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Summary. Dynamic analysis of three-dimensional structures frequently involves
finite element discretizations with over a million unknowns. The discretization is
typically used to enable engineering analysis so that a reduced order model (ROM)
is advantageous or even necessary. The standard reduction approach is accomplished
with a modal truncation, which requires a costly partial eigensolution but reduces
the number of unknowns by orders of magnitude. The cost of the partial eigensolu-
tion required for modal truncation increases as the frequency range for the analysis
increases because the number of eigenpairs needed can easily reach into the thou-
sands.

An approach for computing the partial eigensolution is to use a shift-invert
Lanczos method or a preconditioned eigensolver. Both methods avail themselves of
a multilevel preconditioner. Alternatives in computing the eigenspace needed for
the ROM include component mode synthesis (CMS) techniques that subdivide the
structure into numerous substructures. Modes associated with these substructures
are used to approximate the eigenvectors. Our paper reviews recent work in multi-
level methods for eigenspace computations in structural dynamics where both the
standard approach and CMS based techniques are employed.

1 Introduction

The goal of our paper is to provide a brief review of our work in multilevel methods
for eigenspace computations in structural dynamics. Our review is not meant to be
exhaustive and so we apologize for relevant work that we do not discuss. In particu-
lar, our interest is in multilevel algorithms for the numerical solution of the resulting
algebraic generalized eigenvalue problem arising from the finite element discretiza-
tion of three dimensional structures. Our interest is also restricted in methods that
are scalable, both with respect to the mesh size and the number of processors of
extremely large distributed memory architecture. We start our paper by a formal
discussion of the origin of the eigenvalue problem.
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The dynamic analysis of a three-dimensional structure is typically modeled by
the hyperbolic PDE

ρutt − E(u) = f(t) in Ω (1)

where E(u) is an elliptic differential equation, ρ is the mass density, f is some
load function of interest, and both u and f are vector functions. For example, if
E(u) = div σ(u) then σ(u) is the linearized stress tensor associated with the dis-
placement u obtained from the inner product between the fourth-order tensor of
elastic coefficients Cijkl and the linearized strain tensor

εkl(u) =
1

2

(
∂uk

∂xl
+

∂ul

∂xk

)
.

Because our interest is in a formal presentation of the origin of the eigenvalue prob-
lem in structural dynamics, we assume that appropriate boundary conditions and
initial conditions are specified on some simply connected domain three-dimensional
domain Ω.

If we take the Fourier transform of (1), then the time derivative is eliminated
and the Helmholtz differential equation

−ω2ρuω − E(uω) = fω

results. The standard solution approach is to project this Helmholtz equation onto
the modal subspace given by the eigenvalues and eigenvectors of the vibrational
problem

−E(u) = λρu in Ω (2)

with the same boundary conditions as (8) where λ is the square of the natural
frequency ω and the subscript ω is neglected for ease of notation.

A finite element discretization of the weak form of the vibrational problem (2)
leads to the generalized eigenvalue problem

Kuh = Muhλh (3)

where K and M are the stiffness and mass matrices of order n respectively that
represent the elastic and inertial properties of a structure. Assuming appropriate
boundary conditions, both matrices are symmetric and positive definite. (For an
introduction to finite element methods in structural dynamics, the reader is referred
to [11].)

Three dimensional structures frequently involve finite element discretizations
with over with well over one million unknowns and so a computationally intensive
linear algebra problem ensues. Modal truncation or computing anything but a small
subset of the eigenvalues and eigenvectors of (3) is prohibitive. Nevertheless, 100—
1000 eigenpairs may be needed. The discrete modal subspace is used to generate a
reduced order model (ROM) for (1) so that engineering analysis is possible. Typi-
cal analysis include an harmonic response or transient simulation (see [11] and the
references therein for further details). Modal truncation is justified because eigen-
functions associated with larger frequencies have a much lower participation in the
response than lower ones. But there is an additional justification when a finite ele-
ment discretization is used. If enough modes are retained that the error associated
with modal truncation is no larger than the discretization error, the cost of comput-
ing eigenvector approximations may be dramatically reduced without a significant
loss of accuracy.
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The error in the eigenspace approximations computed is composed of an error
due to discretization and the algorithm used to compute the discrete eigenspace. We
first briefly discuss the former error. Standard results from finite element theory [2]
give that

lim
h→0

λh
i = λi, lim

h→0
λh

n = +∞ (4)

