSOE (2) — L§OF (w)] > (logN)g/w)
<P (az € [=2+2k,2 — 26] + inp : |s(2)| > (log N)7/10) =o(1), (6.12)

where the last inequality follows from a union bound, Theorem@ Markov’s inequality, and a straightforward
mesh argument (similar to the one before (3.14)). Equations (6.11]) and - ) give (| and conclude the
proof.

6.3 Extremal deviation with optimal constant. We now prove part (i) of T heorem
As before, set t = ¢ K where K > 0 is a large parameter and H(¢) be the matrix (6.1)) given by

Lemma Let f. be a smooth function such that 0 < f.(z) < 1 for z € R, f.(x) = 0 for |z| €
(V2 —£,vV2+¢/2], and f.(z) = 1 for z € [0,v2 — €] U [V2+¢e,00). By Theorem Lemma and
Lemma we have

mN 1
(B~ 57) |1 (12 wepmnx oy Pl =l | =0 (1) (613)

By Proposition 4.1 and Corollary |A.4] there exists a coupling of H(t) (with cigenvalues A) and GOEy (with
eigenvalues p) such that

(log N)=+=
P — ——— | =o(1). .14
(ke[[m{rr,l(afxm)m] Ak — | > N o(1) (6.14)

Finally, from Corollary we have

N c c
pCoE (T y e — 5 € /341 o). R
(logN ke[[m]{zr}gﬁﬁ)]vﬂp (v [ Ak = | € [\[ 2,\[+ 2} o(1) (6.15)

From (6.13)), (6.14]), and (6.15)) we have

PH( TN max P (V)N — Vil € [\/5—5 \[—i—&]) =o(1).

log N ke[skN,(1—r)N]

6.4 Rigidity with optimal order. We finally prove part (ii) of Theorem building on the key relax-
ation and moment matching results, namely lemmas [£.5] and [5.14]

First step: smoothed indicator for Gaussian divisible ensemble. We specify f = fg from (5.38]) to be of type

=/ n Yh((z - E)/m)1[z,00)dz where h is positive, smooth, compactly supported on [O 1 and [h = 1.
Then f satlsﬁes the bounds (5.39). Moreover, for ¢t and H as in Lemma we have

BT )] < [ bl E)/m)BToL oy (0700 < (25 4 2) PogPe (010
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where we have used convexity of 2 — 2?7 in the first inequality and the result of Lemma in the second
inequality.

Second step: smoothed spectrum for Gaussian_divisible ensemble. We now prove that the actual spectrum A
can be replaced by the smoothed one X in ([6.16)).

Let A = {’Zfil F) — Zfil f(A)| > Vleg N}, and remember the notation (5.40). From Cauchy
Schwarz and Lemma [5.46] we have

E[X,(H)1a] < N21°8N exp(—cp/2) — 0.

Moreover, by definition of A, for any ¢ > 0 and A > 0 to be chosen we bound

E[X,(H;)Lac] < [ TS (H,)| + +/Tog N) 2p]

| Tef (Hy)l o
A

B [“Trf(Ht)' + ) pﬂmﬂm)mW] +E {(A log N + logN)Qp]llﬁf(th@mﬂ

p

p
<(A+AHF (;2 + s) P’(log N)? + (A +1)*(log N)* < (;2 + 2g> p* (log N)?

for N > Ny(e, K, A). We have used the definition of A in the first inequality, (6.16) in the third one and the
choice A = p'/19 in the third one.
We have therefore proved that for any ¢, s, A > 0 there is a Ny(e, s, A) such that

E[X,(H)] < (e; +5) PP (log N)P (6.17)

for any p < Alog N, E € [-2+ k,2 — &], and t > exp(—(log N)'/17).

Third step: moment matching Let H be the Wigner matrix of interest in part (ii) of Theorem . Consid-
ering the dynamics (4.1)), the moment matching lemma [44, Lemma 16.2] gives ex1stence of a Wigner matrix
Hj such that the matrlx R = H, satisfies E[H};] = E[R};] for k € [1,3] and |E[H} E[R; | < CN72t,
where C' > 0 depends only on the constants from Deﬁnition

We choose t = =M for a fixed M > My, with M the constant from Lemma Note that t >
exp(—(log N)/19) so that (6.17) holds. We can therefore apply Lemma with R = H; and obtain that
there is a Na(e, k, A) such that

en2

E[X,(H)] < (2 + 8>ppp(log N)? (6.18)

for any p < Alog N, E € [-2+k,2— k] and N > Na. As in the previous step but in the reverse direction
now, with Lemma we obtain that the same property holds for the actual eigenvalues: for any choice of
the parameters, there is a N3(e, k, A) such that

BT ] < (25 +) pos iy (6.19)

for any p < Alog N, E € [-2+ k,2 — k] and N > Ns.
To conclude, note that for any fixed € there is a Ny (g, k) such that for any u > 1, the inequality A\, — v >
f@ R log implies that for B = v +u-(; vZ__ ). VeN log we have Trfg(H) > (1— E)ﬂ—ﬁ\/log N.

U e (e sc(Vk)
With |D thls gives

V2 «/log P U\[ _
P - . <=+ P(log N)P-((1—¢)——+/log +1 Py 2P,
(Ak Ve > u ) TN (e 5 s) pP(log N)P- €) 0e)Pu

Optimization in p then concludes the proof.

6.5 Gaussian divisible ensemble: universality up to tightness. Theorem [1.4] follows immediately
from Proposition [4.4]
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A  HicH MOMENTS OF LINEAR STATISTICS FOR WIGNER MATRICES

The main goal of this appendix is to prove Proposition [A.T] which provides estimates on large moments
(growing in N) of the semicircle law. This proposition is used in the proof of Proposition via its
Corollary and Lemma While a weaker result would suffice for the proof of Proposition for
example a bound on a fixed but large moment, it is indeed necessary to control growing moments for the
application in Lemma

Proposition A.1. Let H be a real symmetric Wigner matriz. Fiz K,k, A > 0. For every E € [-2+k,2—K],
n e [@*K, cpK], and p € N with p < Alog N, there exists a constant C(K, k, A) > 0 such that

C p
E —mee(2)|"] < [ = /4, Al
) = el < (35 ) 0 (A1)
Remark A.2. A natural approach to bounds such as (A.l]) relies on concentration for random matrices.
However, even on close-to-macroscopic scales and for bounded or log-concave matrix entries, this method
would not give accurate enough bounds for Propositziori and Lemma Indeed the concentration from
[52] yields P (N|my(z) — E[mn(2)]] > A) < ¢ le™} /7" (n = Imz), so that

E [|mn(2) — E[mn(2)]|"] < (]\Sﬂ) 2.

c

Integration of [my — E[mn(2)]| < C/(Nn?) gives |Ly| < ¢ for n < ¢, an error bigger than the order of

magnitude maxg|<2—. Ly =< log N that we aim at.

Remark A.3. For our application to Lemma[4.5] it is critical that the exponent 3/4 in (A.1)) is smaller than

1, i.e. one could not afford the exponential tail error (Z\%) pP.

We defer the proof of Proposition to Appendix [A74] after establishing various preliminary results in
the following subsections. Throughout, we use the notations defined in Section

A.1 High-probability bound on the log-characteristic polynomial. We begin with an application of
Proposition that provides estimates on the maximum of the log-characteristic polynomial smoothed at
almost-macroscopic scale.

Corollary A.4. Let A be the spectrum of a N x N Wigner matrixz and remember the notation . Let
Kk >0 and denote z = E +1in.

(i) Fiz Cy > 10. There exists a constant ¢(Cy, k) > 0 such that for every N > 1 and u € [1, ¢ (log N)3/4],

we have
P max |LN(2)| > u) < ¢ lec (oglog N)? (i) ? (A.2)
IBl<2—nmelp-C1a) Y
Moreover, for any u < Cyp, denoting ¢ = C1 logn we have
1 u 4/3 _ 3 —
P (’Lx(z)’ > ’LL) <c 16 C(lquN) Ilu<c*1(logN)3/4 +c ququ 2qﬂu>c*1(logN)3/4 (A3)

(i) Let 0 < mny < mn2 <0 be fired and € be a fixed smooth path in [—2 + k,2 — K| X [n1,m2], of finite length.
Then for every € > 0 there exists M > 0 such that for any N > 1,

P (m%z}x |Lx(z)| > M) <1l-—e. (A.4)

Proof. We start with (i). By the local semicircle law (2.7) we have

N

N
" (Z log(= - Ak>> =3 = Ny (2) = 0(p% ), (A.5)
k=1

k=1

with probability 1 — O(exp(—¢©)), uniformly in |E| < 2 — & and 7 € [, 1].
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Let 6 = =%~ and let M = M; = {ml}Lw ") be a collection of points in [—2 + k,2 — n] [0~ €1 1]
such that any z € [ 2+ K,2 — K] x [p~¢1,1] there exists m; such that |z —m;| < 105. By (A.5) and the
definition of M, we have

Ly (2)| = max Ly O(3pC1+4). A6
EE[_2+“’ZIEZ]}7(77€[¢*C1,1]| N(Z)| gé%q N(Z)| + ( ® ) ( )

Since 614 = O(1), to establish (A.2)), it therefore suffices to show that, for any z € M,

P (|LN(2)] > u) < clem )", (A7)

and then use a union bound on |[M| = O(p“1*+8) points (where we recall log,(x) = loglog and the choice
of v in (2.6])). To prove (A.7)), for some parameter n; > n we first write

m
IN(z)=N (mn(E +1is) — mge(E 4 is))ds + LN (E + iny).

