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1 Introduction

We consider an efficient numerical method for computing time-harmonic
acoustic scattering in a vertically layered media. One application for such
problems is the detection of targets buried in a sediment. For this purpose
it is useful to have a numerical approximation which can predict reasonably
accurately backscatter by such targets. In this paper, we study scattering by
sound-soft targets when the interface between the water and sediment is wavy.
Such problems are typically modeled using a Helmholtz equation with varying
coefficients.
With higher frequencies a finite element discretization leads to very large

systems of linear equations. Often two-dimensional problems have millions of
unknowns. It might be possible to solve these problems using a LU factor-
ization with a nested dissection reordering of unknowns, but this approach
cannot be used for three-dimensional problems which can have billions of un-
knows. For this reason, we consider the iterative solution of these problems.
We employ an algebraic fictitious domain method [4, 6, 7, 8] which uses a
right preconditioned GMRES method.
In a related work [12], it was noted that an iterative method with a sepa-

rable preconditioner converges fast as long as the media is mainly layered in
one direction or frequencies are reasonably low. We will use a separable pre-
conditioner based on the perfectly layered media in our solution procedure.
We embed the sound-soft target in a rectangular computation domain with
a second order-absorbing boundary condition. Since the media is vertically
layered with the wavy interface, our preconditioner coincides with the sys-
tem matrix except the rows corresponding to unknowns near-by the interface
and the target. Thus, we can reduce iterations on a small sparse subspace as
has been shown in [7, 8]. This reduction makes our preconditioner extremely
efficient as our numerical example demonstrates.
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2 Model Problem

We are interested to compute the scattering of a time-harmonic acoustic pres-
sure wave by a target which is buried in sediment. We model this situation
with a Helmholtz equation with varying coefficients. Generally, it might be
necessary to use elastic equations to model the wave inside the target, but in
this investigation, we assume the target to be sound-soft. This means that a
Dirichlet boundary condition can be posed on the surface of the target. The
sediment is assumed be homogeneous and the surface between the water and
the sediment is defined by x2 = f(x1), where f is a given function.
We have a radiational wave from a point source in the water which is

impinging the sediment and the target Ω. Furthermore, we could have a sensor
in the water measuring the scattered wave. For computations, we truncate a
rectangular domain Π enclosing the target and the source/sensor from the
infinite domain. Figure 1 shows the set up of our model problem.

q source/sensor

water

sediment

Fig. 1. The geometry of the model problem with a circular target Ω and a rectan-
gular truncated domain Π given by the dashed line.

A time-harmonic acoustic pressure wave p satisfies the Helmholtz equation
with varying coefficients
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where k1 =
ω
c1
and k2 =

ω
c2
are the wave numbers for the water and the sedi-

ment, respectively. A normal of the surface x2 = f(x1) is denoted by n. The

notation
∣∣∣
+
refers to the value of a function or derivative when approaching
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x2 = f(x1) from the side x2 > f(x1). Similarly
∣∣∣
−
refers to the value of a

function or derivative when approaching x2 = f(x1) from the side x2 < f(x1).
The angular frequency is denoted by ω. The sound speed in the water is c1
and in the sediment it is c2. The wave attenuation in the sediment is modeled
by the imaginary part of the complex-valued speed c2. The densities for the
water and the sediment are ρ1 and ρ2, respectively. The right-hand side g is
non zero due to the point source.
On the boundary of the sound-soft target Ω we pose a Dirichlet boundary

condition
p = 0 on ∂Ω. (2)

We denote the truncated rectangular domain by Π. On the artificial boundary
∂Π we pose a second-order absorbing boundary condition
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on the faces of ∂Π together with the condition ∂p/∂n = ik 3

2
p at the corners

of ∂Π. In the previous n denotes the unit outward normal vector of ∂Π
and s denotes the unit tangent vector of ∂Π. Furthermore, the wave number
function k and the density function ρ are defined by

k =

{
k1, x2 ≥ f(x1)
k2, x2 < f(x1)

and ρ =

{
ρ1, x2 ≥ f(x1)
ρ2, x2 < f(x1).

