
A BDDC Preconditioner for

Saddle Point Problems

Jing Li1 and Olof Widlund2

1 Department of Mathematical Sciences, Kent State University, Kent, OH 44242
li@math.kent.edu

2 Courant Institute of Mathematical Sciences, New York University, 251 Mercer
Street, New York, NY 10012 widlund@cs.nyu.edu

Summary. The purpose of this paper is to extend the BDDC (balancing domain
decomposition by constraints) algorithm to saddle point problems that arise when
mixed finite element methods are used to approximate the system of incompressible
Stokes equations. The BDDC algorithms are defined in terms of a set of primal
continuity constraints, which are enforced across the interface between the subdo-
mains, and which provide a coarse space component of the preconditioner. Sets of
such constraints are identified for which bounds on the rate of convergence can be
established that are just as strong as previously known bounds for the elliptic case.
The preconditioned operator is positive definite and a conjugate gradient method
can be used. A close connection is also established between the BDDC and FETI-DP
algorithms for the Stokes case.

1 Introduction

The BDDC algorithms are domain decomposition methods based on nonover-
lapping subdomains into which the domain of a given partial differential equa-
tion is divided. Introduced by Dohrmann [1] and analyzed in the elliptic case
by him, Mandel, and Tezaur [9], these methods represent an important ad-
vance over the balancing Neumann-Neumann methods that have been used
extensively in the past to solve large finite element problems; cf. [10, Section
6.2] where references to earlier work can also be found. It has also been es-
tablished that the preconditioned operators of a pair of BDDC and FETI-DP
algorithms, with the same primal constraints, have the same nonzero eigen-
values for positive definite elliptic problems; see [9, 3, 7].

In this paper, a BDDC preconditioner is developed for mixed finite element
approximations of the incompressible Stokes equations in a very similar way;
see also [8] for many more details. If the set of primal constraints on the
velocity across the interface satisfies a certain assumption, we are then able
to show that the preconditioned operator is positive definite and has the
same nonzero eigenvalues as the FETI-DP operator developed in [6]. With an
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additional assumption, a bound on the convergence rate as strong as for the
standard elliptic case can be proved.

2 Discretization of a Saddle Point Problem

Let us consider the incompressible Stokes problem on a bounded, polyhe-
dral domain Ω, in two or three dimensions. We denote the boundary of the
domain by ∂Ω; for simplicity a homogeneous Dirichlet boundary condition
is enforced. The weak solution has the following saddle point formulation:

find u ∈
(
H1

0 (Ω)
)d

= {v ∈ (H1(Ω))d | v = 0 on ∂Ω}, d = 2 or 3, and
p ∈ L2

0(Ω) = {q ∈ L2(Ω) |
∫

Ω
q = 0}, such that,

{
a(u,v) + b(v, p) = (f ,v), ∀v ∈

(
H1

0 (Ω)
)d

,

b(u, q) = 0, ∀q ∈ L2
0(Ω) ,

(1)

where a(u,v) =
∫

Ω
∇u : ∇v, or a(u,v) = 2

∫
Ω

ǫ(u) : ǫ(v) and b(u, q) =

−
∫

Ω
(∇·u)q. Here the strain tensor ǫ(u) is defined by ǫij(u) = ( ∂ui

∂xj
+

∂uj

∂xi
)/2.

The operator form of the Stokes problem with Dirichlet boundary conditions
is the same for either choice of the bilinear form a(·, ·), but we adopt the
second which gives rise to a natural boundary condition which is consistent
with physics.

In our mixed finite element methods for solving the saddle point problem

(1), the velocity solution space will be denoted by Ŵ. It consists of vector-
valued, low order piece-wise polynomial functions which are continuous across
element boundaries. The pressure space Q ⊂ L2

0(Ω) consists of scalar, discon-
tinuous functions. A characteristic diameter of the elements of the underlying
triangulation is denoted by h. The finite element approximation (u, p) of the
variational problem (1) can be written as

[
A BT

B 0

] [
u

p

]
=

[
f

0

]
. (2)

We will always assume that the chosen mixed finite element space Ŵ×Q
is inf-sup stable, i.e., that there exists a positive constant β, independent of
h, such that

sup
w∈Ŵ

b(w, q)

‖w‖H1

≥ β‖q‖L2 , ∀q ∈ Q. (3)

The domain Ω is decomposed into N nonoverlapping polyhedral subdo-
mains Ωi, i = 1, 2, ..., N , of characteristic diameter H . The subdomain in-
terface is defined by Γ = (∪∂Ωi)\∂Ω, and the interface of an individual
subdomain Ωi is Γi = ∂Ωi ∩Γ . We decompose the discrete velocity and pres-

sure spaces Ŵ and Q into Ŵ = WI

⊕
ŴΓ and Q = QI

⊕
Q0, where WI
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and QI are direct sums of subdomain interior velocity spaces W
(i)
I , and sub-

domain interior pressure spaces Q
(i)
I , respectively. The elements of W

(i)
I are

supported in the subdomain Ωi and vanish on its interface Γi, while the ele-

ments of Q
(i)
I are restrictions of elements in Q to Ωi which satisfy

∫
Ωi

q
(i)
I = 0.

