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1 Introduction

Robust FETI-DP methods for heterogeneous, linear elasticity problems in
three dimensions were developed and analyzed in Klawonn and Widlund
[2004]. For homogeneous problems or materials with only small jumps in the
Young moduli, the primal constraints can be chosen as edge averages of the
displacement components over well selected edges; see Klawonn and Widlund
[2004] and for numerical experimental work, Klawonn and Rheinbach [2005a].
In the case of large jumps in the material coefficients, first order moments
were introduced as additional primal constraints in Klawonn and Widlund
[2004], in order to obtain a robust condition number bound. In the present
article, we provide some first numerical results which confirm the theoretical
findings in Klawonn and Widlund [2004] and show that in some cases, first
order moments are necessary to obtain a good convergence rate.

2 Linear elasticity and finite elements

The equations of linear elasticity model the displacement of a linear elastic
material under the action of external and internal forces. The elastic body
occupies a domain Ω ⊂ IR3, which is assumed to be polyhedral and of diameter
one. We denote its boundary by ∂Ω and assume that one part of it, ∂ΩD,
is clamped, i.e., with homogeneous Dirichlet boundary conditions, and that
the rest, ∂ΩN := ∂Ω \ ∂ΩD, is subject to a surface force g, i.e., a natural
boundary condition. We can also introduce a body force f , e.g., gravity. With
H1(Ω) := (H1(Ω))3, the appropriate space for a variational formulation is
the Sobolev space H1

0(Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}. The linear
elasticity problem consists in finding the displacement u ∈ H1

0(Ω, ∂ΩD) of
the elastic body Ω, such that
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∫

Ω

G(x)ε(u) : ε(v)dx+
∫

Ω

G(x)β(x) divu divv dx = 〈F,v〉 ∀v ∈ H1
0(Ω, ∂ΩD).

(1)
Here G and β are material parameters which depend on the Young modulus
E > 0 and the Poisson ratio ν ∈ (0, 1/2]; we have G = E/(1 + ν) and
β = ν/(1 − 2ν). In this article, we only consider the case of compressible
elasticity, which means that the Poisson ratio ν is bounded away from 1/2.
Furthermore, εij(u) := 1

2 ( ∂ui

∂xj
+ ∂uj

∂xi
) is the linearized strain tensor, and

ε(u) : ε(v) =
3∑

i,j=1

εij(u)εij(v), 〈F,v〉 :=
∫

Ω

fT v dx +
∫

∂ΩN

gT v dσ.

For convenience, we also introduce the notation

(ε(u), ε(v))L2(Ω) :=
∫

Ω

ε(u) : ε(v)dx.

The bilinear form associated with linear elasticity is then

a(u,v) = (Gε(u), ε(v))L2(Ω) + (Gβ divu, divv)L2(Ω).

The wellposedness of the linear system (1) follows immediately from the con-
tinuity and ellipticity of the bilinear form a(·, ·), where the first follows from
elementary inequalities and the latter from Korn’s first inequality; see, e.g.,
Ciarlet [1988]. The null space ker(ε) of ε is the space of the six rigid body
motions. which is spanned by the three translations ri := ei, i = 1, 2, 3, where
the ei are the three standard unit vectors, and the three rotations

r4 :=




x2 − x̂2

−x1 + x̂1

0


 , r5 :=



−x3 + x̂3

0
x1 − x̂1


 , r6 :=




0
x3 − x̂3

−x2 + x̂2


 . (2)

Here x̂ ∈ Ω to shift the origin to a point in Ω.
We will only consider compressible elastic materials. It is therefore suffi-

cient to discretize our elliptic problem of linear elasticity (1) by low order,
conforming finite elements, e.g., linear or trilinear elements.