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λi. Note that n → +∞ as h → 0. If p is the degree of the
finite elements, then Strang and Fix [37] give the following a-priori error estimates

λi ≤ λh
i ≤ λi(1 + Ch2pλp

i ) and ‖ui − uh
i ‖H1(Ω) ≤ Chpλ

p/2
i . (5)

These estimates imply that the eigenvalue discretization error is the square of that of
the eigenfunction. Note how both errors also increase as the eigenvalue approximated
increases. Ideally, the error in the algorithm used to compute the discrete eigenspace
should be no smaller than that of the discretization error.

The remainder of our paper reviews two multilevel approaches that can be used
to generate the needed eigenspace. The first, multilevel as a preconditioner, uses
multilevel techniques within a shift-invert Lanczos scheme or a preconditioned eigen-
solver. The second approach, multilevel applied to (3), decomposes the structure,
via multilevel techniques, and computes approximations to the needed eigenspace
from the modes of the decomposed structure. We will refer to these as multilevel
approaches I and II, respectively, and these approaches are the subject of the next
two sections.

2 Multilevel Approach I

Suppose a multilevel preconditioner N is available for the stiffness matrix K. The
preconditioner can be used within two types of algorithms:

• within the shift-invert Lanczos [15, 20] algorithm;
• within a gradient- or Newton-based method.

Replacements for the shift-invert Lanczos algorithm include gradient and Newton
schemes that attempt to minimize the Rayleigh-quotient. The gradient schemes
include conjugate gradient schemes [4, 18, 21, 24, 27, 30] and the Newton based
schemes include the Davidson [13] based methods such as the Jacobi-Davidson al-
gorithm [36]

The two types of algorithms perform a Rayleigh-Ritz analysis using a represen-
tation of the space

Sm+1(x
(0)) ≡ Span{x(0), · · · ,x(m),N−1r(m)}, (6)

where r(m) = Mx(m)θ(m) −Kx(m) and

x(m) ≡ min
x( 6=0)∈Sm

xT Kx

xT Mx
and θ(m) ≡ (x(m))T Kx(m)

(x(m))T Mx(m)
.

We remark that when N = K, then Sm+1(x
(0)) is equal to the Krylov subspace

Km+1(K
−1M,x(0)) ≡ Span{x(0),K−1Mx(0), · · · , (K−1M)mx(0)}, (7)
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a result that is easily established using mathematical induction. The shift-invert
Lanczos iteration with initial vector x(0) computes a representation for the Krylov
subspace.

When N ≈ K, then an inner iteration is needed within the shift-invert Lanc-
zos iteration to approximately solve the linear systems with the coefficient matrix
K. This inner iteration is preconditioned with N. The replacements for the shift-
invert Lanczos iteration avoid the requirement for an inner iteration so that a single
application of N per outer iteration can be used.

Good preconditioners are a prerequisite for any of the algorithms to perform
satisfactorily. If a multilevel preconditioner is used to solve the partial differential
equation

−E(u) = g in Ω (8)

for some load term g, is available, then this preconditioner is used for N. A multilevel
preconditioner for K is desirable because the rate of convergence of the resulting pre-
conditioned conjugate gradient iteration is independent of the mesh size. Although
less studied, preconditioned iterations for the eigenvalue problem should also be in-
dependent of the mesh size. The reader is referred to [23, 25, 1] and [31, 32] for a
review of the many issues involved and convergence theory, respectively. These five
papers also contain numerous citations to the engineering and numerical analysis
literature.

