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Abstract: Free probability analogues of the basics of extreme value
theory are obtained, based on Ando’s spectral order. This includes clas-
sification of freely max-stable laws and their domains of attraction, using
“free extremal convolutions” on the distributions. These laws coincide
with the limit laws in the classical peaks-over-threshold approach. A free
extremal projection-valued process over a measure-space is constructed,
which is related to the free Poisson point process.
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1. Introduction

Free probability theory ([17], [18]) is a highly noncommutative parallel to
a large part of basic classical probability theory. The aim of this paper is
to add a somewhat unexpected new entry to the classical-free dictionary:
extreme value theory.

Classical probability theory has constructed a complete picture for the
behavior of extreme values of i.i.d. samples (see [7], [14]). This has been
motivated by the huge importance of this question for statistics (catastrophic
events, insurance, reliability and more recently finance and risk theory). The
results provide an exhaustive description of the possible limits of normalized
extreme values, as being the extreme value distribution of their domain of
attraction. In this note we develop a free analog to classical extreme values
theory. Also surprisingly the free extreme value distributions turn out to
have classical realizations, already used by statisticians.
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Addition and multiplication of free noncommutative random variables
give rise to additive and multiplicative free convolution operations on prob-
ability measures on R. With respect to the so-called “spectral order” ([1])
there are also analogues of the min and max operations for selfadjoint oper-
ators. Passing to the distributions, this gives rise in the case of free random
variables to the “extremal free convolution” operation which we consider
here. These turn out to be quite easy to express using distribution func-
tions, without the analytic function machinery necessary for the other free
convolutions. This can also be viewed as applying the limiting process which
leads to idempotent analysis ([8], [10]) to additive free convolution.

The natural processes in this context are noncommutative extremal pro-
cesses over an ordered set. In particular, we show there are some remark-
able such processes indexed by the measurable sets of a measure space: the
projection-valued and the triangular free extremal processes over a set. We
show that the projection-valued free extremal process over a set can be re-
alized via the free Poisson process and therefore has a natural asymptotic
random matrix realization.

The analytical aspect of proving the analog of the classical results of
Frechet, Fisher–Tippet and Gnedenko has as a main step establishing that
the classical and free domains of attraction are actually the same. This is
similar to the situation occuring for the additive domains of attraction ([3]).
After finding the domains of attraction, obtaining limit laws with the same
normalization constants as in the classical case is rather direct. The laws
we find are the so-called generalized Pareto laws in the statistics literature.
More precisely, the Frechet law, Gumbel law and Weibull law have as free
correspondents the Pareto law, the exponential law and the Beta law. Note
that, reminiscent of the additive case, there is a certain shrinking of supports
for the Gumbel and Weibull distributions.

These generalized Pareto distributions which appear as the only free max-
stable distributions have played for a long time, a role in statistics, in the
P.O.T. (peaks over threshold) approach to extreme value theory ([2], [12]).

After some preliminaries on spectral order in section 2, we discuss ex-
tremal free convolution operations in section 3. Then we introduce in sec-
tion 4 extremal noncommutative processes and in section 5 we consider
extremal free processes over a set. Section 6 is devoted to the study of the
iteration of free extremal convolution and to the description of free max-
stable distributions and their domain of attraction. In section 7 we recall
the classical P.O.T. context where the same laws appear.
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2. Preliminaries on ∧ and ∨

We shall work in a tracial W ∗-probability space (M, τ), that is M is a
von Neumann algebra with an ultraweakly continuous faithful trace-state τ .
For the basic von Neumann algebra facts we will use, the reader may consult
[9] or [16] and for the basic free probability references are [17] and [18]. It
will be convenient to assume M acts on a Hilbert space H. For definiteness
we may take H = L2(M, τ) which is naturally a left M -module since the
L2-space is the completion of M viewed as a pre-Hilbert-space with respect
to the scalar product 〈a, b〉 = τ(b∗a).

By Proj(M) we shall denote the set of selfadjoint projections P = P 2 =
P ∗ ∈ M . If P,Q ∈ Proj(M), the selfadjoint projections defined by (P∨Q)H =
PH+ QH and (P∧Q)H = PH ∩QH are in Proj(M). On Proj(M) the or-
der relation P ≤ Q, that is Q − P is a positive operator, coincides with
PH ⊂ QH and P∨Q, P∧Q are the max and min with respect to this order.

Let Mh = {m ∈ M | m = m∗} denote the selfadjoint elements. If a ∈
Mh and ω ⊂ R is a Borel set, then E(a;ω) ∈ Proj(M) will denote the
corresponding spectral projection. By definition, the spectral order relation
([1]), on Mh is a ≺ b if E(a; [t,∞)) ≤ E(b; [t,∞)) for all t ∈ R. Since a =∫∞
0 E(a; [t,∞))dt if a ≥ 0, it is easy to see that a ≺ b ⇒ a ≤ b in case a ≥ 0,

b ≥ 0 and from here also for general a, b ∈ Mh. Also a ≺ b ⇒ f(a) ≺ f(b) if
f : R → R is an increasing Borel function. All this also extends to selfadjoint
unbounded operators affiliated with M .

The operations ∧ and ∨ have a natural extension to Mh (and even to
affiliated selfadjoint operators). It is given in [1] in case M is a matrix alge-
bra, but the extension to the case of a general von Neumann algebra is quite
straightforward and must have occurred to many people. If a, b ∈ Mh, then
a∧b is defined by E(a∧b; [t,∞)) = E(a; [t,∞))∧E(b; [t,∞)) for all t ∈ R. To
see that a∧b is well defined observe that the right side is projection-valued,
decreasing and left-continuous in the strong operator-topology as a function
of t. Similarly one defines a∨b by E(a∨b; (t,∞)) = E(a; (t,∞))∨E(b; (t,∞)).
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Here, checking that a∨b is well-defined boils down to checking right conti-
nuity in t. Note that these definitions work in an arbitrary von Neumann
algebra, i.e., we did not use the trace-state τ .

In the tracial context we also have E(a∨b; [t,∞)) = E(a; [t,∞))∨E(b; [t,∞)).
Since E(c; (t − ε,∞)) ↓ E(c; [t,∞)) as ε ↓ 0, it is immediate that the left
side ≥ the right side, while the fact that this must be an equality follows
from the following inequalities involving the trace-state

0 ≤ τ(E(a∨b; (t− ε,∞))− E(a; [t,∞))∨E(b; [t,∞))
≤ τ(E(a; (t− ε, t)) + E(b; (t− ε, t)).