Let us assume that a triangulation τh of Ω is given which is shape regular
and has a typical diameter of h. We denote by Wh := Wh(Ω) the correspond-
ing conforming finite element space of finite element functions. The associated
discrete problem is then

a(uh,vh) = 〈F,vh〉 ∀vh ∈ Wh. (3)

When there is no risk of confusion, we will drop the subscript h.
Let the domain Ω ⊂ IR3 be decomposed into nonoverlapping subdomains

Ωi, i = 1, . . . , N , each of which is the union of finite elements with matching
finite element nodes on the boundaries of neighboring subdomains across the
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interface Γ. The interface Γ is the union of three different types of open
sets, namely, subdomain faces, edges, and vertices; see Klawonn and Widlund
[2004] or Klawonn and Rheinbach [2005a] for a detailed definition. In the case
of a decomposition into regular substructures, e.g., cubes or tetrahedra, our
definition of faces, edges, and vertices is conform with our basic geometric
intuition. In the definition of dual-primal FETI methods, we need the notion
of edge averages, and in the case of heterogeneous materials, also of edge
first order moments. We note that the rigid body modes r1, . . . , r6, restricted
to a straight edge provide only five linearly independent vectors, since one
rotation is always linearly dependent on other rigid body modes. For the
following definition, we assume that we have used an appropriate change of
coordinates such that the edge under consideration coincides with the x1-axis
and the special rotation is then r6. The edge averages and first order moments
over this specific edge E are of the form

∫
E rT

k udx∫
E rT rdx

, k ∈ {1, . . . , 5},u = (uT
1 , uT

2 , uT
3 )T ∈ Wh. (4)

3 The FETI-DP algorithm

For each subdomain Ωi, i = 1, . . . , N , we assemble local stiffness matrices
K(i) and local load vectors f (i). By u(i) we denote the local solution vectors
of nodal values.

In the dual-primal FETI methods, we distinguish between dual and primal
displacement variables by the way the continuity of the solution in those vari-
ables is established. Dual displacement variables are those, for which the con-
tinuity is enforced by a continuity constraint and Lagrange multipliers λ and
thus, continuity is not established until convergence of the iterative method
is reached, as in the classical one-level FETI methods; see, e.g., Klawonn and
Widlund [2001]. On the other hand, continuity of the primal displacement
variables is enforced explicitly in each iteration step by subassembly of the
local stiffness matrices K(i) at the primal displacement variables. This sub-
assembly yields a symmetric, positive definite stiffness matrix K̃ which is
coupled at the primal displacement variables but block diagonal otherwise.
Let us note that this coupling yields a global problem which is necessary to
obtain a numerically scalable algorithm.

We will use subscripts I, ∆, and Π, to denote the interior, dual, and
primal displacement variables, respectively, and obtain for the local stiffness
matrices, load vectors, and solution vectors of nodal values

K(i) =




K
(i)
II K

(i)T
∆I K

(i)T
ΠI

K
(i)
∆I K

(i)
∆∆ K

(i)T
Π∆

K
(i)
ΠI K

(i)
Π∆ K

(i)
ΠΠ


 ,u(i) =




u(i)
I

u(i)
∆

u(i)
Π


 , f (i) =




f (i)
I

f (i)
∆

f (i)
Π


 .
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We also introduce the notation

uB = [uI u∆]T , fB = [fI f∆]T ,u(i)
B = [u(i)

I u(i)
∆ ]T , and f (i)

B = [f (i)
I f (i)

∆ ]T .

Accordingly, we define

KBB = diagN
i=1(K

(i)
BB), K

(i)
BB =

[
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

]
, KΠB = [K(1)

ΠB . . .K
(N)
ΠB ].

We note that KBB is a block diagonal matrix. By subassembly in the primal
displacement variables, we obtain

K̃ =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
,

where a tilde indicates the subassembled matrices and where

K̃ΠB = [K̃(1)
ΠB · · · K̃(N)

ΠB ].

