
Developments in Overlapping Schwarz

Preconditioning of High-Order Nodal

Discontinuous Galerkin Discretizations

L. N. Olson1, J. S. Hesthaven1, and L. C. Wilcox1

Division of Applied Mathematics, Brown University, 182 George Street, Box F,
Providence, RI 02912, USA. Luke.Olson@brown.edu, Jan.Hesthaven@brown.edu,
lucasw@dam.brown.edu

Summary. Recent progress has been made to more robustly handle the increased
complexity of high-order schemes by focusing on the local nature of the discretiza-
tion. This locality is particularly true for many Discontinuous Galerkin formula-
tions and is the focus of this paper. The contributions of this paper are twofold.
First, novel observations regarding various flux representations in the discontinuous
Galerkin formulation are highlighted in the context of overlapping Schwarz meth-
ods. Second, we conduct additional experiments using high-order elements for the
indefinite Helmholtz equation to expose the impact of overlap.

1 Introduction

We consider the Helmholtz equation

−∇ · ∇u(x)− ω2u(x) = f(x) in Ω, (1a)

u(x) = g(x) on Γ . (1b)

Although the form presented in (1) is evidently straightforward, it does still
expose a number of difficulties that we discuss in this paper. The problem
turns cumbersome quickly as the wave number increases since the resulting
system of equations becomes indefinite. Identifying the key components to ef-
ficiently solving this wave problem will likely carry over into more complicated
situations, such as Maxwell’s equations.

The approach taken in this paper is an overlapping Schwarz-type method.
The method presented is motivated by efforts from a variety of researchers
who have outlined a number situations where Schwarz methods have proved
to be effective: indefinite problems, discontinuous Galerkin discretizations,
and high-order elements [4, 2, 3, 8, 9]. Based on this previously detailed suc-
cess, we study the performance of a preconditioned additive Schwarz method
that utilizes element overlap to maintain efficient performance as the order
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of the discontinuous spectral element method increases and as indefiniteness
becomes more prominent.

2 DG

The LDG formulation we follow yields several advantageous properties in
the resulting linear system of equations. The global mass matrix is block
diagonal, allowing cheap inversion, while symmetry is preserved in the global
discretization matrix.

We begin by considering an admissible, shape regular triangulation K of
Ω ∈ R

2 and let hκ = 1/2 · diam(κ), for κ ∈ K. The numerical approximation
uh on element κ ∈ Kh is composed of Lagrange interpolating polynomials
Lj(x) at selected degrees of freedom xj within κ. In 1-D, we describe these
locations as the Gauss-Lobatto-Legendre (GLL) quadrature points. Similarly,
for our 2-D reference triangle, κ̂, we choose a distribution of nodes governed

by electrostatics [6]. Nκ = (n+1)(n+2)
2 points are needed to ensure an order

n resolution in the local polynomial approximation on element κ. Figure 1
shows an example on the reference element. Finally, we define Pn(κ), the
local spectral element space where we seek an approximation.

The standard LDG formulation [1] is described first by introducing a slack
variable q = ∇u. The first-order system for (1) on an arbitrary element κ is

−∇ · q− ω2u = f in κ, (2a)

q−∇u = 0 in κ. (2b)

Multiplying each equation by scalar and vector test functions φ(x) and ψ(x),
respectively, and integrating by parts yields the weak formulation. The local
traces of u and q are replaced by approximations–numerical fluxes–u∗ and
q∗, respectively. With this substitution and integrating by parts again, the
associated (and slightly stronger) weak discrete problem is: Find (uh,n,qh,n)
such that

−

∫

κ

∇ · qh,nφn dx− ω2

∫

κ

uh,nφn dx =

∫

κ

fh,nφn dx +

∫

∂κ

nk · (q
∗ − qh,n)φn dx,

(3a)
∫

κ

qh,n ·ψn dx−

∫

κ

∇uh,n ·ψn dx =

∫

∂κ

(u∗ − uh,n)nk ·ψ dx, (3b)

for all κ ∈ Kh and (φn,ψn). The function spaces are the local spectral element
spaces defined using Lagrange interpolation above.