To bound the above terms, we compute using the rigidity bound (2.9) and Taylor expansion of log that

i
1 1+7
=[S (1 2

=1

N N
> log(E +im — \i) — > _log(E + i — )

i=1 i=1

ZC\A Vil /m

N
< Cp'™ CQZmlnz N+4+1—i) VB3N8 L 0pt=%, (A8)
i=1

where we choose 7; = 2 for some Cy > 0. Similar reasoning shows that

N
‘N / log(E +in — u)psc(u)du — Z log(E +in — ;)| < Cp' =2,

i=1

where C' = C(C4, k) > 0 may change from line to line below. The previous three equations give (for fixed,
large enough C5), for arbitrary D > 0 and N > Ny(D),

Uat
P (|Lx(z) - / N(my(E +is) — mg(E +1is)) ds| > 1) <ND,
7
We denote Ay (z) = N(mpy(z) — msc(2)). By Markov’s inequality, for any p > 1,
2p
4 ]

/77 (IEI Ay (E + ls)|2p) ds

n

1 m
An(E +1is)ds
U]

An(E +is)ds

> u) <u PE

n

—2
<u P

2p m 2p
< u_2pC2pp37p </ dﬁ) , (A9)
n 7

where the second inequality is obtained by expansion and Holder’s inequality, and the third inequality relies
on Proposition for p = O(log N). We now recall that loge = O((loglog N)?), so that the above
probability is also bounded with

2p02p 7 (Cloglog N)*

The choice p = e~ (u/logy, N)*/3 proves (A.7)) and concludes the proof of (A.2). The proof of (A.3) is the
same, with no need of discretization.

The proof of (ii) is simpler as it does not need any discretization and only requires finite moment estimates.
Indeed it follows from the following the following two facts. First, (Ly(20))n is tight, where zo € [-2 +
K,2— K] X [m,n2] is fixed. This follows from convergence in distribution of this linear statistic (see e.g. [70]).
Then maxy | Ly (z) — Ln(20)] is also tight because it is dominated by [, |[An(w)| - |dw|, which is tight by
Proposition [Ad] with p = 2. O
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A.2 Preliminaries. We first list some preliminary results necessary for the proof of Proposition We
begin with a power counting lemma for resolvent entries. Given a parameter A > 0, we set

Di={s=E+ineH:|E|<2-A""n>p"}. (A.10)
Throughout, we let H be a Wigner matrix and let G denote its resolvent.

Lemma A.5. Fiz A > 0. There exists C(A) > 0 and No(A) > 0 such that the following holds for all z € D4
and N > Ny. For any i,k € [1, N] and random variable F(z) such that |F| < (An~1)A1°8 N almost surely,

1 & c\ 2 1 & C
E |F|'NZ|GU" <() E[|F|[|+N-AleN | |F|-NZ|GU\|GJ-,€| < —E[|F|]+N—AleN,
Jj=1 j=1

N1 N1
(A.11)
where we set G = G(z), F = F(z), and z = E +in. More generally, for any n < Alog N,
1 N C n/2 Alow N
E|IFl 5 > G G| < <Nn) E|F|+ N~AlsN, (A.12)

Jis--dn=1

Proof. We give only the proof of (A.12)), as the proofs of the remaining statements are similar. Suppose that
n is odd. We apply the elementary inequality

N | N
Z |Ga;j G| < 3 Z |Gaj|* +1Gjp|? (A.13)
Jj=1 j=1
for j = j1,J3,75 ... and the Ward identity (2.13) to show that the left side of (A.12) is bounded by

Im Gj + Im Gkk) , (A14)

n—1jn—1

1 1
E||F| +m > 5 (ImGii + Im Gjyj) - -

J2:J4,765---

1
2
n

where there are (n + 1)/2 factors in the sum.

Let A be the high-probability set from (2.8). For n > N~'/2, we have Im G; < C on A, which implies

1

1 1
E ]lA|F|-W‘ Z %(ImGkk-i-Imeg)~%(IlnGj2j2+ImGj4j4)... (A.15)
125745765+
N=1)/2 /¢ (n+1)/2 C (n+1)/2
<— (= E[|F|] = [ — E[|F]]. A.16
e (8)" Eim- () EOA (A16)

using C'(Nn)~! < 1. On A° we use the trivial bound Im G;; < n~! and the strong probability estimate on
P(A°) from (2.8]). This gives

1 1 1
E | |F] Lac o > o (Im G +1m Gj,) - - (Im G, + I G - (A.17)
J2:J4,365-+ " "
< N(n+1)/2 (A 71)AlogN e Lex (—c(lo N)Cglog]OgN) < N-AlgN (A.18)
= Nngn+l n p &) = ) :

by the assumptions on 7 and n (recall z € D), for sufficiently large N. The claim follows by combining

(AT5) and (ATD).
The proof for even n is similar, using |G}, x| < C on A to bound the left side of (A.12)) by

1 1 1
EIFl w5 > %(ImGn‘+Imszj2)"'%(ImGjnfzjnfz+ImGjn,jn)|Gjnk\ : (A.19)

J2,J4,765---
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Given a random variable X, we let x)(X) denote the j-th cumulant of X. The following lemma is
[69, Lemma 3.2]. Known as a cumulant expansion, it provides an extension of the well-known Gaussian
integration by parts formula to non-Gaussian random variables. (Observe that reduces to a single
term when Y is Gaussian, as all higher cumulants of Y vanish in this case.)

Lemma A.6. Fiz ¢t € N, Q > 0, and F € C**(R;C*). Let Y be a random variable such that E[Y] = 0
with finite moments to order £ + 2. Then

WH)

¢
Z [ FOM)| + B[ (v F(Y))], (A.20)
where Qy(YF(Y)) is an error term that satisfies
’E{QK(YF(Y))” < CE[|Y]2] sup F(”l)(t)‘ +CUE [|Y21()Y] > Q)] sup ‘F(”l)(t)‘. (A.21)
[t<@ teR

The constant Cy satisfies Cy < (CL)/L! for some C > 0 that does not depend on Q, F, or {.

Lemma A.7. Let H be a Wigner matriz in the sense of Definition[1.1. Then there exists a constant C' > 0

such that
C’k)
ij ‘\ Nk/Q )

| ™) (H, k>3 (A.22)
for alli,j € [1, N].

Proof. The claim follows by expressing the cumulants in terms of moments, and using the moment bound

ko (CR)E
The bound (A.23]) follows from the subexponential decay hypothesis (|1.3]). O

A.3 Main Calculation. Let H = H(N) be a N x N Wigner matrix. We introduce the shorthand
m = my(z), where my denotes the Stieltjes transform of H. The proof of Proposition proceeds by
bounding the moments

E[|1 + zm 4+ m?|*P], D eN. (A.24)

To explain this strategy, observe that by the explicit form of mg. in , we have 1+ zmg. + m2. = 0.
Then, since m & myg for large N (by (2.8)), we have 1 + zm + m? ~ 0. We will see later that the reverse
implication also holds, so that sufficiently strong bounds on the moments in imply the bounds on the
moments of |mg. —m| claimed in Proposition Therefore, we focus for now on (A.24)).

