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Summary. We construct and study overlapping Schwarz preconditioners for the
iterative solution of elliptic problems discretized with spectral elements based on
Fekete nodes (TSEM). These are a generalization to non-tensorial elements of the
classical Gauss-Lobatto-Legendre hexahedral spectral elements (QSEM). Even if
the resulting discrete problem is more ill-conditioned than in the classical QSEM
case, the resulting preconditioned algorithm using generous overlap is optimal and
scalable, since its convergence rate is bounded by a constant independent of the
number of elements, subdomains and polynomial degree employed.

1 The model problem and SEM formulation

The recent trend toward highly parallel and high-order numerical solvers has
led to increasing interest in domain decomposition preconditioners for spec-
tral element methods; see [11, 17, 4, 5, 8, 6, 7]. While very successful al-
gorithms have been constructed and analyzed for classical Gauss-Lobatto-
Legendre hexahedral spectral elements (QSEM), many open problems remain
for non-tensorial spectral elements. In this paper, we consider Fekete nodal
spectral elements (TSEM) and propose an Overlapping Schwarz precondi-
tioner that using generous overlap turns out to be optimal and scalable.

Let Ω ∈ IRd, d = 2, 3, be a bounded Lipschitz domain with piecewise
smooth boundary. For simplicity, we consider a model elliptic problem in
the plane (d = 2) and with homogeneous Dirichlet boundary data, but the
techniques presented in this papers apply equally well to more general elliptic
problems in three dimensions: Find u ∈ V := H1

0 (Ω) such that

a(u, v) :=

∫
Ω

(α gradu · grad v + β u v) dx =

∫
Ω

f v dx ∀v ∈ V, (1)

where α, β > 0 are piecewise constant in Ω and f ∈ L2(Ω).
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The variational problem (1) is discretized by the conforming spectral el-
ement method, either quadrangle based (QSEM) or triangle based (TSEM),
which is a Galerkin method that employs a discrete space consisting of contin-
uous piecewise polynomials of degreeN ; see [1, 5, 7] for a general introduction.
Let Tref = {(r, s) : −1 ≤ r, s ≤ +1, r + s ≤ 0} be the reference triangle and
PN (Tref) the set of polynomials on Tref of total degree ≤ N . Let Qref be
the reference square [−1, 1]2 and IPN (Qref) the set of polynomials on Qref

of degree ≤ N in each variable. We assume that Ω is decomposed into K
nonoverlapping triangular or quadrilateral finite elements Ωk, Ω =

⋃K

k=1Ωk,
each of which is the image of Tref or Qref by means of a suitable mapping, i.e.,
Ωk = gk(Tref) or Ωk = gk(Qref). The intersection between two distinct Ωk is
either the empty set or a common vertex or a common side. We denote by H
the maximum diameter of the subdomains Ω′

ks. The space V is discretized by
continuous, piecewise polynomials of total degree ≤ N ,

V T
K,N = {v ∈ V : v|Ωk

◦ gk ∈ PN(Tref), 1 ≤ k ≤ K},

or of degree ≤ N in each variable,

V Q
K,N = {v ∈ V : v|Ωk

◦ gk ∈ IPN (Qref), 1 ≤ k ≤ K}.

QSEM and Gauss-Lobatto-Legendre points. We recall here the con-
forming quadrilateral spectral elements QSEM based on Gauss - Lobatto -
Legendre (GLL) quadrature points, which also allows the construction of a

very convenient tensor-product basis for V Q
K,N . We denote by {ξi}

N
i=0 the set of

GLL points of [−1, 1], and by σi the associated quadrature weights. Let li(x)
be the Lagrange interpolating polynomial of degree ≤ N which vanishes at all
the GLL nodes except ξi, where it equals one. The basis functions on the ref-
erence square Qref are defined by a tensor product as li(x)lj(y), 0 ≤ i, j ≤ N .
Each function of IPN (Qref) is expanded in this nodal GLL basis through its
values at GLL nodes u(ξi, ξj), 0 ≤ i, j ≤ N . We replace each integral of (1)
by GLL quadrature:

