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Summary. Computational study of the macroscopic stability of plasmas is a chal-
lenging multi-scale problem. Implicit time integration can be used to relieve sta-
bility constraints due to fast Alfvén waves, and adaptive mesh refinement (AMR)
can be used to resolve highly localized solution features. The strong nonlinearities
and numerical stiffness of magnetohydrodynamics (MHD) models present further
challenges that must be solved to make implicit AMR practical. We present initial
results on the application of implicit AMR to a reduced resistive MHD model.

1 Introduction

Magnetohydrodynamics (MHD) models are useful for studying the macro-
scopic behavior of plasmas. Plasmas exhibit a wide range of complex behavior,
including magnetic reconnection, where the magnetic field undergoes a rapid
reconfiguration accompanied by conversion of energy stored in the magnetic
field to kinetic energy. Reconnection is associated with the formation of thin,
localized current sheets, which nevertheless profoundly influence macroscopic
behavior. Thus, it is natural to consider adaptive mesh refinement (AMR) to
locally resolve these features.

MHD models also display behaviors that occur over a wide range of time
scales, many of which are much faster than the time scale over which reconnec-
tion occurs. Time integration methods that are subject to stability constraints
that arise from the fastest time scales are inappropriate for simulation-based
study of reconnection phenomena. We therefore employ implicit time integra-
tion methods where time steps are constrained only by accuracy, not stability.

Implicit time integration requires the solution of large-scale systems of
nonlinear equations at each time step, and fast, robust solution methods are
necessary for implicit methods to be practical. Fortunately, Newton-Krylov
methods [2] have met this requirement in a variety of contexts [6], provided
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effective preconditioning is used. In particular, we have demonstrated excellent
preconditioner performance for reduced MHD models [4, 3]. The key to this
success is the design of physics-based preconditioners that preserve important
couplings between variables and allow the effective use of multigrid methods.
On AMR grids, fast multilevel methods that exploit the structure of the mesh
are needed.

2 Adaptive Mesh Refinement

We use structured AMR (SAMR), in which the grid is organized as a col-
lection of refinement levels. Each refinement level is the union of rectangular
patches having fixed resolution, and is fully nested in the next coarser level
(except at physical boundaries); see Figure 2 for some examples. This hier-
archical structure naturally lends itself to domain decomposition, by treating
each refinement level as a separate subdomain and exploiting the natural par-
tition of each level by its patches. The fully overlapping nature of the domains
enables use of coarse grid points that are covered by a finer level to accelerate
the solution process. In particular, we use the Fast Adpative Composite grid
(FAC) method [7], which is a multiplicative approach that treats levels sequen-
tially, analogous to a multigrid V-cycle. FAC can employ simple smoothing
on refinement levels, and an approximate solve on the coarsest, global level.

SAMR requires special discretization procedures to enforce smoothness of
the solution at the interfaces between coarse and fine regions. Continuity of
the solution at coarse/fine interfaces is ensured by providing each level with
Dirichlet boundary conditions that are determined from piecewise quadratic
interpolation of data from the next coarser level. Flux continuity at coarse/fine
interfaces is enforced by using this Dirichlet data to compute O(h3)-accurate
gradients normal to the level boundary. Nevertheless, careful selection of the
MHD model is required to successfully use SAMR in this context.

3 Current-Vorticity Formulation of Reduced MHD

The two-dimensional reduced MHD formalism assumes that the plasma is
strongly magnetized by a large magnetic field in the (ignorable) z-direction [5].
It follows that the dynamics is restricted to the x−y plane, where the plasma
is incompressible. This allows descriptions of the plasma velocity v = (u, v)T

in terms of a streamfunction Φ (with u = −Φy and v = Φx) and the magnetic
field B = (B1, B2)T in terms of a poloidal flux function Ψ (with B1 = −Ψy
and B2 = Ψx). This leads to the streamfunction-vorticity formulation

