Midterm Exam
Basic Probability November 2, 2016 Instructor: Prof. Yuri Bakhtin

1. Suppose the random variable X has a standard Gaussian distribution, ie., its density is

$$
p(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad x \in \mathbb{R} .
$$

(For the final exam you will need to know Gaussian distributions by heart). Compute the density of the random variable $Y=-\log |X|$.

$$
\begin{aligned}
& \text { For all } y \in \mathbb{R} \\
& P_{ \pm}(y)=\sum_{\begin{array}{c}
x:-\log |x|=y \\
\lfloor \\
x= \pm e^{-y}
\end{array}} \frac{\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}}{\left|(-\log |x|)^{\prime}\right|}=2 \cdot \frac{\frac{1}{\sqrt{2 \pi}} e^{-\frac{e^{-2 y}}{2}}}{1 / e^{-y}}=\sqrt{\frac{2}{\pi}} e^{-y-\frac{e^{-2 y}}{2}} \\
& \begin{array}{l}
\text { the two terms } \\
\text { are equal to each other }
\end{array}
\end{aligned}
$$

2. For a sequence of events $\left(A_{n}\right)_{n=1}^{\infty}$ we recall the definitions

$$
\begin{aligned}
\limsup A_{n} & =\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}, \\
\liminf A_{n} & =\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k} .
\end{aligned}
$$

Is it possible to have $\mathrm{P}\left(\lim \sup A_{n} \cap \limsup A_{n}^{c}\right) \neq 0$ for some sequence $\left(A_{n}\right)_{n=1}^{\infty}$ on some probability space? Is it possible to have $\mathrm{P}\left(\lim \inf A_{n} \cap \lim \inf A_{n}^{c}\right) \neq 0$ for some sequence $\left(A_{n}\right)_{n=1}^{\infty}$ on some probability space?
For each question, if your answer is yes, give a supporting example. If your answer is no, prove your answer.

$$
\begin{aligned}
& \text { Question 1: Yes. Choose, forexample, any }(\Omega, F, P) \text { and } \\
& A_{n}=\left\{\begin{array}{ll}
\Omega, \text { neven } \\
\phi, \text { mod }
\end{array} \quad A_{n}^{c}= \begin{cases}\phi, & n \text { even } \\
\Omega, & n \text { odd }\end{cases} \right.
\end{aligned}
$$

$$
\text { Then } \limsup A_{n}=\Omega \text { and } \limsup A_{n}^{c}=\Omega \text {, so } p\left(\text { limsup } A_{n} \cap \limsup A_{n}^{c}\right)=P(\Omega)=1 \text {. }
$$

Question 2: No. We must prove that no w can belong to both liminf An
and $\liminf A_{n}^{e}$. If $w \in \liminf A_{n}$, then there is n such that $w \in A_{k}$ for all $k \geqslant n$, so $w \in A_{k}^{c}$ can hold only for finitely many values of k. Therefore, $w \notin \liminf A_{n}^{c}$.
3. Suppose your chance to win $\$ 200000$ in a lottery is 0.000001 . Let X denote the amount you win. Find $\mathrm{E} X$ and $\operatorname{Var} X$.

$$
\begin{aligned}
& P\left\{X=2 \cdot 10^{5}\right\}=10^{-6} \\
& P\{X=0\}=1-10^{-6} \\
& E X=2 \cdot 10^{5} \cdot 10^{-6}+0 \cdot\left(1-10^{-6}\right)=2 \cdot 10^{-1}=0.2 \\
& E X^{2}=4 \cdot 10^{10} \cdot 10^{-6}+0 \cdot\left(1-10^{-6}\right)=4 \cdot 10^{4}=40000 \\
& \operatorname{Var} X=E X^{2}-(E X)^{2}=40000-0.04=39999.96
\end{aligned}
$$

4. Suppose there are three boxes. Box no. 1 contains 1 blue ball and 1 red ball. Box no. 2 contains 1 blue ball and 3 red balls. Box no. 3 contains only 1 blue ball. A box is chosen at random, and then a ball is chosen at random from that box. Given that the result of this procedure is a blue ball, what is the conditional probability that it was chosen from Box no.1?

$$
\begin{aligned}
& A=\{b l u e \text { ball chosen }\} \\
& B_{k}=\{\operatorname{Box} 1 \text { chosen }\}, k=1,2,3 \\
& P\left(B_{k}\right)=\frac{1}{3}, k=1,2,3 . \\
& P\left(A \mid B_{1}\right)=\frac{1}{2} \\
& P\left(A \mid B_{2}\right)=\frac{1}{4} \\
& P\left(A \mid B_{3}\right)=1 \\
& P\left(B_{1} \mid A\right)=\frac{P\left(A \mid B_{1}\right) P\left(B_{1}\right)}{P\left(A \mid B_{1}\right) P\left(B_{1}\right)+P\left(A \mid B_{2}\right) P\left(B_{2}\right)+P\left(A \mid B_{3}\right) P\left(B_{3}\right)} \\
& =\frac{\frac{1}{2} \cdot \frac{1}{3}}{\frac{1}{2} \cdot \frac{1}{3}+\frac{1}{4} \cdot \frac{1}{3}+1 \cdot \frac{1}{3}}=\frac{\frac{1}{2}}{\frac{1}{2}+\frac{1}{4}+1}=\frac{1 / 2}{7 / 4}=\frac{2}{7}
\end{aligned}
$$

