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Summary. Elliptic problems with multiscale coefficients have been studied
to a great extent recently. Preconditioners based on standard domain decom-
position methods often perform poorly when the variation of the coefficients
inside the subdomains is large. In this paper we study the behaviour of do-
main decomposition methods based on linear coarsening for such problems
and we also propose improved methods which use the notion of multiscale
finite elements to define coarsening operators.

1 Problem Description

Typical examples of elliptic multiscale problems occur among others in fluid
flow in strongly heterogeneous media or heat conduction in composite me-
dia. Let us therefore consider the second order partial differential equation of
Poisson type

−∇.a(x)∇u(x) = f(x) for x ∈ Ω, (1)

with Ω ⊂ R
d, where a(x) is the conductivity, which for simplicity is assumed

to be scalar valued, symmetric and positive, but which is allowed to vary very
strongly, typically as bad as max

x,y∈Ω
(a(x)/a(y)) ∼= 109. Furthermore we assume

Ω to be an interval for d=1, a polygon for d=2 and a polyhedron for d=3. We
consider the Dirichlet problem with u(x) = 0 for all x ∈ ∂Ω, the boundary of
Ω.
Closely related problems occur in the modeling of groundwater flow. Due
to the difficulties in capturing the heterogeneity of rock formations and sig-
nificant uncertainties away from the limited number of possible observation
points, the permeability field, which is the (often strongly varying) multiscale
field in this application, is then modeled stochastically, and in this case we
consider a lognormal model a (x) := exp (Z (x)), where Z (x) is a Gaussian
random field. Using Monte Carlo Methods on a large sample of reasonable
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realisations of these fields usually leads to good numerical results for u.
For physical and practical reasons (see [DN97]) fields Z(x) of Ornstein-
Uhlenbeck type, i.e. statistically homogeneous isotropic Gaussian random fields
with constant mean, variance σ2, correlation length λ and covariance function

Σ (x,y) := σ2 exp {|x − y| /λ} , (2)

are considered.
We now discretise (1) using linear finite elements on a uniform triangulation
of Ω with element diameter of order h, where the step size is in practice chosen
so that λ = Ch, for C moderate, e.g. C ≈ 10 (see Figure 1), to achieve an
accuarate resolution of the problem without upscaling. Dark regions in these
pictures represent areas with high permeability, etc.. The exact values depend
on the variance σ2. For large λ the local variation of the field is reduced in
general.

(a) Correlation length
λ = 1h

(b) Correlation length
λ = 10h

(c) Correlation length
λ = 20h

(d) Correlation length
λ = 100h

Fig. 1: Dependence on the correlation length λ on domain [0, 128h]2

Now let a be a fixed realisation of this random field and let A(a) be the cor-
responding stiffness matrix with entries Aij(a) :=

∫

Ω

a∇φi.∇φj , where {φi}
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are the piecewise linear nodal basis and let A(1) be the stiffness matrix corre-
sponding to a field with a(x) = 1 for all x ∈ Ω. Then it can easily be shown
that

κ (A(a)) ≤ max
x,y⊂Ω

(a(x)/a(y)) · κ (A(1)) , (3)

where κ denotes the condition number.
Therefore the convergence of iterative methods, like the conjugate gradient
method, depends on the global ratio of the coefficient a and can be very slow
for strongly varying a.

2 Linear Interpolation Domain Decomposition

The previous observations make it important to find a good preconditioner
for the stiffness matrix A(a) and we first of all study an additive Schwarz do-
main decomposition method with linear coarse space. We therefore introduce
a coarse grid of size H , which defines triangular subdomains, Ki, that we
extend to p overlapping regions, K̂i, i = 1, ..., p, with overlap δ, such that the
subdomains consist of unions of fine grid elements. Now let Ri be the local
restriction of a vector defined on the freedoms of the fine mesh to the freedoms
on the interior of K̂i and let Ai := RiAR

T
i . Also let

{

xH
j : j = 1, ..., nc

}

be

the set of coarse grid freedoms. Furthermore let
{

φH
i

}

be the set of linear in-
terpolation functions with respect to the coarse grid, such that φH

i (xH
j ) = δij ,

where δij denotes the Kronecker delta. Using these functions we introduce an
interpolation map RT

L :=
[

φH
1 , ...,φ

H
nc

]

, where for i = 1, ..., nc, φ
H
i is the vec-

tor of evaluations of φH
i at the fine grid freedoms. Finally set AL := RLAR

T
L .

We can then show (using ideas discussed for example in [DW94], [CM94]
and [TW04]), that for the two level linear interpolation additive Schwarz pre-

conditioner M−1

L :=
p
∑

i=0

RT
i A

−1

i Ri + RT
LA

−1

L RL, there exists a constant C,

such that

κ
(

M−1

L A
)

≤ C · B(d) · max
i

max
x,y⊂Ki

(a(x)/a(y))
(

1 + δ−1H
)

, (4)

where B(1) = 1, B(2) = (1 + log(H/h)) and B(3) = H/h.
When a is moderately varying, better estimates which avoid the dependence
on H/h can be derived (see [TW04]). In general, for medium or large corre-
lation length λ, the dependence on a in (4) may be much better than in (3),
since the subdomain ratios max

i
max

x,y⊂Ki

(a(x)/a(y)) can be much smaller than

the global ratio max
x,y⊂Ω

(a(x)/a(y)) (compare with Figure 1). Further details

can be found in [Lec05].
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3 Multiscale Interpolation Domain Decomposition