ŴΓ is the space of traces on Γ of functions in Ŵ and Q0 is the subspace

of Q with constant values q
(i)
0 in the subdomain Ωi that satisfy

∫
Ω

q0dx =∑N
i=1 q

(i)
0 m(Ωi) = 0, where m(Ωi) is the measure of the subdomain Ωi.

We denote the space of interface velocity variables on the subdomain Ωi

by W
(i)
Γ , and the associated product space by WΓ =

∏N

i=1 W
(i)
Γ ; generally

functions in WΓ are discontinuous across the interface. Eliminating the in-
dependent subdomain interior variables (uI , pI) from the global problem (2),
we have the global interface problem

[
ŜΓ B̂T

0Γ

B̂0Γ 0

][
uΓ

p0

]
=

[
gΓ

0

]
. (4)

Here, gΓ is a reduced load vector obtained when the interior variables are
eliminated. ŜΓ is assembled from subdomain Stokes Schur complements

S
(i)
Γ = A

(i)
ΓΓ −

[
A

(i)
ΓI B

(i)T

IΓ

] [A
(i)
II B

(i)T

II

B
(i)
II 0

]−1

A

(i)T

ΓI

B
(i)
IΓ


 ,

i.e., ŜΓ =
∑N

i=1 R
(i)T

Γ S
(i)
Γ R

(i)
Γ , where R

(i)
Γ is the operator which maps functions

in the continuous interface velocity space ŴΓ to their subdomain components

in the space W
(i)
Γ . Denote by SΓ and RΓ the direct sums of S

(i)
Γ and R

(i)
Γ ,

respectively. ŜΓ can then be written as ŜΓ = RT
Γ SΓ RΓ .

We denote the operator of the interface problem (4) by Ŝ. Since Ŝ is
symmetric and indefinite, we could use the minimal residual method, possibly
with a positive definite block preconditioner, as in [10, Section 9.2], to solve
problem (4). We will instead propose a different type of preconditioner and
show that the preconditioned operator is positive definite, provided that a
suitable set of primal constraints are chosen; cf. Assumption 1.

3 A BDDC Preconditioner for Stokes Equations

We introduce a partially assembled interface velocity space W̃Γ by

W̃Γ = ŴΠ

⊕
W∆ = ŴΠ

⊕
(

N∏

i=1

W
(i)
∆

)
.

Here, ŴΠ is the continuous coarse level, primal interface velocity space which
is typically spanned by subdomain vertex nodal basis functions, and/or by in-
terface edge and/or face basis functions with constant values, or with values
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of weight functions, on these edges or faces. These basis functions correspond
to the primal interface velocity continuity constraints. We will always assume
that the basis has been changed so that each primal basis function corre-
sponds to an explicit degree of freedom which is shared by the neighboring
subdomains; see [7], [5, Section 6], and [4] for more details of the change of
basis. The complimentary space W∆ is the direct sum of the subdomain dual

interface velocity spaces W
(i)
∆ , which correspond to the remaining interface

velocity degrees of freedom and are spanned by basis functions which vanish

at the primal degrees of freedom. Thus, an element in the space W̃Γ has a
continuous primal velocity and typically a discontinuous dual velocity com-
ponent.

We define R
(i)
∆ as the operator which maps a function in the space ŴΓ to

its dual component in the space W
(i)
∆ . RΓΠ is the restriction operator from

the space ŴΓ to its subspace ŴΠ and R
(i)
Π is the operator which maps ŴΠ

into its Γi−component. R̃Γ is the direct sum of RΓΠ and the R
(i)
∆ , and it is a

map from ŴΓ into W̃Γ .
The interface velocity Schur complement S̃Γ is defined on the partially as-

sembled interface velocity space W̃Γ by S̃Γ = R
T

Γ SΓ RΓ , where RΓ maps W̃Γ

into the product space WΓ associated with the set of subdomains. We recall
that the global interface Schur operator ŜΓ is obtained by fully assembling the

S
(i)
Γ across the subdomain interface. ŜΓ can therefore also be obtained from

S̃Γ by further assembling the dual interface velocity part, i.e., ŜΓ = R̃T
Γ S̃Γ R̃Γ .