Let G = (H — z)~! be the resolvent of H. To bound the moments (A.24)), we use the definition of m in

(2.2) to write
N e —
E[|1+ zm + m2\2D = l(N Z (14 2Gi) +m ) (1+2zm+mAHP 1+ 2m + mQ)D] , (A.25)
which holds for any D € N. Set
P =P(m) =1+ zm+m?. (A.26)
By the definition of the resolvent, we have 1+ 2G;; = (HG);;, which implies

N
E[|P)P] =E Z HyGri | PP1PY | +E [mQPD*PD] (A.27)
zk:l

Let £ € N be a parameter, which will be fixed later. By a cumulant expansion using Lemma (setting
Y = H;y), we find that

E %ZHMGM pP-1p" | = % Z PR 1S (1 + 6 )0 (GkiPD_lﬁD) FE[Q]. (A.28)

i,k i,k
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Here Qp = Q4(z) is an error term that we will examine later, d;; is the partial derivative in the matrix entry
Hij, Kr41 is the (r 4+ 1)-th cumulant of H;; for i # j, and A, is equal to (k") (H1p) — Ky)/Fr.
We introduce the notation I, s to denote the component of the r-th term of (A.28)) where r — s derivatives

fall on Gy, and s derivatives fall on PP *IPD:

I, = “;11@ S (1 + GiArir) (9 G 05, (PD—lﬁD) : (A.29)
ik
Then (A.28) becomes
14 r
1
Z wr,sE r,s + E[QZ] Wr,s = (T> . (ASO)
== rl\s
We begin by bounding E[€,], then proceed to the I, 4 terms.
A.3.1 Truncation.
Let E[*l denote the N x N matrix with entries
(B b = 0100k + 0ip0ka if i £k, (EUM), = 6100y if i = k. (A.31)

For i,k € [1, N], we define H*) = H — H;, EI"* which sets the (i, k) and (k,) entries of H to zero.
Lemma A.8. Suppose i,k € [1,N], D <logN, A> 0, and z € Dy. Define the function F: Maty — C by
Fri(M) = Ry (M)PP~' P, (A.32)

where here R(M) denotes the resolvent of M. Choose £ € N such that £ < Alog N. Then there exist constants
C,C1(A) > 0 such that

< (4D +20) AP+ L oy N2 e N, (A.33)

E sup 04 Fri (H(ik) + a?EWf]) ‘
TER, x| <N -1/4

Proof. Fix index pairs (a,b) and (i, k). By resolvent expansion (2.12), we have
Gap = Gap + 2 Hip,GoiGroy + v Hip G oG, (A.34)

where G is the resolvent of H(*) 4 yEli*], By (1.3)), we have |H;z| < 1 with probability at least 1 —
¢ ' exp(—N?2). Combining this bound with (2.8) and (A-34), we obtain uniformly in z € D4, with high
probability, that

(A.35)

sup  max ‘éab <C
lo|<N-1/4 @b
Since P is a quadratic polynomial in m, Fj; is a polynomial of degree 4D — 1 in Gj; and m, with at most
22P=1 terms. When 8;, acts on P or P it generates a new factor

2N71 ZGjizGilk7 (A36)

2]

with a new summation index ;. Then akom has degree 4D — 1 4 ¢ when considered as a polynomial in
Green’s function entries Gy;, Gk, Gik, m, and terms of the form . The number of such terms in 3koki
is bounded by 22P~! x (4D — 1 + 2¢)’. Using , the contribution to the left side of from the
expectation on the set where (2.8)) holds is bounded by the first term of (after increasing C'). On the
low probability set where does not hold, we use the trivial bound |G;;| < 7! (from (2.15)) and the
assumed lower bound n > =, which produces the second term of . O

Lemma A.9. Let A> 0, 4log N < £ < Alog N, D <logN, and z € D4. There exists a constant C(A) > 0
such that the term €y from (A28)) satisfies sup,cp, [E[Q]| < CN—*
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Proof. By Lemma with Q = N—1/4,

’E[Qz(Hikaﬂ ’ < CE [[Hi| "2 E [ sup FEAD(HEED 4 IEW])‘ (A.37)
|| <N -1
+CE [|Hik|“21(|Hik| > N—1/4)} [sup ‘F(“l (HU®) 4 xEW)H (A.38)
zeR

The first term may be bounded using Lemma[A.8] Lemma[A.6] and the moment bound (A-23):

(CE)CZ

sup (4D +20) C*PHE - CN 218 N) | (A.39)

|z|<N=1/4

D (k) | E[zk])’

For the second term, we use the trivial bound |G;;| < ™! (from (2.15))) to obtain the deterministic bound

‘ ‘ O\ 4D+
sup ’Fi(,f+1)(H(Zk) + xE[““])’ < 2?2P (4D + 20" <n) : (A.40)
z€eR

and using Holder’s inequality and (1.3) we have

(C@C‘Z
N¥¢/2

Combining our estimates for the first and second terms of €2 yields the conclusion after using ¢ > 4log N. O

E {|Hik|€+2]l(|Hik| > N—1/4)] < exp(—eN“/4). (A.41)

A.3.2 Main Terms.

We will need to analyze the terms I, ; from (A.29)) explicitly for s < 1. For the others, we can proceed
on general combinatorial grounds. The following lemma collects our estimates on these terms. We set
P'=P'(m)=2m+ z.

Lemma A.10. Fix A > 0 and suppose D < log N. For all z € D4, we have
Ell1 o] + E[l1 1] = —-E[m?>PP—'P"] + Q, (A.42)

where Q = Q(z) > 0 is an error term satisfying

C 2D-1 c\? 2D—2 —2log N
<= — o8, .
Q\(Nn>]E[|P| }+D<Nn) E[IPPP7?] +CN (A.43)
Further, we have
|E[L,]| < C(log N)N WZ( ) [|P]2P=e] 4 N2l N (A.44)
and
|E[I2,1]| < C(log N)N WZ( ) [|P|?P~] + N—2les N, (A.45)
For r > 3 we have
(Cr)Cr . (cner © . o
|E(L0]| + |E[L,1]| < N-D7 E[|P]*P~!] + DC WN”]EUPFD 2] + CN2los N, (A.46)
Finally, forr > 2
r r+1 1/2 8071
(Cr)© - c ¢D 2D—s —2log N
Bl < Nem7 ZQ N Ny ) EIEFTTT] e ONTERER, (A.47)
so=
and for pairs (r,s) such that r > s > 2,
Cr r+1 a—1
D—a —2log N
[El ”’|\N(r 1)/22( ) E[|P|?P~%] 4+ CN 218N, (A.48)
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For clarity we prove the claims (A.42), (A.44)), (A.45), (A.46)), (A.47), and (A.48|) separately.
Proof of (A.42]). We write, using ko = N1,

1 _
E[l1 0] = Nl D (14 6ikAri1) (9ixGii) pP1p7 . (A.49)
ik

We first bound the terms with ¢ = k, which are sub-leading. Using Theorem we have

1 _
7 |E [2(1 + A1) (0:Gy) PPTIPY || < CNTIR [|P2P71] 4 CN 218N, (A.50)
For i # k, we have
(9 Gri) PPVP” = —GuGrPP~ P — GGy PP~ P, (A.51)
Considering the first term, we have
1 _ _
= ~GiGu PP P = —m2pP-1P7, (A.52)

ik

which matches the first term of (A.42)). Considering the second term of (A.51) and using (A.11)), we have

ZGmGkZPD 1p” <](VJ [|P|2D*1}+N*21°gN. (A.53)
i,k

This completes the analysis of I; . Next, we have

1 _
Ello1] = ek Z(l + 0k Ary1)Gri - Ok (PD_lPD) ; (A.54)
ik

and

2(D —1) _o=D 2D
- _TGMP’ZGMGU»PD P - S GRP ZG +Gi PP~P

D—1

O (PD—lﬁD) (A.55)

j=1 j=1

As in (A.50), we can remove the i = k terms with negligible error. For the first term of (A.55)), we use (2.8)
A.12)

and (A.12)) to get

1 D—25D C 2 2D—2 —2log N
3 [E Z GriP’ ZijGijP P l|< (Nn> E [|P'||P|*P~2] + N~2ls N, (A.56)
i#k j=1
The bound on the second term of (A.55]) is similar. O

Proof of (A.44). We write Iz = Iél) 1(3) + Ry, where 12( ¢ contains all terms with exactly one off-diagonal

resolvent entry, Ié,lg contains all terms with three off-diagonal resolvent entries, and R; contains all other

terms. Reasoning as in (A.50]), we see that R; is negligible:
|E[R:])| < NT'E[|P]?P~!] + CN—2los N, (A.57)

By Theorem [2.2] we get

[ B 3/2
‘]E[Ig(‘fg]‘ :% E |3 (Gu)*PP P || < N7V (1\?77) E [|P|?P~1] + CN—2los (A.58)
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To study Ié)lg, we perform another cumulant expansion using (A.20)):

2E[I{}] = ﬁ: Z wrsEll 5] + Qo (A.59)
r=1s=0
where
E[fm} = Nkry11Nk3E % Z (3,:;5 (GjinkGii)) (52]- (PD_l?D>> . (A.60)
i#k,j
We take ¢/ = 20log N and see that
Qp| < CN72losN (A.61)

by a straightforward modification of the proof of Lemma

We begin with the terms IAnO for r > 1. When r = 1, we define terms IAY()) for i« = 1,2,3 by the
decomposition

E[j1,o] = — Nr3E N3 Z GizilGiBiBGiQiQGiliIPD_lﬁD (A62)
i1#£42,13
“3NKsE [N Y GiyiyGiaiy GiaiyGiyiy, PP P (A.63)
L i1712,13 ]
- 2NI'€3]E N_3 Z Gi1i2Gizi3Gi3i1 GizizpD_lﬁD (A64)
L i1#£142,13 ]
= E[I{] + 3E[I(3)] + 2E[[{). (A.65)

where we have decomposed the sum according to the number of off-diagonal resolvent entries in each product,
Using Lemma on the off-diagonal resolvent entries, we find

- - C _
B[] + [E[F) < N~1/2 (Nn) E|P[*P7 4 N72loe N, (A.66)