Salinas is a massively parallel implementation of finite element analysis for
structural dynamics developed at Sandia National Laboratories. This capability is
required for high fidelity validated models used in modal, vibrations, static and
shock analysis of weapons systems. Salinas was a 2002 Gordon Bell Prize winner. A
critical component of Salinas are scalable iterative linear algebra and eigensolvers.
The modal analysis is computed with a shift-invert Lanczos method using parallel
ARPACK [26, 29] and the FETI iterative linear solver [17, 16]. The use of FETI for
linear systems generated by the Sandia ASCI Salinas code is elucidated in [5]. The
ARPACK-FETI combination also introduces deflation used when FETI computes
the needed Lagrange multipliers. Because the Lanczos iteration used by ARPACK
makes repeated calls to FETI, the projected conjugate iteration used for computing
the Lagrange multipliers retains a history of vectors computed during each FETI in-
vocation. After the first FETI call by ARPACK, the right-hand side in the projected
conjugate iteration is first orthogonalized against this history of vectors. The num-
ber of projected conjugate iterations is therefore reduced as the number of Lanczos
iterations needed by ARPACK increases.

Besides the capability developed for Salinas, the authors are not aware of any
multilevel based modal analysis capabilities for use within 3D structural dynamics.
Moreover, there is little information available, either experimental or theoretical,
comparing the merits of shift-invert Lanczos methods with preconditioned eigen-
solvers when a large number, say a few hundred eigenvalues and eigenvectors are to
be computed when a scalable preconditioner is available. The paper [1] compares a
number of algorithms on several large-scale eigenvalue problems arising in structural
dynamics when an algebraic multigrid preconditioner is available. One implication
of [1] is that the cost of all the algorithms (and implementations) is asymptotic
with the cost of maintaining numerical orthogonality of the number of eigenvector
approximations required. Are there alternatives?
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3 Multilevel Approach II

The previous section described schemes where knowledge of the preconditioner by
the eigensystem iteration is only required through its application on a vector (or
block of vectors). Given that our goal is to compute hundreds of eigenvectors, per-
haps this separation of preconditioner from eigen-iteration needs to be reconsidered
given that the cost becomes dominated by maintaining numerical orthogonality. In
contrast, the multilevel approaches in this section eliminate or minimize the number
of orthogonalizations of fine grid vectors. This is accomplished by decomposing the
domain into substructures or grids via projection. As in the previous section, there
are two types of algorithms:

• avoiding iteration among the substructures or a sequence of grids;
• iteration among the substructures or a sequence of grids.

Component mode synthesis (CMS) techniques [22, 12] that originated in the
aerospace engineering community and multigrid/multilevel schemes [28, 9] are ex-
amples of the two types of algorithms, respectively. We first discuss CMS techniques
followed by a brief remarks on iteration-based approaches.

CMS schemes decompose a structure into numerous components (or substruc-
tures), determine component modes and then synthesize these modes that approx-
imate a representation of the needed eigenspace. The reader is referred to [35] for
a review of CMS methods from a structural dynamics perspective. Classical CMS
techniques are properly viewed as approximation schemes and differ from domain
decomposition algorithms that use iteration to solve a PDE. Although some iteration
can be used to compute the component and synthesis modes, the goal is to generate
approximations that aptly describe the low frequency modal subspace. Eigenvectors
approximations constructed from these subdomains are used rather than the tra-
ditional eigenvector approximations computed via the techniques described in the
previous section. We remark that the synthesis step is tantamount to an interface
problem.