Introducing local assembly operators R
(i)
Π which map from the local primal

displacement variables u(i)
Π to the global, assembled ũΠ , we have

K̃
(i)
ΠB = R

(i)
Π K

(i)
ΠB , ũΠ =

N∑

i=1

R
(i)
Π u(i)

Π , K̃ΠΠ =
N∑

i=1

R
(i)
Π K

(i)
ΠΠR

(i)T
Π ,

for i = 1, . . . , N. Due to the subassembly of the primal displacement variables,
Lagrange multipliers have to be used only for the dual displacement variables
u∆ to enforce continuity. We introduce a discrete jump operator B = [O B∆]
such that the solution u∆, associated with more than one subdomain, co-
incides when BuB = B∆u∆ = 0 with uB = [uT

I ,uT
∆]T . Since we assume

pointwise matching grids across the interface Γ , the entries of the matrix B
are 0, 1, and −1. However, we will otherwise use all possible constraints and
thus work with a fully redundant set of Lagrange multipliers as in [Klawonn
and Widlund, 2001, Section 5]; cf. also Rixen and Farhat [1999]. Thus, for
an edge node common to four subdomains, we will use six constraints rather
than choosing as few as three.

We can now reformulate the finite element discretization of (3) as



KBB K̃T
ΠB BT

K̃ΠB K̃ΠΠ O

B O O







uB

ũΠ

λ


 =




fB
f̃Π
0


 . (5)

Elimination of the primal variables ũΠ and of the interior and dual displace-
ment variables uB leads to a a reduced linear system of the form

Fλ = d,



Robust FETI-DP - Computational results 5

where the matrix F and the right hand side d are formally obtained by block
Gauss elimination. Let us note that the matrix F is never built explicitly but
that in every iteration appropriate linear systems are solved; see Farhat et al.
[2000], Klawonn and Widlund [2004] or Klawonn and Rheinbach [2005a] for
further details.

To define the FETI-DP Dirichlet preconditioner M−1, we introduce a
scaled jump operator BD; this is done by scaling the contributions of B asso-
ciated with the dual displacement variables from individual subdomains. We
define

BD = [B(1)
D , . . . , B

(N)
D ],

where the B
(i)
D are defined as follows: each row of B(i) with a nonzero entry

corresponds to a Lagrange multiplier connecting the subdomain Ωi with a
neighboring subdomain Ωj at a point x ∈ ∂Ωi,h ∩ ∂Ωj,h. We obtain B

(i)
D by

multiplying each such row of B(i) with 1/|Nx|, where |Nx| denotes the multi-
plicity of the interface point x ∈ Γ . This scaling is called multiplicity scaling
and is suitable for homogeneous problems; see Klawonn and Widlund [2004]
or Klawonn and Rheinbach [2005a] for a scaling suitable for heterogeneous
materials. Our preconditioner is then given in matrix form by

M−1 = BDRT
Γ SRΓ BT

D =
N∑

i=1

B
(i)
D R

(i)T
Γ S(i)R

(i)
Γ B

(i)T
D . (6)

Here, R
(i)
Γ are restriction matrices that restrict the degrees of freedom of a

subdomain to its interface and RΓ = diagi(R
(i)
Γ ).

We have to decide how to choose the primal displacement variables. The
simplest choice is to select them as certain primal vertices of the subdomains;
see Farhat et al. [2001], where this approach was first considered; this ver-
sion has been denoted by Algorithm A. Unfortunately, this choice does not
always lead to good convergence results in three dimensions. To obtain better
convergence for three dimensional problems, a different coarse problem was
suggested by introducing additional constraints. These constraints are aver-
ages or first order moments over selected edges or faces, which are enforced to
have the same values across the interface. For further details, see Farhat et al.
[2000], Klawonn and Widlund [2004], or Klawonn and Rheinbach [2005a]. To
obtain robust condition number bounds for highly heterogeneous materials,
additional first order moments over selected edges have to be used; cf. Kla-
wonn and Widlund [2004]. There are different ways of implementing these
additional primal constraints. One is to use additional, optional Lagrange
multipliers, see Farhat et al. [2000] or Klawonn and Widlund [2004], another
one is to apply a transformation of basis, see Klawonn and Widlund [2004]
and Klawonn and Rheinbach [2005a]. In this article, we will use the approach
with a transformation of basis. Let us note that this approach leads again to
a mixed linear system of the form (5) and that the same algorithmic form as
for Algorithm A can be used; see Klawonn and Widlund [2004], Klawonn and
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Rheinbach [2005a], and Klawonn and Rheinbach [2005b] for further details.
For our FETI-DP algorithm, using a well selected set of primal constraints of
edge averages or first order moments and in some very difficult cases also of
primal vertices, we have the estimate, cf. Klawonn and Widlund [2004],

Theorem 1. The condition number satisfies

κ(M−1F ) ≤ C (1 + log(H/h))2.