Further, by using (2.8) and incurring a negligible error, we may replace E[f 1(13] by

_IrrLSCIE N_2 Z GizilGiQiQGiliIPD_IPD - _mSCE[Ié’lo)]. (A.67)
11712

We now turn to terms jr,O with r > 1. We observe that Lemma implies
(Nkpy1) (Nks) < (Cr)"N—T/2 (A.68)

and recall that |w, | < 1. Since every product in fr,O has at least one off-diagonal entry, by (2.8) we have
the bound

1/2
A . 1 _
wpo Bl o) < (Or)OrN =P (N) E|PPP 4 N-2loe N, (A.69)
n

We next consider the terms IAT,S with s = 1. In this case, we first note that the order r — 1 derivative of the
product of resolvent entries in I, ; contributes at least one off-diagonal resolvent entry. Next, we see that

each 0;; (PD _1?[)) contains either two factors of (A:36)), or the derivative of (A:36)). Using (A.68), this

leads to the bound 5/
. 1
‘E[Im]‘ < D(Cr)CTN~T/? <Nn> E[|P'||P]2P~?] (A.70)
We absorbed the combinatorial factor corresponding to the number of terms coming from the derivatives,
which is bounded by C", into the prefactor.
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Now we consider the case of fm with 2 < s < 7. We begin by noting that (2.8]) gives

[BLZ,.]

< (Cr)°"™NTT2|E % Z (8;,:5 (GjinkGii)> ( o (PD_lPD)> (A.71)

i#k,j

1\? 1
< (CT’)CTN_T/Q (]\77’1) E ﬁ Z
k,j

5 (PD—lﬁD )‘ . (A.72)

Here we used the fact that 8;,: *(G,iGrrGii) always contains at least one off-diagonal resolvent entry, and
again absorbed the combinatorial factor corresponding to the number of terms in this derivative into the
prefactor.

—D
For s > 2, the derivative 0, (PD -ip ) is a sum of terms that may contain factors of P and P’, and

. . . . —D— 57 .
their conjugates. Any such term is a constant times a product of the form PP—s1P~ * (P')ss (P’) ** with

s; > 0 for ¢ € [1,4]. A term with such a product came from 0;;, acting s; — 1 times on P and s, times on P,
so we must have s; — 1 2> s3, s2 > s4, and 51 — 1 4 s9 < s. We further see that d;, acted s; —1 — s3 times
on P’ and sy — s4 times on P’.

When 9;y, acts on a power of P, P, or their derivatives, it generates a new factor of 9;,m = 2N 1 Zil Gji, Gk,
where 4; is a new summation index (not appearing elsewhere), and a constant prefactor no greater than D
(by the chain rule applied to P* and analogous terms for & < D). The number of new summation indices is
then

S1 —1+S2—|—($1 —1—83)4-(52—84) =281 + 289 — 83 — 54 — 2. (A73)

Further, this number does not decrease when J;;, acts on resolvent entries instead of P, P, or their derivatives.
We introduce a = s1 + s2 and b = s3 + s4. Then, using a < s+ 1, (A.73)) yields

s+1a—2

1 1/242a—b—2
g (CT)CT‘DT‘N—T‘/ZZZ (M) E |:|P/|b‘P‘2D_a:| (A74)
a=2 b=0

s+1 1 1/242a—1
+(Cr)9" DNy (Nn) E[|P|*" " PPPPe], (A.75)
a=2

[BiZ,.]

where the second term comes from terms such that b = a — 1. After increasing C, we obtain

r+1 a
1
<(Cr)TDINTT Y <Nn) E [|P[2P=4] + CN 318N, (A.76)
a=2

i

Combining the definition of I, (A.58), (A.59), (A61), and the estimates on the I, terms, we obtain

8log N T a
1
\<z+mSC>Eu§}g}\ < ) (Cr)"DINTT2Y <Nn> E [|P[*P~] (A.T7)
r=2 a=1
8log N 1 3/2
+ > (Cr)"DNT/? (J\fn) E [|P|*P~?] (A.78)
r=2
8log N 1 1/2
+ > (Cr)rNTT (N77> E|P*P~t (A.79)
r=2
+N71/2 <C> E|P|?P~" 4 N~2logN, (A.80)
Nn

After some simplification and increasing the value of C, this implies

2D a
1
(2 + mSC)E[I;}g]) < Cllog N)N™'/23" (Nn> E [|P[?P~9] + N~2lgV, (A.81)
a=1
Using |z + msc(2)] > ¢(A) > 0 on Dy (see (2.3)), we obtain the conclusion. O
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Proof of (A.45). We have

E(l31] = NrsE | N2 3" (1 + 61k As) (9ixCri) i (prlﬁD) . (A.82)
ik

Using the logic of the previous proof, it is straightforward to see that the leading-order contribution is given
by

2(D—1) 1 o ' pD—25P
J =NksE | =—— > Giyi, Gy, <N > thaisl«l) P pP=2p (A.83)
11712 ig=1
2D 1 N
+ Nk3E m Z GililGigig (N Z GigigGi3i1> pP'pP-1p . (A84)
7;l;éiZ i3:1

For the first term, we use the resolvent expansion to write it as

1 _9=D
2(D — 1)Nr3E N3 Z Hiyi,Giyis Giyiy Gigiy Giyiy P'PP 2P| (A.85)

i17£42,13,14
As in the previous proof, we now use the cumulant expansion (A.20)) to calculate this term (expanding each
term in the sum in the variable H;,;,). The leading term in the expansion is

1

2(D—1)N:‘{3E W Z mGi2i3Gi2i2Gi3hP,PD_2?D 5 (A86)

i1#£12,13

and we obtain

1 _o—=D
|2+ msc(2)] [2(D = )N k3| E | 5 > GiiyGiyinGiyiy P'PP~2P
i1742,13
2D 1 a
< CO(log NYN~1/2 <) E[|P|?P—a] + N—2loeN (A 87
(log V) ; N [|P| ] (A.87)

This controls the first term of J. By nearly identical reasoning, a similar bound holds for the second term
of J. Using |z + msc(z)| = ¢ for 2 € D4 in (A.87), we obtain the result. O

Proof of (A.46)). By Theorem [2.2] we have

_ . _1=D
E[L0]| = |NkraE N2 (14 6k Ari1) (05,Gri) PP P (A.88)
i,k
(CT)CT D— —2log N
< No-nE [|P*P~1] + CN 2l !, (A.89)

We absorbed the combinatorial factor 4" representing the number of different terms coming from the deriva-
tives of Gy; into the constant.
For I, we have

Cr
IE[I,1]| < (Cr) E|N"2S (1 +6Ams1) (057 2Gri) 0 (PPP7) . (A.90)
s 2 ik

N=1)/
ik

From the derivative on PP~1P" we get |P'||P|?P=2, a factor of 2N 13" GaGak, a factor of D, and some
constant that is bounded uniformly in 7. For the terms with at least 3 off-diagonal G, we can use Theorem
[2:2] and Lemma [A75] to get the bound
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(Cr)Cr

DCT 55 (N2 Y |GriGiaGlanl [P PPP 2 (A.91)
i,k,a
Cr 3/2
S DCT% <J\?¢7> E[|P'||P[PP72] + ON~2 I8N (A.92)
Cr 2
< 00"t (17y) PP+ oNober ro

For terms with only two off-diagonal entries, we have

. (Cr)°r —2 /2 2 1 PP —
DC WE N E;Gu Gk NZGiaGak P PY—*pP (A.94)
. (Cr)er ¢ 2D—-2 —2log N
< DC" =57 N—n]E [|P|?P~%] + CN 28 (A.95)
and the same bound for the term where the derivative falls on ?D. This completes the proof. O

Proof of (A.47) and (A.48). We treat all terms I, s with 2 < s < 7 the same way. From the order s
derivatives in I, 5, we get a sum of monomials of the form

pD-s1pD—s; (P/)SS (P/)‘g4 H Q. (A.96)
d=1

with 1 < s1 < D and 0 < s3 < D depending on how the derivatives fall, and we have omitted the constant
prefactor. Each @4 represents a “fresh summation index” i4 in the following way. Any derivative on P, P
generates a new summation index a with a factor 9;;m = 2N~} >0 GiaGak. Similarly a derivative on P’ or

7 gives 4N ! >0 GiaGak. Each Qg represents a sum corresponding to one of these new indices, potentially
differentiated further. For example, @ could be 2N~ " G;,Gax, or (applying a derivative ;)

AN (GiiGarGak + GikGiaGak + GiaGiaGrr + GiaGarGik) , (A.97)

or any higher derivative. We consider any constant factors that are produced when a new index is generated,
or when a Qg term is differentiated, as part of the corresponding Q4 term. For example, in , we
consider the factor 2 as part of Qg. L

We see that the monomial came from PP~1PD because s; — 1 derivatives 9;;, derivatives fell on
P and s, on P. This implies s3 < s — 1 and s4 < s2. The number of derivatives on P’ was s; — 1 — s3, and
on P’ it was s9 — s4. Then the total number of new indices is

n=2s1 + 2s9 — 53 — 54 — 2. (A.98)

Let the number of derivatives that fall on some on some @Q-type term be s;. Note that n + s; = s.

