
1

1

1

A Hybrid Parallel Preconditioner Using

Incomplete Cholesky Factorization and Sparse

Approximate Inversion

Keita Teranishi1 and Padma Raghavan1

Department of Computer Science and Engineering, The Pennsylvania State
University, 111 IST Bldg., University Park, PA 16802. E-mail
teranish,raghavan@cse.psu.edu.

Summary. We have recently developed a preconditioning scheme that can be
viewed as a hybrid of incomplete factorization and sparse approximate inversion
methods. This hybrid attempts to deliver the strengths of both types of precon-
ditioning schemes to accelerate the convergence of Conjugate Gradients (CG) for
sparse linear system solution on multiprocessors. We provide an overview of our
algorithm and report on initial results on some large sparse systems.

1.1 Introduction

Consider the solution of a sparse linear system Ax = b on a distributed mem-
ory multiprocessor. When A is symmetric positive definite, preconditioned
Conjugate Gradients (CG) [1, 2] can be used to solve the system. Although
CG is scalable, the scalability and effectiveness of the preconditioner plays
a pivotal role in the overall performance. Traditionally, incomplete Cholesky
factorization with a drop threshold (ICT) [3] scheme can be used to construct
a preconditioner L̂ as an approximation to L, the sparse Cholesky factor of
A (A = LLT). Such an ICT preconditioner is often the method of choice on
uniprocessors, but its scalable parallel implementation poses many challenges.

A parallel ICT scheme should ideally allow (i) efficient preconditioner con-
struction, and (ii) latency-tolerant application at each CG iteration. Apply-
ing an ICT preconditioner requires distributed triangular solution which is
typically inefficient due to the relatively large latencies of interprocessor com-
munication on multiprocessors. We had earlier addressed this issue by devel-
oped a parallel ICT preconditioner with a feature called ‘Selective Inversion’
(SI) [4, 5, 6]. In our preconditioning scheme (ICT-SI), certain triangular sub-
matrices were explicitly inverted to replace distributed substitution schemes

? This work was supported in part by the National Science Foundation through
grants ACI-0102537, EIA-0221916, and DMR-0205232.

4 Keita Teranishi and Padma Raghavan

by latency-tolerant matrix-vector multiplication. Additionally, ordering, par-
titioning and blocking techniques from parallel sparse solvers were used to
construct the ICT preconditioner efficiently. Our ICT-SI scheme enabled the
scalable application of the preconditioner at each CG step while effectively
accelerating the convergence of CG [5]. However, preconditioner construction
ICT-SI was still relatively expensive. In this paper, we attempt to address this
issue by using sparse approximate inversion techniques [7, 8, 9, 10] instead of
the explicit inversion required in ICT-SI. We call our new scheme ICT-SSAI,
i.e., ICT with ’selective sparse approximate inversion’ [6].

We provide a brief overview of sparse approximate inverse preconditioning
and our incomplete Cholesky preconditioner with SI (ICT-SI) in Section 1.2.
We next describe in Section 1.3, our new ICT-SSAI scheme where sparse
approximate inversion is used on selected submatrices in the incomplete factor
L̂ as an alternative to the SI scheme; we also provide some empirical results
on the performance of our schemes and other preconditioners. We end with
some concluding remarks in Section 1.4.

1.2 Background

Incomplete Cholesky factorization is a popular preconditioning scheme on
uniprocessors. However, on multiprocessors with large latencies of interpro-
cessor communication, the application of such preconditioners using parallel
substitution does not scale well. This gave rise to a new class of precondition-
ing schemes that attempted to approximate an inverse of A which could then
be applied using efficient parallel matrix-vector multiplication. However, these
preconditioners may not be as effective as those from incomplete Cholesky [11]
when systems from a wide range of applications are considered. Earlier, we
had developed the ICT-SI scheme to enable latency tolerant application of
ICT preconditioners on parallel multiprocessors. In this section, we provide a
brief overview of sparse approximate inverse preconditioners and our ICT-SI.
Our new ICT-SSAI preconditioner is in effect a hybrid of these two schemes.