(u, v)Q
K,N =

K∑
k=1

N∑
i,j=0

(u ◦ gk)(ξi, ξj)(v ◦ gk)(ξi, ξj)|J
Q
k |σiσj , (2)

where |JQ
k | is the Jacobian of gk. This inner product is uniformly equivalent

to the standard one on IPN (Ω). We then obtain the discrete problem: Find

u ∈ V Q
K,N such that

aQ
K,N (u, v) = (f, v)Q

K,N , ∀v ∈ V Q
K,N , (3)

where aQ
K,N (·, ·) is obtained from a(·, ·) by substituting each integral with the

GLL quadrature rule described in (2). The matrix form of (3) is a linear
system AQu = b, where AQ is here the assembled QSEM matrix (positive
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definite and symmetric for homogeneous material), b is the load vector and
u is the vector of nodal values of the unknown function u.
TSEM and Fekete points. On triangular elements it is no longer possible
to define spectral elements by tensor product as in QSEM. Let {ψj}

n
j=1 be

an orthonormal basis of PN (Tref ) for the usual L2(Tref ) inner product (for
example, the Koornwinder-Dubiner polynomials may be used to constitute
such a basis, see [8]). The Fekete points on Tref are defined as the points
{x̂i}

n
i=1 that maximize the determinant of the Vandermonde matrix V with

elements Vij = ψj(x̂i), 1 ≤ i, j ≤ n, where n = (N + 1)(N + 2)/2. For the
TSEM introduced in [15], the Fekete points are used as approximation points
and the Lagrange polynomials {φi}

n
i=1 built on these points are used as basis

functions. Among the main properties of Fekete points proved in [14], we re-
call that Fekete points are Gauss-Lobatto points for the cube, thus providing
a strong link with the usual QSEM. Unlikely GLL points, a quadrature for-
mula based on Fekete points is only exact for integrands in PN (Tref ). This
fact has suggested for the TSEM to separate the sets of approximation and
quadrature points, using the Fekete points {x̂i}

n
i=1 for the first set and other

points {ŷi}
m
i=1 for the second set, imposing an exact integration of polynomi-

als, e.g., in P2N(Tref ); see [9]. Given the values at the approximation points
of a polynomial uN ∈ PN(Tref ), one can set up interpolation and differen-
tiation matrices to compute, at the quadrature points, the values of uN and
of its derivatives, respectively. For instance, denoting by u the vector of the
ui = uN (x̂i), 1 ≤ i ≤ n, and by u′ that of the uN (ŷi), 1 ≤ i ≤ m, we have
u′ = V ′V −1u, where V ′

ij = ψj(ŷi). On a generic triangle Ωk = gk(Tref ), the
same relation between u′ and u holds true, provided that ui = (uN ◦ gk)(x̂i)
and u′j = (uN ◦ gk)(ŷj). The TSEM requires of course the use of highly accu-
rate integration rules based on Gauss points. Unfortunately, in practice such
integration rules are difficult to define for large values of N (recent publica-
tions show that this is still an open subject of research). In the present case,
we can use integration rules based on Gauss points for the quadrangle and
then map them to Tref ; see [7]. On a generic triangle Ωk = gk(Tref ):

(u, v)Ωk,N =
m∑

j=1

u′j v
′

j |J
T
k (ŷj)|ωj ,

where ωj > 0, 1 ≤ j ≤ m, are the quadrature weights and |JT
k | the Jacobian of

the mapping gk between Tref and Ωk. As for (3), we obtain a discrete problem

aT
K,N (u, v) = (f, v)T

K,N , ∀v ∈ V T
K,N , (4)

that can be written in matrix form as a linear system AT u = b. The TSEM
matrix AT is less sparse than the QSEM matrix AQ and more ill-conditioned,
since its condition number grows as O(N 2(d−1)) (see Sec. 3).
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2 Overlapping Schwarz Preconditioners

We now consider the iterative solution of the discrete systems Au = f by the
conjugate gradient method with an Overlapping Schwarz preconditioner; see
e.g. [16, 13, 12] for a general introduction.

