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Abstract

Chimera [10] happens to be a version of Schwarz’ method and of Lions’ space de-
composition method (SDM). It was analyzed by Brezzi et al [1] but an estimate was
missing for for numerical quadrature. We give it here with new numerical tests.

1 Introduction

Consider a Hilbert spaceV , a continuous bilinear forma(u, û) symmetric with a
coercivity constantα > 0 andf regular for well posedness of

a(u, û) = (f, û) ∀û ∈ V, (1)

We assume thatV = V1 + V2 V1 ∩ V2 of non zero measure (i.e. overlapping)
where eachVi is a closed subspace ofV . We will need also two continuous symmet-
ric bilinear formsbi(u, û), i = 1, 2 coervice enough so that

2∑
1

bi(ûi) + a(ûi) ≥ a(
2∑
1

ûi) ∀ûi ∈ Vi (2)

A typical example is the Dirichlet problem for−∆u = f in Ω = Ω1 ∪ Ω2 and such
thatΩ1 ∩ Ω2 �= ∅; denote bySi = ∂Ωi ∩ Ωj , j �= i. Then set

Vi = {v ∈ L2(Ω) : v|Ωi ∈ V (Ωi), v|Ω−Ωi = 0} (3)

Algorithm 1 (Schwarz)
Begin loopwith a Chosenv0

i ∈ Vi, andn = 0.
Findvn+1

i such thatvn+1
i − vn

j ∈ Vi, i, j = 1, 2, j �= i by solving

a(vn+1
i , v̂i) = (f, v̂i) ∀v̂i ∈ Vi (4)
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End loop
The convergence has been analyzed by P.L. Lions[6] in a general setting. In search
for precision, we present the following alternative; it usesb i(u, v) = b(u, v) =
(βu, v), i = 1, 2 for some positive scalarβ and two arbitrary functionsu0

i ∈ Vi.

Algorithm 2 (SDM)
Begin loopwith n = 0:
Findun+1

i ∈ Vi by solving

b(un+1
1 − un

1 , û1) + a(un+1
1 + un

2 , û1) = (f, û1) ∀û1 ∈ V1

b(un+1
2 − un

2 , û2) + a(un
1 + un+1

2 , û2) = (f, û2) ∀û2 ∈ V2 (5)

End loop
Whenβ = 0 Algorithm 2 is identical to Algorithm 1 withun+1

i = vn+1
i −vn

j , i, j =
1, 2, j �= i. If the decomposition is done withm members withm ≥ 2 thenun+1 is
found by solving

b(un+1
i − un

i , ûi) + a(un+1
i − un

i +
m∑

j=1

un
j , ûi) = (f, ûi) ∀ûi ∈ Vi (6)

Theorem 1.(J.L. Lions[4]) We assume (1-2). Then Algorithm (6) is convergent in
the following sense: asn → ∞, un

i → u∗
i with u∗

1 + u∗
2 = u solution of (1) and the

decomposition is uniquely defined by

(β + A)u1 =
1
2
(β + A)(u + u0

1 − u0
2) in Ω1 ∩ Ω2, u1|S1 = 0, u1|S2 = u

(β + A)u2 =
1
2
(β + A)(u + u0

2 − u0
1) in Ω1 ∩ Ω2, u2|S2 = 0, u2|S1 = u

Aui = f in Ωi\Ω1 ∩ Ω2, ui|∂Ωi = 0 (7)

2 Discretization

LetT1h (respT2h) be a triangulation ofΩ1 (respΩ2), quasi-uniform [2], in the sense
that, if hM andhm are the maximum and minimum edges inT1h, andHM andHm

are the maximum and minimum edges inT2h, then there exists two constantsC1T

andC2T such thathM ≤ C1T hm HM ≤ C2T Hm. Without loss of generality
we can also assume, thathM ≤ HM . For clarity we assume that theΩi are polygonal
and thata(, ) is the Laplace operator with Dirichlet conditions. LetV1h andV2h be
two Lagrange conforming continuous finite element approximation spaces of order
p of V1 = H1

0 (Ω1) andV2 = H1
0 (Ω2). Then the discrete version of Algorithm 2 is

to find for i=1,2,un+1
ih ∈ Vih such that∀vih ∈ Vih

∫
Ωi

(β(un+1
ih − un

ih)vih + ∇(un+1
1h + un

2h)∇vih) =
∫

Ωi

fvih, (8)
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Theorem 2.(see Hecht et al. [4]) Assume that the solution of (1) is inH p+1(Ω) for
somep ≥ 1. Assume that in (7)ui|Ωi ∈ Hp+1(Ωi). If uh = lim(un