Using (−a)∨(−b) = −(a∧b) we also get E(a∧b; (t,∞)) = E(a; (t,∞))∧E(b; (t,∞)).
Passing to orthocomplements also gives in the tracial case that

E(a∧b; (−∞, t)) = E(a; (−∞, t))∨E(b; (−∞, t))
E(a∧b; (−∞, t]) = E(a; (−∞, t])∨E(b; (−∞, t])
E(a∨b; (−∞, t]) = E(a; (−∞, t])∧E(b; (−∞, t])
A(a∨b; (−∞, t)) = E(a; (−∞, t))∧E(b; (−∞, t)).

Note, that since only spectral projections are involved, the definitions and
properties of ∧ and ∨ also extend to unbounded selfadjoint operators affiliated
with (M, τ). Note also that if f : R → R is an increasing Borel function then
f(a)∧f(b) = f(a∧b) and f(a)∧f(b) = f(a∨b).

Lemma 2.1. If P,Q ∈ Proj(M) are freely independent in (M, τ), then
τ(P∨Q) =
min(τ(P ) + τ(Q), 1) and τ(P∧Q) = max(0, τ(P ) + τ(Q)− 1).

This is not a new result. It can be obtained using free convolution, additive
or multiplicative. Indeed, P∧Q = E(P + Q, {2}) = E(PQP, {1}). Since the
Cauchy transforms of the distributions of PQP and P + Q are algebraic,
τ(P∧Q) is given by the residue at 1 or respectively at 2 of the corresponding
Cauchy transform (see 3.4.1 in [17] or 3.6.7 in [18]).

The free independence of two projections of given trace completely deter-
mines the trace on the algebra they generate. Since in this paper we focus
on P∧Q and P∨Q it will be convenient to also have at hand a more relaxed
concept.

Definition 2.2. Two projections P,Q ∈ Proj(M) are in general position
if the equivalent conditions τ(P∨Q) = min(τ(P ) + τ(Q), 1) and τ(P∧Q) =
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max(0, τ(P ) + τ(Q)− 1) are satisfied. We will also say that two unbounded
selfadjoint operators a, b affiliated with M are in general spectral position if
for each t ∈ R the projections E(a; [t,∞)) and E(b; [t,∞)) are in general
position.

The preceding definition for selfadjoint operators may seem to depend on
choosing [t,∞) instead of (t,∞), but this is actually inessential.

Lemma 2.3. If the unbounded selfadjoint operators a, b affiliated with (M, τ)
are in general position, then E(a; (t,∞)) and E(b; (t,∞)) are in general
position. In particular −a and −b are in general position.

The preceding lemma follows from the inequalities

0 ≤ τ(E(a; (t,∞))∨E(b; (t,∞))− E(a; [t + ε,∞))∨E(b; [t + ε,∞))
≤ τ(E(a; (t, t + ε)) + E(b; (t, t + ε))).

Returning to the spectral order we have the following lemma.

Lemma 2.4. If a, b ∈ M , a ≥ 0, b ≥ 0 then (2−1(ap + bp))1/p ↑ a∨b as
p → +∞.

With the superfluous condition that M be finite-dimensional, this is Lemma 6.15
in [1]. The proof in [1] that 2−1/p(ap + bp)1/p is increasing,, works in gen-
eral and also the rest of the proof works with minor adjustments. If X
denotes the limit, then 2−1(ap + bp) ≤ (a∨b)p gives X ≤ a∨b since t → t1/p

is operator-increasing for p ≥ 1. On the other hand if k ≥ 1, Xk =
s − limp→∞ 2−k/p(ap + bp)k/p = s − limp→∞ 2−1/p(akp + bkp)1/p ≥ ak so
that if ξ ∈ E(X; (−∞, t])H then tk‖ξ‖2 ≥ 〈Xkξ, ξ〉 ≥ 〈akξ, ξ〉 for all
k ∈ N, so that ξ ∈ E(a; (−∞, t])H. Similarly ξ ∈ E(b; (−∞, t])H, so that
E(X; (−∞, t]) ≤ E(a; (−∞, t])∧E(b; (−∞, t]). This easily gives X ≥ a∨b.

Corollary 2.5. If a, b ∈ Mh, then
a∨b = s− limp→∞ p−1 log(exp(pa) + exp(pb)).

Indeed this follows from log(exp(a∨b)) = a∨b, 2−1/p → 1 and the preced-
ing lemma applied to exp a, exp b.

3. Extremal Free Convolutions

By Prob(R) we shall denote the probability measures on R and by Probc(R)
those with compact support. If µ ∈ Prob(R), then F (t) = µ((−∞, t]) is its
distribution function.
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Definition 3.1. If µ, ν ∈ Prob(R) have distribution functions F,G, then
the upper and the lower extremal free convolutions µ�∨ν and respectively
µ�∧ν are given by the distribution functions H(t) = max(0, F (t) + G(t)− 1)
and respectively K(t) = min(F (t) + G(t), 1).

Proposition 3.2. If a, b are selfadjoint unbounded operators affiliated with
(M, τ), that are in general spectral position and µa, µb ∈ Prob(R) are their
distributions, then µa�∨µb and µa�∧µb are the distributions of a∨b and re-
spectively a∧b.

The preceding proposition is immediate from the definitions. Using Lemma 2.1,
Definition 2.2 and the adaptation of free independence to unbounded oper-
ators affiliated with (M, τ) ([5]) we have the following consequence.

Corollary 3.3. If a, b are freely independent unbounded selfadjoint operators
affiliated with (M, τ), then the distributions of a∨b and a∧b are equal to
µa�∨µb and respectively to µa�∧µb where µa, µb are the distributions of a, b.

The extremal free convolution operations also have natural descriptions
without invoking the distribution functions.

Proposition 3.4. Let µ, ν ∈ Prob(R) and let t = inf{x ∈ R | (µ +
ν)((x,∞)) ≤ 1} and s = sup{y ∈ R | (µ + ν)((−∞, y)) ≤ 1}. Then

µ�∨ν = χ(t,∞) · (µ + ν) + (1− (µ + ν)((t,∞)))δt

and
µ�∧ν = χ(−∞,s) · (µ + ν) + (1− (µ + ν)((−∞, t)))δs.