1.2.1 Sparse Approximate Inverse Preconditioners

Sparse approximate inverse techniques are based on the Frobenius norm min-
imization [8, 9, 10] of ‖I − AM‖F , where M is the preconditioner. This
problem can be formulated as multiple least square problems of the form:
‖I −AM‖2F =

∑n

j=1
‖ej −Amj‖

2

2
. In this expression, ej is a canonical vector

and mj is a jth column of M . The least-square solution is performed using
dense matrix algebra kernels [12] on nonzero elements (blocks) in M . The
sparsity pattern of M is selected a priori. If A is symmetric and positive defi-
nite (SPD), the method tries to minimize ‖I −LG‖F , where L is a Cholesky
factor of A and G is a lower triangular preconditioner matrix. Since each least-
square solution can be computed independently, the method is highly suitable

1.2 Background 5

for parallel implementation as shown by Grote and Huckle [9], and Chow [8].
However, preconditioning quality may lag that of ICT preconditioners.

1.2.2 Incomplete Cholesky with Selective Inversion

Our parallel incomplete Cholesky with SI uses many of the ideas from parallel
sparse direct multifrontal solution. We start with a good fill-reducing strat-
egy such as minimum-degree and nested dissection [13]; the latter also helps
provide a natural data partitioning for the parallel implementations. We then
compute an approximate L̂ corresponding to the true factor L for the given
ordering.

The parallel factorization and triangular solution of L̂ is guided by the
traversal of the elimination tree [14] in conjunction with supernodes [15, 16]
The elimination tree represents the data dependency between columns during
factorization, and a supernode comprised a set of consecutive columns with
nested sparsity structure to enable the use of cache-efficient techniques. The
relationship between the separators and their supernodes in the tree is illus-
trated in Figure 1.1; the separators recursively partition the domain to form
supernodes in a tree structure.

S1S2 S3

S1

S3S2

Fig. 1.1. Two levels of separators applied to a domain and corresponding levels in
the supernodal tree.

During our ICT factorization some nonzero elements are dropped based
on the drop threshold condition. Consequently, the column dependencies and
the structure for supernodes derived from the coefficient matrix are not ex-
act. However, these structures are used to manage the implementation and
allow flexible dropping schemes to compute L̂ for a range of fill to meet a
variety of preconditioning needs. In addition, we utilize efficient dense matrix
kernels [12] to perform the factorization at a supernode before applying drop
threshold condition. During our ICT factorization some nonzero elements are
dropped based on the drop threshold condition. Consequently, the column
dependencies and the structure for supernodes derived from the coefficient

6 Keita Teranishi and Padma Raghavan

matrix are not exact. However, these structures are used to manage the im-
plementation and allow flexible dropping schemes to compute L̂ for a range of
fill to meet a variety of preconditioning needs. In addition, we utilize efficient
dense matrix kernels [12] to perform the factorization at a supernode before
applying drop threshold condition.

In incomplete factorization, these

drops.
matrices will not be dense due to

��������������������

��������������������
���������������������
���������������������

��
�
��
�

��������������������

��������������������
	�		�	
	�	

�

�

�

��
�
��
�
����������������������������������

���������������������
���������������

���������������
������
��� ��

�� ���������������������
���������������������

Procs 0,1 Procs 2, 3

Distributed Phase

Local PhaseProc 0 Proc 1 Proc 2 Proc 3

Procs 0, 1 ,2 ,3

(Node Parallelism)

(Tree Parallelism)

0 1 2 3

3210

Fig. 1.2. The structure of the supernodal tree and submatrices associated with each
node; a 4-processor computation is shown.

