
Embedded pairs of Fractional Step
Runge-Kutta methods and improved Domain
Decomposition techniques for parabolic
problems

L. Portero and J.C. Jorge
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Abstract: In this paper we design and apply new embedded pairs of Frac-
tional Step Runge-Kutta methods to the efficient resolution of multidimen-
sional parabolic problems. These time integrators are combined with a suit-
able splitting of the elliptic operator subordinated to a decomposition of the
spatial domain and a standard spatial discretization. With this technique we
obtain parallel algorithms which have the main advantages of classical Domain
Decomposition methods and, besides, avoid iterative processes like Schwarz
iterations, typical of them. The use of these embedded methods permits to
get a fast variable step time integration process.

1 Introduction

Let us consider a linear multidimensional parabolic problem with time depen-
dent coefficients which we formulate in the following operational form: Find
u : [t0, T ] → H such that





∂u

∂t
= A(t)u + f(t) ∀ t ∈ (t0, T ],

u(t0) = u0 ∈ H, Bu(t) = g(t) ∈ Hb,
(1)

where (H, ‖.‖) and (Hb, ‖.‖b) are two Hilbert spaces of functions defined on
a bounded open subset Ω ⊆ Rd and on its boundary Γ , respectively. A(t) :
D ⊆ H → H is an unbounded elliptic differential operator which contains
the derivatives of the unknown u with respect to the spatial variables and
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B : D ⊆ H → Hb is an abstract trace operator which determines the type of
boundary conditions considered. We assume that the source term f , the initial
condition u0 and the boundary data g are sufficiently smooth and compatible
among them.

Numerical algorithms for the approximate resolution of (1) can be designed
and analyzed as the result of combining a standard spatial discretization (us-
ing, for example, finite differences or finite elements) with an ODE solver as
time integrator. It is well known that if we choose fine grids for the spatial
discretization and classical ODE solvers like Runge-Kutta (RK) or multistep
methods, a high computational effort must be assumed to obtain the numeri-
cal solution. Thus, the task of developing faster algorithms has been of great
interest during the last decades and many different ideas have arisen in order
to reduce somehow the computation time.

One alternative to obtain fast and robust algorithms is to discretize prob-
lem (1) firstly in time using an implicit Runge-Kutta scheme and then to
use Domain Decomposition techniques (see [QV99]) to solve numerically the
elliptic boundary value problems which arise on each internal stage. In this
framework, where we consider the spatial domain Ω decomposed as the union
of certain subdomains, the resolution of a large linear system per internal
stage is reduced to the resolution of several sets of smaller linear systems. The
main advantage of this technique is that the linear systems of every set can be
solved in parallel. Nevertheless, the cost of an additional iterative process (f.e.
Schwarz iterations) must be assumed due to the adjustment of the boundary
conditions on the interior boundaries of the subdomains.

An interesting alternative to a classical ODE solver is to use a Fractional
Step Runge-Kutta (FSRK) method as time integrator. The key of the effi-
ciency of these schemes lies in splitting the original elliptic operator as the
addition of certain “simpler” operators (A =

∑m
i=1 Ai). This decomposition

combined with a FSRK method permits that only a piece Ai of the elliptic
differential operator A acts implicitly at each internal stage of the method in
such a way that the derived elliptic boundary value problems are easier to
solve. In this work we propose to decompose operator A in pieces of the form
Ai = ψiA, where {ψi}m

i=1 is a smooth partition of unity subordinated to a
decomposition of the spatial domain in m suitable overlapped subdomains.
Similarly to what happens when classical Domain Decomposition techniques
are used, in this case the numerical resolution of each fractionary step consists
of solving a set of smaller linear systems whose resolution can be parallelized.
Besides, these schemes have an advantage with respect to the classical Domain
Decomposition schemes which is that they do not need any kind of Schwarz
iterative processes to get the numerical solution. This technique was firstly
introduced by Mathew et als. in [MPRW98], where they analyze this kind
of splitting for certain low-order classical Fractional Step methods applied to
solve parabolic equations with constant coefficients. The generalization of such
technique to the class of FSRK schemes used to approximate the solution of
parabolic equations with time dependent coefficients is developed in [PBJ04].
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The aim of the current paper is to follow these ideas but to decrease the
computational cost even more by means of performing a variable time step
integration. This will permit us to adapt the step sizes to the local behaviour
of the solution as long as we have an estimation of the local error. In order
to obtain cheap estimations of such error we have developed some embedded
pairs of FSRK methods of different orders. As it happens with other classical
one-step methods, the use of embedded formulas provides estimations of the
local errors with a lower computational cost than if we choose other classical
options like extrapolation methods or the use of two methods with different
orders which do not share the internal stages.