1h + un
2h) is

computed with Lagrange conforming finite elements of orderp, then

‖u − uh‖1,Ω ≤ Chp(‖u1‖p+1,Ω1 + ‖u2‖p+1,Ω2). (9)

3 Numerical Quadrature

As such, the scheme is too costly to implement because it requires the intersection
of triangulations. Recall that the quadrature formula with integration points at the
vertices is exact for polynomials of degree less than or equal to one. In particular, for
a given triangleT̂ one has

∫
T̂

g dxdy =
|T̂ |
3

∑
i=1,2,3

g(qi) ∀g ∈ P1(T̂ ). (10)

Hence we introduce the following quadrature rule.

(∇u,∇v)h :=
∑

T∈T1h

|T |
3

∑
i=1,2,3

∇(u|T )·∇v

IΩ1+IΩ2
|qi(T )

+
∑

K∈T2h

|K|
3

∑
j=1,2,3

∇(v|K)·∇u

IΩ1+IΩ2
|qj(K).

(11)

whereIΩj (x) = 1 if x ∈ Ωj and zero otherwise (j = 1, 2). The notation∇(u |T )
is used to indicate that we first restrict the functionu to T , and then we compute its
gradient (which is actually constant inT ). A similar interpretation holds for∇(v |K).
With such definitions we propose to solve the discrete problems:
- Findun+1

ih ∈ Vih such that∀vih ∈ Vih

b(un+1
1h − un

1h, û1h) + ah(un+1
1h + un

2h, û1h) = (f, û1h) ∀û1h ∈ V1h

b(un+1
2h − un

2h, û2h) + ah(un
1h + un+1

2h , û2h) = (f, û2h) ∀û2h ∈ V2h (12)

Clearly these defineun+1
ih uniquely. At convergence the problem solved is

- Finduih ∈ Vih such that∀ûih ∈ Vih

ah(u1h + u2h, û1h + û2h) = (f, û1h + û2h). (13)

Under a mild assumption on the triangulations this discrete problem has a unique
solution at least when linear elements are used (p = 1):

each vertex ofT1h is internal to a triangle K of T2h, and conversely. (14)

This is because of the coercivity of the bilinear form and of the uniqueness of the
decompositionuh = u1h + u2h:

Theorem 3.(Brezzi)
Assume (14) holds. If two functionsuih ∈ Vih, i = 1, 2 coincide on a connected
subsetX of Ω1 ∩ Ω2, then bothuih are linear (not just piecewise linear) inX .
Furthermore

ah(u1h + u2h, u1h + u2h) ≥ c‖u1h + u2h‖2 for all uih ∈ Vih
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One more property is needed, the continuity ofah, and then we can apply Strang’s
lemma and obtain the following estimate:

Proposition 1. (see [4]) Assume that the triangulations ofΩ1 andΩ2 are compatible
in the sense that they give a coercive bilinear form. Assume thatah is uniformly
continuous for allh. Then the error between the approximate problem (13) and the
continuous problem is

‖u − uh‖ < Ch(‖u1‖2,Ω1 + ‖u2‖2,Ω2)

4 Continuity of the Approximate Bilinear Form

4.1 The One Dimensional Case

We begin with the mono dimensional case because the proof is easier to follow. The
same argument will be extended to 2D.

Proposition 2. In one dimension the constant of continuityC in

|∇uH + ∇uh|h ≤ C|∇uH + ∇uh|
satisfies C2 ≤ 1

2
max{max

i∈K

|xi+1 − xi|
|xi − Xj(i)|

, max
i∈L

|Xi+1 − Xi|
|Xi − xj(i)|

} (15)

whereK (resp.L) is the set ofi such thatj(i) exists withXj(i) ∈ [xi, xi+1] (resp
xj(i) ∈ [Xi, Xi+1]). ConsequentlyC is bounded by the square root of half the largest
interval length divided by the smallest distance between two vertices.

Proof For any real valued functionf ,

max
uh,uH

f(∇uH + ∇uh) ≤ max
Uh,UH

f(UH + Uh)

whereuh, uH are real valued continuous- piecewise linear functions on their mesh
andUH , Uh are piecewise constant vector valued on their meshes, because every∇u
is aU and the opposite is not true when boundary conditions exist at both ends.
DenoteV = UH + Uh. As V is piecewise constant, by definition

4| V |2h =
�

i

|xi+1 − xi|(|V |(x+
i )2 + |V |(x−

i+1)
2) +

�

j

|Xj+1 − Xj |(|V |(X+
j )2 + |V |(X−

j+1)
2)

2| V |20 =
�

i,j∈K

|Xj − xi|(|V |(X−
j )2 + |V |(x+

i )2) +
�

i,j∈L

|xi − Xj |(|V |(X+
j )2 + |V |(x−

i )2)

+
�

i∈I

|xi+1 − xi|(|V |(x+
i )2 + |V |(x−

i+1)
2) +

�

j∈J

|Xj+1 − Xj |(|V |(X+
j )2 + |V |(X−

j+1)
2) (16)

whereI, J are the set of intervals completely inside an interval of the other mesh,
i.e.