Proof. Given that the map x → −x interchanges the two operations it will
suffice to check the first equality. If F,G,H are the distribution functions of
µ, ν and respectively of the right side of the equality we are checking. It is
immediate that

1−H(x) = min((1− F (x)) + (1−G(x)), 1)

which gives
H(x) = max(F (x) + G(x)− 1, 0).

�

Translating Corollary 2.5 into free convolutions language we obtain the
following result.
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Proposition 3.5. Let µ, ν ∈ Probc(R) then µ�∨ν is the weak limit of

(k−1 log)∗((exp k•)∗µ � (exp k•)∗ν)

as k → +∞.

Note that the preceding proposition can be given additional precision
using Lemma 2.4 with the 2−1/p factor.

Remark 3.6. It is interesting to note that in the classical context ([7],[14]),
the operation on probability measures, analogous to �∨ corresponds to the
multiplication of the distribution functions. Thus, viewing distribution func-
tions as functions with values in [0, 1], the passage from classical to free prob-
ability, means replacing the multiplicative semigroup ([0, 1], •) by the semi-
group on [0, 1] resulting from the binary operation (s, t) → max(0, s+ t−1).

4. Extremal Noncommutative Processes Indexed by an Ordered
Set

Definition 4.1. Let (J ,≤) be an ordered set and (M, τ) a tracial W ∗-
probability space. A M -valued upper extremal process indexed by J is a
family (Y (i))i∈J of selfadjoint unbounded operators, such that if α ∈ J
is the least upper bound of a set ω ⊂ J then

Y (α) = ∨{Y (i) | i ∈ ω}

(for sets ∨ is defined, like for pairs on the spectral projections E(·; (t,∞))).
The process is projection-valued if the Y (i) ∈ Proj(M), i ∈ J .

Remark 4.2. The extension of the supremum ∨ to infinite families, no
longer has the property that spectral projections for (t,∞) may be replaced
by spectral projections for [t,∞). For instance ∨n∈N(1 − 1/n)I = I but
E((1− 1/n)I; [1,∞)) = 0 while E(I; [1,∞)) = I.

Remark 4.3. The preceding definition implies that if α, β ∈ J , α ≤ β then
Y (α) ≺ Y (β) with respect to the spectral order. Indeed, it suffices to apply
the definition to ω = {α, β}.

If Y1, Y2 are M -valued upper extremal processes, indexed by the same or-
dered set J , then we may define Y1∨Y2 by (Y1∨Y2)(α) = Y1(α)∨Y2(α) which
is also an upper extremal process indexed by J . Clearly the construction
extends to families of processes.
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If Yj (j = 1, 2) are upper extremal processes, indexed by J with values in
von Neumann algebras (Mj , τj) (j = 1, 2) we may construct their free sup
as the process σ1(Y1)∨σ2(Y2) where σj : Mj → M1 ∗ M2 are the canonical
inclusions into (M1 ∗ M2, τ1 ∗ τ2). Again, more generally we may take the
free sup of a family of processes.

Consistently with these considerations is the spectral order on processes
Y1 ≺ Y2 defined as Y1(α) ≺ Y2(α) for all α ∈ J .

Remark 4.4. If Y is an M -valued upper extremal process indexed by J then
J 3 α → E(Y (α); (t,∞)) ∈ Proj(M) is a projection-valued upper extremal
process indexed by J .

Example 4.5. Spectral measures. If a is an unbounded selfadjoint operator
affiliated with (M, τ), then

R 3 t → E(a; (−∞, t)) ∈ Proj(M)

is a projection-valued upper extremal process indexed by R.

Remark 4.6. Note that a ≺ b is equivalent to E(a; (−∞, t)) ≤ E(b; (−∞, t)),
t ∈ R. Thus, Ando’s definition of the spectral order ([1]) can be interpreted
as replacing the operator by the projection-valued process of Example 4.5
and using the natural order on such processes derived from the order on
projections.

Remark 4.7. The definition of upper extremal processes can be extended
to processes where the Y (α) are selfadjoint unbounded operators affiliated
with M . Note also that if f : R → R is an increasing function which is lower
semicontinuous, then

J 3 α → f(Y (α))

transforms an upper extremal process into another upper extremal process.
We denote this process by f∗Y .

5. Free Extremal Processes Over a Set

Let (X ,B, µ) be a measure space with µ a positive σ-finite measure. The free
projection-valued upper extremal process over (X ,B, µ) will be a projection-
valued upper extremal process B/∼ 3 ω → Y (ω), where B/∼ is B modulo
null sets, with values in some (M, τ) so that if {ωk}k∈K are pairwise dis-
joint (modulo null-sets), then the Y (ωk), k ∈ K are freely independent and
τ(Y (ω)) = min(µ(ω), 1).
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It is easily seen that it is sufficient to construct such a process when X
is a finite set, the general case being then roughly the result of viewing X
as arising from an inverse limit using finite partitions, while M would be
constructed as a direct limit (we leave the details to the reader). If X is
finite and X = {x1, . . . , xn}, {xj} ∈ B then let P1, . . . , Pn ∈ Proj(M) be
freely independent with τ(Pj) = min(µ({xj}), 1). We then define for ω ⊂ X

Y (ω) = ∨{j|xj∈ω}Pj .

That τ(Y (ω)) = min(µ(ω), 1) is then a consequence of Lemma 2.1.
It is easily seen that under the additional requirement that M be gener-

ated by {Y (ω) | ω ∈ B} the free projection-valued upper extremal process
over (X ,B, µ) is unique up to isomorphism.

The free projection-valued upper extremal process over (X ,B, µ) is re-
lated to the free Poisson process over (X ,B, µ). To explain this, we start by
recalling some facts about the free Poisson process. Based on realizations of
free Poisson variables using semicircular or circular elements (see [11] Re-
mark 1.7, Cor. 1.8 in the main text and Lemma 1.4, Remark 1.5, Thm. 1.6
in the Appendix) there are constructions of free Poisson processes over a set
(see 6.2 and 1◦ in 6.6 of [17]). We will use the construction involving circular
elements, which we summarize in the following theorem.

Theorem 5.1 ([11],[17]). Let (Cι)ι∈I be ∗-freely independent circular vari-
ables and let (Ωι)ι∈I be spaces of events with σ-algebras Σι and probability
measures νι. Let further (Ω,Σ, µ) be the disjoint union of the (Ωι,Σι, νι).
Let (Aι, τι) denote the W ∗-probability space L∞(Ωι,Σι, νι) with τι the expec-
tation functional given by νι. Assume (Aι)ι∈I and ({Cι, C

∗
ι })ι∈I are freely

independent and contained in (M, τ). If α ∈ Σ, ν(α) < ∞ let

Π(α) =
∑
ι∈I

Cιχα∩ΩιC
∗
ι

where χα∩Ωι ∈ Aι is the indicator function of α ∩ Ωι. Then:

(i) Π(α) has free Poisson distribution with parameters a = ν(α), b = 1 in
(M, τ).

