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Summary. We study in this paper the model problem of the advection diffusion
equation on a region which contains a subregion where it is sufficient to approxi-
mate the problem by the pure advection equation. We define coupling conditions
at the interface between the two regions which lead to a coupled solution which
approximates the fully viscous solution more accurately than other conditions from
the literature, and we develop a fast algorithm to solve the coupled problem.

1 Introduction

There are two main reasons for coupling different models in different regions:
the first are problems where the physics is different in different regions, and
hence different models need to be used, for example in fluid-structure coupling.
The second are problems where one is in principle interested in the full physical
model, but the full model is too expensive computationally over the entire
region, and hence one would like to use a simpler model in most of the region,
and the full one only where it is essential to capture the physical phenomena.
We are interested in the latter case here. In our context of advection diffusion,
coupling conditions for the stationary case were developed in [GQSL90]; they
are obtained by a limiting process where the viscosity goes to zero in one
subregion, and it is held fixed in the other. Other coupling conditions were
studied in [Dub93] to obtain a coupled solution which is closer to the fully
viscous one.

One is also interested in efficient algorithms to solve the coupled problems.
These algorithms are naturally based on iteration by subdomains. While an
algorithm was proposed in [GQSL90], no algorithm was proposed in [Dub93]
for the coupling conditions approximating the fully viscous solution.

We propose here coupling conditions for the case where we are interested
in the fully viscous solution of the time dependent advection diffusion equa-
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tion, and we develop an effective iteration per subdomain algorithm for the
coupled problem. After introducing our model problem in Section 2 together
with the subproblems, we present the two coupling strategies from [GQSL90]
and [Dub93] in Section 3, and introduce a new set of coupling conditions.
We then compare the approximation properties of the three sets of coupling
conditions to the fully viscous solution in Section 4. In Section 5, we present
an iteration per subdomain algorithm from [GQSL90], and introduce new al-
gorithmic transmission conditions which imply our new coupling conditions
at convergence and lead to an efficient iteration per subdomain algorithm. We
show numerical experiments in one and two spatial dimensions in Section 6.

2 Model Problem

We consider the non-stationary advection diffusion equation

Ladu = f, in Ω × (0, T ),
u(·, 0) = u0 in Ω,

Bu = g on ∂Ω,

(1)

where Ω is a bounded open subset of R
2, Lad := ∂t + a · ∇ − ν∆ + c is the

advection diffusion operator, ν > 0 is the viscosity, c > 0 is a constant, a is
the velocity field, and B is some boundary operator leading to a well posed
problem. In the following we call u the viscous solution. We now assume
that the viscous effects are not important for the physical phenomena in a
subregion Ω2 ⊂ Ω, and hence would like to use the pure advection operator
La := ∂t + a · ∇ + c in that subregion. With Ω1 = Ω\Ω2, see Figure 1, this
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Fig. 1. Fully viscous problem on the left, and coupled subproblems on the right.

leads to the two subproblems






Ladu1 = f in Ω1 × (0, T ),
u1(·, 0) = u0 in Ω1,

Bu1 = g on ∂Ω ∩ ∂Ω1,







Lau2 = f in Ω2 × (0, T ),
u2(·, 0) = u0 in Ω2,

Bu2 = g on ∂Ω ∩ ∂Ω2,
(2)

which need to be completed by coupling conditions on Γ , the common bound-
ary between Ω1 and Ω2. Since the advection operator La is of order 1, it is
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necessary to know on which part of the interface a ·n is positive or negative (n
is the unit outward normal of Ω1). We thus introduce Γin = {x ∈ Γ, a ·n > 0}
and Γout = {x ∈ Γ, a · n ≤ 0}, where Γ = Γin ∪ Γout, see Figure 1.

3 Coupling Conditions

If we solve the advection diffusion equation in Ω by a domain decomposition
method, it is well-known that the solution as well as its normal derivative
must be continuous across Γ , and the only issue is to define algorithms which
converge rapidly to the solution of the global problem, see [QV99] for a review
of classical algorithms, and [DO03,Japh98] for optimized ones.

But if the equations are different in each subdomain, there are two issues:
first, one has to define coupling conditions so that (2) define together with the
coupling conditions a global solution close to the fully viscous one, and second
one needs to find an efficient iteration per subdomain algorithm to compute
this solution. This algorithm can use arbitrary transmission conditions which
are good for its convergence, as long as they imply at convergence the coupling
conditions defining the coupled solution.