I = {i : ∃j s.t. [xi, xi+1] ⊂ [Xj , Xj+1} J = {j : ∃i s.t. [Xj , Xj+1] ⊂ [xi, xi+1]}
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Denote by N the set of values ofVk of V right or left of xi or Xj . As f(V ) =
|V |2h/|V |20 we see that it is of the typef(V ) =

∑
k∈N αk|V |2k /

∑
k∈N βk|V |2k

with αi equal to a fourth ofxi+1 − xi or Xi+1 −Xi, andβi equal half ofxi+1 − xi

or Xi+1 − Xi or xi − Xj(i) or Xi − xj(i) a sum of two of those. Of course it is
important to notice that all values appear both in the nominator and denominator.
With a change of variable this is also

f(W ) =

∑ αk

βk
W 2

k∑
W 2

k

. Then max f(W ) = max
k

αk

βk

Now that this is established we can answer much simply the problem of finding
maxαk/βk: it is the largest ratio of coefficients multiplyingV (x±

i ) or V (X±
j ) in

the expressions for|V |h and|V |20, i.e. in (16).

4.2 The Two Dimensional Case

A similar argument applies in two dimensions. Assume we have two triangulations
with triangles{Tk}N

1 and{tk}n
1 respectively and verticesQi andqi. Recall that

|V |2h =
1
6

N∑
k=1

∑
j=1,2,3

|VTk
(Qij |2|Tk| +

1
6

n∑
k=1

∑
j=1,2,3

|Vtk
(qij |2|tk| (17)

whereij, j = 1, 2, 3 are the numbers of the 3 vertices for each triangle. On the other
hand the exact value|V |20 is

|V |20 =
∑
k,l

∑
j=1,2,3

|VRkl
(ξkl)|2|Rkl| (18)

whereRkl = Tk ∩ tl andξkl is any point inRkl.
For eachQij (respqij ) in (17) there is aRkl which contains it. For theseR let us
choose in (18)ξkl = Qij andqij . Then for every term in|V |2h there is a correspond-
ing term in|V |20:

1
6
|VTk

(Qij |2|Tk| in correspondence with|VTk
(Qij |2|Tk ∩ tl| (19)

wherel is such thatQij ∈ tl; and similarly withqij .
However in this construction we will assign as manyξ to a R as the number of
vertices it contains. So the safest is to divide by 3 the second term in (19).
Notice that someR do not contain any vertex; if we leave these aside we obtain

|V |2h
|V |20

≤ 1
2

max
k,l

{max{|Tk|, |tl|}
|Tk ∩ tl|

: Tk ∩ tl contains at least one vertex} (20)

So we have proved the following
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Proposition 3. In two dimensions, the constant of continuity between the approxi-
mate norm|∇uH + ∇uh|h and the exact one is proportional to the square root of
the biggest ratio of area between a triangleT and one of its polygonsT ∩ t wheret
is a triangle of the other triangulation containing a vertex ofT .

The proof is similar, except that in the exact norm there are terms which do not exist
in the approximate norm; but these are positive and appear in the denominator of the
expression which bounds C.

Remark 1.Consider the case where each triangle of the meshh has no more than one
vertex of the meshH inside. Assume that this vertex is near the center of the triangle
(or segment in one-D). Assume that all angles between two intersecting edges are
bounded away from 0 andπ whenh, H → 0 and thatH/h andh/H do not tend to
0. ThenC is strictly posivite in the limit. However it is difficult in practice to insure
that no angle tend to zero when the mesh is refined

Fig. 1. Top: Two meshes in 1D and the intersected mesh. Two intervals have been singled out
as they are strictly inside an interval of the other mesh; the continuity constant is proportional
to the ratio of the smallest interval in the intersected mesh to the biggest interval in both meshes
neighbor to that smallest one. Bottom: The continuity constant is proportional to the smallest
polygon containing a vertex (shown with a texture) divided by the area of the biggest neighbor
triangle in both meshes. Notice that some edges pass right through a vertex in this example,
so if one mesh is shifted slightly the continuity constant estimate suddenly deteriorates.