A similar absorbing boundary condition for homogeneous media has been
considered in [1].

3 Finite Element Discretization

We discretize the equations (1) together with the Dirichlet boundary condition
(2) and the absorbing boundary condition (3) with linear finite elements.
We use meshes which are orthogonal and uniform except near the target Ω
and the interface. There it is locally perturbed so that the boundary ∂Ω is
approximated well. An algorithm generating such meshes is presented in [3].
An example of a locally perturbed mesh is shown in Figure 2. The meshes
have to be sufficiently fine, say, at least 10 grid points per the wave length, so
that they can approximate properly the oscillatory solution. The discretization
leads to a systems of linear equations

Ap = g, (4)

where the matrix A is symmetric and complex-value, but not Hermitean.
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Fig. 2. A part of a locally perturbed mesh for a circular target and a sinusoidal
surface of sediment.

4 Separable Preconditioner

We describe first the construction of our separable preconditioner and after
that we consider in Section 5 the algebraic extension of the original system of
linear equations (4) to have the same dimension as the preconditioner.
Domain embedding and fictitious domain methods are based on very ef-

ficient preconditioners on simple shaped domains. In our particular case the
simple shaped domain is the whole rectangle Π, that is, we neglect the target
Ω when we construct a preconditioner. Our separable preconditioner is based
on the observation that the density ρ and the wave number k depend only on
the x2 coordinate for the perfectly layered media. Due to this we can express
our preconditioner in a tensor product form

B = A1 ⊗M2 +M1 ⊗ (A2 − M̃2).

This preconditioner coincides with the matrix obtained by discretizing the
problem (1) without the target Ω together with the boundary condition (3)
except on a part of the left and right boundary of Π. The dimension of the
matrices A1 and M1 is the same as the number of nodes in the x1 direction
and they are given by

A1 =
1

h




1− ihk/2 −1
−1 2 −1

−1 2 −1
. . .
. . .
. . .

−1 2 −1
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and



Fast Helmholtz Solver for Scattering 5

M1 = h




1/2 + i/(2hk)
1
1
. . .

1
1/2 + i/(2hk)




.

The matrices A2, M2, and M̃2 can be considered to correspond one-
dimensional problems in the x2 direction and their dimension is the number of
nodes in the x2 direction. They can be assembled from the element matrices

Ae
2 =

1

hρe

(
1 −1
−1 1

)
, Me

2 =
h

2ρe

(
1 0
0 1

)
, and M̃e

2 =
k2

eh

2ρe

(
1 0
0 1

)
,

where ρe and ke are the density and the wave number on the element e. Due
to the absorbing boundary condition the following additions have to made
to these matrices: add −ik/(2ρ) into the first and last diagonal entry of A2,
add i/(2kρ) into the first and last diagonal entry of M2, and add ik/(2ρ) into

the first and last diagonal entry of M̃2. Systems of linear equations with the
matrix B can be solved efficiently using, for example, the fast direct solver
considered in [5].

5 Extended Linear System

Now we extend the original system of linear equations (4) to have the same
size as the preconditioner B. We will accomplish this by using the so-called
absorbing extension [9]. The idea is to pose another problem in Ω which is in
this case a Helmholtz problem in Ω with an absorbing boundary condition on
∂Ω. Furthermore, we introduce one sided coupling between the problems in
Π \Ω and Ω.
After a suitable permutation of rows and columns the preconditioner has

a block form

B =

(
B11 B12

B21 B22

)
,

where the first block row corresponds to the unknowns outside Ω. Thus, B11

has the same size as A in (4). We denote the extended system matrix by C.
It has the block form

C =

(
A B12

0 B22 +D

)
,

where D is a such diagonal matrix that B22 +D corresponds to a Helmholtz
problem in Ω with a first-order absorbing boundary condition on ∂Ω. Par-
ticularly, the discretization is based on the orthogonal mesh without local
adaptation to the boundary ∂Ω. The extended system of linear equations
reads
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Cu = C

(
p
q

)
=

(
g
0

)
= f.

The vector q has to be zero, since the matrix block B22 +D is non singular,
and, thus, p satisfies also the original problem (4). For more details on the
extension procedure we refer to [4, 6, 9].