Let τ0 be the coarse finite element triangulation of the domain Ω deter-
mined by the elements Ωk, k = 1, ...,K, of characteristic diameter H . Let τN
be the fine triangulation determined by either the Fekete or the GLL nodes
introduced in each element Ωk in Sections 2.1 and 2.2. Thus we can define
two different coarse and fine triangulations and related overlapping partitions
of Ω, according to the spectral element method at issue.
QSEM. The coarse triangulation τ0 is given by quadrangles Ωk providing a
coarse problem with bilinear finite element (N = 1 in each direction). Then the
local fine discretization τN is determined by GLL nodes in each quadrangleΩk.
We define the overlapping partition of Ω by extending each subdomain Ωk to a
larger subdomain Ω′

k, consisting of all elements of τN within a certain distance
from Ωk; we measure this distance by the number δ of GLL points extending
Ωk in each direction. See Figure 1 (left) for a two-dimensional example.
TSEM. The coarse triangulation τ0 is given by trianglesΩk providing a coarse
problem with linear finite element (N = 1). Then the local fine discretization
τN is determined by Fekete nodes within each Ωk. The overlapping partition
of Ω is generated by extending each triangle Ωk to a large subdomain Ω′

k con-
sisting of all triangles sharing with Ωk either a vertex or an edge. See Figure
1 (right) for a two-dimensional example. Overlapping techniques involving a
smaller number of subdomains (e.g., sharing edges of Ωk only) proved un-
successful, whereas less generous overlapping partitions considering few nodes
around Ωk can not be designed straightforwardly since the internal Fekete
nodes are not distributed regularly as in tensorial elements.

The overlapping Schwarz preconditioner B−1 for A is based on solving a)
a coarse problem with linear or bilinear elements on the coarse mesh τ0; b)
local problems on the overlapping subdomains Ω′

k.
For the coarse solve, we need to define:

a1) a restriction matrix R0; its transpose RT
0 interpolates coarse linear

(resp. bilinear) functions on τ0 to spectral elements functions on the fine Fekete
(resp. GLL) mesh τN ;

a2) a coarse stiffness matrix A0 = R0AR
T
0 needed for the solution of the

coarse problem with N = 1 on τ0.
For the local solves, we need to define:

b1) restriction matrices Rk (with 0,1 entries) returning only the degrees
of freedom inside each subdomain Ω′

k;
b2) local stiffness matrices Ak = RkAR

T
k needed for the solution of the

kth local problem on Ω′

k with zero Dirichlet boundary conditions on ∂Ω′

k.
These are the building blocks of the proposed preconditioners. The additive

form of the overlapping Schwarz preconditioner is
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Fig. 1. Example of Ω′

k subdomains for QSEM with small overlap (δ = 2, left) and
TSEM with generous overlap (right).

B−1
add = RT

0 A
−1
0 R0 +

K∑
k=1

RT
kA

−1
k Rk, (5)

Multiplicative and hybrid variants can be considered too, see [13, 16].
These preconditioners are associated with the space decomposition VK,N =

V0 +
∑K

k=1 Vk , where either VK,N ≡ V T
K,N or VK,N ≡ V Q

K,N . V0 is the subspace
of VK,N consisting of piecewise linear or bilinear functions on the coarse mesh
τ0 and

Vk = {v ∈ V T
K,N : v = 0 at all the Fekete nodes outside Ω′

k and on ∂Ω′

k}

in the case of triangles, and

Vk = {v ∈ V Q
K,N : v = 0 at all the GLL nodes outside Ω′

k and on ∂Ω′

k}

in the case of quadrangles. Defining the operators Tk : VK,N −→ Vk by
aK,N (Tku, v) = aK,N(u, v) ∀v ∈ Vk , 0 ≤ k ≤ K where aK,N ≡ aT

K,N for

TSEM and aK,N ≡ aQ
K,N for QSEM, then (5) is exactly the matrix form

of the additive Schwarz operator Tadd = T0 + T1 + · · · + TK . The theory
developed by Casarin [3] for QSEM and scalar symmetric positive definite
problems allows to transfer the main domain decomposition results from the
finite elements to QSEM (see e.g. Toselli and Widlund [16]).