(ii) If α is the disjoint union of αk ∈ Σ, ν(α) < ∞, then Π(α) =
∑

k∈N Π(αk).
(iii) If αk ∈ Σ, ν(αk) < ∞ are pairwise disjoint, k ∈ N, then (Π(αk))k∈N

are freely independent.

Using the facts on freeness of Gaussian and deterministic diagonal ma-
trices, it was also noted (see [17], the end of section 7.3) that one obtains
asymptotic random matrix realizations of the free Poisson processes.
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To avoid complicating notations, we gave in Theorem 5.1 a construction of
the process for Ω which can be represented as a disjoint union of probability
measure spaces. Clearly if (X ,B, µ) is a σ-finite measure space we can realize
the free Poisson process over (X ,B, µ) by finding Ω as above so that Ω ⊃ X ,
B ⊂ Σ and ν | X extending µ.

Let (X ,B, µ) be a σ-finite measure space and let Π : Bf → Mh, where
Bf are the sets in B with finite measure, be the free Poisson process, i.e.,
Π(α) is a free Poisson noncommutative random variable with parameters
µ(α) and 1, and for disjoint α1, α2, . . . so that

∑
k µ(αk) < ∞ we have∑

k Π(αk) = Π(∪kαk) and the Π(αk) are freely independent in (M, τ). The
following theorem gives the connection between the two kinds of processes.

Theorem 5.2. If Y (α) denotes the range projection of Π(α), then Y (α) is
the free projection-valued upper extremal process over (X ,B, µ). Moreover,
if µ has no atoms, then the von Neumann algebras {Π(α) | α ∈ B} and
{Y (α) | α ∈ B} are equal.

Proof. In view of the formula for the distribution of a free Poisson ran-
dom variable (2.7 in [17]), we have τ(Y (α)) = min(µ(α), 1). Also, clearly
Π(α) depends on α only up to null-sets and if α1, α2, . . . are disjoint, then
Y (α1), Y (α2), . . . are freely independent, since Π(α1),Π(α2), . . . are freely
independent. Further, if α1, α2, . . . are disjoint and α = ∪kαk ∈ Bf , then
Y (α) = ∨kY (αk). Indeed, Y (α) is the projection onto (ker Π(α))⊥ and it
suffices to show that kerΠ(α) = ∧k ker Π(αk), that is = ∩k ker Π(αk). We
have:

ξ ∈ ker Π(α) ⇔ ξ ∈ ker Π(α)1/2

⇔ 〈Π(α)ξ, ξ〉 = 0 ⇔
∑

k

〈Π(αk)ξ, ξ〉 = 0

⇔ 〈Π(αk)ξ, ξ〉 = 0, k ∈ N
⇔ ξ ∈

⋂
k

ker Π(αk)1/2 =
⋂
k

ker Π(αk).

Our use of N as an index set is no loss of generality since Π(α) depends
on α only up to null-sets and µ is σ-finite. Thus we have checked that Y is
the free projection-valued upper extremal process.

In view of the formula for the free Poisson distribution (2.7 in [17]) we have
that if µ(α) = a < 1, the spectrum of Π(α) is {0} ∪ [(1− a1/2)2, (1 + a1/2)2]
and Y (α) is the spectral projection of Π(α) for [(1 − a1/2)2, (1 + a1/2)2].
This gives ‖Y (α)− Π(α)‖ ≤ (1 + a1/2)2 − 1 ≤ 3a1/2 and |Y (α)− Π(α)|1 ≤
‖Y (α)−Π(α)‖τ(Y (α)) ≤ 3a1/2 · a = 3a3/2.
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To prove that the von Neumann algebras generated by {Y (α) | α ∈ B}
and {Π(α) | α ∈ B} coincide, it suffices to show their L1-spaces coincide, and
hence it suffices to show Π(α) is in the L1-closure of the linear span of the
Y (α). Given α ∈ Bf , if µ is diffuse, there are pairwise disjoint α1, . . . , αk ∈
Bf so that α1 ∪ · · · ∪ αk = α and µ(αj) < ε. Then we have

|Π(α)− (Y (α1) + · · ·+ Y (αk))|1 ≤
∑

j

|Π(αj)− Y (αj)|1

≤ 3ε1/2(µ(α1) + · · ·+ µ(αk))
≤ 3ε1/2µ(α),

which proves our assertion. �

Remark 5.3. Note that in the realization of the free Poisson process via
circular elements Y (α) being the range projection of Σcιχ(α ∩ Ωι)c∗ι is the
same as being the range projection of Cχ(α) where C is a column matrix
with entries Cι and χ(α) the diagonal matrix with entries χ(α ∩Ωι) on the
diagonal. This can also be translated into the asymptotic random matrix
realization (see 7.3 in [17]), the Y (α) are the large N limit of ΓNDN (α)
(or equivalently of ΓNDN (α)Γ∗N ) where ΓN is an appropriate N × [tN ] ma-
trix with i.i.d. Gaussian entries and DN (α) are deterministic [Nt] × [Nt]
projection matrices with joint limit distribution the same as the χ(α)’s in
L∞(Ω,Σ, t−1ν) (here t = ν(Ω) < ∞, we leave to the reader the easy adap-
tation to ν(Ω) = ∞).

Remark 5.4. Relaxing the condition Y (ω) ∈ Proj(M) to Y (ω) ∈ Mh we
may consider more general free upper extremal process over a set, i.e., in ad-
dition to the condition that ω → Y (ω) be an upper extremal process over B/∼
we also require that for pairwise disjoint {ωk}k∈K the (Y (ωk))k∈K be freely
independent. Note that in view of Remark 4.4 E(Y (ω); (t,∞)) will then be
a projection-valued upper extremal process indexed by B/∼ and the freeness
requirement for disjoint {ωk}k∈K also carries over to the E(Y (ωk); (t,∞)).