2 Time semidiscretization

Let us consider for A and f partitions of the form: A(t) =
∑m

i=1 Ai(t),
f(t) =

∑m
i=1 fi(t), with Ai(t) = ψiA(t), fi(t) = ψif(t), where ψi(x̄) are suf-

ficiently smooth functions such that
∑m

i=1 ψi(x̄) = 1, ∀ x̄ ∈ Ω. To settle the
definition of ψi, i = 1, . . . ,m, we decompose Ω as the union of m overlapped
subdomains Ω =

⋃m
i=1 Ωi, each one of them consisting of the union of a cer-

tain number of connected components Ωi =
⋃mi

j=1 Ωij such that Ωij ∩Ωik = ∅
for all j, k ∈ {1, . . . , mi} with j 6= k. Then the partition of unity {ψi}m

i=1 sub-
ordinated to the previous domain decomposition is constructed in such a way
that, for each i = 1, . . . , m, function ψi is identically null outside subdomain
Ωi, takes the value 1 in every point which belongs only to Ωi and some values
between 0 and 1 in the overlaps of Ωi with the remaining subdomains. For do-
main decompositions which have internal boundaries with simple geometries,
ψi(x), i = 1, . . . , m, can be easily constructed as products of contractions,
movements, . . . of the following C∞ function (see section 5)

h(x) = 1 if x < 0, h(x) = e
1
2 e2 log(2) e

− 1
x

x−1 if 0 ≤ x ≤ 1, h(x) = 0 if x > 1.
(2)

Let us establish now the formulation of a variable time step integration using
an embedded pair of FSRK methods with m levels as follows









Un,j = un + τn

j∑

k=1

aik

jk

(
Aik

(tn,k)Un,k + fik
(tn,k)

)
,

Bij U
n,j = gij (tn,j), for j = 1, . . . , s,

ũn+1 = un + τn

s∑

j=1

b̃
ij

j

(
Aij (tn,j)Un,j + fij (tn,j)

)
,

un+1 = un + τn

s∑

j=1

b
ij

j

(
Aij (tn,j)Un,j + fij (tn,j)

)
,

(3)

where i• ∈ {1, . . . , m}, τn is the variable time step, tn = tn−1 + τn and
tn,j = tn+cjτn+1. Bi : Di → Hb

i , i = 1, . . . ,m, are the abstract trace operators
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which establish the type of boundary conditions required to calculate each
internal stage and gi are the boundary data; in this case, Bi = ψiB, gi = ψig,
∀i = 1, . . . , m.

We assume that ũn+1 approximates u(tn+1) with order p̃ and that un+1 ap-
proximates the same semidiscrete solution also in tn+1 but with a higher order
of approximation p > p̃. Consequently, estn+1 = ‖un+1− ũn+1‖ estimates the
local error for the lower order method at tn+1. Notice that the most expensive
calculations done to obtain ũn+1 (i.e., the internal stages Un,j , j = 1, . . . , s)
are also used in the obtaining of un+1.

In order to come to a more compact notation for FSRK schemes, (3) can
be formulated as an embedded pair of Additive RK schemes









Un,j = un + τn

m∑

i=1

s∑

k=1

ai
jk

(
Ai(tn,k)Un,k + fi(tn,k)

)
,

Bij U
n,j = gij (tn,j), for j = 1, . . . , s,

ũn+1 = un + τn

m∑

i=1

s∑

j=1

b̃i
j

(
Ai(tn,j)Un,j + fi(tn,j)

)
,

un+1 = un + τn

m∑

i=1

s∑

j=1

bi
j

(
Ai(tn,j)Un,j + fi(tn,j)

)
,

(4)

if we extend the summatories which appear in (3) by considering many addi-
tional null coefficients: ai

jk = 0 for k > j and ai
jk = bi

k = b̃i
k = 0 for i 6= ik.