Theorem 1. The condition number of the overlapping Schwarz QSEM oper-

ator is bounded by

cond(Ta) ≤ C(1 +
H

δ̃
),

with δ̃ = mink{dist(∂Ωk, ∂Ω
′

k)} and the constant C independent of N,H, δ̃.
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In case of generous overlap δ̃ = CH , we have a constant upper bound for both
cond(Ta) and the number of iterations; this was already proved in Pavarino
[10] for more general hp finite elements. For unstructured hp elements on
nontensorial elements, both analyzes in [3] and [10] are no longer valid and
preconditioners with small overlap are not known; the only theory available is
for nonoverlapping methods in I. Bica Ph.D. Thesis [2]. Nevertheless, we can
build preconditioners with generous overlap as shown before and the numerical
results of the next section show that they are optimal and scalable, hence we
conjecture that a bound as in Theorem 1 also holds for TSEM.

3 Numerical results

In this section, we report the results of numerical experiments for the over-
lapping Schwarz preconditioner applied to the model problem (1) discretized
with triangular spectral elements using Fekete nodes. We consider an homo-
geneous material with α = β = 1. The computational domain is Ω = [−1, 1]2

and the body force f is consistent with u(x) = sin(πx) sin(πy) as exact solu-
tion of (1). The mesh is obtained by first dividing Ω into K = k2 identical
squares and then by dividing similarly each of them into two triangles. The
grid-size parameter H is chosen equal to 2/k. The resulting discrete prob-
lem is solved by the preconditioned conjugate gradient (PCG) method with-
out or with Schwarz preconditioner (5), this last one without or with the
coarse solver RT

0 A
−1
0 R0. The initial guess is zero and the stopping criterion is

|r(ν)|/|b(ν)| ≤ 10−7, where r(ν) is the νth residual. In Table 1, we report the
iteration counts (It.), spectral condition number (κ2(A)) and extreme eigen-
values (λmax, λmin), fixing H = 1/2 (32 subdomains) and varying the degree
N from 3 to 15. Columns 2-3 refers to CG, columns 4-7 refer to PCG without
coarse solver, and columns 8-11 refer to PCG with coarse solver. The same
quantities are reported in Tables 2 fixing now N = 3 and varying 1/H from 2
to 10. These results are also plotted in Fig. 2 and 3, that clearly show that
while the very ill-conditioned original TSEM matrix has a condition number
that grows as O(N4H−2), the overlapping Schwarz preconditioned operator
is optimal and scalable (i.e. independent of N and H).

Table 1. CG and PCG preconditioners for the model problem (1) with α = β = 1
and Ω = [−1, 1]2. Iteration counts, condition number and extreme eigenvalues fixed
1/H = 2 and varying N .

CG PCG PCG + coarse

N It. κ2(A) It. λmax λmin κ2(Ã) It. λmax λmin κ2(Ã)

3 28 84.34 12 12.99 2.66 4.87 13 13.00 3.34 3.88
6 85 729.37 13 12.99 2.67 4.85 13 12.99 3.35 3.87
9 206 4819.90 13 12.99 2.67 4.85 13 12.99 3.35 3.87

12 299 8899.07 13 12.99 2.67 4.85 13 12.99 3.35 3.87
15 456 21738.04 13 12.99 2.67 4.85 13 12.99 3.35 3.87
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Table 2. CG and PCG preconditioners for the model problem (1) with α = β = 1
and Ω = [−1, 1]2. Iteration counts, condition number and extreme eigenvalues fixed
N = 3 and varying 1/H.

CG PCG PCG + coarse

1/H It. κ2(A) It. λmax λmin κ2(Ã) It. λmax λmin κ2(Ã)

2 28 84.34 12 12.99 2.66 4.87 13 12.99 3.34 3.88
3 39 190.08 14 12.99 1.41 9.16 13 12.99 2.34 5.53
4 48 337.99 16 12.99 0.84 15.37 14 13.00 1.81 7.17
5 56 527.00 18 12.99 0.55 23.40 15 13.00 1.53 8.46
6 63 753.65 20 12.99 0.39 33.23 17 13.00 1.37 9.43
7 69 1007.16 22 12.99 0.28 44.85 18 13.00 1.27 10.15
8 90 1352.64 25 13.00 0.22 58.27 19 13.00 1.21 10.69
9 98 1710.50 27 13.00 0.17 73.48 20 13.00 1.17 11.10

10 104 2104.60 30 13.00 0.14 90.48 20 13.00 1.13 11.41
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Fig. 2. Condition number and extreme eigenvalues of the unpreconditioned stiffness
matrix as a function of N (left) and of 1/H (right)
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