An example of such a more general free upper extremal process over
(X ,B, µ) is the free triangular upper extremal process Z(ω) over (X ,B, µ). It
is characterized by the fact that E(Z(ω); (t,∞)) = Rt(ω) has the properties:

t < 0 ⇒ Rt(ω) = I

t ≥ 1 ⇒ Rt(ω) = 0
0 ≤ t < 1 ⇒ τ(Rt(ω)) = min((1− t)µ(ω), 1).
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The kind of argument that we used for the existence of the projection-
valued free process over (X ,B, µ) also works for the triangular process (we
leave the easy details to the reader).

Note also, that besides the triangular process, free upper extremal processes
over (X ,B, µ) can be obtained applying Remark 4.7 to Z(ω), i.e., processes
f∗Z where f is an increasing lower semicontinuous function R → R.

6. Free max-Stable Distributions and Free max-Domains of
Attraction

It will be convenient to work with distribution functions and to adapt some
of the notation and definitions of section 3 for this.

Definition 6.1. If F and G are two distribution functions on the real line,
we define the distribution function F�∨G to be (F + G− 1)+ and we define
the n-fold iterate of this operation

F�∨n = F �∨ . . .�∨︸ ︷︷ ︸
n-times

F = (nF − (n− 1))+.

We want to study the possible asymptotic behavior of F�∨n when n tends
to infinity. Let us start with some trivial properties of the tail and support
of F�∨n. If F̄ = 1− F denotes the tail of the distribution function F , then

F�∨G = (F̄ + Ḡ)∧1

and
F�∨n = nF̄∧1.

If [α(F ), ω(F )] denotes the support in [−∞,∞] of the probability distribu-
tion defined by F , then for all n ≥ 2 and F

α(F�∨n) > −∞

and
ω(F�∨n) = ω(F ).

More precisely:

α(F�∨n) = sup
{

x ∈ R | F (x) ≤ 1− 1
n

}
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and
lim

n→∞
α(F�∨n) = ω(F ).

In case there is un such that

F (un) = 1− n−1

then
α(F�∨n) ≥ un

and one can easily interpret F�∨n as a conditioned (or thresholded) distri-
bution. Indeed, if F is the distribution function of a random variable X,
then

F�∨n(x) = P (X ≤ x | X > un)

i.e., F�∨n is the distribution function of the random variable X conditioned
to be larger than the threshold un (cf. Proposition 3.4).

Definition 6.2. A distribution function F is freely max-stable iff for every
n ≥ 1, there exist an, bn ∈ R, an > 0 such that

F�∨n(anx + bn) = F (x).

Remark 6.3. If F is freely max-stable, then its support is bounded from
below, since α(F�∨2) > −∞.

Definition 6.4. A distribution function F is in the free max-domain of
attraction of the distribution function G if there exist an, bn ∈ R, an > 0,
such that, as n →∞

F�∨n(anx + bn) w→ G(x)

(that is, convergence at every point of continuity of G). The free max-domain
of attraction of G will be denoted by Domfree(G).

Theorem 6.6. The following are equivalent

(i) G is freely max-stable
(ii) Domfree(G) 6= ∅
(iii) G ∈ Domfree(G).
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Proof. Clearly (i) ⇒ (iii) ⇒ (ii) and we are left with proving that (ii) ⇒
(i). If F ∈ Domfree(G), then there are an, bn ∈ R, an > 0 so that at every
continuity point x of G, we have

lim
n→∞

nF̄ (anx + bn)∧1 = Ḡ(x).

Hence, if k ≥ 1 is an integer, then

lim
n→∞

nF̄ (anx + bn)∧k−1 = Ḡ(x)∧k−1

and
lim

n→∞
nF̄ (ankx + bnk)∧k−1 = k−1Ḡ(x).

Thus, by a slight generalization of Khintchine’s law of types, which we give
in Lemma 6.7, we infer the existence of αk, βk ∈ R, αk > 0 such that

Ḡ(αkx + βk)∧k−1 = k−1Ḡ(x)

or equivalently
kḠ(αkx + βk)∧1 = Ḡ(x),

which is the same as
G�∨k(αkx + βk) = G(x).

So, modulo Lemma 6.7 we have proved G is max-stable.
To formulate the extension of Khintchine’s law of types, let us call G a

c-defective distribution function (here 0 < c < 1) if G is a non-decreasing,
right continuous function on R so that

lim
x→+∞

G(x) = 1

and
lim

x→−∞
G(x) = c.

G can be viewed a the distribution function of a random variable which
takes the value −∞ with probability c.

Lemma 6.7. If Fn is a sequence of c-defective distribution functions and if
G and G∗ are c-defective, non-degenerate distribution functions, such that,
as n →∞ we have

Fn(anx + bn) w→ G(x)
Fn(αnx + βn) w→ G∗(x)
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for real constants an > 0, bn, αn > 0, βn, then

lim
n→∞

an

αn
= a and lim

n→∞

βn − bn

an
= b

for some a > 0, b ∈ R and

G∗(x) = G(ax + b).

This lemma is a trivial consequence of Khintchine’s law of types. Indeed
one reduces it to the usual result by defining:

G̃(x) =
G(x)− c

1− c
and G̃∗(x) =

G∗(x)− c

1− c
.

To conclude the proof of the theorem we apply the lemma to the sequence
of (1− k−1)-defective distribution functions 1− (nF̄∧k−1) and to the (1−
k−1)-defective distribution functions 1− Ḡ∧k−1 and 1− Ḡk−1. �

Definition 6.8. We will say that a distribution function F is of free extreme-
value type if F is of the same type as one of the following classes of distri-
butions:

1) Type I: the exponential distribution F (x) = (1− e−x)+
2) Type II: the Pareto distribution F (x) = (1− x−α)+ for some α > 0
3) Type III: the Beta law F (x) = 1 − |x|α for −1 ≤ x ≤ 0 and some

α > 0.

Theorem 6.9. G is freely max-stable iff G is of free extreme-value type
(that is there exist a > 0 and b real constants so that G(ax+ b) is one of the
distributions listed in Definition 6.8).

Proof. Each of the distributions in Definition 6.8 is freely max-stable by a
straightforward computation. To prove the converse statement we need the
following lemma.

Lemma 6.10. If G is freely max-stable, then there exist measurable func-
tions a(s) > 0, b(s), where s ∈ [1,∞), so that

G�∨s(a(s)x + b(s)) = G(x)

with G�∨s defined for s ∈ [1,∞) by

G�∨s(y) = sG(y)∧1.

imsart ver. 2005/05/19 file: free_extreme_values.tex date: May 26, 2005



G. Arous et al./Free Extreme Values 16

Proof of Lemma 6.10. G being freely max-stable there exist real numbers
an > 0 and bn such that

Ḡ(x) = nḠ(anx + bn)∧1.