Here, C > 0 is independent of h,H, and the values of the coefficients Gi.

A more general result can be shown if the concept of acceptable paths is
introduced; cf. Klawonn and Widlund [2004] for more details.

4 Numerical results

We first consider a model problem, where two subdomains are surrounded by
subdomains with much smaller stiffnesses, i.e., Young moduli. Furthermore,
we assume that these two special subdomains share only an edge; cf. Fig-
ure 1. In Klawonn and Widlund [2004] it was shown that a well selected set of
primal constraints, which has five linearly independent primal constraints re-
lated to that special edge shared by the two stiffer subdomains and otherwise
six linearly independent edge constraints for each face, is sufficient to prove a
condition number bound as in Theorem 1. In that article, the five linearly inde-
pendent constraints are chosen as three edge averages and two properly chosen
first order moments; cf. also (4). Here, the six linearly independent constraints
for each face can be chosen as edge averages (and moments) over appropriately
chosen edges of the considered face. In a set of experiments, we have tested

Fig. 1. Left: Two stiff cubic subdomains sharing an edge surrounded by softer
material. Cubic domain Ω cut open in front and on top.
Right: Alternating layers of a heterogeneous material distributed in a checkerboard
pattern and a homogeneous material.

different combinations of edge constraints on the specific edge shared by the
two stiffer subdomains; cf. Table 1. In the case of three constraints only edge
averages are used, in the case of five, additionally two first order moments are
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Table 1. Comparison of different number of edge constraints on the edge shared by
the two stiffer subdomains; 3 × 4 × 4 = 48 brick-shaped subdomains of 1 536 d.o.f.
each, 55 506 total d.o.f. Stopping criterion: Relative residual reduction of 10−10.

# edge constraints 0 3 5

E1/E2 Iter. Cond. Iter. Cond. Iter. Cond.

100 29 9.21 28 9.10 28 9.09
103 47 4.36× 102 37 7.51× 101 30 9.03
106 70 4.24× 105 47 7.16× 104 30 9.03

applied. On all other edges, an edge average over each displacement compo-
nent is used to define the primal constraints. We see that using no constraints
or only edge average constraints on the specific edge leads to a large condition
number. Applying all five constraints leads to a good condition number which
is bounded independently of the jump in the Young moduli. Since we only
have one difficult edge in this example, the iteration count is not increased
accordingly; the eigenvalues are still well clustered except for two outliers in
the case of three edge averages, see Klawonn and Rheinbach [2005b]. Next, we
analyze a more involved example, where we will see that additional first order
moments not only improve the condition number but are absolutely necessary
to obtain convergence. We consider a linear elasticity model problem with a
material consisting of different layers as shown on the right side in Figure 1.
The ratio of the different Young moduli is E2/E1 = 106 with E2 = 210 and a
Poisson ratio of ν = 0.29 for both materials. Here, in addition to three edge
averages on each edge, we have also used two first order moments as primal
constraints; see Klawonn and Widlund [2004] and Klawonn and Rheinbach
[2005b] for more details. The results clearly show that the additional first or-
der moments help to improve the convergence significantly; see Klawonn and
Widlund [2004] for theoretical results. In Table 3 the parallel scalability is
shown for a cube of eight layers; cf. Figure 1. All computations were carried
out using PETSc; see Balay et al. [2005]. The numerical results given in Ta-
bles 2 and 3 were obtained on a 16 processor (2.2 Ghz Opteron 248; Gigabit
Ethernet) computing cluster in Essen. A more detailed numerical study is
current work in progress; cf. Klawonn and Rheinbach [2005b].
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