We next consider the constant factor associated to . There are two contributions to this: the
number of times such a monomial appears through differentiation, and a factor from the derivatives of
powers of P, P’, and their conjugates. We bound the first contribution by the total number of monomials
produced, which is crudely bounded by (s 4 4)°, because a derivative of a term of the form produces
n+4 < s+ 4 new monomials of the same form, one for each choice of factor to differentiate. For the second,
we see that the P-type terms appear with power at most D, and there are n total derivatives applied to
them, so this contribution is bounded by D™. We therefore see that the constant factor is no larger than
(Cr)¢rD".

Now consider bounding each monomial. We will bound the P and P’ terms (and their conjugates) by
their absolute values. For the @ terms, we will use Theorem [2.2] to bound the G terms with no new index,
and then invoke in the m = 2 case. We must further track the constant pre-factors coming from
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derivatives of Q terms. Each Q term starts as 2N ! Y a GiaGak or 4N—1 >0 GiaGak, and each successive
derivative multiplies the number of terms by 4. Recall there are s5 such derivatives. Combining the bound
on the number of new terms and the semicircle law bound, we get a C*® factor, which we bound by C".

We first consider the case r = s. Set sg = s1 + s2 and s’ = s3 + s4. We recall there are n = 259 — s’ — 2
new indices. Using power counting and noting the isolated off-diagonal G; term, which is not
differentiated, we get

r 7T+1 s0—1 1/2 CD 2s50—s'—2
EI,, == E ||P/|* | P|2P~so0 A.99
L] < " /ZZ@W) (5) (171 P2P=] (A.99)
r+1 1/2 so—1
(CT>CT = C CD 2D—s —2log N
< -2 __ - == E [P|2P~s0] 4+ ON—2log N A.100
N—1)/2 SOZZQ N7 N7 [P ]+ ( )

where we increased C' in the second line.
For s # r we get

r+1 so—2 2s9—s’' —2 ,
< S90S Z( ) E[1P'|¥| PP~ ] (A.101)

sp=2 s’'=1
cr T+1 so—1
<r 1 7z Z ( ) E [|P'[o- | P|*P=] (A.102)

The second term bounds the terms with so — 1 = s’ that come from when 9;; lands s; — 1 times on P and
so times on P, and their derivatives are not hit. By Theorem we obtain the desired bound

Cr r+1 CD
[EL.| < N(T 1 7D ( ) E [|P|?P~*] + CN~5leN, (A.103)
So= =2
m

A.4 Proof of Moment Bound.

Proof of Proposition[A.1, We proceed by induction to bound the powers IEHPP”]7 with P as in . The
base case p = 0 is trivial. For the induction step, suppose D < (log N)/2, and that there exists C1 (K, k) > 0
such that »

E(PP] < (C) /A (A-104)

Nn
for all p 2D — 2. We will show that if C] is chosen large enough, in a way that does not depend on D,
then also holds for p = 2D and p=2D —1.
Set 6 = 20 log N. Combining ({A.27] - Lemma | and Lemma u we have

2
E[IP”] < (Nc.n) E [lPlQD‘l} +D (&) E[|P2P-?] (A.105)
2D 1\
+C(log N)N~1/23 " <N77) E [|P]*P~] (A.106)
a=1
8log N 8log N
(CT)C’" . c -
+ 24; N2 E[|P|?P~1] Z DC o= 1)/2]\7 E [|P[?P~2] (A.107)
8log N Cr r+1 —
CD .
+ Z NG— ”/2Z<Nn) <Nn> E [P|*P] (A.108)
SIOgN Cr r+1 a—1
T Z N 1/2Z< ) E[|P|?P~%] + CN—2lee N, (A.109)
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We now use (A.104) in the above inequality. After increasing C, and choosing C; > C in a way that only
depends on C, K, and k, we obtain

2D
E [|P[*P] < (%) (2D)3P/2, (A.110)

Further, from Holder’s inequality, we obtain as desired that

G

2D-1 2D%
E(1PPP] < B[P - (L

2D—-1
) (2D)3EP-1)/4 (A.111)

which completes the induction step.

We now recall the stability of the defining equation u? = zu + 1 = 0 for mg. (see [14, Lemma 5.5]). Set
A, ={|P(z)] < 1}. Then m satisfies 1 4_|m(2) — mgc(2)| < C|P(z)| for some C(x) > 0. The claimed result
follows from and the bound |m(z) — ms.(2)] < 277! on the set A¢, which has negligible probability
by Markov’s inequality and . O

B MEsoscoPIiC FLUCTUATIONS FOR [3-ENSEMBLES

This appendix considers S-ensembles as defined in . We follow Johansson’s loop equations method from
[57] to establish Gaussian fluctuations of the characteristic polynomial at any mesoscopic scale larger than
(log N)°/N. The main result is Theorem below. It is used in Section

Compared to [57|, our work presents two novelties. First, [57] considered macroscopic scales, while
we prove a result for all mesoscopic scales. Second, [57] considers the Laplace transform, while we give
asymptotics of the mixed Fourier—Laplace transform. We note that for the proof on the leading order of
the maximum in Section [3] only the Laplace transform is needed, but the Fourier transform may be of
independent interest (for example for future finer estimates).

We face the following difficulties in proving these generalizations.

(i) For the Laplace transform, to prove rigidity of the measures (1.9)) perturbed on mesoscopic scales, we
need precise a priori bounds. Our main tool is the local law with Gaussian tail from [25], as stated in
Theorem 2.4

(ii) For the Fourier transform, the loop equation method requires handling complex measures and the
partition function may vanish. Despite this difficulty, asymptotics of characteristic functions were
obtained in [22, Appendix A]. We follow the argument developed there, which proceeds through a
Gronwall lemma.

B.1 Preliminary facts and notations. We consider the probability density 7 with V satisfying the
assumptions of Section [I.2] i.e. (A1), (A2) (i), (A3) and (A4) (see Subsection [B.6|regarding the Assumption
(A2) (ii)). In this section we abbreviate the corresponding probability measure by p = py. We recall that
the equilibrium density is assumed to lie on a single interval [A, B] and defines a function r(E).We
will also need the notations

T(s) = (s—A)(B—35s), b(z)=vVz—AVz— B, (B.1)

where we use the principal branch of the square root, extended to negative real numbers by /—x = iy/z for

x > 0. We will use the formula
B
A+ B
/ T(S)ds—ﬂ< + —z—l—b(z)>, (B.2)

A S—Z 2

which is just the usual formula for the Stieltjes transform of the semicircle law from ([2.3)), up to an affine
change of variables. Then the Stieltjes transform my from (2.10]) satisfies the equation

2my (z) + V'(2) = 2r(2)b(z) (B.3)

for any z ¢ [A, B], where we recall that = from ([1.11)) is assumed to admit an analytic extension to C.
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Given a function g: R — R, we consider the linear statistics

N
=> g\ - N/gd/hﬁ
k=1

The functions g considered in this appendix are
rlog,(A\) = Relog(z — A), ilog,(\) = Imlog(z — A), (B.4)
where Relog and Im log are defined in (2.1]). The limiting covariance for these test functions will be written

in terms of
v(z):;<A;B—z+b<z)), 7:%7 c(z,w)zlog(l—W),

where log is the usual complex logarithm.
The mesoscopic central limit theorem proved in this section will hold on any scale greater than a parameter

log N)1000
noe[( gN)

N ) (B.5)

where 7 is given by Theorem

B.2 Mized Fourier-Laplace transform. Given points z = (z;)!_; in C\ R, we define the following
quadratic form in complex vectors ¢ = ((;)!_,, &€ = (fj)‘;:l, which will represent an asymptotic covariance:

7662 = 55 D (6 =16)(G —€)e(z5,2) + (G = 16)(G + i6)e( 7)
(GG —i6)elz20) + (G +E)(G +i8)e(z.2)]. (BS)

We also define the following function, which will represent an asymptotic shift:

j:1 J

p zj+ioco l_i poy B 7’/(8)7’(8) % g
Yo+ [ (i) (“”Z) 1)+/A r(s)(s—z>w>b<z>' (7

Note that p depends on the external potential V' through r, while ¢ is independent of V.
Theorem B.1. With the notation , let

P

h=> (Grlog,, +&ilog,,), (B.8)

i=1

where p > 1 is fived. Let k, M > 0. Then, uniformly in Re(¢, &) € [-M, M]?P, Im((, &) € B+ [—ﬁ7 ﬁ]%,
and z € ([A+ K, B — K] X [no,7])?, we have

o(¢.€,2) 1
E [esN(h)] (SO (1 40, ( )) ,
I s VLD /Nno

We now state an elementary lemma about the size of the variance and shift terms occurring in the above
central limit theorem.