Correspondingly, we define B̃0Γ , which is obtained from the subdomain oper-

ators B
(i)
0Γ by assembling the primal interface velocity part only. The operator

B̂0Γ can then be obtained from B̃0Γ by assembling the dual interface velocity
part on the subdomain interfaces, i.e., B̂0Γ = B̃0Γ R̃Γ . We can therefore write
Ŝ, the operator of the global interface problem (4), as Ŝ = R̃T S̃R̃, where

R̃ =

[
R̃Γ

I

]
, S̃ =

[
S̃Γ B̃T

0Γ

B̃0Γ 0

]
. (5)

To define the BDDC preconditioner, we need certain scaling functions.
For each interface node x ∈ Γi, we set δ†i (x) = 1/Nx, x ∈ Γi, where Nx

is the number of subdomain to which x belongs. Given the scaling factors
at the subdomain interface nodes, we can define scaled restriction operators

R
(i)
D,∆. Each row of R

(i)
∆ has only one nonzero entry which corresponds to a

node x ∈ Γi, and multiplying each such element with the scaling factor δ†i (x)

gives us R
(i)
D,∆. The scaled operator R̃D,Γ is the direct sum of RΓΠ and the

R
(i)
D,∆. For elasticity problems, these scaling factors should depend on the first

Lamé constant µ, which can be allowed to change across the interface between
neighboring subdomains; see [10, Section 8.5.1] and [5].

The BDDC preconditioner for solving the interface saddle point problem
(4) is M−1 = R̃T

DS̃−1R̃D, where R̃D is of the same form as R̃ in (5), except
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that R̃Γ is replaced by R̃D,Γ . To compute the product of S̃−1 and a vector,
a coarse level saddle point problem, for the primal variables, and subdomain
Neumann problems, each with a few primal constraints, need to be solved; cf.
[7, 8].

4 Condition Number Bounds

We define an average operator

ED = R̃R̃T
D =

[
R̃Γ

I

] [
R̃T

D,Γ

I

]
=

[
ED,Γ

I

]
, (6)

which maps W̃Γ ×Q0, with generally discontinuous interface velocities, to ele-
ments with continuous interface velocities in the same space. ED,Γ = R̃Γ R̃T

D,Γ ,
provides the average of the interface velocities across the interface Γ . Denot-
ing the primal and dual parts of wΓ by wΠ and w∆, we can write ED,ΓwΓ

as the direct sum of wΠ and ED,∆w∆, where ED,∆w∆ is the dual part of the
averaged vector.

The following two assumptions will be needed in the condition number
bound of the preconditioned operator.

Assumption 1 For any w∆ ∈ W∆,
∫

∂Ωi
w

(i)
∆ ·n = 0 and

∫
∂Ωi

(ED,∆w∆)
(i) ·

n = 0, where n is the unit outward normal of ∂Ωi.

Assumption 2 There exists a positive constant C, which is independent of
H, h, and the number of subdomains, such that

|RΓ (ED,ΓwΓ ) |E(Γ ) ≤ C

(
1 + log

H

h

)
|RΓ wΓ |E(Γ ), ∀wΓ ∈ W̃Γ ,

where | · |E(Γ ) is defined on the space WΓ by |wΓ |2E(Γ ) =
∑N

i=1 |w
(i)
Γ |2

E(Γi)
with

|w
(i)
Γ |E(Γi) = inf

v
(i)
∈(H1(Ωi))

d

v(i)|Γi
=w

(i)

Γ

‖ǫ(v(i))‖L2(Ωi).

These two assumptions can be satisfied with an appropriate choice of
the primal continuity constraints on the interface velocity variables; for two-
dimensional problems, Assumptions 1 and 2 are satisfied if all subdomain
vertices are primal, i.e, both components of the velocity are continuous at

those nodes, and
∫

Γ ij w
(i)
Γ · nij =

∫
Γ ij w

(j)
Γ · nij , is enforced on all the subdo-

main interface edges. Here nij is a normal of Γij . For the more complicated
three-dimensional case, see [2, 8, 5].

The interface velocity subspaces ŴΓ,B and W̃Γ,B are defined by ŴΓ,B =

{wΓ ∈ ŴΓ | B̂0Γ wΓ = 0}, and W̃Γ,B = {wΓ ∈ W̃Γ | B̃0Γ wΓ = 0}. We
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will call ŴΓ,B × Q0 and W̃Γ,B × Q0 the benign subspaces of ŴΓ × Q0 and

W̃Γ × Q0, respectively.