∂tω + v · ∇ω − ν∇2ω = B · ∇J

∂tΨ + v · ∇Ψ − η∇2Ψ = 0
∇2Φ = ω

(1)
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where ω is the vorticity, J = ∇2Ψ is the electric current, ν is the viscosity,
and η is the resistivity. While this formulation was successfully treated in [4],
it is not well-suited to SAMR, because of the need to compute J = ∇2Ψ at
coarse/fine interfaces, even if much higher-order interpolation is used. The
fact that J is determined by differentiation leads to small instabilities along
the coarse/fine interface that grow as the simulation proceeds. Similar diffi-
culties were reported in [9] for ideal MHD on unstructured grids. Instead, and
following [9], we use a current-vorticity formulation

∂tJ + v · ∇J − η∇2J −B · ∇ω = {Φ, Ψ}
∂tω + v · ∇ω − ν∇2ω −B · ∇J = 0

ω −∇2Φ = 0
J −∇2Ψ = 0

(2)

where {Φ, Ψ} = 2[Φxy(Ψxx − Ψyy)− Ψxy(Φxx − Φyy)].
Our main task here is to extend the physics-based preconditioner devel-

oped in [4] to handle (2). For the sake of brevity, we assume the reader is
familiar with the derivation in [4], and do not repeat it here. Discretizing (2)
in time with a theta difference scheme yields

(Jn+1 − Jn)/∆t + [v · ∇J ]n+θ − η∇2Jn+θ − [B · ∇ω]n+θ = {Φ, Ψ}n+θ

(ωn+1 − ωn)/∆t + [v · ∇ω]n+θ − ν∇2ωn+θ − [B · ∇J ]n+θ = 0
ωn+θ −∇2Φn+θ = 0
Jn+θ −∇2Ψn+θ = 0

(3)

where n + θ-level quantities are calculated as ξn+θ = (1 − θ)ξn + θξn+1.
Backward Euler time discretization is obtained by θ = 1 and Crank-Nicolson
time discretization corresponds to θ = 1/2. We represent (3) generically by
G(xn+1) = 0 and compute the time-advanced solution with a Jacobian-free
Newton-Krylov (JFNK) method.

Each iteration of JFNK requires solution of the linearized system

LηδJ + θ(δv · ∇J0 −B0 · ∇δω − δB · ∇ω0 − {δΦ, Ψ0} − {Φ0, δΨ}) = −GJ(4)
Lνδω + θ(δv · ∇ω0 −B0 · ∇δJ − δB · ∇J0) = −Gω(5)

δJ −∇2δΨ = −GΨ(6)
δω −∇2δΦ = −GΦ,(7)

where Lα = 1
∆t + θ(v0 · ∇−α∇2), α = η, ν. Quantities with subscript 0 refer

to solution quantities at the previous Newton iterate and (GJ , Gω, Gψ, Gφ)t

refers to the nonlinear residual.
We extend the semi-implicit preconditioner for (1) to handle (2) by first

substituting (6) and (7) in (4) and (5), respectively, and approximating as in
[4], to obtain

P
(

δΨ
δΦ

)
≈ −∇−2

[(
GJ

Gω

)
− P

(
GΨ

GΦ

)]
(8)
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where

P ≡
(

Lη −θB0 · ∇
−θB0 · ∇ Lν

)
.

The system in (8) is only approximate, and is treated here as a predictor
step for δΨ and δΦ. Solution of (8) is done as described in [4], namely, by a
few sweeps of the stationary method obtained by the splitting of P that is
induced by separating Lν into its diagonal and off-diagonal parts, and forming
the Schur complement of the split block matrix for inversion. After this, the
system

P
(

δJ
δω

)
= −

(
GJ + θ(δv · ∇J0 − δB · ∇ω0 − {δΦ, Ψ0} − {Φ0, δΨ})

Gω + θ(δv · ∇ω0 − δB · ∇J0)

)
(9)

is solved in the same manner for δJ and δω using the predicted δΨ and δΦ in
the right hand side.

4 Computational Results

We present initial results of applying implicit AMR to the classical tearing
resistive instability problem described in [4]. The current-vorticity formula-
tion (2) is used on the physical domain Ω = [0, 4] × [0, 1], with periodic
boundary conditions in x and homogeneous Dirichlet boundary conditions
in y. Initial conditions are given by ω0 = 0 and a Harris current sheet
J0 = sech2 ((y − 0.5)/λ) /λ with λ = 0.2. We use a fixed time step ∆t = 1
and integrate to t = 250.