Grouping the coefficients of the method into the following vectors and
matrices c = (ci) ∈ Rs, b̃i = (̃bi

j) ∈ Rs, bi = (bi
j) ∈ Rs, Ai = (ai

jk) ∈ Rs×s we
can organize the coefficients of (4) in a table

c A1 A2 . . . Am

order p̃ b̃T
1 b̃T

2 . . . b̃T
m

order p bT
1 bT

2 . . . bT
m

,

which is an extension of the Butcher’s notations for a classical RK scheme.
From now on, we will denote with (c, (Ai)m

i=1, (̃bi)m
i=1) and (c, (Ai)m

i=1, (bi)m
i=1)

the FSRK schemes involved in the embedded pair (3).

3 Spatial discretization and convergence results

We have to complete the previous time semidiscretization with a suitable
spatial discretization to obtain a totally discrete scheme. Thus, we introduce
a spatial discretization parameter h which tends to zero and we consider
Ωh meshes of Ω which have been constructed taking into account the in-
terior boundaries of the m subdomains. Next we denote with (Hh, ‖.‖h) and
(Hb

i,h, ‖.‖b
i,h) some finite dimensional Hilbert spaces of functions whose dimen-

sions grow to infinity as h tends to zero; f.e. Hh consists of discrete functions
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on Ωh if we use finite differences or piecewise polynomial functions associated
to the mesh Ωh if we use finite elements. In this framework we define operators
Ai,h : Hh → Hh and Bi,h : Hh → Hb

i,h as certain consistent approximations
of operators Ai and Bi and we define ri,h(t) : Di ⊆ H → Hh, πh : H → Hh

and πb
i,h : H → Hb

i,h as certain restriction or projection operators depending
on whether we consider a spatial discretization using finite differences or fi-
nite elements, respectively. Under the previous notations, the totally discrete
scheme can be expressed as follows









Un,j
h = un,h + τn

j∑

k=1

aik

jk

(
Aik,h(tn,k)Un,k

h + πhfik
(tn,k)

)
,

Bij ,hUn,j
h = πb

ij ,hgij
(tn,j), for j = 1, . . . , s,

ũn+1,h = un,h + τn

s∑

j=1

b̃
ij

j

(
Aij ,h(tn,j)U

n,j
h + πhfij

(tn,j)
)

,

un+1,h = un,h + τn

s∑

j=1

b
ij

j

(
Aij ,h(tn,j)U

n,j
h + πhfij (tn,j)

)
.

(5)

We can now take estn,h = ‖un,h− ũn,h‖h as an approximation of estn and use
the same ideas of time step adaptation of classical variable step ODE solver
codes in order to keep estn,h under the value of a tolerance but close to it.

The resolution of each internal stage in (5) consists of solving a linear
system of the form (Ih − τn ak

jjAkh(tn,j)U
n,j
h ) = Fn,j

h , (k = ij), which can
be decomposed into mk independent linear subsystems that can be solved in
parallel. Each one of those subsystems has a number of unknowns related to
the number of mesh points on each component Ωki of Ωk. It is also important
to notice that no Schwarz iterations are required to obtain uh,n+1.