The preconditioned operator R̃T
DS̃−1R̃DŜ is indefinite on the space ŴΓ ×

Q0, since both Ŝ and S̃ are indefinite. However, both Ŝ and S̃ are positive semi-

definite, when restricted to the benign subspaces ŴΓ,B ×Q0 and W̃Γ,B ×Q0,

respectively. We will also know, from Lemma 1, that M−1Ŝ maps ŴΓ,B ×Q0

into itself and that M−1Ŝ is symmetric with respect to the bilinear form
〈·, ·〉

Ŝ
. Theorem 1 will show that M−1Ŝ is positive definite, when restricted

to the benign subspace ŴΓ,B × Q0. Therefore a preconditioned conjugate
gradient method can be used. The following lemmas will be used in the proof
of Theorem 1.

Lemma 1 Let Assumption 1 hold. Then, R̃T
Dw ∈ ŴΓ,B × Q0, for any w ∈

W̃Γ,B × Q0.

Lemma 2 Let Assumptions 1 and 2 hold. There then exists a positive con-
stant C, which is independent of H, h, and the number of subdomains, such
that,

< EDw, EDw >
S̃
≤ C

1

β2

(
1 + log

H

h

)2

< w,w >
S̃
, ∀w ∈ W̃Γ,B × Q0.

Here, β is the inf-sup stability constant of Equation (3).

Theorem 1 Let Assumptions 1 and 2 hold. The preconditioned operator
M−1Ŝ is then symmetric, positive definite with respect to the bilinear form

〈·, ·〉
Ŝ

on the benign space ŴΓ,B × Q0. Its minimum eigenvalue is 1 and its
maximum eigenvalue is bounded by

C
1

β2

(
1 + log

H

h

)2

.

Here, C is a constant which is independent of H, h, and the number of sub-
domains and β is the inf-sup stability constant defined in Equation (3).

Just as in the positive definite elliptic case, we can also establish that the
preconditioned BDDC operator and the preconditioned FETI-DP operator in
[6] have the same nonzero eigenvalues; cf. [7, 8]. We have,

Theorem 2 Let Assumption 1 hold. The preconditioned FETI–DP and BDDC
operators have the same nonzero eigenvalues, when the same set of primal
constraints are applied.

5 Numerical Experiments

We solve a lid-driven-cavity problem on the domain Ω = [0, 1] × [0, 1] with
Dirichlet boundary condition, where the velocity is (1, 0) on the upper side,
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and vanishes on the other three sides. We use a uniform mesh, as in Figure 1.
The mixed finite element method is also indicated in Figure 1; the velocity is
continuous and linear in each element and the pressure is constant on macro
elements which are unions of four triangles.

Fig. 1. The mesh and the mixed finite elements.

Both the BDDC and FETI–DP algorithms have been tested. The precon-
ditioned conjugate gradient method is used and the iteration is halted when
the L2-norm of the residual has been reduced by a factor 10−6. The primal
velocity space is spanned by the subdomain vertex nodal basis functions for
both components and by a constant vector in the direction normal to the edge
for each interface edge. Both Assumptions 1 and 2 are then satisfied. From
Tables 1 and 2, we see that the preconditioned BDDC and FETI–DP oper-
ators are both positive definite and quite well-conditioned as established in
Theorems 1 and 2. We observe that the extreme eigenvalues and the iteration
counts of the BDDC and FETI–DP algorithms match very well, and that the
condition numbers of both algorithms are independent of the number of sub-
domains, and increases only slowly with the number of elements across each
subdomain, all as predicted by the theory.

Table 1. Spectral bounds and iteration counts for a pair of BDDC and FETI–DP
algorithms, with different number of subdomains, for H/h = 8 and a primal space
spanned by both corner and normal edge basis functions.

Num. of subs BDDC FETI–DP
nx × ny λmin λmax iter. λmin λmax iter.

4× 4 1.00 3.14 11 1.00 3.14 11
8× 8 1.00 3.88 12 1.00 3.88 12

12× 12 1.00 4.02 12 1.00 4.02 13
16× 16 1.00 4.06 12 1.00 4.07 13
20× 20 1.00 4.08 12 1.00 4.08 13

When Assumption 1 is not satisfied, e.g., when only vertex velocity vari-
ables are primal, the preconditioned BDDC operator is no longer positive
definite, and the iteration counts will depend on both the number of subdo-
mains as well as on the number of elements across each subdomain; cf. [8].
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Table 2. Spectral bounds and iteration counts for a pair of BDDC and FETI–DP
algorithms, with different H/h, for 4 × 4 subdomains and a primal space spanned
by both corner and normal edge basis functions.

BDDC FETI–DP
H/h λmin λmax iter. λmin λmax iter.

4 1.00 2.17 8 1.00 2.17 9
8 1.00 3.14 11 1.00 3.14 11
16 1.00 4.22 13 1.00 4.22 12
32 1.00 5.42 14 1.00 5.42 14
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