5. Let X be a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathrm{P})$ such that $\mathrm{E} X=1$ and $X(\omega) \geq 0$ for all ω.
(a) Prove that the function $Q: \mathcal{F} \rightarrow \mathbb{R}$ defined by $Q(A)=\mathrm{E}\left[X \mathbb{1}_{A}\right]$ for $A \in \mathcal{F}$ is a probability measure on (Ω, \mathcal{F}).
(b) Prove that if $\mathrm{P}(A)=0$, then $Q(A)=0$.
(c) Give an example showing that in general $Q(A)=0$ does not imply $\mathrm{P}(A)=0$.
(A) Need to $\operatorname{Check}(1) Q(\Omega)=1$ (2) G-additivity.
(1): $Q(\Omega)=E X \mathbb{1}_{\Omega}=E X=1$
(2) Let $A_{1}, A_{2} \ldots$ be disjoint.
$Q\left(\bigcup_{k=1}^{\infty} A_{k}\right)=E\left[X \mathbb{1}_{\bigcup_{k=1}^{\infty} A_{k}}\right]=E\left[X \sum_{k=1}^{\infty} \mathbb{1}_{A_{k}}\right]=E\left[\sum_{k=1}^{\infty} X \mathbb{1}_{A_{k}}\right]=E\left[\lim _{n \rightarrow \infty} \sum_{k=1}^{n} X \mathbb{1}_{A_{k}}\right]$
$=\left[\begin{array}{c}\text { by monotone } \\ \text { Conver pence Tum }\end{array}\right]=\lim _{n \rightarrow \infty} E\left[\sum_{k=1}^{n} X \mathbb{I}_{A_{k}}\right]=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} E X \mathbb{I}_{A_{k}}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} Q\left(A_{k}\right)$
$=\sum_{k=1}^{\infty} Q\left(A_{k}\right)$
(b) If $P(A)=0$, then $E \underbrace{X_{A} \mathbb{1}_{A}}_{N_{0} \text { ass. }}=0$ for all r.v.'s. $\left[\begin{array}{l}\text { it is true for simple r.v.'s, } \\ \text { hence for all }\end{array}\right]$
(c) Let $\Omega=\{0,1\}, \quad \mathcal{F}=2^{\{0,1\}}, P\{0\}=P\{1\}=\frac{1}{2}, \quad X(0)=0, \quad X(1)=2$.

Then $Q\{0\}=0$, but $P\{0\} \neq 0$.
6. Let P and Q be two probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ Prove that if $\int_{\mathbb{R}} f(x) \mathrm{P}(d x)=$ $\int_{\mathbb{R}} f(x) \mathrm{Q}(d x)$ for all bounded continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$, then $\mathrm{P}=\mathrm{Q}$. Hint: it suffices to check that the distribution functions of these two measures coincide.

Let $F(x)=P((-\infty, x])$ and $G_{f}(x)=Q((-\infty, x])$ for $x \in \mathbb{R}$
Since Bore measures are uniquely defined by their distribution functions, it suffice to show that $F(x)=C_{\sigma}(x)$ for all $x \in \mathbb{R}$.

Let us introduce functions $f_{n}, n \in \mathbb{N}$, with the following graph:

Then furore continuous, bounded $\operatorname{byy}^{\prime} 1$, By assumption, $\int_{\mathbb{R}} f(y) \mathbb{P}(d y)=\int_{\mathbb{R}} f_{n}(y) \mathbb{Q}(d y)$. $A l$ so, for $e l l y \in \mathbb{R}, f_{n}(y) \searrow \mathbb{I}_{(-\infty, x]}(y)$.
Therefore, by one of the convergence theorems ($\left.\begin{array}{c}\text { monotone convergence Thu } \\ \text { dominated conr. Thin } \\ \text { monotone cons. Thu }\end{array}\right)$

$$
\begin{aligned}
& F(x)=\mathbb{P}((-\infty, x])=\int_{\mathbb{R}} \mathbb{R}_{(-\infty, x]}(y) \mathbb{P}(d y)=\int_{\mathbb{R}^{n \rightarrow \infty}} \lim _{n \rightarrow} f_{n}(y) \mathbb{P}(d y)=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}(y) \mathbb{P}(d y) \\
& G(x)=Q((-\infty, x])=\int_{\mathbb{R}} \mathbb{R}_{(-\infty, x]}(y) \mathbb{Q}(d y)=\int_{\mathbb{R}} \lim _{n} f_{n}(y) \mathbb{Q}\left(d_{y}\right)=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}(y) \mathbb{Q}(d y)
\end{aligned}
$$

So $F(x)=G(x)$.