To make the process concrete, suppose that the structure Ω is divided into two
subdomains Ωi with the common interface Γ . One-way dissection on the union of
the graphs of the mass and stiffness matrices reorders the M and K into[

MΩ1 0 MΩ1,Γ

0 MΩ2 MΩ2,Γ

MT
Ω1,Γ MT

Ω2,Γ MΓ

]
and

[
KΩ1 0 KΩ1,Γ

0 KΩ2 KΩ2,Γ

KT
Ω1,Γ KT

Ω2,Γ KΓ

]
. (9)

The unknowns associated with rows and columns identified by Γ constitute a sepa-
rator for the graph. The finite element nodes associated with this separator identify
element boundaries that form the interface Γ . Block Gaussian elimination on K
results in VT KV = diag[KΩ1 KΩ2 K̃Γ ], where

V =

 InΩ1
0 −K−1

Ω1
KΩ1,Γ

0 InΩ2
−K−1

Ω2
KΩ2,Γ

0 0 InΓ

 . (10)

The matrix
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K̃Γ = KΓ −
2∑

i=1

KT
Ωi,Γ K−1

Ωi
KΩi,Γ

is the Schur complement of diag[KΩ1 KΩ2 ] in K and is the discrete equivalent of
the Steklov–Poincaré operator. If we perform a congruence transformation on (3)
with V, then we obtain

VT KVûh = diag[KΩ1 KΩ2 K̃Γ ]ûh = VT MVûhλhh, (11)

where uh = Vûh and the upper triangular part of the symmetric matrix VT MV isMΩ1 0 MΩ1,Γ −MΩ1K
−1
Ω1

KΩ1,Γ

0 MΩ2 MΩ2,Γ −MΩ2K
−1
Ω2

KΩ2,Γ

? ? M̃Γ

 . (12)

The matrix M̃Γ is

MΓ −
2∑

i=1

(
KT

Ωi,Γ K−1
Ωi

MΩi,Γ + MT
Ωi,Γ K−1

Ωi
KΩi,Γ −KT

Ωi,Γ K−1
Ωi

MΩiK
−1
Ωi

KΩi,Γ

)
and is the discrete version of a mass complement operator. If the columns of ZΩi and
ZΓ are eigenvectors for the substructure matrix pencils (KΩi ,MΩi) and (K̃Γ , M̃Γ ),
respectively, then a Rayleigh-Ritz analysis is undertaken withZΩ1 0 −K−1

Ω1
KΩ1,Γ ZΓ

0 ZΩ2 −K−1
Ω2

KΩ2,Γ ZΓ

0 0 ZΓ

 (13)

to obtain eigenspace approximations to (3). Savings occur when the number of
substructure eigenvectors are small relative to the size of the substructure matrix
pencils so that the number of columns of (13) is significantly less than the order of
(3). For example, because our interest is in the smallest eigenvalues (and associated
eigenvectors), only the smallest eigenvalues of the subdomain and substructures are
retained. This process that retains only a subset of the substructure eigenpairs is
called modal truncation.

We remark that the interface eigenvalue pencil (K̃Γ , M̃Γ ) represents the dis-
crete H1(Ω) (e.g. K orthogonal) projection of (3) onto the interface Γ . Therefore,
the Rayleigh-Ritz analysis renders a diagonal representation of the stiffness matrix
because the subdomain eigenvalue problems are also discrete H1(Ω) projections of
(3) onto Ωi. The projected mass matrix is not, however, diagonal. The projected
mass matrix does possess the same block form as the reordered mass matrix of (9).
Finally, independent of the Rayleigh-Ritz eigenvalue problem that determines the
eigenspace approximations to (3), the resulting eigenvector approximations are K
orthogonal—and this occurred without any explicit orthogonalization of the fine
grid vectors.