5 Numerical Test

In all the numerical tests that follow, errors are evaluated on the intersected mesh,
using exact quadrature formula. The problem to solve is−∆u = f in Ω, u =
g on∂Ω. Data are chosen so thatu(x, y) = sin(x) × sin(y).

5.1 Exact quadrature

This formula is introduced so as to give an exact computation for integral like∫
Th∩TH

ΦΨ. WhereΦ andΨ see FIG.2 below areP1-lagrange functions on the
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ψ

φ

Fig. 2. Quadrature points for exact evaluation of
�

Th∩TH
ΦΨ .

triangleTh andTH respectively. It is based on the intersection of the two meshes.
Ω1 is a circle of radius1 centered at(0, 0) andΩ2 is the square(−0.5, 0.5)2. Ω2

is going to be meshed with uniform triangles so that by diadic refinement, order of
convergence should be easily evaluated see Table1.

5.2 First quadrature formula

Table1 displays the results when(11) is used. Notice that by takingu ∈ Vh, v ∈ Vh,
we don’t recover the ordinary approximated bilinear form for the Laplace equation
on the domainΩ1. So for a parallel implementation of (12), instead, we must find
un+1 ∈ V0h such that (hereb ≡ 0), ∀v̂ ∈ V0h(Ω1)

(∇un+1
1 ,∇v̂)h = (f, v̂) − (∇un

2 ,∇v̂)hH − 1
2
(∇un

1 ,∇v̂)h +
1
2
(∇un

1 ,∇v̂)H .

Here(., .)h, (., .)H don’t need quadrature. For the numerical experiments, we have
takenΩ2 = (−2, 3)× (−3, 2) andΩ1 = (− 4

3 , 5
3 ) × (− 5

3 , 4
3 ).

5.3 Second quadrature formula

On the way, we have also tried, foru1, v1 ∈ Vh, u2, v2 ∈ VH

(∇u1,∇v2)hH,Ω1∩Ω2 :=
∑

K∈KH

|K|
3

∑
j=1,2,3

(∇(u1) · ∇(v2|K)) (qj(K))

(∇u2,∇v1)Hh,Ω1∩Ω2 :=
∑

T∈τh

|T |
3

∑
j=1,2,3

(∇(u2) · ∇(v1|T )) (qj(T )). (21)

5.4 Schwarz algorithm with quadrature

Finally, to compare with Schwarz’ algoritm, letπhH : Vh �→ VH andπHh : VH �→
Vh theP 1 interpolation operators. Then the Schwarz method is implemented as

{
(∇(un+1 + πHhvn),∇û)h = (f, û)h ∀û ∈ V0h

(∇(vn+1 + πhHun),∇v̂)H = (f, v̂)H ∀v̂ ∈ V0H
(22)
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u − (u1 + u2)

N1 N2 L2 error rate ∇L2 error rate

Exact Quadrature
10 5 1.54E − 02 − 2.25E − 01 −
20 10 3.78E − 03 2.02 1.11E − 01 1.02

40 20 8.24E − 04 2.2 5.03E − 02 1.15

First Quadrature
3 5 4.64E − 01 − 1.00E − 00 −
6 10 8.18E − 02 2.50 5.44E − 01 0.89

u − (u1 + u2)

N1 N2 L2 error rate ∇L2 error rate

Second Quadrature
10 5 1.85E − 02 − 2.32E − 01 −
20 10 5.66E − 03 1.71 1.16E − 01 1.00

40 20 1.03E − 03 2.45 5.34E − 02 1.12

Schwarz overlapping
10 5 1.68E − 02 − 2.29E − 01 −
20 10 3.49E − 03 2.26 1.09E − 01 1.06

40 20 9.15E − 04 1.93 5.13E − 02 1.09

Table 1.NumericalL2 errors, and convergence rate, for P1 polynomials with different quadra-
ture formula.Ni, i = 1, 2 is the number of vertices on the boundary of the domainΩi.

Conclusion

The results show that the first quadrature formula has optimal errors numerically
but the results are very sensitive to the position of the grid points. Good results are
obtained with the second quadrature formula, which is also easy to implement in 3D
but no error analysis are available yet.
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Fig. 3. Chimera solution of test case with ex-
act quadrature formula. Bottom : solution on
each subdomain.
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Fig. 4. Chimera solution of (∆u =
1 on Ω, u = 0 on ∂Ω) with second quadra-
ture formula. Top right: intersected mesh.
Bottom : solution on each subdomain.