Let us now give a brief review of the hypotheses assumed in order
to guarantee an unconditional convergence result for the totally discrete
scheme (5). The local errors of the time semidiscretization are ρn+1 =
‖u(tn+1) − un+1[tn, u(tn)]‖ and ρ̃n+1 = ‖u(tn+1) − ũn+1[tn, u(tn)]‖, where
un+1[tn, u(tn)] and ũn+1[tn, u(tn)] are the approximations to u(tn+1) ob-
tained after one step of scheme (3) starting from un = u(tn). We as-
sume that the embedded pair of FSRK methods (3) has orders p̃(p), i.e.,
ρ̃n+1 ≤ Cτ ep+1, ρn+1 ≤ Cτp+1, where τ ≡ max

n
τn and C is a constant

independent of τ . With the aim of obtaining a convergence result for the
semidiscrete scheme (3), we combine the consistency with a suitable stabil-
ity property. We say that the FSRK method (c, (Ai)m

i=1, (bi)m
i=1) is A-stable

iff |R(z1, . . . , zm)| ≤ 1, ∀ z1, . . . , zm ∈ C− ≡ {z ∈ C : Re(z) ≤ 0}, where
R(z1, . . . , zm) = 1 +

∑m
i=1 zi bT

i (I −∑m
j=1 zj Aj)−1e is the amplification func-

tion associated to the FSRK method. In [BJ01] it is proven that, under suitable
hypotheses on operators Ai(t) the use of an FSRK scheme which is consistent
and A-stable guarantees the convergence of the time discretization process.
Regarding the spatial discretization, we must assume typical order r proper-
ties of consistency as well as suitable stability properties.
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Combining all these properties, the following unconditional convergence
results are obtained for the totally discrete scheme (5) ‖rh(tn)u(tn)−ũh,n‖h ≤
C(hr + τ ep), ‖rh(tn)u(tn) − uh,n‖h ≤ C(hr + τp), where C is a constant
independent of τ and h (see [PBJ04]).

4 Design of two embedded pairs of FSRK methods

We start with the design of a simple pair of orders 1(2). Let us consider the
Fractionary Implicit Euler scheme with two levels

1 1 0
1 1 0 0 1

1 0 0 1
(6)

as the lower order method of the pair; it is first order consistent and A-
stable. Now we want to construct a second order scheme whose two first
stages coincide with the two first stages of (6). The sufficient and necessary
conditions which a FSRK scheme should satisfy to have order p are shown in
[BJ03]; in this case (p = m = 2) such order conditions are bT

i e = 1, bT
i c =

1
2 , bT

i Aj e = 1
2 ∀ i, j ∈ {1, 2}, where e = (1, . . . , 1) ∈ Rs.

We need to add two implicit stages to (6) in order to obtain a second order
method; in such a case we come to a system of 8 non linear equations which
depend on 13 unknowns. After solving it we obtain a family of embedded pairs
of FSRK methods of orders 1(2) with 5 free parameters (b1

3, b2
4, a1

33, a1
43, a2

44).
Next we impose the property of A-stability. To simplify the study, we

assume that a1
33 = a2

44 = a and then we impose that a1
43 = 2ab13

b24
to permit

a nearly L-stable behaviour (i.e., R(∞,∞) ' 0). By means of a numerical
swept we obtain that a ≥ 2.35 is a necessary requirement in order to have an
A-stable FSRK scheme of order 2. We still have three parameters: a, b1

3, b
2
4,

which we fix in such a way that the method has simple rational coefficients and
also that the main term of the local error of the second order FSRK method
is almost minimized. Using these ideas we have chosen the values b4 = 3

4 ,
b3 = 9

10 , a = 12
5 and the resulting pair is

1 1 0

1 1 0 0 1
4
9 − 88

45 0 12
5 0 5

9 0
1
3 − 407

75 0 144
25 0 0 − 31

15 0 12
5

order 1 1 0 0 0 0 1 0 0
order 2 1

10 0 9
10 0 0 1

4 0 3
4

Following a similar technique, we have designed an embedded pair of FSRK
schemes of orders 2(3). In this case we have chosen as second order method
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the time integrator involved in the classical Peaceman & Rachford scheme
and, by adding 4 suitable implicit stages, we have obtained the following pair