A first approach to obtain coupling conditions was introduced in [GQSL90]
through a limiting process in the viscosity (singular perturbation method).
With a variational formulation for the global viscous problem, and letting the
viscosity tend to 0 in a subregion, it has been shown in [GQSL90] that the
solution of this limiting process satisfies

−ν ∂u1

∂n
+ a · nu1 = a · nu2 on Γ = Γin ∪ Γout,

u1 = u2 on Γin,
(3)

which is equivalent to the coupling conditions

u1 = u2 on Γin,

−ν ∂u1

∂n
= 0 on Γin,

−ν ∂u1

∂n
+ a · nu1 = a · nu2 on Γout.

(4)

A second set of coupling conditions based on absorbing boundary condition
theory was proposed in [Dub93],

u1 = u2 on Γin,
∂u1

∂n
= ∂u2

∂n
on Γin,

−ν ∂u1

∂n
+ a · nu1 = a · nu2 on Γout.

(5)

Both coupling conditions (4) and (5) imply on Γout that neither the solution
nor its derivative are continuous. Since this is in contradiction with the solu-
tion of the fully viscous problem, in which we are interested here, we propose
a third set of coupling conditions by modifying the conditions (5) to obtain
at least continuity of u on the interface,
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u1 = u2 on Γin,
∂u1

∂n
= ∂u2

∂n
on Γin,

u1 = u2 on Γout.

(6)

In the next section, we show that the coupling conditions (5) and (6) give
more accurate approximations to the fully viscous solution than the coupling
conditions (4).

4 Error Estimates with Respect to the Viscous Solution

We consider the stationary case of (2) on the domain Ω = R
2, with subdo-

mains Ω1 = (−∞, 0) × R and Ω2 = (0, +∞) × R, and we estimate the error
between the viscous solution and the coupled solution for each of the coupling
conditions (4), (5) and (6) when the velocity field a is constant.

Using Fourier analysis and energy estimates, the details of which are be-
yond the scope of this short paper, we obtain for ν small the asymptotic results
in Table 1, where ‖ · ‖Ωi

denotes the L2 norm in Ωi. These results show that

Case a · n > 0 (Γ ≡ Γin)

Conditions (4) Conditions (5) and (6)

‖u − u1‖Ω1
O(ν3/2) O(ν5/2)

‖u − u2‖Ω2
O(ν) O(ν)

Case a · n ≤ 0 (Γ ≡ Γout)

Conditions (4) and (5) Conditions (6)

‖u − u1‖Ω1
O(ν) O(ν)

‖u − u2‖Ω2
O(ν) O(ν)

Table 1. Asymptotic approximation quality of the coupled solution to the viscous
solution through different coupling conditions.

if a · n > 0, then the approximation of the viscous solution by the coupled
solution through conditions (5) and (6) is better on the viscous subregion Ω1

than with the conditions (4). In fact, conditions (5) and (6) are not based
on the limiting process in the viscosity, and hence retain in some sense the
viscous character of the entire problem. In Ω2 the error is O(ν) independently
of the coupling conditions, since we solve the advection equation instead of
the advection-diffusion equation. Note also that in this case with the coupling
conditions (5) and (6) we have continuity of the solution and of its normal
derivative, whereas with the coupling conditions (4), we have continuity of
the solution only.

If a · n ≤ 0, the solution in Ω2 does not depend on the transmission
conditions, and since we solve in this domain the advection equation, the error
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is O(ν). Then the error is propagated into Ω1, so we can not have a better
error than O(ν) in Ω1 independently of the coupling conditions. Note however
that now only conditions (6) lead to continuity of the coupled solution.

5 Algorithmic Transmission Conditions

We now turn our attention to algorithms to compute the coupled subproblem
solution. In [GQSL90], the following algorithm based on the coupling condi-
tions (4) was proposed for the steady case (θ is a relaxation parameter to
choose)











Ladu
k+1

1 = f in Ω1,

−ν
∂u

k+1

1

∂n
= 0 on Γin,

−ν
∂u

k+1

1

∂n
+ a · nuk+1

1 = a · nuk
2 on Γout,

{

Lauk+1

2 = f in Ω2,

uk+1

2
= θuk

1 + (1 − θ)uk
2 on Γin,

(7)

and it was shown that the algorithm is well posed and convergent.
In [GHJ02] an algorithm was proposed for the conditions (6) in the steady