Defining the numerical flux is what separates different discontinuous
Galerkin approaches [1] and is the most distinguishing feature of a formulation
since the interelement connectivity is solely defined by the representation of
the numerical flux on each edge. This choice directly impacts the approxima-
tion properties as well as the stability of the method. Moreover, the resulting
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(global) linear system of equations will perhaps exhibit symmetry and vary-
ing sparsity patterns depending on how the trace is approximated along each
edge of each element in the tessellation. For a given element κ, define u− to
be the value of u interior to the element and define u+ to be the value of u in
the adjacent, neighboring element. For a scalar function u and vector function
q, the jump and the average between neighboring elements are respectively
defined as JuK = u−n− +u+n+, {{u}} = 1

2 (u− +u+), JqK = q− ·nk− +q+ ·nk+ ,
{{q}} = 1

2 (q− + q+). For κ ∈ K with ∂κ ∈ Γbdy, these values adjusted by
extending the solution to a ghost element.

By defining the numerical fluxes u∗ and q∗ independent of ∇u, we will
be able to formulate the weak problem (3) independent of the slack variable
q(x). In general, the numerical fluxes for the LDG method are defined as [1]

u∗ = {{un,h}}+ β · Jun,hK q∗ = {{qn,h}} − βJqn,hK− ηkJun,hK. (4)

The sign on β is specifically opposite to ensure symmetry of the associated
stiffness matrix [1]. Adhering to this form of a numerical flux is beneficial
since the method is consistent and locally conservative. Further, if ηk > 0 the
method is considered stable [1]. Setting β = 0 yields a central flux for u∗ and
a stabilized central flux for q∗, while using β = 0.5n− results in an upwinding
scheme. The impact computationally is addressed in Section 4.

The numerical flux u∗ is independent of qh,n allowing us to write the
discrete system completely independent of the slack variable q–c.f. lifting op-
erators in [1]. As we sum the weak problem over all elements κ ∈ K we will
need the following global matrices: Sx, Sy, and M , which are stiffness and
mass matrices and F x,y

u∗ and F x,y
q∗ , which couple nodes in adjacent elements.

Introducing global data vectors q̃x, q̃y, and ũ and summing the weak problem
(3) over all elements κ ∈ K, we arrive at the following

−Sxq̃x − Syq̃y − ω2M ũ = M f + F x
q∗ q̃

x + F y
q∗ q̃

y − τF τ
q∗ ũ, (5)

M q̃x − Sxũ = F x
u∗ ũ, (6)

M q̃y − Syũ = F y
u∗ ũ. (7)

Solving for the slack variable q̃x,y in equations (6) and (7), and substituting
into (5) eliminates the dependence on q̃. The system, written in compact form
is then

(

−S + F − ω2M
)

ũ = M f , (8)

where S = SxM−1Sx + SyM−1Sy and F = F x
q∗M−1Sx + F x

q∗M−1F x
u∗ +

F y
q∗M−1Sy + F y

q∗M−1F y
u∗ − τF τ

u∗ The operator S is clearly negative semi-
definite, while for τ > 0.0, the composite operator S − F is strictly negative
definite. A full eigenspectrum analysis and the impact on the the precondi-
tioner is unknown. However, it suffices to say that for moderate ω, indefinite
and near singular matrices should be expected.
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3 PAS

Extensive work by Cai et al. [4, 2, 3] and Elman [5] conclude that standard
Krylov based iterative methods handle a moderate number of flipped eigenval-
ues quite well for this indefinite problem. We will also use this class of methods
and, in particular, choose the Generalized Minimum Residual method (GM-
RES). GMRES can be applied to indefinite systems and, more importantly,
the preconditioned implementation permits indefinite preconditioning matri-
ces. This will be beneficial in the case of the preconditioned additive Schwarz
(PAS) method. It noteworthy that BiCGStab yielded slightly improved results
in our tests, but the observed trends remained the same.