If us(x) = a[ns]x + b[ns], then

Ḡ(x) = [ns]Ḡ(us(x))∧1.

This easily gives
lim

n→∞
nḠ(us(x))∧s−1 = Ḡ(x)s−1.

Thus, we have
nḠ(anx + bn)∧s−1 = Ḡ(x)∧s−1

and
lim

n→∞
nḠ(a[ns]x + b[ns])∧s−1 = Ḡ(x)s−1.

By the extension of Khintchine’s law of types in Lemma 6.7, we conclude
that there exist measurable functions a(s) > 0 and b(s) such that

s−1Ḡ(a(s)x + b(s)) = Ḡ(x)∧s−1

or equivalently
Ḡ(a(s)x + b(s)) = sḠ(x)∧1

that is
G(a(s)x + b(s)) = G�∨s(x).

�

Applying Lemma 6.10 t G�∨st one easily gets that

a(st) = a(t)a(s)
b(st) = a(t)b(s) + b(t)

if s, t ∈ (1,∞).
It is easily seen that if one extends a(s) to (0,∞) by a(1) = 1 and a(s) =

(a(s−1))−1 if s < 1, then the equation a(st) = a(t)a(s) holds for all s > 0
and t > 0. Since a(s) is measurable, it is known that there exists θ ∈ R such
that a(s) = sθ.

Case I. θ = 0, that is a(s) ≡ 1. Then b(st) = b(s) + b(t) for s, t > 1 and
b̃(s) = eb(s) satisfies b̃(st) = b̃(s)b̃(t). Thus again, there exists c ∈ R such
that b(s) = −c ln s and

G�∨s(x) = G(x− ln s)
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for s > 1. It is easy to see that this implies that G is of the same type as
the exponential distribution. Indeed, one just checks that c > 0 since

Ḡ(x− c ln s) = G�∨s(x) = sḠ(x)∧1 ≥ Ḡ(x)

which implies that x− c ln s ≤ x and thus c ≥ 0. If G is non-degenerate we
cannot have c = 0. Then we see that G(x) < 1 for all x. Indeed, if G(x) = 1,
then Ḡ(x) = 0, so that G�∨s(x) = 0, that is G�∨s(x) = 1 for all s ≥ 1. Hence
G(x − c ln s) = 1 for all s ≥ 1, which gives G(y) = 1 for all y ≤ x which is
not possible.

Now, if a = Ḡ(x) > 0 and y = x− c ln s, then

Ḡ(y) = sa∧1 = (aex/ce−y/c)∧1

so that α(G) = x + c ln a. This shows that

ln Ḡ(x) = (α(G)− x)c−1 for x ≥ α(G)

that is
Ḡ(x) = e(α(G)−x)c−1

and G(α(G) + cx) is exponentially distributed.

Case II. If θ > 0, then a(s) = sθ > 1 for s > 1. From

b(st) = a(t)b(s) + b(t) = a(s)b(t) + b(s)

we see that b(s)(1− a(s))−1 is a constant c. We infer that b(s) = c(1− s−θ)
and G�∨s(x) = G(s−θ(x− c) + c). If H(x) = G(x + c) then

H�∨s(x) = H(s−θx)

that is sH̄(x)∧1 = H̄(s−θx). If x0 < 0 is such that 0 < H̄(x0) < 1, then this
shows that H̄(s−θx0) is an increasing function on some interval (1, 1 + ε),
since it is equal to sH̄(x0) for s close to 1. But this function is non-increasing
if x0 < 0. Thus for every x0 < 0 we see that H̄(x0) ∈ {0, 1}. Since H is non-
degenerate it is then impossible that H̄(0) = 0. Choosing s > 1 such that
s−1 < H̄(0), we have:

1 = sH̄(0)∧1 = H̄(s−θ · 0) = H̄(0).

Hence H̄(0) = 1. This proves that α(H) ≥ 0.
Let x0 > 0 be such that 0 < H(x0) < 1. Then if y = s−θx0 one sees

that H̄(y) = sH(x0)∧1. Hence: H̄(y) = 1 iff s ≥ s0 = (H̄(x0))−1, that is iff
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y ≤ s−θ
0 x0. This proves that α(H) > 0 and α(H) = s−θ

0 x0. This is valid for
every x0 such that 0 < H(x0) < 1, so that α(H) = (H(x))θx for x ≥ α(H)
and

H̄(x) = (α(H))1/θx−1/θ

that is H is a Pareto distribution.

Case III. If θ < 0. This is completely similar to Case II. G is of the type
of a Beta law. �

In particular we have also proved the following fact:

Theorem 6.11 (Free extremal type theorem). The following are equivalent:

(i) there exists a distribution F and constants an, bn ∈ R, an > 0 such that
F�∨n(anx + bn) w→ G(x) as n →∞.

(ii) G is of the type of a free extreme value distribution.

This result in the free probability setting is the equivalent of the classical
extremal type theorem. One can introduce a natural mapping relating the
two statements.

Given c > 0 we define a function on [0, 1] by:

fc(u) = (1 + c lnu)+.

Then, fc is non-decreasing and fc(u) = 0 iff u ≤ e−1/c. Moreover fc(1) = 1.
We have:

fc(uv) = (1 + c lnu + c ln v)+
= (fc(u) + fc(v)− 1)+.

One can endow the set [0, 1] with two semigroup structures: one arising
from usual multiplication, the other arising from the operation related to
free convolution:

u ∗ v = (u + v − 1)+.

Then fc (for any c > 0) is a homomorphism between these two semigroups
on (0, 1].

This homomorphism gives rise to a homomorphism between the semi-
groups of probability distributions functions endowed either with pointwise
multiplication or the operation �∨, which coincides with pointwise perform-
ing the operation ∗. It follows that

fc(FG) = fc(F )�∨fc(G)
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so that
fc(Fn) = fc(F )�∨n.

It is clear that the free extreme value distribution functions are obtained
from the classical ones by the map f1. It is also clear that if F is classically
max-stable, then fc(F ) is freely max-stable. If one could prove the converse
directly, i.e., that if G is freely max-stable, it is the image by fc of a max-
stable distribution-function F , then we could derive the free extremal type
theorem directly from the classical one. We were able to obtain this result
via a different route.

We will now prove that free max-domains of attraction and classical max-
domains of attraction coincide for corresponding laws and that the normal-
izing constants are also equal.