The parallel implementation is based on the supernodal tree. Individual
subtrees rooted at vertices at ≈ log P levels are computed independently
on each processor; these correspond to local sub-domains. At level above the
local subtrees, each supernode corresponds to a distributed separator and it is
processed by multiple processors using data-parallel dense/blocked operations.
Figure 1.2 illustrates the computational scheme using four processors. The
incomplete factorization proceeds up the tree; local computations at processor
0 are highlighted followed by distributed processing with processors 0,1 and
then at the root with all processors. The forward solution proceeds bottom-up
on the tree followed by a top-down backward solution.

Parallel triangular solution using substitution becomes a performance bot-
tleneck at each distributed supernode because the algorithm is latency-bound.
Triangular solution at a supernode a involves:

[

L11
a

L21
a

]

[

x1
a
]

=

[

b1
a

b2
a

]

.

The submatrices in the expression above are incomplete forms of the factor
submatrix at supernode a. Parallel substitution is performed to obtain of
x1

a using L11
a and b1

a; next b2

a is updated as b2 − L21
ax1

a and used in
computations at the ancestor supernode of a.

The SI scheme [4, 5] includes a parallel matrix inversion of L11
a for each

distributed supernode a. Subsequently, parallel substitution is replaced by

1.3 ICT with Selective Sparse Approximate Inversion 7

sparse matrix vector multiplication x1
a ← La

11

−1b1
a. The scheme incurs the

extra computational cost of inversion, but the improvements in applying the
preconditioner are substantial [5].

1.3 ICT with Selective Sparse Approximate Inversion

Although the ICT-SI scheme described earlier achieves scalable application
of the preconditioner, the construction of the preconditioner is relatively ex-
pensive. One of the reasons is that explicit inversion of the diagonal portion
of sparse supernodal matrix causes fill-in which must then be reduced by ap-
plying a drop-condition. Consequently, even if a very sparse preconditioner
is required, the cost of the construction is close to that for a true sparse
factorization in a sparse direct solver. To alleviate this problem, we use a
sparse approximate inverse schemes to compute an approximation of L11

a−1

at a distributed supernode a. For model sparse matrices from five-point finite-
difference schemes using regular grids in two and three dimensions, we can
show analytically that the the arithmetic and communication costs for con-
structing the preconditioner using ICT-SSAI is lower in the order of magnitude
sense than for ICT and ICT-SI [6].

We now provide some preliminary results on the performance of parallel
ICT-SI and ICT-SSAI and comparisons with Block SSOR, Block Jacobi [17],
level-0 incomplete Cholesky (IC(0)) [18], and the sparse approximate inverse
preconditioner (Parasails) [8]. We also report on the performance of DSC-
PACK [19], a parallel sparse direct solver as another point of comparison.

Our experiments were performed on a cluster with Intel Xeon processors
and a Myrinet interconnect using the CG implementation in the PETSc pack-
age [17]. We terminate the CG iteration when relative residual is smaller than
10−8. For ICT-SI and ICT-SSAI, we applied drop tolerance thresholds ranging
from 0.002 to 0.02 and diagonal shifts in the range 0.01 to 0.05 if required. For
the sparse approximate inversion in the ICT-SSAI scheme, we used the de-
fault parameters in Parasails excluding the parameter for dropping elements
after approximate inversion; the dropping parameter is the same as the drop
tolerance condition of the ICT-SI and ICT-SSAI. We report the best perform-
ing instance of ICT-SI and ICT-SSAI with respect to the time for the entire
solution including preconditioner construction and PCG iterations.

We use three large sparse matrices from finite-element and finite-difference
applications described in Table 1.1. We used 1–16 processors for the first two
smaller matrices and 4–64 processors to solve the largest matrix, augustus7.

The performance of all methods for the first two matrices (cfd2 and
engine) is summarized in Table 1.2. The best value of each measure (Time for
solution, and number of iterations) is shown in bold. The parallel performance
for augustus7 is shown in detail in Figure 1.3 when the number of processors
is increased from 1–16.