Our implementation is a culmination of approaches, which includes over-
lapping subdomains and a coarse grid solution phase with the ability to handle
non-nested coarse grids. It is important to note that a global coarse solve does
not improve the convergence process if the grid is not rich enough to fully re-
solve a wave. There a couple notable features about our approach. First, given
a coarse grid tessellation, ΩH , and subdomain Ωh

s ⊂ Ωh, we define the restric-
tion operator based on standard finite element interpolation as RT

0ij
= φi(xj).

Here, φi(x) is a coarse grid basis function (bilinear in our case) and xj is a
node in Ωs on the fine grid. R0ij

= 0 if xj is not in the underlying footprint
of φi and is thus still sparse, although not in comparison to the injection op-
erators used in the subdomain solves. To efficiently implement this process,
let V be the Vandermonde matrix built from our orthogonal set of polyno-
mials: Vi,j = pj(xi). With this we can transfer between modal and nodal

representations easily with f = V f̂ and f̂ = V −1f and since V −1 can be built
locally in preprocessing. The advantage is clear when we look at more general
interpolation in this respect. Let Vcc be the coarse basis/coarse nodes Vander-
monde matrix and Vcf be the coarse basis/fine nodes Vandermonde matrix.
Then P0 = VcfV −1

cc ≡ RT
0 defines the equivalent interpolation operator at the

expense of only a few calculations. Second, in order to ensure proper interpo-
lation of constant solutions, we incorporate a row equilibration technique, by
rescaling each row of R0 by the row sum:

R0ij
←

1
∑

j R0ij

R0ij
. (9)

The composite preconditioning matrix is then defined to be M−1 = RT
0 A−1

0 R0+
∑S

s=1 RT
s A−1

s Rs.
Overlap is also introduced in our algorithm. This increases communication,

but, as we present in the next section, is an essential component particularly
for high-order approximations and as the matrix increases in indefiniteness
and size. We define δ = 0 to be the case with no geometric overlap, keeping in
mind the nature of the discontinuous discretization, where degrees of freedom
in neighboring elements may share a geometric location, resulting in some
resemblance of overlap. By increasing δ, we simply mean that each subdomain
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is padded by δ layers of elements. At first glance, this may seem extreme,
since Fischer and Lottes [9] extend only by strips of nodes into the adjacent
elements. However, the class of problems we address is altogether different,
requiring large numbers of elements, and requiring only moderate polynomial
degrees, making overlap overhead costs small as the mesh is further refined.
Moreover, layers of nodes within an electrostatic distribution are not readily
available either in the element itself or in the reference element, where they
have a straightforward formation in the case of tensor-based element.

4 Numerics

Using the central flux in the DG method is more correctly termed the Brezzi
method [1]. Due to the ease of implementation, this formulation has grown
in popularity, also benefiting from slightly improved conditioning over a bona
fide LDG method where β = 0.5n−. Unfortunately, if β = 0, the data from
elements κ+ is needed to describe equations (3) in element κ− as well as data
from the neighbors of κ+, which we label κ++. Thus the influence on one
element extends two layers beyond a given element. The noncompact stencil is
also prevalent for β 6= 0, unless β = 0.5n−, which corresponds to upwind flux.
This is considered the LDG method since fortuitous cancellation of the terms
eliminates the extension to neighboring elements, resulting in a stencil width
of only one layer. Figure 1 articulates this effect. A more detailed explanation
of the effects on discretization error and the eigenspectrum can be found in
[7], although convergence of the iterative solution process is not addressed.