We begin with type I.

Theorem 6.12. The free max-domain of attraction of the exponential dis-
tribution coincides with the classical max-domain of attraction of the Gumbel
distribution and the normalizing constants are equal.

Proof. F is in the free max-domain of attraction of the exponential distri-
bution iff there exist b(s) and a(s) > 0 for s > 1 such that for all x ≥ 0 we
have

lim
s→+∞

sF̄ (b(s) + xa(s)) = e−x.

(This is clear for s running over N and we can take a(s) = a([s]), b(s) =
b([s]).) In particular lims→+∞ sF̄ (b(s)) = 1. Hence we may assume b(s) <
ω(F ) and that b(s) is non-decreasing. It is easily seen that this implies that
F is in the domain of attraction of the exponential distribution iff there
exists a function g(t) > 0 such that for all x > 0 we have

lim
t↑ω(F )

F̄ (t + xg(t))
F̄ (t)

= e−x.

If t < ω(F ) let us denote by U the function U(t) = 1/F̄ (t) so that

lim
t↑ω(F )

U(t + xg(t))
U(t)

= ex

and U is Γ-varying (see the Definition in 0.4.3, page 26 of [14]) on (α(F ), ω(F )).
By ([14], Prop. 0.10 on page 28) this is equivalent to F being in the classical
max-domain of attraction of the Gumbel law Λ. �
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We now turn to the free max-domains of attraction of the Pareto distri-
bution.

Theorem 6.13. The following are equivalent for α > 0

(i) F is in the free max-domain of attraction of the Pareto distribution
with exponent α.

(ii) F is in the max-domain of attraction of the Frechet distribution Φα.
(iii) F̄ is −α-regularly varying at ∞.

Moreover the normalization constants in (i) and (ii) can be chosen of the
form an = un, bn = 0.

Proof. The equivalence of (ii) and (iii) is a classical fact due to Gnedenko
(see [14] the definition in 0.4.1 on page 13 and Prop. 1.11 on page 54).

To prove (iii) ⇒ (i) assume F̄ is −α-regularly varying at ∞, that is

lim
t→∞

F̄ (tx)
F̄ (t)

= x−α

for all x > 0. Then un = inf{t ∈ R | F̄ (t) < n−1} will be such that
limn→∞ nF̄ (un) = 1 and hence

lim
n→∞

nF̄ (unx) = x−α

for all x > 0. It follows that

lim
n→∞

F�∨n(unx) = lim
n→∞

F̄ (unx)∧1 = x−α∧1

if x > 0 and since F�∨n(unx) is decreasing and ≤ 1 the limit will be 1 if
x ∈ (−∞, 1). This proves (i).

To conclude the proof we will show that (i) ⇒ (iii).
If for some choice of constants an, bn ∈ R, an > 0 we have

lim
n→∞

F�∨n(anx + bn) = x−α∧1

for x > 0, then if U = 1/F̄

lim
n→∞

n−1U(anx + bn) = xα when x > 1.

Then, if V (y) = U←(y) = inf{s : U(s) ≥ y} we have

lim
n→∞

(V (y)− bn)a−1
n = y1/α if y > 1.
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With a(t) = a[t], b(t) = b[t] we then have

lim
t→∞

(V (ty)− b(t))a(t)−1 = y1/α

and
lim
t→∞

(V (ty1)− V (ty2))a(t)−1 = y
1/α
1 − y1/α

when y, y1, y2 are > 1.
This implies

lim
t→∞

a(tx)a(t)−1 = lim
t→∞

((V (txy1)− V (txy2))a(t)−1)/(V (txy1)− V (txy2)a(tx)−1)

= ((xy1)1/α − (xy2)1/α)/(y1/α
1 − y

1/α
2 ) = x1/α.

Then for any fixed y1 > y2 > 1 the function V (ty1) − V (ty2) is 1/α-
regularly varying at ∞ as a function of t. Since a function W (t) is 1/α-
regularly varying at ∞ iff W (tz) for some fixed z > 0 is 1/α-regularly
varying at ∞ as a function of t, we infer that V (ty)− V (t) is 1/α-regularly
varying at ∞ as a function of t for all y > 0, y 6= 1. Thus we can use the
last part of the proof of Prop. 1.11 in 1.2 of [14] (starting with the last two
paragraphs of page 55 and continuing on pages 56 and 57) and conclude
that F̄ is regularly varying of index −α at ∞. �

We finally turn to the domain of attraction of the Beta law (type III).

Theorem 6.14. The following are equivalent:

(i) F is in the free max-domain of attraction of G(x) = 1 − |x|α for
−1 ≤ x ≤ 0 and α > 0.

(ii) F is in the classical max-domain of attraction of the Weibull distribu-
tion Ψα.

(iii) ω(F ) < ∞ and F̄ (ω(F ) − u) is regularly varying of exponent α at 0,
that is limh↓0

F̄ (ω(F )−xh)
F̄ (ω(F )−h)

= xα if x > 0. Moreover, the normalization
constants can be chosen to be

an = ω(F )− un, bn = ω(F ).

Proof. The equivalence of (ii) and (iii) is a classical fact due to Gnedenko
(see Prop. 1.13 in 1.3 of [14]).

To prove that (iii) implies (i) note that if an = ω(F )− un and bn = ω(F )
then

F�∨n(anx + bn) = nF̄ (ω(F ) + x(ω(F )− un))∧1.
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Since un = inf{t : F̄ (t) < n−1} we get that if h = ω(F )−un then as n →∞
we have

F̄ (ω(F )− h) = F̄ (un) ∼ n−1.

It follows that if x < 0

lim
n→∞

nF̄ (ω(F )+x(ω(F )−un)) = lim
h→0

(F̄ (ω(F )−h))−1F̄ (ω(F )+xh) = |x|α.

Hence
lim

n→∞
F�∨n(anx + bn) = |x|α∧1

if x < 0, which proves (i).
To prove the converse, that (i) implies (iii), one mimics the proof of the

same statement in the type II case using this time the proof of Prop. 1.13
in [14] (see pages 59–62 of [14]).

Assume that for some choice of an, bn ∈ R, an > 0 we have

lim
n→∞

F�∨n(anx + bn) = G(x)

for x ∈ R. Then, if U = 1/F̄ and −1 ≤ x ≤ 0 we have

lim
n→∞

n−1U(anx + bn) = |x|−α.