8 Keita Teranishi and Padma Raghavan

Matrix N |A| Description

cfd2 123,440 3,087,898 CFD: pressure matrix

engine 143,571 2,424,822 Engine head, linear tetrahedral elements

augustus7 1,060,864 9,313,876 Diffusion equation from 3D mesh

Table 1.1. Description of sparse matrices. N is the matrix dimension, |A| is the
number of nonzeroes in the matrix.

ICT-SI leads to the least number of iterations and ICT-SSAI requires a
slightly larger number of iterations. The increase in the number of iterations
is a consequence of selectively using sparse approximate inversion. Observe
that Parasails leads to a higher number of iterations than ICT-SI and ICT-
SSAI but fewer iterations than IC(0) and simpler preconditioners like SSOR
and Jacobi. Preconditioner construction is less expensive in ICT-SSAI than in
ICT-SI and this difference results in reduced total time on the larger number
of processors; ICT-SSAI becomes the fastest method on 16 processors. We
expect the benefits of ICT-SSAI to be more significant in applications where
the preconditioner construction costs can be amortized over solutions for a
sequence of right-hand-side vectors.

Method Number of Processors
1 2 4 8 16 Mem

Time Its Time Its Time Its Time Its Time Its

cfd2 Matrix size: 123,440 Nonzeroes: 3,087,898

SSOR NC NC NC NC NC 1.0

Jacobi NC NC NC NC NC 1.72

IC(0) NC NC NC NC NC 2.0

Parasails 192.8 782 115.7 747 61.35 776 31.70 777 17.50 776 3.89

ICT-SI 88.73 451 45.24 461 39.08 463 24.21 464 21.80 471 4.17

ICT-SSAI 88.73 451 50.83 498 29.88 554 18.79 569 12.22 583 3.96

engine Matrix size: 143,571 Nonzeroes: 2,424,822

SSOR 170.4 1153 NC NC NC NC 1.0

Jacobi 97.50 994 76.53 1436 NC NC NC 1.75

IC(0) NC NC NC NC NC 2.0

Parasails 130.4 760 103.3 760 77.35 761 62.29 762 46.09 761 3.89

ICT-SI 48.12 282 35.24 252 36.08 287 47.21 306 37.80 308 2.56

ICT-SSAI 48.12 282 36.69 336 24.87 356 19.96 356 16.64 387 2.36

Table 1.2. Performance of parallel preconditioners on three sparse matrix problems
using 1 – 16 processors with the best instances shown in bold. The column labeled
‘Time’ is the total time (in seconds). The column labeled ‘Its’ is number of CG
iterations; NC indicates that convergence was not achieved after 1,500 iterations.
The column labeled ‘MEM’ contains the memory usage as a multiple of the space
for the coefficient matrix.

References 9

4 8 16 32 64
0

200

400

600

800

1000

1200

1400

1600

Processors

S
e

c
o

n
d

s

Total solution time for augustus7

SSOR
Bjacobi
IC(0)
Parasails
ICT−SI
ICT−SAI

Cholesky: 64 processors

4 8 16 32 64
0

200

400

600

800

1000

1200

1400

1600

1800

2000

It
e
ra

ti
o
n
s

Processors

Total number of iterations for augustus7

SSOR
Jacobi
IC(0)
Parasails
ICT−SI
ICT−SSAI

Fig. 1.3. Time to solve augustus7 (left) and and the number of iterations (right).

1.4 Conclusions

We have developed a parallel hybrid ICT-SSAI scheme which can potentially
meet the preconditioning needs of sparse systems from complex applications.
Initial empirical results are indeed encouraging and we are currently collab-
orating with Barry Smith to further test and refine our methods [20]. Our
results indicate that ICT-SSAI successfully trades a slight decrease in the qual-
ity of the preconditioner for faster and more scalable preconditioner construc-
tion. We expect our methods to serve as a scalable limited memory scheme for
applications that have traditionally relied on a direct solver for robust sparse
linear system solution.