Lemma B.2. Fiz M,k >0 and p € N. Then uniformly in ||, €] € [-M,M]?, z € ([A+ k, B— k] x [0,1])?
we have (¢, €, z) = O(1).
Moreover, uniformly in z,w € [A+ K, B — k] x [0,1], we have ¢(z,w) = O (1), while for z € [A+ k, B —
k] X [0,1], and w € [A+ K, B — K] x [—1,0], we have
C(Z,U)) = lOg(Z - w) + f(sz)a

where f is a continuous function that satisfies f(z,w) = O (1) uniformly for such z,w.
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Proof. We start with the asymptotics for (B.7)), which is a linear combination of terms of type

wHee () — 1
/w o) dz, (B.9)

[ ) w0

with bounded coefficients. Since Rew € [A+ &, B — k], we have wa lé(i) Ldz = O(1). Moreover b/ (z) —1 =

O(1/]z|) and b(z) ~ |z| as Im z — o0, so fw+m Y 5)2) Ldz = O(1). We have proved that is O(1) as
expected.
For the term (B.10]), from our non-vanishing assumption on r it is of order at most

w-+tioco B w;+ioco
ds 1 Hogn. g 1
S . [ gC/ djz |+c/ R —
/w (/A IS—ZI) [b(2)] w  [6(z)] witi |2 [b(2)]

The first term is O(1), since we have [b(z)| > ¢ for some ¢ > 0 by Rew; € [A + k, B — k]. The second term
is O(1) because of the quadratic decay at ioco.

For the asymptotics of ¢(z, w), to simplify notations we can assume without loss of generality that A = —2
and B = 2. Note that v(z) = _ZJ“/i conformally maps CU{oo}\ [~2, 2] into D, so ¢(z, w) is well-defined.
Moreover, the image of [2+ &,2 — n] [0,1] by v is a subset of HNID which has positive distance to —1 and
1. Then for any z,w € [2+ K,2 — x] x [0,1] we have |v(z)v(w)| < 1 — ¢ for some fixed ¢ > 0, and hence
e(z,w) = O(1).

For the case Imz > 0,Imw < 0, we denote ’U(E+) = lim, o+ v(E + in) = =ERA=EI VA—E® and similarly
v(ET) = =B VAESZLL We have v/(z) = —2’53 =—z+ 372—= We therefore denote v (E“‘) -3— N%i

and v'(E7) = —5 + QW
Note that v(E*) (E7)=1and v(E")V'(E™) = —v(E_)V'(ET) =
Ime; > 0 and Imey < 0, that v(E + e1)v(E + €2) is equal to

b(E1+) = —\/41E2. This implies, for
i
Vi-B?

which implies log(1 — v(z)v(w)) =log(z — w) + O(1) for z € [A+ &k, B — k] x [0,1], and w € [A+ k, B — K] X
[—1,0]. O

(v(ET) + v (ET)e1 + O(e1)) - (v(E™) + v (B )e2 + O(e2)) =1+ (e1 —€2) + O(le1* + |e2]?),

B.3 Rigidity under biased measures. We start with an important preliminary bound on the Laplace
transform, relying on [25].

Lemma B.3. For any fized &, 8 > 0, there exist No(V,k, ) € N and C(V, K, ) > 0 such that the following
holds. Let i be given by Theorem and fix any M > 0. For any z € C such that Rez € [A + k, B — K]
and Im z € [N~ 7], and any N > Ny and ¢ € [-M, M],

logE,, [eC (AL rlog. (k) =N [ xlog, dﬂv)} € [~CM(log N)2, CM?(log N)?. (B.11)

Moreover, the same estimate holds when considering ilog instead of rlog.

Proof. For the lower bound, by Jensen’s inequality and the hypothesis ( € [—-M, M| we have

N
logE,, |:6C(ZkN:1 rlog, (Ax)—N [rlog, dpv)} > (CE, Zrlogz()\k) — N/rlogz dpv‘|
k=1
N
MZIE [ rlog, (A\x) —rlogz('yk)u — M‘N/rlogz dpy — Zrlogz(’}/k) . (B.12)
k=1

The first summand above is easily bounded on the good set

G= (1 A=l <CUogN)NT2PET2Y () {IA = | < Clog N)''N 2/}
k>(log N)2 k< (log N)?
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as follows. For k < (log N)?2, we use that A,y are near A or B, where rlog, is C;-Lipschitz continuous for
some constant C'y > 0 by the assumptions on Rez and Im z. For the other values of k, we use the mean
value theorem. Then setting £ = Re z and 1 = Im 2, and recalling that F is in the bulk of the spectrum, we
have

N
Z]E” U rlog, (\x) — rlogz(fyk)|]1g}
k=1

<G Y e—wmllg+ D e — %l max .o | tlog’ (V)| 1g
l%é(log N)2 fC}(log N)2 A=k |<C(log N)N (k)
log N - log N
<CNTV2y Y %N‘g(lﬂ)‘é + ) C(‘;’g)zv—l < ClogN)®. (B.13)
— Tk

|[E—vk|>(log N)/N |E—vk|<(log N)/N

Moreover, for large enough N we have
P(gc) < N—lOO

from [25, Corollary 1.5] for k > (log N)2, and [21, Corollary 1.5 and Corollary 1.6] for k < (log N)2. This
implies

N
SB[ rlog. () = rlog. () [1g:| < N1B]rlog, (h)[]/ < N~
k=1

where we used that the latter expectation is finite, from the estimate P(|\;| > z) < (z — L) for some fixed
L [26, Equation (3.3)].
For the second, deterministic, term in (B.12]), we have by the intermediate value theorem that N f rlog, duy —

>-rlog, (k) = Y. (rlog, (k) — rlog,(vx)) for some 0y € [Yk—1,Vk+1]- Then the same reasoning as (B.13) ap-
plies, giving an analogous bound. This completes the proof of the lower bound in (B.11)).

For the upper bound, let 1’ be a parameter to be fixed later. For all « € [n, '], we define

N

g(x) = ZrlogE_Hl.()\i) - N/rlogE_Hw dpv, o(z) = N|S(E +iz) —my(E + 137)‘
k=1

From the local law, Theorem we have for o’ € [, 7] that

)

p=0 (

2p
2 B S0
[n,n']2P

= (2p)!

< |£|2P §(n)2P) % 5 20\ 35
<2) (ES(m)™)2e .. (E(S(n2p) ") 2P )dmy - .. A2y
(2]))' [ /]2p
p=0 .M
Z €2 < (Cp)P ) N 25 2p
<2 / ( + (CN)“Pe™® ) dz
>0 (2p)' [ 717/] JSQP
2p 2p
2p 1/2 2p N
<> |2£‘, (/ (Cp) d:c> +) |2€|, </ CNe‘Czpdx> : (B.14)
250 ot \Jp) = >0 (2P)! \ i

where we successively used Holder’s inequality, the inequality (a + b)¢ < a® + b€ for a,b > 0, ¢ € [0, 1] (with
c=1/(2p) above), and (z + y)?P < 22P~1(2?P + 4?P). The first sum above is of order

5 LGS g Ny < explCle(1og NY?), (B.15)
p=0

while the second one is bounded by
|Cg|*P

(2p)' (n/N)Qpe—cN < eC|f;‘|n N—CN’ (Blﬁ)
p=0

53



where on the right-hand sides of and , C,c > 0 are constants that depend on V but not on
7. We now fix i’ small enough, as a function of M, so that these upper bound in is o(1) when
|¢| < 2M. In conclusion, we have shown (recalling (B.14)) that there exist constants C,n’ > 0 such that for
any |¢| < 2M we have

E [eﬂg(")—g("’))] < exp(CM2(log N)?). (B.17)

Moreover, as £g(n’) is a smooth linear statistic on a macroscopic scale, uniformly in || < 2M we have (see
e.g. |77, Theorem 1(i)])

B {6@(7;')} —0(1), (B.18)

where the implicit constant depends only on the choice of g and V. Equations (B.17)) and (B.18) conclude

the proof of the upper bound when n < 7/, after combining them with the Cauchy—Schwarz inequality to

estimate the left side of (B.11]). For n € [/, 7], we can directly use E [659(")] = O(1), as explained before the
previous equation. ]

For fixed ¢, &, and a function h: R — R, we will need the following (complex) measures. They are
modifications of the measure (1.9)) and depend on the parameter 0 < ¢ < 1:

. etSN(h)
dug, (A) == ————du(N),
where we assumed
Zn(t) = E,[etSv W] £ 0. (B.19)

In the next section we will use rigidity under biased measures under the following form.