Also shown in Figure 1 is the so-called Interior Penalty method (IP). Here,
a local gradient is used in the definition of the flux, which also results in
a compact stencil. The IP method offers a straightforward implementation,
however the poor conditioning of this approach requires careful attention.
Table 1 illustrates a typical situation. The results are presented for the definite
case (ω = 0.0) on a grid with h ≈ 1/8. A single level additive Schwarz scheme
is used to precondition the GMRES acceleration. The first column reiterates
the fact that the Brezzi approach (β = 0.0) has slightly better conditioning
than the LDG implementation (β = 0.5n−), while the IP system suffers from
a very poor spectrum. Column 2 also provides insight, showing that while the
LDG scheme is slightly more ill-conditioned, the local type preconditioning
scheme is more effective due to the compact stencil. The Brezzi operator
responds similarly under preconditioning, but due to the wide stencil, the
relative improvement is not as drastic. The preconditioning also has significant
influence on the IP method, but due to the poor conditioning, it is difficult to
fully quantify the effect of PAS. We will follow the Brezzi method throughout
the rest of the paper since it is a widely used formulation of DG and since
we expect the preconditioning results to be on the pessimistic side. A more
comprehensive study of the various DG methods and preconditioning, similar
to Table 1, is an ongoing research effort.



6 Hesthaven, Olson, Wilcox

Table 1. GMRES iterations for Brezzi, LDG, and IP formulations with and without
preconditioning.

Brezzi LDG IP
N w/o PAS w/ PAS w/o PAS w/ PAS w/o PAS w/ PAS

2 73 21 121 21 355 57
4 167 28 252 29 1291 151
6 316 30 456 32 > 2000 294
8 534 38 713 36 > 2000 568
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Fig. 1. Stencil width relative to element κ−.

Our test problem is basic, yet still exposes a principle difficulty: in-
definiteness and high-order discretizations. We consider a smooth, solution
u(x, y) = sin(2πωx) sin(2πωy).

Comparing the iterations in Table 2 indicates that a coarse grid is ben-
eficial for high-order discretizations. GMRES iterations are reduced for each
polynomial order when using a richer coarse grid. It is interesting to further
note that the relative improvement is consistent as the order is increased.
Overlap, however, has a much larger impact on the convergence of the pre-
conditioned iterative method as indicated in Table 2.

Table 2. GMRES iterations with hf ≈ 1/8, ω = 1.0: adding overlap

δ = 0 δ = 1
order n

hc 1 2 3 4 5 6 7 8 9 10 11
0 26 38 49 60 71 82 93 105 116 128 140
1/4 22 32 39 50 58 67 72 81 88 100 108 → 22 22 23 24 24 25 25 26 26 27 28
1/8 14 25 30 36 43 47 55 60 66 73 79

As the frequency ω increases, more degrees of freedom are needed to fully
resolve the solution. When the problem is viewed on a coarser grid, the dis-
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cretization lacks resolution and the solution found on the coarse grid no longer
resembles an accurate approximation to the fine grid solution. Thus the two-
level error correction becomes ineffective and possibly pollutes the fine grid
solution. Figure 2 shows that the iteration counts remain bounded as the
polynomial order is increased for each selected ω. The iterations increase as
the frequency is increased, but this is expected as more low eigenvalues are
shifted to the positive half-plane. As expected, coarse solves do not improve
solution for large wave numbers, however there is significant improvement as
we introduce overlap, particularly for the case of the highly indefinite problem,
ω = 50.
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Fig. 2. GMRES iterations versus polynomial order: Comparing overlap impact for
ω = 1.0, 10.0, 50.0.

A more definitive exposé is to test problems where the discretization is not
under or over resolved. Referring to dispersion analysis, using around several
degrees of freedom per wavelength (in 1-D) is generally considered well re-
solved. Table 3 confirms the importance of overlap. The relative improvement
as n increases is attributed to the fact that larger subdomain solves are being
used. The trend in overlap continues only so far. Figure 3 illustrates that per-
formance is improved as the overlap is increased, however the relative impact
becomes less.

Table 3. GMRES iterations: hf ≈ 1/4, no coarse grid

No PAS δ = 0 δ = 1
n ω avg. iterations

1 0 . . . 7 48 23 18
2 6 . . . 10 106 43 27
3 9 . . . 13 170 57 30
4 12 . . . 16 271 72 36
5 15 . . . 20 392 106 48
6 19 . . . 23 534 151 67
7 22 . . . 26 705 193 72
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Fig. 3. GMRES iterations versus polynomial (n) order and overlap (δ).
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