6 Reduction to Sparse Subspace

We solve the right preconditioned system of linear equations

CB−1v = f, u = B−1v. (5)

Our sparse subspace X is defined by X = range(C −B). The jth component
xk of an arbitrary vector x in X can be nonzero only if the jth row of B and
C do not coincide. Hence, the subspace X is called sparse. For the problems
considered in this paper the dimension of X is very small compared to the
size of the linear system (5).
Next we consider the reduction to the sparse subspace in the case of general

right-hand vector f . We denote v̂ = v − f and then we have

CB−1v̂ = f − CB−1f = −(C −B)B−1f = f̂ ∈ X

where we have used the identity CB−1 = I + (C − B)B−1. Furthermore, v̂
satisfies [

I + (C −B)B−1
]
v̂ = f̂ (6)

and v̂ ∈ X. The reduced equation (6) is well suited for iterating on the sub-
space X.
If r ∈ X then the Krylov subspace

span{r, CB−1r, · · · , (CB−1)k−1}

is a subspace of X. Thus, any iterative method based on the Krylov subspace
for the solution of CB−1v = f generate a sequence of approximate solutions
vk in the subspace X provided that the initial iterate is v0 = f . Moreover,
the basic operation

(C −B)B−1r, r ∈ X

which is repeated during the iterations requires the solutions B−1r on the
range of (C − B)T . The dimension of this range is usually the same order
as the dimension of X. Hence we apply the partial solution technique [2, 10]
for this evaluation. This can reduce the computational cost of these solutions
to be order of N floating point operations, where N is the size of the linear
system (5).
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7 Numerical Example

The geometry of our example problem is a cross cut of the experiment set
up in [11]. The interface between water and sediment is given by x2 =
(0.0368m) cos(360◦x1/(0.75m)). The target is circular and its diameter is
one feet (0.3048 m) and its center is at (0m, −0.2524m). Thus, the tar-
get is 0.1 m below the median level of the interface. The speed of sound
in the water is c1 = 1495m/s and the speed of the sound in the sedi-
ment is c2 = (1668 − 16.8i)m/s. Here, the imaginary part of the speed
accounts for wave attenuation. The density for the water and sediment are
ρ1 = 1000 kg/m

3 and ρ2 = 2000 kg/m
3, respectively. The point source is lo-

cated at (−10.7m, 3.8m). We have chosen the frequency to be 20 kHz which
corresponds about the wavelength 0.075 m in water.
Our computational domain is [−12m, 1m] × [−1m, 4.5m] and the mesh

is based on 2601 × 1101 grid. Thus, the mesh step size in the direction of
coordinate axes is 0.005m and we have about 15 nodes per wavelength. We
have plotted the scattered field intensity level in Figure 3. The computations
were performed on a PowerBook G4 with 1.3 GHz processor and 0.5 Gbytes of
memory. The solution required about 5 minutes. The preconditioned GMRES
method needed 36 iterations to reduce the norm of the residual by the factor
10−6. The extended linear system (5) has about 2.86 million unknowns while
the dimension of the sparse subspace X is 18418. Thus, memory and compu-
tational savings due to the use of subspace iterations are indeed extensive.

Fig. 3. The scattered field intensity level log
10

|ps|
2; the difference between white

and black is 60 dB.

8 Conclusions and Future Research

We proposed a fast iterative method for computing the scattering in nearly
vertically layered media. The main ingredients of our approach leading to
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computational efficiency are a fast direct solver for a separable preconditioner
and a GMRES method iterating on a small sparse subspaces. The numerical
example demonstrates that problems with millions of unknows can be solved
on a contemporary PC in a few minutes.
For considering more practical problems several generalizations has to

made. The proposed method can be extended in a straight forward manner for
three-dimensional problems. Typical targets are elastic instead of sound-soft.
In such a case one possible approach is to perform a domain decomposition to
a small near-field domain and a large far-field domain. For far-field problems
similar techniques to the one presented in this paper can used. Due to the
small size of near-field problems more traditional approached are sufficiently
fast for them.
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