Estimate (4) still grows linearly with the global maximum ratio of permeabil-
ity values over all subdomains. This can be improved by replacing the linear
interpolation by a more suitable operator. For this we use ideas from multi-
scale finite elements (MsFE) (see [HW97] and [HWC99]). However we apply
them as a way of improving solvers rather than improving accuracy. A similar
motivation is discussed in [AH02]. The basic idea behind this is to use the fine
scale structure of the problem in the construction of the coarse grid basis func-
tions, which will then improve the coarse grid solves. For a typical triangular
coarse grid element K with nodes xK

j , j = 1, 2, 3, we compute multiscale basis

functions ψK
j on the subdomain K by solving the partial differential equations

−∇.a(x)∇ψK
j (x) = 0 for x ∈ K, (5)

where we force a Dirichlet boundary condition on ψK
j with ψK

j (xH
i ) = δij

and fix the behaviour of ψK
j on the other parts of the boundary as discussed

below. In practice ψK
j is approximated by the finite element method on the

fine mesh contained inside K.

Fig. 2: Values of H
�
�∇ψK

3 (x)
�
� evaluated on the fine grid elements of subdomain K

for one multiscale basis function with a = 106 on the marked element in the centre

and a = 1 everywhere else

In fine grid elements where the permeability is high the corresponding multi-
scale basis function will have a smaller gradient. This behaviour is illustrated
in Figure 2, where j = 3 and the permeability is taken as a = 106 on one ele-
ment and 1 on all the others. The ψK

j are then combined to define nodal basis

functions ψi, i = 1, ..., nc, which are defined on all of Ω with ψi

(

xH
j

)

= δij ,
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j = 1, ..., nc, and ψi|K is a linear combination of the ψK
l , l = 1, 2, 3.

We then replace the linear interpolation map RT
L by a multiscale interpola-

tion map RT
Ms := [ψ1, ...,ψnc

], where each ψi is a vector of evaluations of
ψi at the fine grid nodes. The choice of the boundary condition in (5) can be
very important. The simplest choice is to interpolate linearly between the the
values ψj(x

H
i ) = δij on the edges of K. Numerical results show, that these lin-

ear boundary conditions perform very well for small variance σ2. However for
large variance the performance can be improved by using so called oscillatory
conditions as introduced in ([HW97], pages 172-173). Solving problems on
extended subdomains, so called oversampling (useful for improving accuracy,
see [HW97]), has not been found experimentally to improve the convergence
rate significantly.
The new two level multiscale interpolation additive Schwarz preconditioner is

now given by M−1

Ms :=
p
∑

i=0

RT
i A

−1

i Ri +RT
MsA

−1

MsRMs.

We compare the performance of this preconditioner with that of a standard
linear two-level additive Schwarz preconditioner. Consider therefore a simple
two-dimensional problem on [0, 1]2 on which we define a uniform triangular
fine mesh of size h and a coarse triangular mesh of size H and fix a constant
(minimal) overlap δ = 2h. The following tables then compare the iteration
numbers and computation times (in brackets; including setup time and it-
eration time) of the two preconditioners for h = 1/128 and H = 8h, resp.
H = 16h and for different variances σ2, where in the case of multiscale inter-
polation, oscillatory boundary conditions were used for the construction of the
interpolation functions. Here Table 1 is for fields of Ornstein-Uhlenbeck type
with correlation length λ = 10h and Table 2 for completely random isotropic
fields. Both tables show, that in two dimensions especially for strongly varying
fields the multiscale interpolation brings a considerable improvement in both
iteration numbers and computation times.

Variance H = 8h H = 16h

σ2 Linear Int. Multisc. Int. Linear Int. Multisc. Int.

1 29 (90) 27 (89) 43 (175) 42 (178)
2 33 (100) 29 (93) 45 (180) 43 (180)
4 41 (118) 34 (101) 53 (199) 49 (192)
8 59 (160) 45 (127) 73 (239) 62 (214)
16 109 (277) 70 (184) 144 (388) 90 (269)
24 187 (455) 96 (245) 251 (611) 122 (342)

Table 1: Iteration numbers and computation times (in sec.) for fields of
Ornstein-Uhlenbeck type with λ = 10h
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Variance H = 8h H = 16h

σ2 Linear Int. Multisc. Int. Linear Int. Multisc. Int.

1 29 (90) 27 (89) 32 (152) 31 (154)
2 33 (100) 29 (93) 35 (159) 34 (161)
4 49 (137) 34 (103) 44 (178) 40 (175)
8 83 (216) 54 (147) 77 (247) 53 (195)
16 181 (440) 94 (239) 163 (426) 87 (265)
24 279 (664) 118 (320) 301 (714) 129 (356)

Table 2: Iteration numbers and computation times (in sec.) for completely
random isotropic fields

For one dimensional problems, one can show, that M−1

Ms is in fact the exact
inverse of A, when the subdomains have zero overlap. The same is true in
higher dimensions, if we replace the node based version of the multiscale pre-
conditioner by a skeleton based version, which means we compute a multiscale
basis function ψi for every single freedom of the skeleton (i.e. each fine grid
freedom on the boundary of the subdomains), instead of only using the basis
functions corresponding to the coarse grid freedoms. Multiscale precondition-
ers with complexity between the node based and skeleton based methods and
their performance are part of our current research and will be discussed in
[Lec05].
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