Acknowledgments

We gratefully acknowledge several useful discussions with Edmond Chow and
Barry Smith. We thank Michele Benzi for providing sparse matrices from
his test collection. We also thank the Mathematics and Computer Sciences
Division at the Argonne National Laboratory for allowing us to use their
network of workstations.

References

1. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear
systems. National Bureau Standard J. Res. 49 (1952) 409–436

10 Keita Teranishi and Padma Raghavan

2. Saad, Y.: Iterative method for sparse linear systems. second edn. SIAM,
Philadelphia, PA (2003)

3. Zlatev, Z.: Use of iterative refinement in the solution of sparse linear systems.
SIAM J. Numer. Anal. 19 (1982) 381–399

4. Raghavan, P.: Efficient parallel triangular solution using selective inversion.
Parallel Processing Letters 9 (1998) 29–40

5. Raghavan, P., Teranishi, K., Ng, E.G.: A latency tolerant hybrid sparse solver
using incomplete cholesky factorization. Numer. Linear Algebra Appl. 10 (2003)
541–560

6. Teranishi, K.: Scalable Hybrid Sprase Lienar Solvers. PhD thesis, Department of
Computer Science and Engineering, The Pennsylvania State University (2004)

7. Benzi, M., Meyer, C.D., Tůma, M.: A sparse approximate inverse preconditioner
for the conjugate gradient method. SIAM Journal on Scientific Computing 17

(1996) 1135–1149
8. Chow, E.: Parallel implementation and practical use of sparse approximate in-

verse preconditioners with a priori sparsity patterns. Int. J. High Perf. Comput.
Apps. 15 (2001) 56–74

9. Grote, M.J., Huckle, T.: Parallel preconditioning with sparse approximate in-
verses. SIAM Journal on Scientific Computing 18 (1997) 838–853

10. Kolotilina, L.Y., Yeremin, A.Y.: Factorized sparse approximate inverse precon-
ditionings. I. Theory. SIAM Journal on Matrix Analysis and Applications 14

(1993) 45–58
11. Benzi, M., Tůma, M.: A comparative study of sparse approximate inverse

preconditioners. Applied Numerical Mathematics: Transactions of IMACS 30

(1999) 305–340
12. Dongarra, J., Croz, J.D., Duff, I.S., Hammarling, S.: A set of level 3 basic linear

algebra subprograms. ACM Trans. Math. Software 16 (1990) 1–17
13. George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite

Systems. Prentice-Hall, Englewood Cliffs, NJ, USA (1981)
14. Liu, J.W.H.: The role of elimination trees in sparse factorization. SIAM Journal

on Matrix Analysis and Applications 11 (1990) 134–172
15. Liu, J.W.H., Ng, E., Peyton, B.W.: On finding supernods for sparse matrix

ccomputation. SIAM J. Matrix Anl. Appl. 14 (1993) 242–252
16. Ng, E.G., Peyton, B.W.: Block sparse cholesky algorithm on advanced unipro-

cessor computers. SIAM J. Sci. Comput. 14 (1993) 1034–1056
17. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: PETSc users manual.

Technical Report ANL-95/11 - Revision 2.1.1, Argonne National Laboratories
(2002)

18. Jones, M., Plassmann, P.: The efficient parallel iterative solution of large sparse
linear systems. In George, A., Gilbert, J.R., Liu, J.W.H., eds.: Graph Theory
and Sparse Matrix Computations. Volume 56 of IMA. Springer-Verlag (1994)
229–245.

19. Raghavan, P.: DSCPACK: Domain-separator codes for solving sparse linear
systems. Technical Report CSE-02-004, Department of Computer Science and
Engineering, The Pennsylvania State University (2002)

20. Teranishi, K., Raghavan, P., Smith, B.F.: Tree-based parallel drop threshold
incomplete cholesky preconditioning using matrix inversion heuristics. In: 2005
International Conference on Preconditioning Techniques for Large Sparse Ma-
trix Problems in Scientific and Industrial Applications. (2005) in preparation.