Lemma B.4. For any t such that Z,(t) # 0, and any function f: R = R and measurable set 4,
ZRen(t)
| Zn(t)]
Moreover, any integer 1 < k < N, we define ¥ = 4G, = {| A — Y| < Nfg(g)’%(logN)loo}, Then for all

M,p > 1 there exists ¢(M,p) > 0 such that for any (¢,€) € C?! such that Re(¢, &) € [-M, M]?*, t € [0,1]
such that Zp(t) # 0, and N > 1, we have

E,.; [flg]] < sup Wit (B.20)

E.[f71? - 1
B [flge]] < —Eoia— . 78 N, B.21
[ 1) < =4 (3.21)
Proof. The first statement follows directly from
J 5| f 1y
1Zn(t)]
For the second statement, we use the Cauchy—Schwarz inequality twice, writing
By [lf|Lgee'™~Rem) B, [|f[%]'/?
1Zn(t)] 1Zn(t)]
One concludes with lemmas [B.3] and 2.3 O

[, [flg]] <

Pu(gc)1/4Eu [e4tSN(Re h)}1/4.

B [flge]| <

B.4 Analysis of the loop equation. To prove Theorem we start with the identity %log Z(t) =
E,: (Sn(h)), and therefore want to estimate expectation of general linear statistics for the measure ph. The
starting point for the proof of Theorem will be the first order loop equation (B.28)) below.

Let pgN’t)(s) be the 1-point correlation function for the measure p}, (see e.g. [44, Definition 2.4]), and let
mp,(2) be the Stieljes transform of pgN’t)(s). We introduce
0(2) = pni(2) = mpy(2) — m(z). (B.22)

For z € C\ R, we define

B p(s Boy(s)7(s
() = #(z) (2;/,4 %T(s) ds — (Z - 1) (w(b’(z) - 1)+/A T(S()(lfi)ds». (B.23)

The main result of this subsection is the following one.
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Lemma B.5. For any k,M > 0 and p > 1 the following holds. Uniformly in any z = E + in, with
no <1< N (see (B.5) and A+r < E < B—k, (¢, &) € C? such that Re((, &) € [-M, M]??, and t such
that | Zy,(t)| > e~ 18 N)" e have

) (el + 1C]1oe) (08 N)™  Zie (1
#2) =T+ O ( Nnon |zh<t>|2> (B-24)

We now prove two lemmas which will be used as input to the proof of Lemma [B.5]

Lemma B.6. For any x, M > 0, p > 1, we have uniformly in Re(¢, &) € [-M, M)?? and z = E + in such
thatn #0, A+ k< E < B — K, that

- (log )2 Zpen(t) B (log N)*0  Zren(t)?
o12) = Ousny (5T 0 ) Var vt = 0n (S5 T

Proof. These bounds are immediate consequences of Lemma Indeed, rewriting (B.22)) gives

;Xk:<>\k1—zvk—z>] NZ%—Z/de—(i\)'

The deterministic sum in the second term is easily seen to be O((Nn)~!) by definition of the 7;’s. Denoting
G, = {|M — | < N73 (k)3 (log N)'9}, the expectation in the first term is bounded by

1 1
By |3 2| = 1 E ‘ - .
uh[N; i — 2 vk — 2 Nk Yk +Z #h[NZ \i — 2 e — gk‘|

o (log N)20  Zpop(t)  Ne~(ogN)*

S Nno1Za®)]  nlZa(d)]
where we have used Lemma - IB.20) and ( - The second term is negligible because Zgep(t) >
exp(—CM (log N)?) from Lemma Thls concludes our estimate on ¢, after using the elementary estimate
1Zn(t)] < Zren(t).

The bound on Var,: (sy(2)) proceeds similarly, starting with
| Var,; (sn(2) | < 2[Ey [lsn(2) = m(2)]?]] + 2le(2)]*.
One applies the same reasoning as before to E ¢ [[sn(2) — m(z)|?] and obtains the bound (l(’(%vjzg Zéi?t()t\)»
so that the bound on ¢(2)? dominates. O

Lemma B.7. For any M > 0, p > 1, uniformly in z = E +in withn # 0, A < E < B, A > 0,
Re(¢, &) € [-M, M]?**, and uniformly in h € €*(R) we have

[ (5966) = o) ds =

s —Z

log N)290  Zpon(t h' (s k(s e~ (log N)?
(og ) .Zh(t(ﬂ)oM,p ||Z_(2|ds+/|z_(s)|2ds+ (Wl + W) ) - (B:25)

Proof. We apply Lemma and the proof is almost the same as Lemma 5.3 in [22], so we omit the details.
The only differences are that the rigidity estimate is now known with multiplicative error (log N)'°0 instead

of N¢, the probability error is now e~ (108 N)? instead of e~ V. O

Proof of Lemma[B-5. We closely follow some steps in the proof of [25| Lemma 4.6], with the difference that
we now work under complex measures. We first define

P(z) = ;—]t\[ AB :lfsipv(s) ds — % (; - 1) my (2) — /}R w (pgN’t)(s) - pv(s)) ds (B.26)

Bre(s) = o2~ 2 [ 2 (5000) = pr(o)) as b (5 1) 0+ Vang (o). (32D
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Then, by the same proof as [25 Equation (4.7)] but with complex measures, we have
(2my () + V'(2))e(z) — ¥(2) + Err(z) = 0. (B.28)

For the proof, we also need to work under the rigidity event % := [, ¢, < y {| e —7&| < (log N)WOON=3(k)=5},
by introducing the new probability measure

1
At (A, AN) = =—2— dpb (M, -+, An).

P (%)
Moreover, let pgN’t’%)(s) be the 1-point function under uz"%, 0% (z2) = E,: z[sN( )] — my(z), and Err”?(z)
be defined as Err(z) but with ,ufl"%, pgN’t’ﬂ)(s) and ¢”(2) instead of uf, p (N t)( ) and ¢(z). Note that
P (%) =1+ 0 (N|Zy(t)| e (8 M) =14 O(e (s M'/2) (B.29)

by 1) and our assumption on Zy(t). This easily implies that lemmas and still hold under ;LZ’%,

giving

¢*(2)=0 <<log N)™ ZReh(t)) Var ca (sy(z)) = O (UOg N0 ZReh(t)2> ’

N7 |1Zn(8)] i (Nn)2 |Zn(@)?
h'(s) ¢ (n.t,) .
[ (4 5) = o () a
_ (log N)*™  Zgen(t |h"(s) 7 (s)| e~(ogN)? ,
B N ‘Zh (/ / |Z — S|2d'S + 772 (”h ”oo + ”h |oo)> . (B.30)

Fix some z = E+in with no < nand A —k < E < B+ k. We also assume 7 < & first. We consider
the rectangle with vertices A — k +ie~(log N )? , B+ rtie(logN )? , and denote by C the corresponding closed
contour with positive orientation. We decompose this contour mto Chor, which consists only in the horizontal
pieces, and Cyer, which consists only in the vertical pieces. By the loop equation and (B.3), we have

[ rptolsto) o) 4B,
Chor

r(w)(z — w)
Using (B.29), the hypothesis that | Z,(t)| > e~ (o8 N)? and (B.21)), on Cpor we have

7 (w) = plw) + O (e~ (x M/ (B.31)

and similarly Err” (w) = Err(w) + O (e*(logN)4/5). Together with the facts that |z — w| > n/2 and

¢ <1r,b< C on Che (remember that r is continuous and has no zero on [A, B]) this implies

/ 2r(w)b(w)p? (w) — P (w) + Err? (w ) 4 70( (log N) /10).
Chor

r(w)(z — w)

(B.32)

On the other hand, for w on Cyer, we have 2r(w)b(w)e” (w) — 1h(w) + Err” (w) = O(ellos N)S/Z)7 an easy
estimate based on the following facts: (1) by the definition of, ,u’,i"%, all particles are at a distance larger than
#/2 from Cyer), (2) ¢ < 7,0 < C on Cyer, (3) | Zn(t)| > e~ (o8 N)* by assumption, (4) Zren(t) < eCMog N)* by
Lemma This implies

/ 2r(w)b(w)p? (w) — P(w) + Err” (w) dw — O (ef(log N)3/2) .
Cuer

r(w)(z = w)

(B.33)

Combining (B.32]) and (B.33 -, we get

/ 2 (w)b(w)p” (w) — (w) + B (w) | (cton2) (B.34)
C

r(w)(z —w)
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We now estimate each term in the integral in (B.34) successively.

We start with the part involving ¢”(w). The function w +— 2b(w)p”(w)/(z — w) is analytic on and
outside C, except for the pole at z, and it behaves as O(w™2) as |w| — oo because b(w) = O(w) and
©”(w) = O(w™2). Therefore, by the Cauchy integral formula with residue at infinity, we get

/ 2b(w)p(w) 4 - 4imb(2)p” (2). (B.35)
c (z-w)

Now we evaluate the part involving ¢(w). Recall the definition of ¢ (w) in and note that the third
term there is analytic in w € C. Moreover from we have m{, (w) = —3 V" (w) + (rb)’ (w), where V" (w)
is also analytic in w € C. Since z is exterior to C and r has no zero inside C for x chosen small enough, these
analytic terms disappear in and we get

L o= (;fv [ s 1 (51) (rb)’(w)) o (B3)

_ Amt B w(s) s s—i 2 B _2i(rr)(s) .
=Ny e e ( 1>/A @9

where, for the first term, we applied Cauchy’s integral formula and, for the second term, we let the contour
approach the segment [A, B] and used lim, o4 (rb)'(z + iy) = =i(r7)'(z) for all z € (A, B), recalling

7(z) = \/(z — A)(B — ). Recalling the definition of ¢(z) and that py = Lr7 (recall (I.1I) and (B.1)), we

get

Lt = (e [ e 3 (52) [ (P 0 o) - e
(B.37)

where we used that ff TS,E‘? ds = ff (SZ(Z))Q ds = m(b'(z) — 1), which follows from differentiating the identity
B2).