state case. This algorithm does not use the coupling conditions, but better
suited transmission conditions which imply at convergence the coupling con-
ditions. We generalize this approach here to the unsteady case, which leads to
an optimized Schwarz waveform relaxation method. We first consider the case
of a constant velocity field. If a · n ≤ 0, i.e. Γ ≡ Γout, the solution in Ω2 does
not depend on the conditions on Γ , and to obtain (6), Dirichlet conditions
must be used for Ω1. Now if a · n > 0, i.e. Γ ≡ Γin, then we use the theory of
absorbing boundary conditions to obtain optimal transmission conditions B1

and B2 for the algorithm,















Ladu
k+1

1 = f in Ω1 × (0, T ),

uk+1

1
(·, 0) = u0 in Ω1,

Buk+1

1 = g on ∂Ω ∩ ∂Ω1,

B1u
k+1

1 = B1u
k
2 on Γ × (0, T ),















Lauk+1

2 = f in Ω2 × (0, T ),

uk+1

2
(·, 0) = u0 in Ω2,

Buk+1

2 = g on ∂Ω ∩ ∂Ω2,

B2u
k+1

2 = B2u
k
1 on Γ × (0, T ).

Using the error equations, one can show that if B1 is the advection operator,
then we have convergence of the algorithm in two steps.

In the case of a non constant velocity field, we propose to follow precisely
the same strategy, which leads to the algorithm























Ladu
k+1

1 = f in Ω1 × (0, T ),

uk+1

1 (·, 0) = u0 in Ω1,

Buk+1

1 = g on ∂Ω ∩ ∂Ω1,

Lauk+1

1 = f on Γin × (0, T ),

uk+1

1 = uk
2 on Γout × (0, T ).















Lauk+1

2 = f in Ω2 × (0, T ),

uk+1

2 (·, 0) = u0 in Ω2,

Buk+1

2
= g on ∂Ω ∩ ∂Ω2,

uk+1

2 = uk
1 on Γin × (0, T ).

(8)
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Note that if the sign of a · n is constant, then algorithm (8) converges in two
steps like algorithm (7). If not, our numerical results in the next section sug-
gest that the algorithm has good convergence properties also, but it remains
to prove convergence of the new algorithm in that case.

6 Numerical Results

We first consider the stationary case in 1d, with parameters ν = 0.1, c = 1
and f(x) = sin(x) + cos(x). In Figure 2, we show on the left the viscous
and coupled solutions for a = 1, and on the right for a = −1. The in-
terface Γ is at x = 0, and in each case the boundary conditions are cho-
sen such that there is no boundary layer. One can clearly see that for
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Fig. 2. Viscous and coupled solutions for a > 0 on the left and for a < 0 on the
right.

a > 0, conditions (4) lead to a jump in the derivative at the interface,
whereas with conditions (6), the coupled solution and its derivative are
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continuous. For a < 0, conditions (4) lead
to a discontinuity at the interface, whereas
conditions (6) lead to a continuous cou-
pled solution. Note that the jump is pro-
portional to ν, see [GQSL90].

In Figure 4, we compare the viscous
and the coupled solutions for several val-
ues of ν in the L2 norm in Ω1 and Ω2

when a = 1 and a = −1. The numerical
results agree well with the theoretical re-
sults given in Section 4.

We next consider the time dependent
case in two dimensions with a rotating ve-
locity, as shown in Figure 3. The viscosity is ν = 0.001, we work on the homo-
geneous equation f ≡ 0, and the rotating velocity is given by a(x, y) = 0.5−y,
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Fig. 4. 1 d case : L2-error for a = 1 in Ω1 on top left and in Ω2 on top right, and
for a = −1 in Ω1 at the bottom left and in Ω2 at the bottom right, versus ν.

b(x, y) = 0.5, such that a · n is positive on the first half of the interface and
negative on the other half.

Figure 5 shows cross sections of the solution at y = 0.3 and y = 0.5 where
a · n > 0, and the information goes from Ω1 to Ω2 and stops diffusing after
reaching the interface, and then cross sections at y = 0.7 and y = 0.9, where
a · n < 0, and diffusion sets in again after crossing the interface.

7 Conclusions

We have proposed a new set of coupling conditions which permits the replace-
ment of the advection diffusion operator by the pure advection operator in
regions where the viscosity is not very important, and which retain better
asymptotic approximation properties to the fully viscous solution than earlier
coupling conditions in the literature. We have also defined a rapidly converg-
ing iteration by subdomain algorithm which uses computational transmission
conditions which at convergence imply the new coupling conditions. While nu-
merical experiments show good convergence properties of this new algorithm,
it remains to prove convergence of the new algorithm.
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the final time for various positions y on the interface Γ .
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