The software infrastructure described in [8] is used. In particular, we
use the implementation of JFNK from PETSc’s Scalable Nonlinear Equa-
tion Solver (SNES) package [1] with a constant forcing term, with both abso-
lute and relative stopping tolerances of 10−4. We developed implementations
of FAC for solving the Poisson and convection-tensor diffusion sub-problems
that are needed to implement the preconditioner [(8) and (9)].

Our criteria for dynamic mesh refinement are based on detecting solution
features. Cells are selected for subdivision when |J | exceeds 85% of its maxi-
mum value (following [9]) or when the curvature in ω exceeds 0.40. Regridding
is done every fourth time step. These choices were determined experimentally
to produce acceptable results. While a systematic study of the accuracy of the
adaptive simulation is needed, Figure 1 shows good agreement of the growth
of the magnetic perturbation calculated on different grid configurations with
the same finest resolution. All these calculations predicted a growth rate of
0.046.

Figure 2 depicts evolution of the solution and grid for a 32 × 32 base
grid with 3 refinement levels. Initially, refinement is concentrated in a strip
surrounding y = 0.5 in order to resolve the current sheet. By t = 120 the
magnetic island has opened up and the flow has organized itself into four
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Fig. 1. Comparison of growth in δΨ for different grid configurations with the same
finest resolution. The curves are labeled as “mB`L”, which indicates an m×m base
grid and ` refinement levels.

distinct vortices of alternating sign. The mesh tracks the evolution of the
solution, with refinement level 1 expanding to capture the magnetic island,
de-refinement in the center of the island, and the remaining refinement levels
focused on the vorticity. By t = 200, J has increased in the center of the
magnetic island, and re-refinement has occurred to capture this behavior.

Finally, Table 1 shows the average number of nonlinear and linear itera-
tions per time step as finer base grids and increasing numbers of refinement
levels are used. The entries marked “–” are cases that were not run. The
number of nonlinear iterations per time step is roughly constant for all cases.
Reading horizontally, we note an increase in the number of linear iterations
per time step as resolution is increased locally. This is consistent with the
trend observed by reading vertically, where resolution is increased globally by
using increasingly finer base grids. These trends are consistent with results
found in [4], and are expected, because by increasing spatial resolution while
running at a fixed time step, we are effectively running at larger multiples
of the shear Alfvén wave explicit CFL limit. More importantly, reading di-
agonally (from lower left to upper right), we see that the number of linear
iterations per time step is nearly constant for different grid configurations
with a fixed finest resolution.

5 Conclusions

We have successfully demonstrated the use of implicit AMR for a reduced
resistive model of MHD. The conventional streamfunction-vorticity formu-
lation was found to be inappropriate for SAMR, but the current-vorticity
formulation was shown to be amenable to this approach. Although a more
formal accuracy study remains to be undertaken, we have demonstrated good
agreement among predictions of the growth rate of the magnetic perturbation
obtained from a variety of grid configurations having the finest resolution.
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t = 50

t = 120

t = 200

Fig. 2. Evolution of solution and grid over time . The y-axis is scaled by a factor
of 4. The current J is on the left and the vorticity ω is on the right. The coarsest
level is outlined in green; level 1: yellow; level 2: cyan; and level 3: magenta.

By using FAC to implement our physics-based preconditioner, we have shown
that the number of linear iterations per time step at a given resolution is
nearly constant, a property that is necessary for implicit AMR to achieve
performance gains that are commensurate with the reduction in problem size
made possible by local mesh refinement.
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Table 1. Number of nonlinear iterations (NNI) and linear iterations (NLI), for dif-
ferent base grids and different numbers of refinement levels.

NNI NLI

Levels 1 2 3 4 5 1 2 3 4 5

32× 32 1.5 2.0 2.0 2.1 2.5 3.4 7.9 12.0 19.3 33.7

64× 64 1.8 2.0 2.0 2.4 – 6.5 11.7 19.1 33.2 –

128× 128 1.8 2.0 2.4 – – 12.5 20.1 27.2 – –

256× 256 1.9 2.0 – – – 19.9 27.5 – – –

512× 512 1.9 – – – – 26.3 – – – –
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