Our previous discussion is an example of a fixed-interface CMS method that de-
rives its name from the fact that the eigenvalue problems associated with Ωi impose
a homogeneous essential boundary condition along the interface Γ . Fixed-interface
CMS methods can be posed for the weak formulation of the eigenvalue problem
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(2). The variational formulation of classical CMS techniques is due to Bourquin
[6, 7, 8]. Asymptotic results for second order elliptic differential eigenvalue problems
and their finite element discretization were derived. In three dimensions, for the case
of two subdomains Ωi separated by an interface Γ ,

0 ≤ λk − λN
k ≤ C(k)

 2∑
i=1

εi(s, k, Ni)(
Ci(Ni)N

2/3
i

)1+s
+

εΓ (α, k, NΓ )

CΓ N2α
Γ

 , (14)

gives the error in the eigenvalue approximation due to modal truncation, where
N = (N1, N2, NΓ ) is the triple composed of the number eigenmodes retained in Ωi

and Γ . The functions Ci(Ni) are positive and increasing and depends essentially on
the volume of Ωi. The constant CΓ is expected to increase when the measure of Γ
decreases. The functions εi and εΓ satisfy

lim
Ni→∞

εi(s, k, Ni) = 0, lim
NΓ→∞

εΓ (α, k, NΓ ) = 0.

The coefficient α determines the regularity of a solution in H1+α(Ω), and 0 < s <
1/2 is an artifact of the method of proof.

Our interest in reproducing (14) is to indicate the cost of solving three-
dimensional problems with fixed-interface CMS methods. We note the following.
The subdomain error components are each inversely proportional to the product
of N

2/3
i and the volume of Ωi. The interface error is inversely proportional to the

product of the measure (not volume) of Γ and N2α
Γ . Hence as the regularity of the

interface modes increases, α increases, then the number of interface modes needed
for a prescribed level of error decreases. One conclusion that we can draw, then,
is that an interface with a large measure and inducing solutions that are sufficient
regular should be selected. Unfortunately, the cost of computing the required num-
ber of interface modes may be prohibitive. The reader is referred to [7, 8] for error
bounds that consider the discretization error. We remark that the eigenspace error
depends upon the error due to modal truncation and discretization.

A variation on a fixed-interface CMS method is the automated multilevel sub-
structuring (AMLS) method where the structure is recursively divided into thou-
sands of substructures and associated interfaces. AMLS is motivated by the real-
ization that CMS can be applied to the projections of (3) onto the subdomains Ωi

so resulting in a hierarchy H1(Ω) orthogonal subspaces. The paper [3] examined a
mathematical basis for AMLS in the continuous variational setting and the result-
ing algebraic formulation. Unfortunately, AMLS is not well suited to 3D eigenvalue
problems when solid elements are used. The reason is that AMLS supposes that
the interface matrices are formed and factored so that the cost of AMLS is that
of computing a sparse direct factorization of the stiffness matrix using multifrontal
methods. As is well known, sparse direct methods are not scalable with respect to
mesh or the number of processors.

A alternative to AMLS is to not subdivide the interface into a hierarchy and
instead consider one interface. Indeed, most modern graph partitioners generate a
multitude of subdomains with one interface. A preconditioner for the Schur comple-
ment can be used within a preconditioned eigensolver for the interface eigenvalue
problem. Although the interface problem is reduced in size over that of (3), the
application of the mass and Schur complements matrices, and Schur complement
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preconditioners is expensive. Moreover, there remains the issue of maintaining the
numerical orthogonality of the interface vectors and then, finally performing the
Rayleigh-Ritz analysis. These observations are based on preliminary work by the
authors when using the substructuring preconditioner [14] for the interface eigen-
value problem3.

There are other CMS techniques that are distinguished by how the interface is
handled. MacNeal [34] introduced a Lagrange multiplier to enforce compatibility
of the interface displacements that are referred to as free-free methods. For a one
dimensional model problem, Bourquin [6] showed that a fixed interface method bet-
ter approximates the eigenspace than a free-free method. The recent paper [33] by
Rixen reviews several CMS techniques and introduces a dual fixed-interface method.
The paper [10] considers replacing nonoverlapping CMS methods with overlapping
methods. More work is needed in understanding the effect of the interface upon the
approximation of the global modes, in particular approximations of the mass inter-
face operator. The reader is referred to the thesis by Namar (under the supervision of
Bourquin) that considers such an analysis. If efficient and accurate approximations
of the interface operators were available, then an iteration between the substructures
is possible. This leads us to discuss type two multilevel approaches.