0 0 0
1
2 0 1

2
1
2 0

1 0 1 0 1
2 0 1

2
7
17 0 − 3

34 0 1
2

7
17 0 0 0

1
2 0 − 11

12 0 17
12 0 1

8 0 − 1
8 0 1

2
13
17 0 − 27

34 0 18
17 0 1

2
113
289 0 0 0 108

289 0

1 0 − 208
81 0 289

108 0 289
324 0 1

6 0 − 1
3 0 2

3 0 1
2

order 2 0 1 0 0 0 0 0 1
2 0 1

2 0 0 0 0

order 3 0 − 208
81 0 289

108 0 289
324 0 1

6 0 − 1
3 0 2

3 0 1
2

5 Numerical examples

We consider the following diffusion-reaction problem




∂u

∂t
= (1 + e−t)xy∆u− u + f(t, x, y), (t, x, y) ∈ (0, 500]×Ω,

u(0, x, y) = u0(x, y), (x, y) ∈ Ω,
u(t, x, y) = 0, (t, x, y) ∈ (0, 500]× Γ,

where Ω = (0, 1) × (0, 1) and data f and u0 are chosen in such a way that
u(t, x̄) = 3te−3t+1 sin(πx) sin(πy) is its exact solution.

We have decomposed domain Ω as the union of two overlapped subdo-
mains Ω1 = ((0, 5

16 ) ∪ ( 7
16 , 13

16 )) × (0, 1), Ω2 = (( 3
16 , 9

16 ) ∪ ( 11
16 , 1)) × (0, 1);

each subdomain has two disjoint components. The partition of unity cho-
sen subordinated to this decomposition is: ψ1(x, y) = h(8x − 3

2 ), if x ∈
(0, 3

8 ), ψ1(x, y) = h(8x− 7
2 ), if x ∈ [ 38 , 5

8 ), ψ1(x, y) = h(8x− 11
2 ), if x ∈ [ 58 , 1),

where h(x) is given in (2), and ψ2(x, y) = 1 − ψ1(x, y). Finally, we de-
compose the elliptic operator and the source term in two pieces as follows:
Ai(t, x, y) ≡ ψi(x, y)

(
(1+e−t)xy∆−I

)
, fi(t, x, y) = ψi(x, y)f(t, x, y), i = 1, 2.

We show in the following table the results obtained with the designed
embedded pairs of orders 1(2) and 2(3), respectively. The spatial discretization
chosen in both cases is central differences on a uniform rectangular mesh of
N ×N points which is convergent of second order; that is the reason why we
have chosen a tolerance equal to 1

N2 to control the sizes of the time steps with
the aim of having errors of the same size in space and time.

For different values of N , we show in such table the total number of steps
(including the accepted and rejected ones), the efficacy, which is the percent-
age of accepted steps with respect to the total number of steps, the average
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1(2) 2(3) ntot efficacy % τ global error
N = 16 71 34 91.55 88.24 7.6923 16.6667 3.4636E-2 3.8192E-2

N = 32 234 52 95.30 90.38 2.2422 10.6383 1.3269E-2 1.3289E-2

N = 64 630 81 97.46 93.83 0.8143 6.5789 4.5409E-3 4.5367E-3

N = 128 1532 128 98.63 96.09 0.3309 4.0650 1.4294E-3 1.4173E-3

N = 256 2017 211 99.90 95.73 0.2481 2.4752 4.3804E-4 4.7210E-4

sizes of the accepted time steps and the maximum global errors committed
along the whole integration interval. Note that the efficacy is very high and
it improves for smaller tolerances and that the global errors obtained show
a reduction according to the reduction of the tolerance ( 1

4 ) chosen when N
doubles. As the exact solutions of these problems use to decay exponentially
(in t) to the stationary state (0 in this case), the sizes of the time steps τn

tend to grow along the integration in time from a certain point which provides
a time integration which requires much less steps than using constant time
step integrators. Notice also that the same tolerance ( 1

N2 ) has been used in
both pairs for every value of N and that for these tolerances the embedded
pair 1(2) needs much more time steps than the pair 2(3) to realize the integra-
tion. This implies that, although the pair 2(3) has two internal implicit stages
more than the pair 1(2), the total computational cost of the integration for
the same tolerance is much lower for the embedded pair of orders 2(3), as it
was expected. On the basis of this comparison, we think that the design of
embedded pairs of FSRK schemes of higher orders is a very interesting task
which we plan to do in the near future.
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