Finally, we deal with the part involving Err” (w). We deform the contour C into C’, the positively oriented
rectangle with vertices A — k £in/2, B + k 4 in/2, which does not change the value of the integral because
the deformation does not cross any poles. The function w — Err” (w)/(r(w)(z — w)) is analytic on and
between these contours (remember we assume 7) < & first, and & is fixed and small enough), so

Err” (w) " Err” (w) " (log N)*°  Zpep(t)?
/cr<w><z—w>d _/c' @) —w) ‘O< )2 Zh<t>|2>

(log N)200 - 1 .ZReh(t)
+O< ERP D e ey |Zh<t>|>’ (555

where we used that |r(w)| is uniformly lower bounded and we applied (B.30) on the horizontal pieces of
C’, and on the vertical pieces we used that the same estimates hold substituting  with x. Coming back to
(B.34)) and combining (B.35)), (B.37) and (B.38)), for n < k we have proved that

2, _ 9(2) (log N)*  Zgen(t)*
v7(2) =y +O( N |Zh(t)|2>. (B.39)

s—z 27i z)(w—s)

For 1 > &, the result follows from the Cauchy formula —— = ;L fc“ # where C” is the rectangle
1-

with vertices A — k +1ix/10 and B + k % ix/10. More precisely we use (B.39) in the portion [Imz| > 7y of
C" and the estimates from (B.30) with 7 replaced by 1 on the part |Imz| < 7.

Finally, the result follows from (B.39)) and (B.31)). O
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B.5 Proof of Theorem . Let Zj = z; +iN%. With Zj, as in (B.19), we can write

d P
— log Z;,(t) = E#n
3 o8 n(t)

p
> (Gitlog,, +¢&;ilog,, )]

=1
NG —ig [ GG
—N;JQIJ/ o(2)dz N;JQIJ/ZJ_

Zj

where we have used dz = idy and

2li<)\—(;+iy) _/\—(;—iy)>’

d . L = :
d—yImlog((x-l-ly)_)‘):_Q (A—(x—kiy) +/\—(:c—iy)>'

d , -
d—ylog|(m—|—1y)—)\|——

p
2)dz + Er > G rlog, +&;ilogy )|, (B.40)
j=1

To bound the last term in (B.40]), we note that the inequality log(1 4 €) = O(e) for |e] < 1/2 gives

> _log(Z; =) =N / log(Z; — /\)dpv(/\)]

D> log(1 =X/ Z)

t
— Euh

We now insert the asymptotics from Lemma in (B.40). The error term in (B.24) contributes

= [log(1 = 3/Z;)dpy () = O(N ).

ZJ 500
Zren |QZ|<J|+|£J| / (I€llso + 1Clloc) tog M)\

| Zn(t) Nnon. | Zn(t)[? Nno

Moreover, one easily checks that fZ sHioo @(2)dz = O(N~9), so that denoting

1 /1 1 , B y(s)r(s) ds
CRFEIER w)(“’” R A e )

we have proved that, as long as | Z,(t)| = e~ (196 N)* (necessary to apply Lemma [B.5)) we have

d C 15 zj+ioco t B h’(s)
—logZh Z J J/Z ﬂ'ﬁb(z)_/A S_ZT(s)dsdz

J

p . zj+ioco B 11
G+ig [ t R (s)
— ; 2 > 5 J /z ) /A - ZT(s) dsdz

J

p zj+ioco p zj+ioco
+ ) (G —i) (2)dz — ) (G +i&) (2)dz
; / p > / p

zj j=1 j
40 <ZReh(t)2 (€13 +1I¢113.) (log N)GO°> .
|Zn(t)[? Nno
While the third line above cannot be simplified for general V', for our particular choice
P
h = Z(C’L rlogzi +£Z IIng1)7
i=1

the first and second lines can. Indeed,

B (s) =

1 G—1& | G+
22<s—zi * 3—%)7

i
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so that

B 11 .

h i 1 1 i i 1 1
ot (0 () () o
As—z Z—z \S§—2 S—2% z2—Z%Z \s—z S$—Z%

From (B.2) and the definition of v, we can write

1 PR e Ly ((@- —ig)(0() —v(z1) | (G +i€)((z) - v(zm) .

2 J4 s—z z— 2 zZ—Z;

i

Note that v'(z) = —v(2)/b(2) and v* + (z — #5E)v + § (A_TB)2 = 0, so that, abbreviating v; = v(z;) and
= ((A— B)/2)*/4 we obtain

/w+i°°“(z)_v(zi)dz:/0 v — dv:/vo L log(l_w)

w Z—Z b(Z) v(w)v+%_(vi+l)v (w)’U—UT v

Vi

and similarly

[T e g (1 M)

w z— Z5 b(Z)
We have therefore proved, using the notations and (B.7),
d Zren(t)? (log N)690
—log Z, =t 0]
dt 0og h( ) O'(C,E,Z) +H’(C7£7Z) + ( |Zh(t)|2 NUO

where here and below, we abbreviate O = Oyy,p .. From this equation we first conclude about the case of
real-valued h. Then trivially Zren(t) = Zp(¢) so integrating the above equation gives

2u0) = exp (56,62 + uic.6.0) + 0 (LAY )

From our assumption on 79 the above error term is O(1). For the general complex case, we now have

(log N')600 o'z o(Re¢,Re € z)
Nno 1 Zn (1) ’

D rog Zn(t) = to(C,&,2) + u(¢.&,2) + O ( (B.42)

dt

so that, taking the real part above, we have

L\ Zn (1) _
| Zn(t)]

Defining ¢(t) = |Zh(t)|2e‘52(’(1”‘C’Imﬁ’z)*t2 o(ReCRe€,2)~t1(C.€:2)  the above equation implies

600
g/(t) -0 ((log N) . etQU(ImC,Imﬁ,z)) ]

600 t?0(Re(,Reé,z)
to(Re¢,Re€,z) — to(Im¢,Imé, z) + Rep(C, &,2) + O <(1°g M e )

VAR

N
From the assumption Im(¢, &) € /B - [~ 10p’ 1(1)p]2p, we have c(Im ¢, Imé&,z) < %log(Nno), so that ¢'(t) =
(0] (ﬁ) and we have proved that

|Zh(t)| — e o(Im¢,Imég, z)+‘2 o(Re¢,Re&,z)+tReu(¢.€,2) |

1
).
VNno
Inserting this estimate in (B.42)) finally gives

Zu(l) = 5 TG DT En) ( ! )
VN1

We note that all equations since (B.41) hold only provided that |Z(s)| > e —(ogN)* for 5 € [0,¢], which
is necessary to apply Lemma Therefore, denoting to = max{t € [0,1] : Z(t) > e~ (o8 N)? }, for large
enough N we have

In(ty) = e oCED+toncem) (1 4 ~(log N)?.

1
>e
VN )
where we have used in the above inequality the easy estimates o(¢, €,2) = O(log N) and u(¢, €,2) = O(1).
By continuity this implies ¢ty = 1. The expected result therefore holds by taking ¢t = 1.
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B.6 Generalization to further potentials. The proof of the local law Theorem is the only place
requiring the sub-quadratic growth assumption from (1.10). Theorem also holds for V' growing at least
linearly, as in Assumption (A2) (ii) through the following steps.

(i) Denoting E[M~%5+9] for the expectation conditional on all particles remaining in [A — 8, B + 6], by

[25, Equations (2.25), (2.14)], the following local law holds:

(Cq)? Cle=eN
S (V2 e = Al = BJ

FLA—8,B+9] D )‘2q

sn(z) —my(z

When compared to [25, Theorem 1.1], note the exponentially small second error term, possible thanks
to working under the conditioned measure. This improvement is essential to the proof of Theorem

(ii) Based on this local law for the conditioned measure, an analogue of the previous quantitative central
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[9]
(10]
(11]

(12]
(13]

14]
(15]
[16]

(17]
(18]
(19]

20]
(21]

limit theorem, Theorem can be proved under EA—%5+9] for a function Ly coinciding with Ly
on [A—§/2, B+ 6/2] but compactly supported on [A — §, B + §]. This gives Theorem for Ly, and
then for Ly as the probability of a particle outside [A — §/2, B+ §/2] is o(1) by rigidity.
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