The papers [28, 9] consider such approaches and provide references into the lit-
erature. Type two multilevel II approaches are motivated by the variational problem

min
x( 6=0)

xT Kx

xT Mx
(15)

on a sequence of grids or partition of Ω into subdomains. For example, a sequence
of grids exists when generated as part of a multigrid strategy, and Ω is partitioned
into a union of non-overlapping subdomains as part of a domain decomposition
method. Because the projection operators associated with transferring information
between grids or partitions can be selected K orthogonal, orthogonality of approxi-
mate eigenvectors is easily maintained. In addition, an iteration is naturally defined
because accuracy (estimated via the norms of residuals) can be estimated at the
fine grid. However, this iteration necessarily involves orthogonalizations (either via
Gram-Schmidt or a Rayleigh-Ritz analysis) of fine grid vectors when more than one
eigenpair is needed.

Practical experience with computing many modes using type two multilevel ap-
proaches is lacking. The authors are currently considering an algebraic multigrid
scheme or RQAMG method. This builds upon the work of [28, 19]. The benefit is
that no geometry of the problem is needed.

For both types of multilevel II approaches, an important research question is the
sensitivity of the partition (or grids) computed. All of the existing approaches make
use of geometry to define a physical interface or set of geometric meshes. They are
well-defined independent of geometric considerations. (For example, the proposed
RQAMG is an extension of the RQMG technique due to ([28]).) What the effect
is of using an algebraic interface or restriction of (3) needs further investigation.
We remark that for fixed-interface CMS methods, this questions can be posed as a
question of regularity of the interface for the differential equation. For instance, the
bound (14) reflects regularity through α.

3 We graciously acknowledge the use of prototype codes developed by Clark
Dohrmann of Sandia National Laboratories.
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4 Conclusions

We started with a formal introduction of the origin of the eigenvalue problem in
structural dynamics. We then discussed the resulting partial eigenvalue problem
and accuracy issues. Two multilevel approaches were then introduced. Multilevel
approach I reviewed using a multilevel preconditioner within an iteration for the
eigenpairs of (3). Our discussion of multilevel II approaches focused on CMS meth-
ods. A characteristic of these methods is that orthogonalization of fine grid vectors
is avoided. This cost is replaced by that of solving an interface eigenvalue problem.
Instead, type two multilevel II approaches are more evocative of domain decomposi-
tion methods for partial differential equations where iterations among substructures
or grids is undertaken.
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2. I. Babuška and J. Osborn, Eigenvalue problems, vol. II of Handbook of nu-
merical analysis, Elsevier, 1991, pp. 641–788.

3. J. K. Bennighof and R. B. Lehoucq, An automated multilevel substructuring
method for eigenspace computation in linear elastodynamics, SIAM J. Scientific
Computing, 25 (2004), pp. 2084–2106.

4. L. Bergamaschi, G. Pini, and F. Sartoretto, Approximate inverse pre-
conditioning in the parallel solution of sparse eigenproblems, Numerical Linear
Algebra with Applications, 7 (2000), pp. 99–116.

5. M. Bhardwaj, D. Day, C. Farhat, M. Lesoinne, K. Pierson, and
D. Rixen, Application of the FETI method to ASCI problems: Scalability re-
sults on one-thousand processors and discussion of highly heterogeneous prob-
lems, International Journal on Numerical Methods in Engineering, 47 (2000),
pp. 513–536.

6. F. Bourquin, Analysis and comparison of several component mode synthe-
sis methods on one-dimensional domains, Numerische Mathematik, 58 (1990),
pp. 11–34.
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