Hence if V (y) = U←(y) = inf{s : U(s) ≥ y} we infer

lim
n→∞

(V (ny)− bn)a−1
n = −y−1/α

where 0 < y < 1.
With a(t) = a[t] and b(t) = b[t] we have for 0 < y < 1

lim
t→∞

(V (ty)− b(t))(a(t))−1 = 1− y−1/α

and for 0 < y2 < y1 < 1

lim
t→∞

(V (ty1)− V (ty2))(a(t))−1 = y
−1/α
2 − y

−1/α
1 .

This implies in turn that for x > 0 if 0 < xy1 < 1 and 0 < y2 < y1 < 1 then

lim
t→∞

a(tx)(a(t))−1 = lim
t→∞

V (txy1)− V (txy2)
a(t)

lim
t→∞

a(tx)
V (txy1)− V (txy2)

= ((xy2)−1/α − (xy1)−1/α)(y−1/α
2 − y

−1/α
1 )−1 = x−1/α
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and thus a(t) is regularly varying at ∞ of index −1/α.
Next we show that ω(F ) < ∞. Note that ω(F ) = V (∞) = limy↑∞ V (y).

Since a(·) is regularly varying of index −1/α we infer that if 2−1/α < λ < 1
then for some constant A > 0 we have

a(2n) ≤ Aλn for n ∈ N.

On the other hand using

lim
n→∞

(V (2n+2y1)− V (2n+2y2))(a(2n))−1 = y
−1/α
2 − y

−1/α
1

with y1 = 1/2 and y2 = 1/4 gives that for some B > 0 and some n0 ∈ N we
will have that for n ≥ n0 we have

V (2n+1)− V (2n) ≤ Ba(2n+2) ≤ ABλn+2 for n ∈ N.

Clearly, since 0 < λ < 1 this implies

lim
n→∞

V (2n)− V (2n0) =
∑
n≥n0

(V (2n+1)− V (2n))

≤
∑
n≥n0

ABλn+2 < ∞,

that is ω(F ) < ∞.
Since V (ty1)−V (ty2), like a(t) is regularly varying of index −1/α we infer

like in the type II case that also V (ty) − V (t) is regularly varying of index
−1/α for all y > 0, y 6= 1.

With these preparations the next step is to prove that (ω(F )−V (t))−1 is
regularly varying of index 1/α and thus that F̄ (ω(F )− s−1) as a function of
s is regularly varying of index α (this means F̄ (ω(F )−u) is regularly varying
of exponent α at 0). The proof can now be completed using the last part of
the proof of Proposition 1.13 in 1.3 of [14] (pages 61 and 62 in [14]). �

7. Peaks Over Threshold

The probability distributions we found as possible limits of free extremal
convolutions are well known in statistics. They come under the name Gen-
eralized Pareto Distributions (GPD) (see [7] section 3.4 and [13] section 1.4
for a text-book treatment of this subject). Statisticians have introduced a
convenient parametrization of these distributions.

imsart ver. 2005/05/19 file: free_extreme_values.tex date: May 26, 2005



G. Arous et al./Free Extreme Values 24

Definition 7.1. For γ ∈ R the standard Generalized Pareto Distribution is
defined by its distribution function Gγ given by

Gγ(x) = 1− (1 + γx)−1/γ

for {
x > 0 if γ > 0
0 < x < |γ|−1 if γ < 0

and if γ = 0, G0(x) = 1− e−x for x > 0.

These distributions appear as limits in the Peaks-Over-Threshold (P.O.T.)
approach to extreme value theory, which we sketch briefly.

Definition 7.2. If X is a random variable with distribution function F , for
u < ω(F ) the exceedance (or excess) distribution function at threshold u by:

F [u](x) = P (X ≤ u + x | X > u)

=
F (u + x)− F (u)

1− F (u)

for x ≥ 0.

The main result of P.O.T. theory is due to A. A. Balkema and L. De Haan
([2]):

If F [u](aux + bu) has a continuous limiting distribution function as u ↑
ω(F ) then

lim
u↑ω(F )

∣∣∣∣F [u](x)−Gγ

(
x

σu

)∣∣∣∣ = 0

for some shape and scale parameters γ and σu.

If X1, . . . , Xn are n i.i.d. random variables with common distribution func-
tion F and if X(1) ≥ X(2) ≥ · · · ≥ X(n) are the order statistics, i.e., the val-
ues of the variables ordered from largest to smallest, the traditional approach
to extreme values theory studies the distribution of the maximum X(1) or of
the first k maxima X(1), . . . , X(k) properly normalized, when n → ∞. The
P.O.T. approach considers the distribution of the variables conditioned on
being larger than a large threshold, which is very close to the free extremal
convolution studied here (see section 6 the paragraph preceding Def. 6.2).

The only (technical) difference between the P.O.T. approach and the free
probability extreme values theory is that the latter does not fix a threshold
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u for the random variable but for the value of the tail of the distribution
function. A more serious difference is that the free approach introduces a
binary operation on distribution functions and in some sense exhibits the
P.O.T. theory as a result of the iteration of this operation.

P.O.T. theory is very useful in various fields of statistics (insurance, re-
liability among others) and has been developed by R. L. Smith [15], A. C.
Davison and R. L. Smith [6], J. Pickands [12].

One should also notice that another (related) classical occurrence of the
Generalized Pareto Distributions is as intensities of limiting Poisson Point
Processes of extreme value theory (see [14] page 210, Cor. 4.19). More pre-
cisely F is in the free domain of attraction of Gγ iff the point measure

n∑
i=1

δXi−an
bn

converges to a Poisson Point Process with intensity Gγ .
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[14] Resnick, S.I. (1987). Extreme Values, Regular Variation and Point
Processes, Applied Probability, Vol. 4, Springer.

[15] Smith, R.L. (1987). Estimating tails of probability distributions. An-
nals of Statistics 15 1174–1207.

[16] Stratila, S. and Zsido, L. (1979). Lectures on von Neumann Alge-
bras, Editura Academiei and Abacus Press.

[17] Voiculescu, D. Lectures on Free Probability Theory, in “Lectures on
Probability Theory and Statistics”, Saint–Flour XXVIII-1998, Lecture
Notes in Math., Vol. 1783, pp. 283–349.

[18] Voiculescu, D., Dykema, K. and Nica, A. (1992). Free Random
Variables, CRM Monograph Series, Vol. 1, American Math. Soc.

imsart ver. 2005/05/19 file: free_extreme_values.tex date: May 26, 2005


